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Convergence and Approximation of Invariant Measures for
Neural Field Lattice Models under Noise Perturbation

Tomas Caraballo® | Zhang Chen* and Lingyu Li®

Abstract. This paper is mainly concerned with limiting behaviors of invariant measures for neural
field lattice models in random environment. First of all, we consider the convergence relation of
invariant measures between the stochastic neural field lattice model and the corresponding deter-
ministic model in weighted spaces, and prove any limit of a sequence of invariant measures of such
lattice model must be an invariant measure of its limiting system as the noise intensity tends to zero.
Then we are devoted to studying the numerical approximation of invariant measure of such stochastic
neural lattice model. To this end, we firstly consider convergence of invariant measures between such
neural lattice model and the system with neurons only interacting with its n-neighborhood, then we
further prove convergence relation of invariant measures between the system with n-neighborhood and
its finite dimensional truncated system. By this procedure, the invariant measure of the stochastic
neural lattice models can be approximated by the numerical invariant measure of finite dimensional
truncated system based on the Backward Euler-Maruyama scheme. Therefore, the invariant measure
of deterministic neural field lattice model can be observed by the invariant measure of BEM scheme

when the noise is not negligible.

Keywords and phrases: Stochastic neural field lattice model; Weighted space; Nonlinear white

noise; Invariant measure; Numerical invariant measure

1 Introduction

Lattice systems have wide applications in many areas, such as physics, biology sciences, pattern
formation, etc. (see, for instance, [?, ?, ?] and the references therein). A system in reality is usually
affected by uncertainty due to some external “noise”, stochastic lattice systems with linear and nonlinear
noises thus were studied in [?, ?, ?, 7| for the unweighted spaces and [?, ?] for the weighted ones.

Neural networks are receiving very much attention due to their importance in several interesting ap-
plications, such as image processing, optimization problems, associative memory and pattern recognition
[?, ?, 7, ?]. For neural networks system with time delay, convergence properties of the equilibrium point
have been extensively investigated, see, e.g. [?, ?]. Recently, an integral model was proposed to take into
account a finite transmission speed as a space-dependent retardation [?], which was well established in
computational neuroscience and known as the neural field model. Continuous neural field models may be
also used to describe the average activity of neural populations by nonlinear integro-differential equations
[?]. In order to emphasize the discrete characters of neural networks, a neural field lattice model was con-
sidered by Faye [?] and the existence and uniqueness of traveling front solutions were investigated. Such

neural lattice model may not only be regarded as space discretization of a continuous neural field model,

*Dpto. Ecuaciones Diferenciales y Analisis Numérico, Facultad de Matematicas, Universidad de Sevilla 41012, Spain
(caraball@us.es)

TDepartment of Mathematics, Wenzhou University, Wenzhou, Zhejiang Province, 325035, China

¥School of Mathematics, Shandong University, Jinan 250100, China (zchen@sdu.edu.cn)

$School of Mathematics, Shandong University, Jinan 250100, China (lyli@mail.sdu.edu.cn)



35

36

37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

but also extends the famous Hopfield neural networks with finite neurons in [?|. In reference [?], the
neural field lattice system with switching effects was formulated as a differential inclusion on a weighted
space of infinite sequences. Recently, the authors investigated the existence of invariant measures in a
weighted space for the following neural field lattice model driven by nonlinear white noise in [?]:

jezd (L.1)

uz(T) = Urq,

where 7 € R, i = (i1,...,4q4) € 7, u, = (um')iezd is the initial data. Here u; represents the neural
activity such as neural synapse of the ith node, ¢ € (0, 1] is a parameter representing the noise intensity, f;
: R — R describes the attenuation of neural activity of the ith node, ¢ : R — R is the activation function,
k; ; describes the connection strength from the jth to the ith node, and the time independent functions
g; and h; describe the external forcing at the ith location for the drift and diffusion. We also refer the
reader to [?, 7,7, 7,7, 27,2, 2, ?] for invariant measures of stochastic dynamical systems including lattice
ones.

When the noise intensity ¢ = 0, (1.1) becomes the following deterministic neural field lattice model:

dul(t) = (fz (’U,Z) —+ Z ki,j¢ (u]) + gl>dt, t>T,
jezd (1.2)

;i (T) = Uy

We refer the reader to [?, 7, ?] for more results on deterministic neural lattice models and [?, ?] for
invariant measures of deterministic or random dynamical systems. In this paper, we would like to observe
numerically the invariant measure of (1.2) when the real world is regarded as intrinsically a little noisy.
To this end, we will investigate the limiting behavior and numerical approximation of invariant measures
of (1.1) from the following two aspects.

The first goal is to establish the convergence relation of invariant measures for the stochastic neural
field lattice system (1.1) in a weighed space as the noise intensity e — g € [0,1], which is called the
zero-noise limits problem in the references [?] for £g = 0. Such problem goes back to Kolmogorov [?], and
is also referred as stochastic stability in monographs [?, ?]. The limiting behavior of invariant measures
of stochastic equations has been discussed, e.g., see [?, ?, 7, ?], where invariant measures in [?, ?| were
considered in the Hilbert space [2 consisting of real-valued square summable bi-infinite sequences. We
extend some results to a weighed space lz. Such space satisfies 12 C I C li and hence contains many
infinite sequences whose components are bounded and traveling wave solutions. By carrying out a careful
analysis, two results are obtained as follows: we are first concerned with the tightness of the set of all
invariant measures of (1.1) in l?, which is proved by uniform tail-estimates of solutions in l?, and the
technique of stopping times as stated in [?], and then we prove any limit of a sequence of invariant
measures of (1.1) must be the invariant measure of the limit system. According to [?], if one accepts that
the world is intrinsically a little noisy, then such zero-noise limits are the observable invariant measures,
which represent idealizations of what we see.

In order to make such observability computable, our second aim is to study the numerical invariant
measure of (1.1). In [?], some computer aided estimates were used to approximate the stationary measure
of a chaotic chemical reaction model with additive noise, and the estimation of numerical error was
obtained by the method in [?]. Different from [?, ?], the Fourier approximation of invariant measures was
investigated in [?]. One can also see [?, ?, ?] for numerical solutions and approximation of the invariant
measures of finite dimensional stochastic differential equations. However, as far as we are aware, there
is no result available for the numerical invariant measure of (1.1). Since the dimension of system (1.1)
is infinite, we cannot discretize it directly to simulate by computer. To overcome this issue, we try to

adopt the finite dimensional approximation method to deal with the numerical invariant measure of such
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infinite dimensional system, which is different from the method in [?]. More precisely, we will investigate
numerical approximation of invariant measures of (1.1) from the following three steps.

