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Abstract
Aim: Tidal wetlands are greatly impacted by climate change, and by the invasion of 
alien plant species that are being exposed to salinity changes and longer inundation 
periods resulting from sea level rise. To explore the capacity for the invasion of Iris 
pseudacorus to persist with sea level rise, we initiated an intercontinental study along 
estuarine gradients in the invaded North American range and the native European 
range.
Location: San Francisco Bay- Delta Estuary; California, USA and Guadalquivir River 
Estuary; Andalusia, Spain.
Methods: We compared 15 morphological, biochemical, and reproductive plant 
traits within populations in both ranges to determine if specific functional traits can 
predict invasion success and if environmental factors explain observed phenotypic 
differences.
Results: Alien I. pseudacorus plants in the introduced range had more robust growth 
than plants in the native range. The vigour of the alien plants was reflected by ex-
pression of higher leaf water content, fewer senescent leaves per leaf fan, and more 
carbohydrate storage reserves in rhizomes than plants in the native range. Moreover, 
alien plants tended to show higher specific leaf area and seed production than native 
plants. I. pseudacorus plants in the introduced range were less affected by increasing 
salinity and were exposed to deeper inundation water along the estuarine gradient 
than those in the native range.
Main Conclusions: Functional trait differences suggest mature populations of I. pseu-
dacorus in the introduced range have greater adapted capacity to adjust to environ-
mental stresses induced by rising sea level than those in the native range. Knowledge 
of these trait responses can be applied to improve risk assessments in invaded estuar-
ies and to achieve climate- adapted conservation goals for conservation of the species 
in its native range.
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1  |  INTRODUC TION

Alien plant invasions are global environmental changes that result 
from anthropogenic movement of species beyond their natural dis-
persal barriers to new geography and distribution ranges (Vitousek 
et al., 1997). Global climate change is also dynamically chang-
ing habitat conditions in introduced and native ranges of species 
(IPPC, 2022). Invasion risk is expected to continue to change with 
climate change because invaders may be better able to succeed in 
novel and altered environments and benefit from increases in re-
source availability (e.g. nitrogen and CO2). This highlights a crucial 
need to improve understanding of invasion risk under global change 
to support management programmes relevant for the 21st century 
(Bradley et al., 2010).

The ability to predict what biological attributes drive the inva-
siveness of plant species can provide foundational support for pre-
venting introductions of alien species with traits that deem them 
a risk for invasion. Reviews (Pyšek & Richardson, 2008) and meta- 
analyses (Davidson et al., 2011; Palacio- López & Gianoli, 2011; van 
Kleunen et al., 2010) suggest functional plant traits related to growth, 
biomass allocation, physiology, fecundity, and phenotypic plasticity 
support invasiveness of alien plant species. Environmental variation 
within intercontinental distributions of invasive alien plant species 
can influence plant traits that support their fitness, establishment, 
and spread (Hierro et al., 2005; Pearson et al., 2022). Therefore, in-
vestigations conducted through a biogeographical framework cou-
pled with a functional trait approach (Drenovsky et al., 2012) can 
provide unique insights on how an invasive plant species responds to 
environmental factors affected by climate change. Incorporating bi-
ological traits into conservation biogeography across species ranges 
can also be crucial for development of risk assessment predictions 
addressing responses of vulnerable ecosystems to environmental 
change (Dong et al., 2022; Miatta et al., 2021).

Alien populations that become invasive in introduced ranges 
are often assumed to be more abundant and grow larger than 
their conspecific populations in the native range, though most re-
search has been limited to the introduced range (Guo, 2006; Hierro 
et al., 2005). The few studies focused on plants in their native range 
that are invasive elsewhere suggest some species are pre- adapted 
to invasion (Schlaepfer et al., 2010; van Kleunen et al., 2011; Jelbert 
et al., 2015). Some alien species may acclimate to environmental 
change and maintain fitness through phenotypic plasticity with-
out evolutionary adaptation (Barrett, 2000; Pearman et al., 2008). 
Adaptive phenotypic plasticity can alter functional traits to maintain 
fitness and alter the ecological niche breadth (Colautti et al., 2017). 
In addition, release from environmental stress and natural enemies 
(e.g., herbivores) in introduced habitats may favour establishment 
and spread of alien species and may alleviate the negative effects on 

fitness of depletion of genetic variation derived from demographic 
bottlenecks (Colautti et al., 2017; Schrieber & Lachmuth, 2017). 
Purging genetic loads from founder effects are also now thought 
to enable alien plants to adapt more quickly via rapid evolution 
(Marchini et al., 2016). As a result of the continuing evolution of alien 
plant species, some functional plant traits specifically underlie their 
success (Bajwa et al., 2016; van Kleunen et al., 2010).

Understanding which plant traits might lead to invasion success 
is particularly important in sensitive wetland habitats. Wetlands ac-
count for less than 6% of Earth's landmass yet have been highly vul-
nerable to biological invasions due to their landscape sink position, 
with 24% of plant species identified as the world's worst invaders 
being wetland plants (Zedler & Kercher, 2004). Of these wetlands, 
tidal marsh ecosystems have been highly impacted by the invasion of 
alien species (Adam, 2002). With global climate change, plant species 
colonizing tidal marshes are being exposed to sea level rise (SLR) and 
concomitant changes in tidewater salinity and inundation (Morris 
et al., 2002; Thorne et al., 2018). The modification of salinity and 
inundation regimes is crucial since these key environmental stress-
ors drive wetland vegetation change in response to SLR (Baldwin & 
Mendelssohn, 1998). The distribution patterns across freshwater to 
brackish estuarine gradients are rapidly shifting in response to SLR 
(Mathiventhan et al., 2022), and rapidly assembled plant communi-
ties at these moving fronts will favour alien plant species with su-
perior colonization ability (Grewell et al., 2013). Those plant species 
with a greater tolerance to modifications in environmental factors 
and broader ecological niches will influence the future configuration 
of ecosystems (Thuiller et al., 2005). A key need for conservation 
of estuarine ecosystem functions is to increase our knowledge of 
the responses of alien invasive species to changing environmental 
conditions.