Firstly, we consider the following case in which each neuron is only interacting with the neurons within
its n-neighborhood:

it+n
du;(t) = (fi (i) + > kijé(uy) "’gi)dt + e (Ni (i) + hy) dWi(t), t > 7, 13
Jj=i—n .
ui(T) = Ur,
where i +£n := (i1 £n,...,iqg = n) € Z% Tt is worth mentioning that [?] is devoted to investigating the

existence and the upper semi-continuity of random attractors for Hopfield-type neural lattice model with
local n-neighborhood interconnections among neurons. Different from [?], we are concerned with the
convergence of invariant measures of (1.3) as n — +o0o. To this end, we first show the tightness of the set
of all invariant measures of (1.3) for all n € Z* (see Lemma 5.2). Then we are going to prove the uniform
convergence of solutions in probability. Due to different number of neurons and the weighted parameter
p, the arguments in references [?, 7| cannot be used to verify it directly. In order to address this problem,
we utilize some properties of p and the idea contained in the proof of [?, Lemma 4.2] to obtain the desired
result (see Lemma 5.3). At last, we obtain any limit of a sequence of invariant measures of (1.3) must
be an invariant measure of (1.1) as n — +oo (see Theorem 3.2).

Secondly, we further consider the case in which the size of the neural network is finite. Noticing the
total number of neurons we considered above is still infinitely large, then by truncating (1.3) directly, we

obtain the following finite dimensional system

+n
dui(t) = (£ (ws) + 3 Kigo () + i )dt 4+ (s (us) + hi) dWi(D), £ > 7, »
Jj=i—n .
ui(T) = Uz,
wherei € Z% == {(i1, - ,iq) |i1, -+ ,iqg € {~N,---,0,--- ,N—1,N}} and N > n. It is worth mentioning

that the idea of finite-dimensional approximations of equilibrium measures was firstly introduced in [?]
for coupled map lattices. We apply such idea to consider finite-dimensional approximations of (1.3),
and investigate the limiting behavior of invariant measures for (1.4) with respect to the number N of
nodes. Similar to the above argument, we further prove the sequence of invariant measures of (1.4) must
converge to an invariant measure of (1.3) as N — +oo by the different proof from [?]. We would also like
to point out that the limiting behavior of random attractors for (1.4) can be studied according to [?].
Finally, we investigate the numerical invariant measure of (1.4). Notice that, the Euler-Maruyama
(EM) method was applied to investigate numerical solutions and approximation of the invariant measures
of stochastic differential equations in [?, ?|, where both the drift coefficients and the diffusion coefficients
are required to be globally Lipschitz continuous. However in the locally Lipschitz case, EM numerical
solutions to stochastic differential equations fail to be ergodic (see [?] for more details). Therefore, the
Backward Euler-Maruyama (BEM) method was used to approximate the invariant measure in [?, 7, ?]
where the drift coefficients do not need to satisfy a globally Lipschitz condition. Following this approach,
we construct numerical approximations of the invariant measure of (1.4) in li. More precisely, one first
needs to establish the existence and uniqueness of the invariant measure of the BEM scheme. To achieve
it, the asymptotically attractive property of the solution of the BEM scheme in lf, is proved under some
additional conditions on \;, ; and p;, which play key roles in the proof of Lemma 5.8. Then we show
that the invariant measure of the BEM scheme converges to the invariant measure of (1.4) in the sense of
Wasserstein distance (see Theorem 3.4). As a consequence, the invariant measure of the original neural
lattice model (1.1) can be approximated by the invariant measure of BEM scheme (3.1) (see Theorem
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In conclusion, the above convergence analysis shows that the invariant measure of zero-noise limit of
(1.1) is numerically observable. These convergence relations between numerical invariant measure and
invariant measures are given in Figure 1 below.

e—0 n—» +o0

4 invariant measure of (1.2) |%| 4°: invariant measure of (1.1) |< | 4 invariant measure of (1.3)
A

Theorem 3.1 Theorem 3.2

Remark 3.1 Theorem 3.3 N —+»

stepsize h —> 0

1"V numerical invariant measure of (1.4) | u° " invariant measure of (1.4)

Theorem 3.4

Figure 1: Convergence paths of invariant measures.

The structure of the paper is as follows. In Section 2, we first introduce a weighted Hilbert space
and some necessary assumptions, as well as we prove the existence and uniqueness of solutions and the
existence of invariant measures of the underlying system. Then we present some main results in Section 3.
Section 4 is concerned with the convergence of invariant measures for system (1.1) as the noise intensity
€ — go € ]0,1]. Section 5 is devoted to establishing the numerical approximation of thet invariant measure
of (1.1). we first show that invariant measures of system (1.3) converge weakly to invariant measures
of system (1.1) as n — 400 in subsection 5.1. Then we prove that invariant measures of system (1.4)
converge weakly to invariant measures of system (1.3) as N — 400 in subsection 5.2. Finally, we present
that the invariant measure of BEM scheme converges weakly to that of system (1.4) in subsection 5.3.
Therefore, the invariant measure of (1.2) can be approximated by the invariant measure of BEM scheme
(3.1).

2 Preliminaries

In this section, we first present some assumptions, and then introduce the well-posedness of solutions as

well as the existence of invariant measures of systems (1.1), (1.3) and (1.4).

2.1 Assumptions

First, we introduce some preliminaries and necessary assumptions.
(H1). Let p = (p;);eza satisfy p; > 0 for all i € Z¢ and py; := Z pi < +o0.

i€z
Consider the weighted space l?) = {u = (Wi)sega Z piu? < —l—oo} with the inner product (u,v) :=
i€z
Z piwivi for u = (u;);cpa, v = (Vi);cza € 1;2) and norm |jul|, := Z piu?. It is easy to show li is a
i€z i€Zd
separable Hilbert space. Next, we introduce some assumptions which have been presented in [?].
k2
(H2). There exists a constant x > 0 such that Z < g, Vi€ Z4.
: Pj
jezd

(H3). For each i € Z?, f; : R — R is continuously differentiable with f;(0) = 0 and locally bounded
derivatives, i.e., there exists a non-decreasing function L(-) € C (R+, R+) such that for any r € RT and
izl max ()| < Ly,

pix€[—r,r
(H4). For each i € Z%, the state dependent nonlinear diffusion term ); : R — R is continuously
differentiable, and there exists a non-decreasing function Ly(-) € C (R*,R™) such that for any r € R*
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and i € Z9, max |N(x)| < La(r).