Iris pseudacorus L. (yellow flag iris; Iridaceae) is a peren-
nial macrophyte native to the British Isles, Scandinavia, Europe, 
the Mediterranean Region, and western Asia (Encyclopedia of 
Life, 2022). Iris pseudacorus has highly attractive yellow flowers 
which enticed 18th century botanical collectors to import it to North 
America (e.g., Hayden Reichard & White, 2001). In North America, I. 
pseudacorus was introduced in Virginia before 1771, and by 1800 it 
was growing along the tidal Potomac River (Wells & Brown, 2000). 
Accidental introductions of plants through ballast water dis-
charges are also significant invasion pathways (Lehan et al., 2013). 
Iris pseudacorus was documented as a significant plant in ballast 
water discharge to coastal Atlantic USA harbours (Torrey Botanical 
Club, 1888), and therefore likely to other estuaries. By 1948, the 
introduced range included the Pacific Northwest and California 
(Consortia of California and Pacific Northwest Herbaria; California 
Academy of Sciences). Despite regulatory restrictions on its trans-
port and sale, horticulture continues to play a role in I. pseudacorus 
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836  |    GREWELL et al.

introductions (Beaury et al., 2021; Molina- Montenegro et al., 2018). 
The global distribution of I. pseudacorus includes 16 Köppen- Geiger 
climate zones (Minuti et al., 2022). The species has invaded and dis-
placed native wetland vegetation in nearly every global ecozone 
(Gervazoni et al., 2020; Hayasaka et al., 2018; Mopper et al., 2016). 
In California tidal marshes, I. pseudacorus reduces species richness 
and diversity of invaded native plant communities, in contrast to its 
ecological role as a native species in the Iberian Peninsula, where it 
co- exists within diverse wetland plant communities (Gallego- Tévar 
et al., 2022). Recent downstream spread into brackish reaches of the 
greater San Francisco Bay- Delta Estuary was unexpected, as it had 
long been assumed this species would be limited to freshwater wet-
lands. The risk for further spread with increasing salinity and tidal 
ranges is not clear (Cloern et al., 2011). Given the prevalence of I. 
pseudacorus in the world's estuarine vegetation, it is important to 
understand the potential fate or persistence of the species in the 
native and introduced ranges as SLR continues.

To begin to understand the capacity for the invasion of I. pseu-
dacorus to be sustained with SLR, we carried out a field study at a 
focused patch scale within populations. I. pseudacorus plants pro-
duce many rhizomes, resulting in a dense clonal tussock or clumping 
growth form. Therefore, hereafter, “patch scale” refers to the fine- 
scale assessment level within the study population, and each “patch” 
is our monitoring plot that spatially encompasses this discrete 
tussock growth form within a population.Within each assessment 
patch, we evaluated variation in functional plant traits and environ-
mental variables at peak summer growth along estuarine salinity and 
inundation gradients in both the introduced and native ranges. Our 
objective was to determine whether functional traits of I. pseuda-
corus can explain its invasive success in the introduced range and 
if current environmental factors can explain phenotypic differences 
between ranges. We hypothesized that alien I. pseudacorus plants 
would express enhanced functional traits supporting greater plant 
vigour, with lower sensitivity to increasing salinity and inundation 
along estuarine gradients in comparison to native plants.

2  |  METHODS

2.1  |  Study sites

We established our study at I. pseudacorus population sites dis-
tributed along estuarine gradients from the freshwater tidal to 
brackish tidal marshes in the native range within the Guadalquivir 
River Estuary (GRE; Southwest Iberian Peninsula), and in the in-
troduced range within the San Francisco Bay- Delta Estuary(SFE; 
Pacific Coast of North America; Figure 1). The estuaries each occur 
near continental plate margins, and both are classified as tectoni-
cally shaped drowned river estuaries with geomorphic complex-
ity (Atwater, 1979; Rodríguez- Ramírez et al., 2019). Tidal marshes 
in both estuaries experience mixed semi- diurnal tidal regime with 
meso- tidal ranges and are influenced by local watershed inflow, 
freshwater diversions for beneficial uses such as irrigation and 

municipal water supply, and dam- regulated outflow from upstream 
reservoir releases. Mediterranean climate prevails at both estuaries, 
with cool, wet winters and hot, dry summers moderated by Atlantic 
(GRE) or Pacific (SFE) influence (AEMET, 2020; Kimmerer, 2004).

The native Palearctic biogeographic range of I. pseudacorus is be-
lieved to include central and southern Scandinavia, the British Isles, 
Europe, northern Africa, and western Asia (Gervazoni et al., 2020; 
Sutherland & Walton, 1990). However, early occurrence records 
(17th– 19th century) are scant and are mainly limited to records 
from Great Britain and France (GBIF). The Royal Botanic Garden of 
Madrid founded in 1755 greatly increased 1804 and later collections 
of I. pseudacorus specimens from the Iberian Peninsula, including an 
1849 specimen from Chiclana tidal marshes near our Guadalquivir 
River Estuary study sites (CSIC- Real Jardín Botánico, 2022).

While alien I. pseudacorus had established in the upper fresh-
water tidal reach of Atlantic North American coastal Virginia's 
Potomac River by 1800 (Wells & Brown, 2000), invasions in the 
Pacific Northwest and California are more recent. Records of natu-
ralized Iris pseudacorus date to 1948 in coastal southern California, 
and populations were well- established in the Merced River tributary 
to the Sacramento- San Joaquin River Delta by 1959 (CCHI Portal 
Biodiversity Data, Consortium of California Herbaria, 2023). Alien 
populations were established in freshwater tidal wetlands of the 
inland Sacramento- San Joaquin Delta by 1969 (Light et al., 2005). 
Downstream spread into brackish tidal wetlands in the greater San 
Francisco Bay- Delta Estuary has recently occurred (Gallego- Tévar 
et al., 2022; Gillard et al., 2021).

Study plots were established in native populations of I. pseuda-
corus distributed from the freshwater tidal reach to the most down-
stream population in brackish marshes in the GRE just above the 
Gulf of Cadiz. At SFE, population study sites were distributed from 
freshwater tidal reaches to brackish wetlands in the Carquinez Strait 
where the estuary penetrates California's Coast Range (Figure 1). 
Using standardized methods at all study sites, we evaluated vari-
ation in 15 functional plant traits and 11 environmental variables 
within fixed patch- scale monitoring plots corresponding to discrete 
plant tussocks (n = 7– 8 per population) at five study populations of I. 
pseudacorus extant along estuarine gradients in both the introduced 
and native ranges.