G TE|—T,T
In addition, zher[e exi]st a = (a;)ieze €1° and b = (b;);eza € l?, such that for any x € R, |\;(2)| < a;|x|+b;.
(H5). The activation function ¢ is globally Lipschitz continuous with Lipschitz constant Lg, and
there exists b, > 0 such that for any z € R, |¢(x)| < Lg|z| + be.
(H6). There exist a > 0 and 8 = (8;),ez4 € li such that for any =,y € R and i € Z%, (z —y)(fi(z) —
fily)) < —alz —y|* + 57.
For convenience, we define the operators F', KL and A by F(u) = (fi (ui));eza, AMu) = (i (ui));eza

and K(u) = (K; (u;));cz0 With K (u;) := Z ki ;¢ (uj). Then K(u) is globally Lipschitz continuous by
jezd
(H5), and it follows from (H4) and (H6) that F'(u) and A(u) satisfy locally Lipschitz condition, that

is, for any u,v € 1[2, with ||Jul|? < R, ||v||?) < Rand R >0,

1F(w) = F(v)lly < LF2R/ps)llu—vlz, M) = A@)[I; < LI(2Ry/ps)|[u —v]3.

i+n

Similarly, define K™ (u) = (Ki(") (Ui))iezd with K = Z klz)qﬁ (u;), then K™ (u) —
j=i—n
K (v )Hp < pgnL ||u—v||2 In particular, denote FN( )= (fs (ui))iez%, GV = (gi)iezgl\, and ICN(u) =
i+n
(n)
(Ki (Ui))ieZ‘}\, with K™ (u;) - j;nk Y6 ()

In order to rewrite the term (\; (u;) + h;) dW;(t) (i € Z%) as a vector in lf), we define A;(u) =

(N (uq)) el and H; = (h ) €;, where e; represents the infinite sequence with 1 at position 4 and 0 elsewhere.

Then A(u Z Ai(u) and H = Z H; for every u € li. Moreover, for all u,v € li, there hold
€L 1€Z%
A7 =D [ As(u and [A(w) = A2 = > [Ai(u @3-
A 1€

2.2 Well-posedness of solutions and the existence of invariant measures

Following the above procedures, (1.1), (1.3) and (1.4) can be rewritten respectively as:
du(t) = (F (u(t)) + K (u(t)) + G)dt +¢ Z (Ai(u) + H;) dW(t),
i€Zd (2.1)

u(T) = ur = (Ur,)iczd,

du(t) = (F (u(t) + K™ (u(t) + G) dt+2 Y (Aiu) + H) dWi(0),
iezd (2.2)

u(t) = u, = (uﬂi)iezd
and
du(t) = (FN (u(t)) + KN (u(t)) + GN) dt +& > (Aiu) + Hy) dWi(t),
i€z, (2.3)

u(t) = ur = (UT,i)iGZ‘}V-
With these assumptions as well as the discussion of Theorem 2.3 in [?], we have
Theorem 2.1. Let (H1)-(H6) hold. Then, for any T € R and F,-measurable initial data u, € L (Q, li),

the stochastic system (2.1) possesses a unique solution u € L> (Q,C ([T, T+ T, lf))) and satisfies, for all
t > 71 and almost w € Q,

u(t) = u, + / (F(u(s)) + K(u(s)) + G(s))ds +2 3 / H,(s)) dWi(s).

i€Z4
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Remark 2.1. As special cases of Theorem 2.1, for any T € R and initial data u, € L£> (Q, li), systems
(2.2) and (2.3) possess a unique solution u™ u™N"™ € L2 Q,¢ ([r,7+ 1), lz)), respectively.

Next, we introduce the existence of invariant measures for stochastic systems (2.1), (2.2) and (2.3).

More details on the concept of invariant measure, one can see [?], so we omit it here.
(H7). 2Ly 2kps + 4]ja|?, < .

Theorem 2.2 ([?] Theorem 4.6). Let (H1)-(HT) hold. Then the stochastic system (2.1) has an invariant
measure on lf,, that is, there exists a probability measure pu° on l?) such that for any bounded and continuous

function ¢ : lz — R, / (/ o(v)p(T, u; t, dv)) dpf(u) = / o(u)dp(u) fort>r.
2 2

i

Remark 2.2. As an immediate consequence of Theorem 2.2, we obtain the stochastic systems (2.2) and

N,n

(2.3) have probability measures u(”),u on lf), respectively.

3 Main results

In this section, we will state the main results in this paper. We begin this section with the following
theorem which shows the limiting behavior of invariant probability measures of system (2.1) as the noise
intensity € — g9 € [0, 1].

Theorem 3.1. Let (H1)-(H7) hold. If e, — € € [0,1] and pu*" € S, then there exist a subsequence

€n, and an invariant measure p° € S° such that pre — p° weakly.

This proof is contained in Section 4.

Noting that the dimension of system (2.1) is infinite, it is natural to consider adopting the finite
dimensional approximation method to deal with the numerical invariant measure of such infinite dimen-
sional system. Firstly, we investigate the limiting behavior of invariant measures of system (2.2) as the
interconnection parameter n — +o0o. For that, we need extra assumptions on the connection strength
k; ; and activation function ¢:

(H8). kz(g) — ki j as n — +o00 in the sense that for every e > 0, there exists N(e) € N such that for

i (B ki)
any n > N(e) and € Z, Z ~nl = e
jezs Pi
(H9). ¢ can be bounded in the sense that there exists by such that for any « € R, |¢(x)| < bg.
Theorem 3.2 is concerned with the limiting behavior of invariant measure of (2.2) as n — +o0, which

is different from [?, Theorem 6.1] where the authors deal with the case £ — €.

Theorem 3.2. Let (H1)-(H9) hold, and ™ € 8™, n € Z*. Then there exist a subsequence {ny}>
and an invariant probability measure p to (2.1) such that u(”’“) — p weakly as k — +o00.

This proof is contained in subsection 5.1. We will find, by Theorem 3.2, the invariant measure of (2.1)
with infinite neighborhoods can be approximated by that of stochastic neural field lattice system with
finite neighborhoods.

Next, we further investigate whether invariant probability measures of (2.3) converge to invariant
probability measures of (2.2) as the size N tends to infinity, which is important for numerical approxi-

mations of invariant measures to (2.2).

Theorem 3.3. Let (H1)-(H9) hold, and p¥'" € SN, N € ZT. Then there exist a subsequence

Nk,n

{Nk}g;“i and a probability measure p* such that p — u* weakly as k — +00. Furthermore, Lemma

5.5 implies that p* must be an invariant probability measure of (2.2).
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This proof is contained in subsection 5.2.
Let P(R*N*1) and P(li) denote the family of all probability measures on R*¥*! and li, respectively.
The Wasserstein distance between v and v € P (li) can be defined by

) =, - o ]
where C(v,7) denotes the set of all couplings of v and 7. In addition, any Borel probability measure
v on R*M*! can be naturally extended to a Borel probability measure v* on lﬁ. Then for any v and
vep (RQN'H), the Wasserstein distance between v* and 7" € P (li) can be defined by Wy(v*,0") =
W (v, D).