2.2  |  Data collection and laboratory analyses

2.2.1  |  Plant traits

Using a line intercept method, the presence of I. pseudacorus was re-
corded at 10- cm intervals along two perpendicular transects across 
the maximum length and width of each patch- scalemonitoring plot 
of I. pseudacorus. The absolute cover (%) of I. pseudacorus was cal-
culated as the number of points the species was present in rela-
tion to the total number of points of both transects and multiplied 
by 100. Maximum length and width of study patches (individual I. 
pseudacorus clonal plants covering circular to elliptic areas) within 
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    |  837GREWELL et al.

each population were measured along perpendicular transects 
using a reel tape. In situ measurements of leaf morphology (maxi-
mum length and width) were recorded in the field for five randomly 
selected, fully expanded adult leaves in each plot at each popula-
tion during peak summer growth. The number of live and senescent 
leaves per leaf fan used for leaf morphology measurements was also 
recorded in each plot (n = 5 leaf fans per plot). I. pseudacorus retains 
senescent leaves attached to stems as new leaves emerge through 
the growing season. Therefore, it is meaningful to count senescent 
leaves together with live leaves as a record of total leaf production 
by the plant.

Each measured live leaf was harvested and transported to the 
laboratories in coolers with blue ice for analysis of leaf water con-
tent (LWC), specific leaf area (SLA), and total carbon (C) and nitrogen 
(N) concentrations. Leaf area was measured using image analysis 
software (introduced range: WinFOLIA 2009a, Regent Instruments, 
Saint- Foy, Quebec, Canada; native range: Medición de Hojas v1.0, 

ADN software). SLA was calculated by dividing the leaf area by 
dry mass from five randomly chosen adult leaves per plant follow-
ing Garnier et al. (2001). Total C and N concentration of alien leaf 
tissue were analysed using a Perkin Elmer 2400 CHNS/O analyser 
(Perkin Elmer, Waltham, MA, USA), and a LECO TruSpec Micro CHN/
CHNS/O analyser (LECO Corporation).

At all population sites in both estuaries, the team determined 
apical leaf elongation rates (LER) in the field by marking the base of 
ten leaves per plot with waterproof sealant and measuring the dis-
tance from the mark to the leaf base after 48 h (Castillo et al., 2014). 
Reproductive traits were also recorded. The number of capsules (0 
to X) produced on each flowering stem within each discrete patch 
was counted. At two sites in the introduced range (C1, C3) where 
it was not possible to distinguish a discrete individual patch given 
extensive contiguous linear bands of plants, we counted capsules 
within a 2 × 2 m subplot which was representative of the average 
area sampled for discrete patches. Mature capsules were collected 

F I G U R E  1  (a) Geographical locations 
of the study in the introduced North 
American and native European 
ranges. Locations of Iris pseudacorus 
population sites in (b) San Francisco 
Bay- Delta Estuary, California, USA and 
(c) Guadalquivir River Estuary, Andalusia, 
Spain. Photographs of I. pseudacorus 
studypopulations at (d) Brannon Island 
(C2; alien), (e) Guadalquivir River at Seville 
(A2; native), (f) Montezuma Slough, Suisun 
Marsh (C4; alien) and (g) Guadalquivir 
River near Acequia de Reina Victoria (A4; 
native).

(a) 

(e) 

(g) 

(d) 

(f) 

(b) 

Gulf of Cadiz, 
Atlantic Ocean 

Odiel  

A1 
A2 

A4 

A5 

A3 
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838  |    GREWELL et al.

randomly based on capsules present (n = 1 to a maximum of 40 cap-
sules per plot) and evaluated for seed count per capsule, then air- 
dried, and weighed to obtain mean seed mass (n = 4– 10 capsules 
per plot; 10 seeds per capsule). In the native range, seed traits were 
determined for a subset of population patches given early dispersal 
or herbivory. Rhizome samples were randomly hand- excavated from 
shallow soil. Sample sizes were stratified based on scale of the oc-
cupied area of the study patch, with one sample from small patches 
(<1.5 m2), two samples from medium plots (1.5– 4.0 m2), and three 
from large plots (>4.0 m2).Rhizomes were stored in coolers with blue 
ice and transported to the laboratory. Rhizome samples (2– 3 cm di-
ameter × 5 cm length) were dried, ground to pass through 40- mesh 
sieve in preparation for analysis of total nonstructural carbohydrate 
concentrations (TNC). TNC concentration in rhizome samples was 
analysed with a colorimetric assay of reducing sugars following etha-
nol extraction (Chow & Landhäusser, 2004) and enzymatic digestion 
of the starch residue (Quentin et al., 2015).

2.2.2  |  Environmental variables

In situ environmental conditions including soil physico- chemical 
characteristics and plant species cover, were sampled and assessed 
in each study patch of I. pseudacorus simultaneous withplant trait 
measurements. The presence associated plant species within I. pseu-
dacorus patches was recorded as previously explained for I. pseuda-
corus using the same transects.

Soil cores (4.5 cm diameter × 10 cm depth) were collected from 
each monitoring plot using the same patch size- stratified sampling 
scheme previously described for rhizome sampling. Cores were 
placed in coolers with blue ice and transported to the laboratory. 
Samples were oven- dried at 60°C for 48 h and then ground to pass 
through a 40- mesh sieve. Soil bulk density (BD) was calculated from 
soil dry mass and volume of the core. Soil organic matter (OM) content 
was determined standard loss on ignition (Nelson & Sommers, 1996). 
Total soil C and N concentrations were measured using the same 
methodology reported above for leaves. A set of soil cores (4.5 cm 
diameter × 5.0 cm depth) were also collected at each plot for deter-
mination of soil pH and electrical conductivity (EC) of interstitial soil 
water. These samples were air- dried, ground, and passed through a 
20- mesh sieve. Saturated paste extracts were obtained through vac-
uum filtration, and the extract was measured for soil pH (introduced 
range: Accumet AB15 Plus, Thermo Fisher Scientific; native range: 
Crison pH- meter Basic 20, Crison Instruments) and EC (mS cm−1) (in-
troduced range: Oakton CON2700, Oakton Instruments) fitted with 
a Accumet AB15 Plus pH probe (Thermo Fisher Scientific; native 
range: Crison EC- meter Basic 30, Crison Instruments).

At SFE study sites, GPS measurements of geographical coordi-
nates and elevations were acquired at middle within- patch elevations 
for all iris patches using a Leica GS14 Real- Time Kinematic (RTK) 
rover (±1 cm horizontal, ±2 cm vertical accuracy; Leica Geosystems 
Inc., Norcross Georgia). Geographic coordinates and elevations in 
the native range were obtained using a GNSS RTK Geomax Zenith 

25 Pro (±1 cm horizontal, ±2 cm vertical accuracy; Conyca- GeoMax; 
Table S1). Hydrologic distance (HyDx) was recorded as the distance 
by tidal channels from the mouth of the estuary to each study pop-
ulation. Geographic coordinates and elevation data were used to 
reference occupied area of the I. pseudacorus population patches to 
model and determine hydrologic parameters in occupied patches rel-
ative to local monitoring station data. For the analysis in the SFE, we 
used sea- level monitoring data (2017– 2018) from a long- term NOAA 
gauge (Port Chicago, station: 9415144) as well as data collected with 
pressure- transducing dataloggers (Solinst Edge; Ontario, Canada) de-
ployed in marsh channels at Brown's Island, Rush Ranch NERR, and 
Miners Slough. The logger data were corrected for barometric pres-
sure using data from nearby airports or a separate barometric pres-
sure datalogger; the dataloggers were surveyed with RTK GPS relative 
to NAVD88. For the analysis in the GRE, we obtained sea level data 
from UNESCO Intergovernmental Oceanographic Commission for the 
Bonanza station for 2019– 2020 (UNESCO, 2022). To allow for data 
comparisons between ranges, sea level data were converted to the 
Instituto Geografico Nacional (IGN) vertical datum by subtracting the 
published offset of 1.419 m from the Bonanza data. Percent time inun-
dated (IP) for each study patch was determined by summing the water 
level records that were greater than patch elevation and dividing by 
the number of water level observations. Additionally, we calculated 
maximum water inundation depth (MID) for each I. pseudacorus study 
patch by subtracting patch elevation from the maximum water level.

2.3  |  Data analyses

Standard error (SE) was calculated for each arithmetic mean. Prior 
to conducting the analyses, data series were tested for normality 
with the Shapiro– Wilk test, for homoscedasticity with the Levene's 
test, and for redundancy with correlation analysis using the soft-
ware SigmaPlot v. 12 (Systat Software). The variable elevation was 
transformed using the function 1/x and two variables (leaf N and 
soil organic matter) using the function log(x) to address the assump-
tions needed for parametric tests. Multivariate analysis of variance 
(MANOVA) using the Pillai's Trace test statistic were conducted 
for plant traits and environmental conditions recorded in the field, 
separately, using population as grouping factor. The analyses of 
multivariate variance protect subsequent analyses from type I error 
(Scheiner, 2001). Once multivariate significance was established, 
General Linear Models (GLM) with Bonferroni– Dunn's test as post 
hoc analysis were used to assess the main univariate differences 
of each variable recorded in the field using range (native or intro-
duced) and population as grouping factors. When homogeneity of 
variance was not accomplished after data transformation, univari-
ate differences were analysed using the Gamma Generalized Linear 
Model (GGLM) with Chi- square (χ2) de Wald (Ng & Cribbie, 2017). 
In addition, we also used plant traits and environmental condi-
tions as response variables in linear mixed models, using restricted 
maximum likelihood, to test the effect of range as a fixed effect and 
population as a random effect. To test specifically whether recorded 
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    |  839GREWELL et al.

environmental factors affected our global estimates of the differ-
ence between native and introduced ranges (fixed effect), follow-
ing Colautti et al., 2009, we ran two linear mixed models, using 
restricted maximum likelihood: (i) the first model excluding environ-
mental factors and (ii) the second model including environmental 
factors as covariables and the interactions of geographical range 
with each environmental factor. Linear correlation (Pearson correla-
tion coefficient, r) and regression analyses were used to characterize 
the relationships between plant traits and environmental variables. 
All these analyses were conducted using IBM SPSS V. 20 (IBM Corp).

Principal Components Analysis (PCA) was carried out for plant 
trait values from both geographic ranges to identify plant traits with 
the most significant changes within and between the native and in-
troduced ranges. Independent PC factors with eigenvalues >1 were 
extracted, assessing convergence of the correlation matrix with 
maximum 25 iterations without rotation. Canonical Correspondence 
Analyses (CCA) were conducted using a full model to test the signifi-
cance of the relationship between the environmental variables mea-
sured and the plant trait matrix together in both native and introduced 
ranges. Monte- Carlo permutation tests (999 permutations) were per-
formed for assessing significance of the canonical correlation coeffi-
cients using R software (R Core Team, 2022). Number of seeds per 
capsule and seed mass data were not included in the PCA and CCA be-
cause of missing data for several native populations due to herbivory.

3  |  RESULTS

3.1  |  Plant traits

Iris pseudacorus presented approximately 80% absolute cover in 
the native and introduced ranges, though lower abundance (60% 
cover) was recorded in native population A5 (Figure S1). In addi-
tion, I. pseudacorus had approximately five live leaves per fan that 
were typically about 100 cm long and had consistent c. 400 mg g−1 
carbon concentrations in both geographic ranges. In addition, LER 
decreased three times seaward and showed no difference be-
tween ranges (Figure 2; Tables 1 and S2). Although these few plant 
traits were comparable in both geographic ranges, overall plant 
traits of I. pseudacorus in populations along estuarine gradients in 
the native (n = 38 plots) and introduced (n = 39 plots) ranges were 
quite different (MANOVA, Pillai's Trace = 4.096; F12,117 = 4.047; 
p < .0001). Alien I. pseudacorus plants had 40% more capsules per 
stem than native plants, yet native population A2 had seeds with c. 
40% greater mass than most alien populations (Figure 2; Tables 1 
and S2). Leaf width, the number of senescent leaves per leaf fan, 
SLA, LWC, leaf N concentration, and the number of capsules per 
stem showed significant differences between geographical ranges 
when environmental factors were excluded in the model. However, 
when the environmental matrix is included, the differences were 
not significant. In contrast, patch area and the cover of iris only 
showed significant differences between ranges when environmen-
tal factors were included as covariables (Table S3).