Define the BEM scheme

Xir1 =Xp + (FY (Xp1) + KV (Xip1) + GV) hte D (Mi(Xe) + Hi) AW,
i€Zy (3.1)
XO =z,

where k > 0, i > 0 is step size, X}, := Xy, = Xgp, ¢ = AR (uN n)ieZ;{, and AW;, = W;

,
T T,%

— Wi, -
Now, we are going to establish the existence and uniqueness of the invariant measure of the BEM

tht1

scheme and approximation of such invariant measure to that of (2.3) in the Wasserstein metric. To this
end, we further have the following assumptions.

(H10). ), is globally Lipschitz continuous with Lipschitz constant L.
1
(H11). 2L} + 2y/pekLy — 2o < 0 and 24/2pskay — o < —3

Theorem 3.4. Let (H1)-(H11) hold, then we have

lim Wz(uN’", uh’N’”) =0.
hA—0

This proof is contained in subsection 5.3. Together with Theorems 3.2-3.4, we can obtain the following

result.

Theorem 3.5. Let (H1)-(H11) hold and B; = 0 for i € Z%. Then the original neural lattice model (1.1)

has a unique invariant measure p, and lim  lim  lim N7
n—+o0o0 N—4o00 h—0

= p weakly.
This proof is contained in subsection 5.3.

Remark 3.1. Under Assumptions (H1)-(H11) and 3; = 0 for i € Z%, we can know the invariant
measures of (1.2)-(1.4) and (3.1) are unique, respectively, which mean not only these invariant measures

En

are ergodic, but also every sequence u°" — p° weakly as n — +oo in Theorem 5.1, ﬂ(”) — u weakly
as n — 400 in Theorem 5.2, and p™N'™ — p* weakly as N — +oo in Theorem 3.5. In this sense, the
unique invariant measure of (1.2) can be approximated by the invariant measure of BEM scheme (3.1)
from Theorem 5.1 and Theorem 3.5.

In addition, the unique physical measure was investigated for globally coupled Anosov diffeormorphisms
in [?] based on the Lasota-Yorke inequalities. According to [?, Definition 2.1 and Remark 2.2] together
with the ergodicity of u, we need prove the absolute continuity of u with respect to a Lebesgue measure to

show p 1s a physical measure, which will be one of our future works.

Remark 3.2. As the dimension of the finite dimensional reduction goes to infinity, the problem of
computing the related measure might become numerically impossible to solve. To this end, we will try
to estimate the convergent rate of invariant measures in every step approximation by referring to [?]
in the following work, by which the problem of computing the related invariant measures might become

numerically possible to solve.



»» 4 Proof of Theorem 3.1

22s  This section starts from the weighted tail estimate of solutions of system (2.1) below.

Lemma 4.1. Let Assumptions (H1)-(H7) hold. Then, for every R > 0 and € > 0, there exist T =
T (R,e) > 7 and N = N (€) > 1 such that the solution u satisfies, for allt >T,n > N and e € (0,1],

IE( Z i |wi (t,uT)|2) <€,

li|2n.

220 where u, € L? (Q, Fr; 1) with E <||uT||i> <R
0, [s/<1

Proof. Let ¢ : R — [0,1] be a smooth function such that ¢(s) = o
1, |s|>2

Given n € N, define ¢,

i
by ¢pu = (g (H) ul) . By Ito’s formula, we deduce that for any ¢ > 7,
n i€Z4

t

oI = llowtir |12 +2 / (snta(s), s F (u(5))) ds +2 / (cnta(s), sk (u(s))) ds

T

t t
+ 2/ (sntu(8), 6, G)ds + €2 | |lsnA(u(s)) + gnH||i ds

+25Z/ Gut(5), (sn i) + 6 Hy)) AWi(s).
=y
Then we obtain
CE (lowu(t)2) =2E ((sru(t), s P(u(t)))) + 2B ((u(t), 5o K (1)) (41)

+ 2B ((60u(t), 50G)) + £°E (Jleu(u(t)) + suH]13) -

By (H6), the first term on the right-hand side of (4.1) can be bounded as

E ((suu(t), su P (u(t)))) < —aE (llsuull}) + > pif?. (4.2)

li|=n

For the second term on the right-hand side of (4.1), we derive by (H1), (H2) and (H5) that

E ((sou(t), 5o (u()) < SE (lanu®)l}) + f»e (L2E (Ju()I2) +820s) S o (4.3)
li|>n
As for the third term on the right-hand side of (4.1),
E ((onu(0),0G)) < O (lon w®)I2) + 2E( 3 pig?)- (1.4)

li|=n

For the last term on the right-hand side of (4.1), by (H4), we obtain

e’E (HgnA(u(t)) + anHi) < 4|a|’E (||§n ) + 4¢? Z pib? + 2¢2 Z pih?. (4.5)
li|2n. li|2n.
Combining (4.2)-(4.5) with (4.1) and then using Gronwall’s inequality, implies that

E (lou®)]2) <o 278 (o 2) + Sxi2 3 o / B0 (Ju(s) 2) ds (4.6)

li|=n

4 2
+ > l; pi (ﬁf + ag? + 2e%b7 + e*h} + 7%b¢pg>
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Since E( HUT”i) < R, we have for every € > 0, there exists T = T3 (R, €) > 7 such that, for all t > T,
e (t—r 2 €
e EDE( lsnurll;) < 3 (4.7)

Applying Ito’s formula to (2.1) and taking expectation, we obtain that there exists 7o = T5 (R) > 7 such
that for all ¢ > T5,

E(|lu@)]?) <e™ 3 CIR([u?) + (|ﬂ||2 \/zfpﬁzgzubn)

t

C (IGI2 + || H|2) / e%“*ﬂds,

T

from which there exists No = N3 (¢) > 1 such that for all ¢ > 75 and n > Na,
t
S(s— s— €
> o [ eHCOE (Ju(s) ) ds < aw (Ju(s)]?) 3 pz/ 200 < & (48)
li|=n T li|>n
On the other hand, since §8,b, H,G € 12 it follows from (H1) that there exists N3 = N3 (¢) > 1 such that

for all n > N3,

S 07 + 262 122202 4 02+ Swbpw) <

li|=n

€

—. 4.9

‘ (19)

From (4.6)-(4.9), it follows that for every e > 0, there exist N = max{Nq, No, N3} and T' = max{T,T>}

such that E( Y p; [u; (t,ur)*) < E(lsnu(t)]?) < e foralln> N, t>T and € € (0,1]. O
li|>2n

Let S° be the collection of all invariant measures of (2.1) with € € (0, 1]. By Theorem 2.2 we see that

S¢ is nonempty. We now prove the union U S° is tight.
e€(0,1]

Lemma 4.2. Let (H1)-(H7) hold. Then | | S° is tight.
e€(0,1]

Proof. Given ¢ € lg, denote @™ (¢, ) = (Lj—p,n (k)ug, (¢, <,0))kGZ and @°" (t, ) = ((1 = L_p (k) ug (¢, @))kez ,

where n € N, 1/_, , is the characteristic function of [-n,n]. By Lemma 4.1, we find that for every
€ (0,1), k € Nand ¢ € [, there exist T, = Ty (¢/,k, ) > 7 and ny = ng (¢/,k) > 1 such that for all

t> Ty and e € (0,1], E (||a"(t,9)]}) <
On the other hand, by the estimates of solutions to (2.1), we obtain that

2t —r1

- 2,021)2 2
E (lu(®)]12) <e™ 207K (|lg]12) + )(2||,6’||i+%¢ 2rips + ~[|GI2) + 42 |b]]2 + 22| H 2.