Principal Components Analysis grouped plant traits into four 
factors that together explained 64.3% of the total variance in func-
tional plant trait values that separated relative to intercontinental 
ranges. The first factor (PC1) explaining 24.7% of the variance was 
positively related to the number of capsules per stem, LWC and 
leaf length, and was negatively related to the number of senescent 
leaves per fan (Table S4). PC1 separated seaward populations of na-
tive iris with negative values from upstream native populations and 
most alien populations that showed positive values (Figure 3). In the 
native range, the most upstream populations (A1– 2) had approxi-
mately 60% longer leaves than the most seaward study population 
(A5). LWC was c. 6% lower in the native than in the introduced range, 
decreasing seaward at both estuaries (Figure 2; Tables 1 and S2). The 
populations from the native range had increased numbers of senes-
cent leaves per leaf fanseaward, with double the values of senescent 
leaves recorded in the introduced range.

PC2 explaining 15.5% of the variance was negatively related to leaf 
N concentration and SLA (Table S4), separating the native populations 
along the estuarine gradient more than alien populations (Figure 3). 
Live leaves in the native range presented c. 20% higher leaf N concen-
tration than in the introduced range (Tables 1 and S2). Leaf N concen-
tration was the highest for the most inland population in the native 
range (A1). Mean SLA was consistent among populations in the intro-
duced range and 50% higher than SLA in the native range where SLA 
decreased by five times moving downstream in the estuarine gradient. 
PC3 and PC4 explained 14.0% and 10.0%, respectively (Table S4). PC3 
was positively correlated with the cover of iris and negatively cor-
related with rhizome TNC concentration which was c. 50% higher in 
introduced compared to native populations (Tables 1 and S2). Finally, 
PC4 was positively correlated with the number of live leaves per fan, 
which doubled upstream in the introduced range and, on the contrary, 
increased seaward in populations in the native range (Figure 2).

3.2  |  Environmental conditions

Environmental conditions varied between I. pseudacorus- occupied 
plots in the native and introduced ranges (MANOVA, Pillai's 
Trace = 4.635; F8,99 = 6.275; p < .0001). The cover of plant species 
co- occurring in the vegetation with I. pseudacorus was approximately 
50% higher in native populations than in the invaded plant communi-
ties (Figure 2; Tables 1 and S2).

Soil EC decreased upstream in both the native (from 3.77 ± 0.13 
to 1.13 ± 0.10 mS cm−1) and the introduced (from 5.47 ± 1.26 to 
1.22 ± 0.35 mS cm−1) range (Figure 2; Tables 1 and S2). The amount 
of soil OM and total N in the soil was higher in the introduced range 
(OM: 15 ± 2%, N: 3.36 ± 0.35 mg g−1) than in the native range (OM: 
6 ± 0%, N: 1.60 ± 0.11 mg g−1) (Figure 2; Tables 1 and S2). BD of soil 
was higher in the native (1.01 ± 0.02 g cm−3) than in the introduced 
range (0.74 ± 0.05 g cm−3). Soil pH was similar between ranges (na-
tive, 7.6 ± 0.0; introduced, 6.7 ± 0.2), but more variable in the intro-
duced range where it increased seaward along the estuarine gradient 
(Figure S2; Tables 1 and S2).
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840  |    GREWELL et al.

F I G U R E  2  (a) Plant trait responses and (b) environmental variation in Iris pseudacorus populations in the introduced (California, C; 
cyan bars) and native (Andalusia, A; yellow bars) ranges along estuarine gradients (1, upstream; 5, seaward). Data are mean ± SE (n = 7– 8). 
Different letters indicate significant differences between populations (GLM or GGLM, p < .05). Abbreviations: EC, soil electrical conductivity; 
LER, leaf expansion rate; LWC, leaf water content; OM, soil organic matter content; SLA, specific leaf area; TNC, total non- structural 
carbohydrates.
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    |  841GREWELL et al.

In the introduced range, mean elevation was 1.67 ± 0.06 m, in-
creasing to a maximum of 2.65 m seawards. Mean elevation in the 
native range was 1.88 ± 0.03 m, with a range of 0.62 m between the 
highest and the lowest values. Maximum HyDx was 141 km in the in-
troduced range and 95 km in the native range. Maximum inundation 
depth was 75% greater in the introduced range than in the native 
range (Figure 2; Tables 1 and S2).

3.3  |  Relationships between plant traits and 
environmental conditions

Plant traits and associated environmental conditions clearly distin-
guished I. pseudacorus populations in the introduced range from 
those in the native range (CCA ordination, Figure 4). The first two 

axes of the CCA explained 82.5% of the total variance in the rela-
tionships between recorded iris plant traits and the range of envi-
ronmental variables associated with the monitoring plots. Axis 1 
explained 60.3% of the variance and was negatively correlated with 
MID, soil OM, the number of capsules per stem and rhizome TNC, 
and positively with soil pH, BD, and leaf N concentration. Almost all 
the monitoring plots in the introduced range were negatively related 
and most plots in the native range were positively related to Axis 1 
(Figure 4; Table S5). Axis 2 explained 22.2% of the variance and was 
negatively correlated with HyDx and LER and positively with soil EC. 
More upstream monitoring plots tended to show more negative val-
ues along Axis 2 than those plots located closer to the sea. Axes 3, 4, 
5, and 6 represented just 16.4% of total variance (Figure 4; Table S5).

Simple regression analyses illustrate the relationships between 
soil EC and plant traits, highlighting marked differences between 

TA B L E  1  Mean and standard error, F- statistic and p- values of GLMs and GGLMS for plant traits and environmental conditions recorded in 
the field comparing between geographic ranges (introduced range, California, USA; native range, Andalusia, Spain) and between populations 
in both geographic ranges (N = 77) as fixed factors.