Then, we see that there exist Ty = T1(¢) > 7 and M independent of ¢ and ¢, such that for all ¢ > T} and
€ (0,1], E ([Ju(¢, ap)Hi) < M. Following the procedure as stated in [?], we obtain the desired result. [

The next result is concerned with the convergence of solutions to (2.1) with respect to e.

Lemma 4.3. Let (H1)-(HT) hold. Then, for every bounded subset E in l?,, T>0,0>0andey €[0,1],

lim sup P({w €Q| sup |u(t,p) —uTt o), > O'}) =0.

€0 ocE T<t<T+T

Proof. Following the stopping time idea in [?], we need only to prove

lim sup P({w €Q| sup |uf(EATR ) —u EATR O, > 0'}) =0,
€70 peE T<t<T4T



s where 7 = f {[[u"(t, 9)ll, V [ (t, @)l > B}, 7R = oo i {t 2 7 [, )|, V [u™ (), > R} = 0.
By applyi;lg Ito’s formula to u®(t, ) — u° (¢, ¢) and then taking expectation, we derive

E( sup u(r A th o) = u(r A 0)I12) (4.10)
T<r<t

§2IE<‘ /rtATR(F(uE) R () — uﬁe)ds’) + 2]1«:(‘ /TWR(;C(us) K, u — uso)dsD

+ Z </MTR (e —e0) (A (u®) + H;) + (A (uf) — Ai(u5°)||§ds)

i€Z4

rATR
+2\5—€0|]E sup |Z/ u®) + H;,u® —uf )dWZ(s)\)

+ 26E< sup | Z /TMTR(AZ.(UE) — A (uf0), uf — uao)dWi(s)|>.

<r<
7<r<t iczd

For the first two terms on the right-hand side of (4.10), we have

E(| /TMT;(F(us) ~ Fu) 0 ) ds|) (4.11)

t
<L;eryFD) [ B( swp [ AThip) — (0 A o) 2) ds

T 7<r<s

and
tATE
E(‘/ (IC(uS)—K(uao),ue—us")dsD (4.12)
! t
<ALy [ B sup [l (r Arhue) — u(r AR IE) ds

T<r<s

For the third term on the right-hand side of (4.10), we find

tATE

3 E(/ (e = 20)(Aa(u™) + Hy) + e(Au(u?) = Ag(u™)) 2ds) (4.13)

i€Zd T

tATE
<t(e—coPB( [ @RIl + 2003 + 1H]2)ds)
¢
223 Ry [ E( sup [0 AT ¢) - 0 Ah o)) ds
7 \r<r<s
By the Burkholder-Davis-Gundy inequality, we obtain the fourth term on the right-hand side of (4.10)
rATER
e — 50|]E( sup | Y / (Ai(u®) + Hiyuf — uao)dWi(s)D (4.14)

TSIt ez

1 1> 13 g g t/\T;
<5E( sup [0f(r A rhoe) w0 AR o)) + CRle — eoPB( [ 2Rlale + 20bl2 + |1HI2)ds).

T<r<t

Similarly, the last term on the right-hand side of (4.10) can be bounded by

rATE
2E( sup [ / (M) = Aalu™), 0 —u)awi(s)) (4.15)
T<r<t iezd T
<:}JE € £ _ €0 5 2
<ZE( sup [[u*(r A TR, @) —u (r ATR Q)
T<r<t

t
+2Cy [ B( swp (Ao ) w0 A TR IR ) ds

10
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245

248

249

250

251

252

253

254

255

256

257

By (4.10) and (4.11)-(4.15), we have that for all ¢t € [r,7 + T,

E ( D (7 A ) = 00 1 TE,w)IIi) (4.16)

<2 [2L¢(2R\/ps) + 2/psikLy + €2 L3 (2R\/px) + £2C3)
t
[ = (s 1w i) - e AT ) s
T T7<r<s
+4(e —20)*(2+ CF) (2R all o + 2[[0]I7 + [|H||7)T
Then, by (4.16) and Gronwall’s inequality, we have

sup P({w €Q| sup |uf (EATR0)—u EATR O, = a})
YEE T<t<7t+T

<A(e — 20)2(2 + O (2Ral o + 20bl12 + | H|D)TeltLs RV +4VISRL 22 BRI 122 CHIT _,

as € — gg, as desired. O]

Now we present a proof of Theorem 3.1.

—+o0
Proof of Theorem 3.1. By Lemma 4.2, U &8¢ is tight, which together with the fact pu®~ € U Sen
€€(0,1] n=1

implies that there exist a subsequence ¢,, and a probability measure p°° such that px — p weakly.

It follows from Lemma 4.3 and [?, Theorem 6.1] that ;*° is an invariant measure such that p* € §%°. O

5 Numerical approximation of invariant measures for (2.1)

This section mainly aims to obtain the numerical approximation of invariant measures for (2.1) by proving

Theorems 3.2-3.4. More precisely, our analysis is divided into the following three subsections.

5.1 Proof of Theorem 3.2

To prove Theorem 3.2, we first present some results that are crucial to prove the convergence of the
sequence of invariant measures.

By (4.3) and (4.6) in the proof of Lemma 4.1, we conclude the following lemma.

Lemma 5.1. Let (H1)-(H7) hold. Then for given e € (0,1], the solution u™ satisfies that for every
R >0 and e > 0, there exist T =T (R,¢) > 7 and K = K (¢) > 1 such that for allt > T, k > K and
nezZt,

E( Z pi\ul(.n) (t,u,) |2) < €,

jil>k

T p

where u, € L? (Q,ﬁ '12) with E( ||uTHi) <R.

Let 8™ be the collection of all invariant probability measures of (2.2) with n-neighborhood. By
Remark 2.2 we deduce that S™ is nonempty. Moreover, from Lemma 4.2 and Lemma 5.1, the following
result on weak compactness holds.

Lemma 5.2. Let (H1)-(H7) hold. Then | J 8™ is tight.

nezZt

Next, we show the following result which is concerned with the convergence of solutions to (2.2) as
n — +00.

11



259

260

261

Lemma 5.3. Let (H1)-(H6), (H8) and (H9) hold. Then for every bounded subset E in li, T>r1 and
o> 0,

lim supP({w€Q| sup  [[u™ (£, ) — ult, )|, > }):o.

n—+00 e g T<t<7t+T

Proof. Let 73 = tlgf {Hu(”) @t o)l Vlult, o), > R}. Applying Ito’s formula to u™ (¢, ) — u(t, ¢) and

then taking expectation, we obtain

E( sup [t (r A7) = u(r A Th ) 2) (5.1)

r<r<t
<ox(| [ T P ) - P, —wyas]) + 2 / " ) = K, — s

+e2 Y / A Ai(w)|2ds)

i€z
Z /T’l‘/\TR (Ai(u(”)) — Ai(u), u™ _ u) dWl(s)D

i€Za

+ 25]E< sup
T<r<t

Similar to (4.11), the first term on the right-hand side of (5.1) can be bounded by
tATR
E( / (F (™)~ F(u),u® — u)ds| (5.2)
¢
<L;eRVER) [ B swp W0 AThe) -~ ulr AT 2 ds

After some calculations, we have for the second term on the right-hand side of (5.1)

5| / T ) () — K ), ™ ~ u)ds|) (5.3)
<E( / ) (> pz(rffb i (™) — ¢<uj>>)2)%
T iczd j=i—n
+(Zpi(]§n(’f§3)—ki,y‘)¢( ) )é (Z’Ol Z kijo(u;)) )%} )

€L j=i—n 1€24 |[j—i|>n

t/\T;% . N .
— (/ u™ — u||,,[115 A N Igf}ds),

j=i+n j=i+n

where [, = Z Pz( Z ki i ( (n) — B(u;) ) Z pz( Z k(z) . ki,j)¢(u§n)))2
i€Zd j=i—n ) €74 j=i—n
wi =Y o Y ki,jauj)) |
A |i—i|>n

Together with (H1) and (H2), it follows that

j=i+n kg j=i+n
n<y pl-[ 3 ”L Sl —uy) } < porL3[[u™ — ul2. (5.4)
i€74 Jj=i—n j=i—n
. (k5 — kig)?
By (H8), we have that for every € > 0, there exists N1 (e) > 0 such that for alln > Ny (e), Z 2
: Pj
jeza
€, which together with (H1) and (H9) implies that
i ) it
LY o Y S ST ™)) < ki (5.5)
i€Zd j=i—n Pj j=i—n

12
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264

265

266

267

268

By (H1), for any € > 0, there exists I(¢) > 0 such that Z pi < €. Choose Ny(e) = 2I(¢), then

i[> 1(e)
|71 > I(e)if |j —i|] > Na(e) and |i| < I(e), and hence Z p;j < € for n > Ny(e). Then for any n > Ny (e),
|j—i|>n
k2.
I3< >y Pi( >y pj¢2(Uj)) <> pikby Y pj < 2pskbe, (5.6)
i€zt |j=il>n T |j=il>n i€z li=i[>n

which together with (5.3) and (5.4)-(5.6) implies that for all n > max{Ny(e), Na(e)},
tATE
E(‘/ (K (™) — K(w), u™ — u)ds’) (5.7)
t
1 1
<(1+ p%ﬁ%L¢) / E( sup |[u™ (r A TR, ©) — u(r ATR, 90)||2p)d8 + 5(6,0221)35 + 2psrbe)T.

T 7<r<s

The last two terms on the right-hand side of (5.1) can be bounded by

tATR
SE( [ 1A - A 2ds) (58)
iezd T
t
<3 ervE) [ B swp w0 Ahe) - ulr AT o)) ds
and
rATR

5]E< sup | S / (Ai(u("))—Ai(u),u(")—u)dWi(s)D (5.9)

T<r<t T

= =" iezd

1 n n n
gZE( sup ||u( )(T/\TR,W)*U(T/\TR790)|‘/2)>
T<r<t

t
205 [ B( sup [0 A The) — ulr AT )2 d,

7<r<s

By (5.1)-(5.9), we obtain for all ¢t € [r,7 + T],

E( sup [u™(r A0) = ulr A7)

T<r<t
1
< {4Lf(2R, /o%) + 4(pK7 Ly + 1) + 2:2L2 (2R /px) + 45205}
t
. /T E(Tzligs [u™ (r A TR, @) — u(r A TR, <p)||i) ds + 2(€p22bi + QpEmbie)T.

Thanks to this and the Gronwall inequality, we obtain for all n > max{N;(e), Na(€)},

swP({weQ| sw [u A ¢) —utATh ), > 0})
pelR T<t<7+T

<%ebi (P22 + 2[)2/@) Te[4Lf(2R\/’E)+4(”é“%L¢+1)+2€2L§(2R\/E)+45205]T.
o
The proof is complete. O

Now we present a proof of Theorem 3.2.

Proof of Theorem 3.2. Since U S™ is tight by Lemma 5.2, it follows from {u(”)};ti‘i C U S™ that
nezt neZ+t
there exist a subsequence {nk}Z';’cl’ and a probability measure p such that p(™) — 1 weakly.

For every € > 0, we find by the tightness of {4(™)} 1> that there exists a compact set E = E(e) C li
such that for all n, € Z%, u(™)(E) > 1—e Forany t > 7 and ¢ € UCb(lf)), where UCb(lZ) is the Banach
space of all bounded uniformly continuous functions defined on li, we deduce

‘/lzE(@(U(tyur)))u("k)(dur) _/ plur )™ (dus) (5.10)

i

13
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270

271

272

273

276

= /E e (W(u(tv ur)) — p(u™ (¢, ur))l) p™) (duy ) + 2€ sup [p(x)].

z€l2

Since ¢ € UC(!

p) for every € > 0, there exists n > 0 such that for all y,z € l2 with [y — z|| <mn, we
have [ (y) — ¢(2)| <

€. Thus

[ B (letutt un)) = ola® e ) ) 1) (5.11)
E

<2 sup |¢(z)| sup IP’( sup |‘u(nk)(t7u7) — u(t,uT)HIQ, > n) + €.
z€l2 ur€EE te(r,7+T)

From Lemma 5.3 and (5.10)-(5.11), it follows that

lim ‘/ u(t, ur))) p™) (du,) —/ go(uT),u(”’“)(duT)) < 2esup |p(x)] + €.
k=tool Ji2 12 z€l2
Since u(”’“) — u weakly and € > 0 is arbitrary, we obtain
[ Eetutt.u) aldun) = [ otun(dur)
i i
which means p is an invariant measure of (2.1). O

5.2 Proof of Theorem 3.3

In this subsection, we will prove Theorem 3.3 to show the relationship of invariant measures between
(2.2) and (2.3).