Variables Introduced range Native range Geographic range Population

Plant traits

Patch area (m2) 4.1 ± 0.8 4.2 ± 0.1 χ2 = 0.018, p = .893 χ2 = 28.597, p = .001

Iris cover (%) 74.4 ± 2.0 78.5 ± 3.1 F1,75 = 1.225, p = .272 F9,67 = 2.425, p = .019

Leaf length (cm) 114.7 ± 5.0 116.5 ± 6.5 F1,75 = 0.052, p = .819 F9,67 = 7.320, p < .0001

Leaf width (cm) 2.9 ± 0.1 2.5 ± 0.1 F1,75 = 10.428, p < .005 F9,67 = 3.137, p = .003

Live leaves per fan (#) 5.4 ± 0.3 5.4 ± 0.2 χ2 = 0.001, p = .976 χ2 = 109.429, p < .0001

Senescent leaves per fan (#) 0.2 ± 0.1 1.2 ± 0.2 F1,75 = 35.771, p < .001 F9,67 = 34.540, p < .0001

SLA (m2 kg−1) 8.2 ± 0.3 5.5 ± 0.6 F1,75 = 13.983, p < .0001 F9,67 = 9.135, p < .0001

Leaf elongation rate (cm d−1) 2.3 ± 0.2 2.3 ± 0.3 χ2 = 0.014, p = .906 χ2 = 78.203, p < .0001

Leaf water content (%) 79.5 ± 0.6 74.8 ± 0.6 F1,75 = 33.205, p < .0001 F9,67 = 6.000, p < .0001

Leaf C concentration (mg g−1) 408 ± 1 412 ± 2 F1,75 = 2.561, p = .114 F9,66 = 1.443, p = .188

Leaf N concentration (mg g−1) 9 ± 0 16 ± 1 F1,75 = 62.473, p < .0001 F9,67 = 19.089, p < .0001

Rhizome TNC (mg g−1) 193 ± 8 129 ± 8 F1,75 = 32.587, p < .0001 F9,67 = 4.166, p < .0001

Capsules per stem (#) 4.9 ± 0.5 2.7 ± 0.4 F1,75 = 17.866, p < .0001 F9,67 = 7.064, p < .0001

Seeds per capsule (#) 58.0 ± 2.9 57.9 ± 4.3 F1,41 = 0.001, p < .978 F8,34 = 0.680, p < .706

Seed mass (mg) 61.1 ± 2.1 74.3 ± 6.3 F1,36 = 5.612, p < .023 F8,29 = 7.494, p < .0001

Environmental variables

Soil bulk density (g cm−3) 0.7 ± 0.1 1.0 ± 0.0 F1,75 = 21.201, p < .0001 F9,67 = 5.935, p < .0001

Soil organic matter (%) 14.8 ± 1.6 6.1 ± 0.3 F1,75 = 29.110, p < .0001 F9,67 = 10.512, p < .0001

Total soil C concentration (mg g−1) 47.2 ± 6.4 56.5 ± 1.0 χ2 = 1.618, p = .203 χ2 = 161.893, p < .001

Total soil N concentration (mg g−1) 3.4 ± 0.4 1.6 ± 0.1 F1,75 = 22.297, p < .0001 F9,67 = 8.384, p < .0001

Soil pH 6.7 ± 0.2 7.6 ± 0.0 χ2 = 26.621, p < .0001 χ2 = 87.649, p < .0001

Soil electrical conductivity (mS cm−1) 2.0 ± 0.3 2.4 ± 0.2 χ2 = 1.341, p = .247 χ2 = 205.225 p < .0001

Cover of plant species associates 97.3 ± 7.0 161.5 ± 9.2 χ2 = 29.606, p < .0001 F9,67 = 7.569, p < .0001

Intertidal elevation (m) 1.7 ± 0.1 1.9 ± 0.0 χ2 = 10.030, p < .005 χ2 = 220.607, p < .0001

Hydrologic distance (km) 96.9 ± 4.4 63.4 ± 3.8 F1,75 = 32.969, p < .0001 F9,67 = 369749.838, p < .0001

Inundation period (%) 22 ± 2 31 ± 4 χ2 = 14.809, p < .0001 χ2 = 79.393, p < .0001

Maximum inundation depth (m) 1.16 ± 0.11 0.33 ± 0.03 χ2 = 57.485, p < .0001 χ2 = 113.989, p < .0001

Note: Significant differences are marked in bold.
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842  |    GREWELL et al.

geographic ranges (Figure 5). In the native range, I. pseudacorus 
was more sensitive to increasing interstitial soil EC than plants in 
the introduced range as expressed by several key traits. Soil EC was 
negatively related to LWC and LER for both alien and native plants; 
however, the decreases at higher salinities were doubled for native 
than alien plants. In contrast, soil EC was positively related with 
senescent leaf number per fan and negatively with leaf length and 
width, leaf N concentration, and SLA only for native plants (Figure 5). 
The number of live leaves per fan increased with increasing IP and 
MID in the introduced range but not in the native range (Figure 5). 
In fact, all plant traits recoded in the native range were independent 
of IP and MID (Pearson correlation, p > .05), except the number of 
senescent leaves per fan that increased together with MID (r = .344, 
p = .034, n = 38).

4  |  DISCUSSION

We measured and compared expressed functional traits of I. pseu-
dacorus that are key to the relationship with environmental variation 
between the native and introduced ranges. In accordance with our 
hypotheses, I. pseudacorus plants invading the SFE had greater func-
tional trait support to counter environmental stress and maintain 
fitness than those native plants in the GRE. The intercontinental dif-
ferences in performance- related plant trait responses illustrate the 
capacity of I. pseudacorus to counter changing environmental con-
ditions such as SLR. Iris pseudacorus plants in the introduced range 
were less affected by increasing salinity and maintained growth and 
fitness in deeper water along the estuarine gradient than those in 
the native range.

Iris pseudacorus has been described as a salt- sensitive species in a 
greenhouse study (Grewell et al., 2021), coinciding with its LWC and 
LER decreasing seaward where soils were more saline (higher EC) in 
both intercontinental ranges. In fact, most of plant trait values sam-
pled at soil salinities c. 2 ppt in the field were in the range of those 
recorded at salinity as high as 15 ppt in a greenhouse experiment 
(Grewell et al., 2021). This result suggests I. pseudacorus plants were 
growing in suboptimal conditions with elevated soil salinity at both 
study locations. In this context, native plants were more sensitive 
to increasing salinity along the estuarine gradient than alien plants. 
This result is informative regarding the response of I. pseudacorus to 
global warming and SLR in Mediterranean climate zones where soil 
salinity in tidal marshes is increasing (Vicente & Boscaiu, 2020).

Physiological traits that underlie water loss and carbon uptake 
and allocation by plants are highly plastic in response to environmen-
tal heterogeneity and are key determinants of growth and fitness 
(Ackerly et al., 2000; Sage, 1994). Thus, native I. pseudacorus plants 
tended to show lower SLA, but higher leaf N concentrations than 
alien plants in the introduced range, and higher numbers of senes-
cent leaves per sprout with increasing salinity. Previous studies have 
recorded an increase in salt tolerance related to ion accumulation in 
senescent leaf tissue (Reddy et al., 2017) and increased SLA (Grewell 
et al., 2021; Zong et al., 2021). In contrast, alien plants, exposed to 
similar soil salinities as the native plants, also had decreased LWC 
and LER with increasing salinity gradient, but responded with about 
half the decrease in these leaf traits than observed for native plants.

Plant traits considered to represent variation in life history 
relevant to predicting invasiveness include high SLA (Hamilton 
et al., 2005). In this regard, the greater performance of alien I. pseuda-
corus plants exposed to increasing salinity was supported by leaves 
with 50% higher SLA and greater hydration (LWC) and growth (LER) 
than those in the native range. Greater SLA has been associated with 
higher relative growth rates and greater competitive ability in pro-
ductive environments, while a lower SLA indicative of a lower rela-
tive growth rate, can provide a selective advantage in unfavourable 
habitats (Lambers & Poorter, 2004). It is interesting to note that alien 
plants maintained very similar SLA along the estuarine gradient, 
while SLA in native populations decreased 5- fold, corresponding 
to a seaward increase in interstitial soil salinity. In contrast, alien I. 

F I G U R E  3  Principal Components Analysis (PCA) plot for Iris 
pseudacorus plant traitsrecorded in the field in the alien populations 
(C1– C6, California, USA) and native populations (A1– A5, Andalusia, 
Spain). The yellow ellipse groups most of the native plants from 
those with high number of senescent leaves (negative values) to 
those with high leaf water content (positive values) along PC2, and 
the blue ellipse groups most of the alien plants.

F I G U R E  4  Ordination diagram of a Canonical Correspondence 
Analysis (CCA) with plant traits (red circles), monitoring plots in 
the invaded range (purple circles) and native range (green circles), 
and environmental variables (blue arrows). Plant traits: C, carbon 
concentration; LER, leaf elongation rate; LWC, leaf water content; 
N, nitrogen concentration; SLA, specific leaf area; TNC, rhizome 
total non- structural carbohydrates. Environmental variables: BD, 
bulk density; C, carbon content; EC, electrical conductivityN, 
nitrogen content; OM, organic matter.
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pseudacorus acquired sufficient resources to support robust growth 
while also allocating 50% more carbon storage reserves in rhizomes 
than native plants. In this context, the relatively low leaf N concen-
trations recorded for invading plants could indicate re- translocation 
of N from leaves to sexual reproduction and subterranean storage 

(Sinkkonen, 2006; Wright & Dorken, 2014). Thus, the significantly 
higher soil N availability observed in the introduced range may likely 
affect the vigour and reproductive output in alien plants (Pearson 
et al., 2022). Evolution of traits related to resource uptake can be 
relevant for alien populations (Burns et al., 2013). SFE has higher 

F I G U R E  5  Relationships between soil 
electrical conductivity (EC) and plant traits 
in the introduced range (a, c, e, g, i, k) and 
native range (b, d, f, h, j, l). Relationships 
between maximum inundation depth 
and the number of live leaves per 
leaf fan for Iris pseudacorus in (m) the 
introduced range, and (n) the native range. 
Abbreviations of plant traits include 
specific leaf area (SLA) and leaf water 
content (LWC). Regression equations for 
significant relationships: (b) y = 2.867– 
0.163 x (r = −.506, p = .001, n = 38); (d), 
y = −0.489 + 0.719 x (r = .799, p < .0001, 
n = 38); (f) y = 9.458– 1.834 x (r = −.599, 
p < .0001, n = 38); (g) y = 3.466– 0.476 x 
(r = −.396, p = .015, n = 37); (h) y = 4.533– 
0.929 x (r = −.663, p < .0001, n = 38); (i) 
y = 81.891– 1.001 x (r = −.370, p = .021, 
n = 39); (j) y = 77.680– 1.193 x (r = −.373, 
p = .021, n = 38); (l) y = 19.432– 1.602 
x (r = −.438, p = .006, n = 38); (m) 
y = 3.733x + 1.391, R2 = 0.289, p < .0001, 
n = 39.
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anthropogenic loadings of both N and P concentrations than those 
in most other global estuaries impaired by nutrient pollution (Cloern 
et al., 2020). In addition, climate change is also increasing atmo-
spheric nitrogen deposition, enhancing the growth of fast- growing 
alien plant species (Suddick et al., 2013).

Extreme meteorological events, such as torrential rains, droughts 
and heat waves, are more frequent now in the actual scenario of cli-
mate change (Payne et al., 2020). The water depths we recorded in 
the introduced range reflected the atmospheric river storm flooding 
that occurred in SFE in 2017 (Thorne et al., 2022). Even though the 
year was atypical, if we exclude analysis of the above average data 
from 2017, maximum inundation depth was still considerably higher 
in the introduced range when compared to the native range. Even 
under the extreme conditions which are recurring more frequently, I. 
pseudacorus in the invasive range had greater functional trait capac-
ity to counter environmental stress.