Similar to Lemma 5.2, we obtain the following lemma.

Lemma 5.4. Let (H1)-(H7) hold, and denote by SN'™ the collection of all invariant probability measures
of (2.3), then U SN s tight.
NezZ+

The next result is concerned with the convergence of solutions to (2.3) as N — +o0.

Lemma 5.5. Let (H1)-(H6), (H8) and (H9) hold. Then for any T > 7, 0 > 0 and every bounded
subset E in li,

lim sup P({w cQ| sup [u™(t,0) —uN"(t, 0)], > 0’}) =0.
N—=+oo pcE T<t<T+T

Proof. Denote 75 = inf {t > 7, |[u "t o), V™ (@), > R}. Using Ito’s formula to u™ (t, ) —
u™N'"(t, ) and then taking expectation, we have

E( sup [u (AR, ) —u "t TR, 0)]2) (5.12)
T<r<t

t/\‘rR t/\‘rg
<2E ‘ / (™) — PN (uNm), u™ — uN’")dSD + QE( / (K™ (™)) — KN (uNm), u™ — uN’")dsD

+ 2E(’ /:ATR (G -GN, u™ — )dsD + 2 ;E(Tiﬁzt /wg A (u™) + H¢||,2,ds)
TATR
+25E(ng£t /T (Z(A (u™) + H;) — Z (A (u™m) + Hy),u™ — “Nn>sz(5)D

iezd i€z

By (5.2), the first term on the right-hand side of (5.12) can be bounded by

t/\‘rR
’ / — FN@WN™), u™ — N ds

) (5.13)

14



t

§2Lf(2R,/pg)/ ]E( sup ||u(")(r/\7'g,g0)—uN’"(r/\Tg,go)Hi)ds

T 7<r<s

1 tATR 2
+§E( sup Ju™ (r ATH, @) —ulN " (r ATY 0| )—l—Cl / Z i () ds).
T<r<t zeZd\Zd

Similar to inequality (5.4), the second term on the right-hand side of (5.12) can be bounded by

QE ’ / IC(") )y — KN (™), u™ — N ds

) (5.14)

T7<r<s

§2\/pEHL¢>/ E( sup H’LL( )(r/\TR7(&0)_u (T/\TRNP)H )

1
+ gE( sup JJu™ (r AT, @) — ulN " (r A 7’113\[790)”,23) +Cs Z Pi-
TSrst i€Z4\Z4,
For the third term on the right-hand side of (5.12), we find
7N
QE(‘ / (G — GV, u™ — yNm)ds ) (5.15)
t

tATR
<[5 s WAoo~ e ar )i+ B[ Y patas)

T<r<s ieza\z4,

For the fourth term on the right-hand side of (5.12), we have

tATg

? Z/ S (™) + H) = S (A + Hy)|2ds (5.16)
i€z i€z 1€Z%
t
<13y [ B e a0 AT ) = <rmR7so>H)
+52E 3 / 1A (™)) ds)+1E Z / ||H|| ds
ZGZd\Zd T iezd\zd, T

Similar to (5.9), by the Burkholder-Davis-Gundy inequality, the last term on the right-hand side of (5.12)

can be estimated by

TATg
2K Ay(u™) + 1 Ai(@™™) + Hy),u™ — o) aw; ]
(s [ [ (™) + 1) = 3 (A + ) =" )awis))
== i€z i€Zy
1
§§]E( sup Ju™ (r AT, @) —ul " (r AR, 9] )+C4 Z / HA (n) H2ds)
T<r<t T
i€ZI\ZE,
t
+C'3/ IE( sup [[ul™ (r AR, @) — uN " A TR )l )ds—l—E( Z / |H1||§ds>>
T <r<s T
- = i€Z\ZE,
By (5.12)-(5.17), we obtain for all ¢t € [r,7 + T7,
E( sup [ ATR, @) = uN (A TR ) 2) (5.17)

T<r<t

<[AL;(2R\/px) + 4\/pekLy + 26> L3 (2R\/px) + 2C5 + 2]

t
/ IEI( sup [[u™ (r AR, ) =N (r ATE 0| )

T7<r<s

+CIE(/tATR Z piugn)st) (5 +C4 Z / ||A (n) || ds)

1€Z\Z% eZd\Zd

15
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286

287

tATN
+ (e + CyE Z / |H|| ds —HE/ A Z plgzds)—&—C’g Z Di-

=y \Zd zEZd\Zd zeZd\Zd

Due to the fact u™ e £2 (Q,C([T,T-"-T],li)), G = (gi)icza € li, H = (hy)seze € li, ||A(u)||i <
2Ha||go||u||i + 2||b||i and (H1), we deduce by Gronwall’s inequality that

supIF’({wESH sup  [Ju™ (t/\Tg,QD) — v (t/\TR, o), > 0})

©EE r<t<r4T
tATR tATg
C’lE / Z pill ) ds) +Cs Z pZE(/ ||u(")||ids>
i€Z4\24, i€Z4\2%, T
tATR tATg
v@r( Y [ U pmRas) vB( [ patas)]
zeZd\Zd T T i€Z\ZY,
€[4Lf(2R\/E)+4\/mL¢+2€ L3 (2R/px)+2C3+2|T -0
as N — 400, hence the proof is therefore complete. O

Now we present a proof of Theorem 3.3.

Proof of Theorem 3.3. Similarly to the proof of Theorem 3.2, we can conclude by Lemmas 5.4 and 5.5
that any limit of a sequence of invariant measures of (2.3) must be an invariant measure of (2.2) as
N — +oo0. O

5.3 Proof of Theorems 3.4 and 3.5

Denote n(t) := tg, as t € [tk, tk+1), and 1y (t) := tgy1, as t € [tg,tp41) for k > 0. Then the continuous
version of the BEM approximate solution satisfies

X(t)ZXtO+/t(FN( 4 ( S))+/C (X n+(s)—|—GN dS—|—€Z/ n(s))-i-H)dW(),

zEZd

which will be used in the proof of Theorem 3.4.
Following [?, Lemma 3.3|, we establish the existence and uniqueness of solutions to the BEM scheme

(3.1). Next, we provide moment estimates of solutions.

Lemma 5.6. (Moment estimates) Let (H1)-(H4), (H6) and (H9)-(H11) hold. There exists a
constant T such that the numerical solution of the BEM scheme with any initial value x € £> (Q, R2N+1)
satisfies

supE (IX,?) < C(1+E (jz?)).