Iris pseudacorus has been experimentally shown to be highly 
tolerant of inundation (Grewell et al., 2021). In this sense, most 
expressed functional traits by native plants were independent of 
inundation period and depth, except the number of dead leaves 
per leaf fan that increased with increasing inundation. In the intro-
duced range, alien I. pseudacorus plants were exposed to deeper 
inundation than native plants, which illustrated a niche shift be-
tween the study areas in the native and introduced ranges. Yuan 
et al. (2021) also recorded niche shift between intercontinental 
introduced and native ranges for Spartina alterniflora Loisel., also 
a tidal marsh invader. In this context, alien I. pseudacorus plants in-
creased the number of live leaves when exposed to deeper inunda-
tion. This response seems to reflect the capacity of I. pseudacorus 
to respond to rising inundation levels since increasing resource al-
location to greater leaf biomass production can facilitate carbon 
acquisition by increasing photosynthetic area (Zhao et al., 2015). 
In this sense, Grewell et al. (2021) recorded an increase in leaf 
mass ratio under deeper inundation in a greenhouse experiment. 
Therefore, I. pseudacorus, especially alien plants, would be able to 
effectively face higher inundation levels derived from SLR. Even 
so, increasing estuarine salinity derived from climate change and 
SLR may limit the capacity of I. pseudacorus to acclimate to greater 
inundation (Grewell et al., 2021).

Successful invaders of introduced ranges are thought to “escape” 
population pressures posed by natural enemies such as herbivores, 
thereby conserving resources that would otherwise be allocated to 
defence at a cost to fitness and competitive ability (Enemy Release 
Hypothesis, Keane & Crawley, 2002). All parts of Iris pseudacorus 
plants have been considered poisonous to livestock due to glycoside 
concentrations in tissues (Forsyth, 1976), and grazing was considered 
negligible in British Isle populations (Sutherland & Walton, 1990). 
Weed profiles and risk assessments have long echoed Sutherland 
and Walton (1990) (e.g. Tu, 2004; US Fish & Wildlife Service, 2019), 
which has led to dismissal of grazing as a potential control measure 
for I. pseudacorus. Within and beyond our native study sites in GRE, 
we observed grazing impacts to I. pseudacorus by wild horses, sheep, 
goats, and cattle. Intense cattle grazing impacts were also observed 

on I. pseudacorus at Brière wetlands in northwestern France (Authors, 
pers. obs.).The recorded low values in leaf dimensions at population 
A5 compared to the more upstream populations (c. −30% leaf width 
and −60% leaf length), and the lower cover of I. pseudacorus (c. −70%) 
reflected the intense grazing pressure by cattle we observed at this 
location. In view of these results, herbivory by livestock could be 
evaluated as a component of integrated management for control of 
I. pseudacorus.

High levels of gene flow and genetic diversity within and among 
populations of I. pseudacorus in the introduced range (Gaskin 
et al., 2016) are evidence of the importance of sexual reproduc-
tion as the primary reproductive mode for this species. Robust re-
productive traits such as high seed production which we found for 
alien I. pseudacorus plants may counteract the detrimental effects 
of genetic bottlenecks often associated with species introductions. 
Capsule and seed traits such as high seed output and germination 
rates can be critical for dispersal and establishment success of 
alien plants (Rejmánek & Richardson, 1996; Pyšek, 1998). In the 
introduced range, I. pseudacorus had 40% more capsules per stem 
than the native counterparts, suggesting greater propagule pres-
sure. Furthermore, seed viability and seed germination rates were 
found to exceed 95% for I. pseudacorus in our SFE study popula-
tions (Gillard et al., 2021, 2022), which should lead to more inva-
sive colonization according to the hypothesis of propagule pressure 
(Carr et al., 2019).

Some plant traits showing significant differences between geo-
graphic ranges were markedly related to variation in environmen-
tal conditions and, in contrast, other plant traits were independent 
of every recorded environmental factor. Ecologically important 
functional traits of some alien plant species have undergone rapid 
evolution as they naturalize during range expansion, increasing ge-
netic variation of traits along environmental gradients that may sup-
port broadened niche shifts beyond those of founder populations 
(Colautti et al., 2017). Growing empirical evidence indicates adaptive 
traits have evolved in introduced plant populations that have be-
come invasive (e.g. Dlugosch & Parker, 2008; Lavergne et al., 2010; 
Molina- Montenegro et al., 2011, 2013), and some of these evo-
lutionary adaptations have been quite rapid (Colautii & Barrett, 
2013; Colautti et al., 2017; Leger & Rice, 2007; Molina- Montenegro 
et al., 2018). In this sense, our results suggest there are genetic dif-
ferences in iris populations between the studied biogeographical 
ranges since six plant traits showed significant differences between 
ranges only when environmental variables were excluded as co-
variates. Also, only two plant traits differed between ranges only 
when the environmental matrix was included in the analysis, which 
pointed to limited environmental influence on plant trait differences 
between geographical ranges. Explanatory mechanisms for the dif-
ferences we documented between ranges of I. pseudacorus cannot 
be fully interpreted without support of common garden experi-
ments and molecular evaluations (Bufford & Hulme, 2021; Colautti 
& Lau, 2015) to elucidate the potential genetic and environmental 
contributions to the variation we observed, but our results provide 
an important foundation for future studies.

 14724642, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ddi.13694 by U

niversidad D
e Sevilla, W

iley O
nline L

ibrary on [13/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  845GREWELL et al.

5  |  CONCLUSIONS

Study of Iris pseudacorus through a biogeographic framework in both 
native and introduced population field sites has provided insights on 
variation in environmental conditions and functional plant trait re-
sponses that support the fitness and spread of invasions in tidal wet-
lands facing SLR. Our results show that alien I. pseudacorus plants 
in the introduced range were more robust than plants in the native 
range. Alien I. pseudacorus plants were less sensitive to increasing sa-
linity than native plants and were positively affected by higher inun-
dation levels, reflecting a niche shift compared to our study sites in 
the native range. In summary, our comparative results suggest alien 
populations in SFE are currently better able to adjust to increasing 
salinity and inundation with SLR than native populations in GRE. 
Biogeographic knowledge of these functional trait responses can 
support improved risk assessments addressing both management of 
invasive species and conservation of native species in tidal wetland 
ecosystems vulnerable to impacts of climate change.
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