Proof. By (3.1) and the properties of FY, K G in Section 2, we obtain

| Xt |? :( (FN (Xpg1) + KN (Xps1) + GN) b, ch+1) (Xk +e Z i(Xi) + Hy) AW, Xk+1)
16Zd

1

5

IN

— (a = 2y/2psrag) 0] [ Xi [* + (26505 + |1 BII7 + CIIGN|)n
|Xk+EZ i(Xe) + Hy) AWy |2,
zGZd
where C' is a constant which depends on k. Then we have

1+ ‘Xk|2

L+ [ Xp | <
X ~1—- (4y2pskay — 2a)h

(14 wr), (5.18)

16



289

290

201

202

293

295

296

> piXin(Ai(X) + Hi) AW + €2 32 (Ai(Xi) + Hy) AWi|? + Crh
i€z i€z,
L4 [ X2 ’
and Cy = 4kp3b] + 2Hﬁ||f2) + QC||GN||§ — 44/ 2pnkay + 2.
Since AWy, is independent of 7y, we have E (AW |F;,) = 0 and E (JAAW;|*| 7, ) = |A|*R, from

which we find E (0| F;, ) = (52 3 (G + Hil*h+ Olh).
i€ZY,

where vy, =

1
1+ | X2
Taking conditional expectation on (5.18), it yields that

1+ [ X5
E (14 |Xpr1|?|1F) <
(14 X1 F17) < 1 — (44/2pskay — 20)h

where Cy = 4¢||b]|2 4 2¢? Z |H;|* + 2C1.

(1+4€2(la]|3h) + Cah, (5.19)

i€Zy
On the other hand, for any 0 < i < 8(2\/T;a¢ — o)’ we obtain
[1 — (4y/2psray — 2a)h} T <14 (2y/Zpurag — a)h. (5.20)
From (5.19) and (5.20), we have
E(1+ | X121 F) < [1 + (21/2psray — a)h} (14 | X4[2) + Coh. (5.21)
Then by induction, it follows from (5.21) that
E (1 + [Xpt1[*|F20) (5.22)
k+1 k I
< [1 + (24/2pxkay — a)h} (1+ |z|*) + Cghz [1 + (2v/2pskay — a)h} + Csh.
=1
Taking expectation on each side of (5.22), we deduce
E (14 |Xk41]?)
k

< [1 + (2v/2pskay — a)h} - (1 +E (|x|2) ) + Cghz {1 + (2v/2pxkay — a)h}l + COyh,
1=1

which implies the desired result. O

The following theorem follows directly from Lemma 5.6 proving the tightness of the family of proba-

bility distributions.

Lemma 5.7. (Tightness) Let (H1)-(H4), (H6) and (H9)-(H11) hold. Then for every compact subset
K of R2NTL the family of probability distribution for solutions of BEM scheme (3.1) is tight.

Proof. By the moment estimates in Lemma 5.6, there exists a constant C' > 0 such that E (|X,[*) < C.

C

Define Y = {X;, € R2VT!| | X;| <4/ =}, then Y is a bounded and closed subset of R*¥*1. Thanks to
€

the Chebyshev inequality we find that, for all ¢ > 0 and x € 7,

P({weQ:Xk(t,x)ey}):l—P<{weQ:|Xk|>@}) >1—c¢,

which means {P(t,x)}>- is tight. O

Next, the existence and uniqueness of the numerical invariant measure of (2.3) by BEM scheme is

proved.
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Lemma 5.8. Let (H1)-(H11) hold and ; = 0 fori € 2%, N € Z*. Then there is a unique invariant
probability measure uh’N’” to the BEM scheme (3.1) which exponentially converges in the Wasserstein
distance as h — 0.

Proof. Denote by P,fh the probability distribution of X}, by Lemma 5.7, one can extract a subsequence

R2N+1)

which converges weakly to an invariant measure denoted by pV:" ¢ P( . Now, it remains to verify

the uniqueness of invariant measures. Assume ,u;f’N’", ,uZ’N’n € P(R*M*1) are the invariant measures of
(3.1), respectively, then we have W (u!™", Ny < W3 (8, P, 0, P )m(dz, dy).

R2N+1 g R2N+1

Note that
xT xT 1 xT
‘Xk+1 - Xig+1\2 <[-a+ \/PEHqu] h‘Xk+1 - Xi?ﬂ‘z + §|Xk+1 - X}JHIQ
1 x xr
X = X e 3T (X)) — A(XE) AWkl + 182
=As
| Xy — XY

1 : h
—oz—|—,/pzf-£L¢,)h( + i), where

. 2
Hence we obtain [ X7, — X}, |? < 1=

e 2 pi(Xf — X)) 2 (Mi(XF) — Mi(XF)) AWk
jezd i€z,
Xk = X2
o) = el X (Ai(XE) — Ai(XE)) AWl + 2] Bl[h
€L
= X —XIP , X=X £
-1 [ Xi - X[ =0.

Similar to discussions in Lemma 5.6, for any 0 < h < , we have the following result

~1
E(IXEy = X2 P F) < [1+2(8°L3 + 2/pskLy — 20)R] | X — X}
And hence
W3 (0: Py, 8, Pli) <E (|X7 — X[J?) < X IAF2VPRL =200k g, g2
which together with the (H11) completes the proof. O
Now we present a proof of Theorem 3.4.

Proof of Theorem 3.4. By the Kolmogorov-Chapman equation, Lemma 5.8 and Lemma 5.6, we have that
for any k, [ > 0,

W3 (82 Plis 62 Pli 1 iyn) < / W3 (8, Plins 6, Pl Pl (w, dy) < 20l IAT2VPSFLs—200kR (1 | 9|q12)  (5.23)
7

Let | — +o0 in (5.23), then we have

Wg(éwpgmuh,N,n) < 206(52L§+2WL¢—2a)kh(1 + 2|$|2>.
-1

-1
(2V2pskag — a)’ 4(y/pukLy — @)
ke (0,h] and kh > T3,

Let hy = min{8 }, then for any € > 0, there exists T > 0 such that for

€
Wa (6, Pl pNm) < £ (5.24)

T
In addition, by Ito’s formula for v (t) — uff”(t) and using similar estimates in Lemma 4.3 and Lemma

5.6, we obtain

—zax K 82 2 —T
E (lup"™(t) = ug " (0)) < (= yll} + [|B]5)el 2t 2vPantotiia)t=n),

18
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Let Pyj, be the probability distribution of ™", there is a Ty > 0 such that for any % € (0,1) and kh > T,

€
W (62 P, ™) < 1 (5.25)
T+1 .
Let T = max{T1,To} + 7 and k = [T] for any h € (0,1), then 7 < T < kh < T + 1. Following [?,
Theorem 5.3], for any given e > 0, there exists a constant A" > 0 such that for any & € (0, h¥),
W (62 P, 62 Pf) < E(| X (kR) — u™"(kR)[|2) < % (5.26)
Combining with (5.24)-(5.26), the result is proved. O

Finally, we present a proof of Theorem 3.5.

Proof of Theorem 3.5. By Assumptions (H1)-(H11) and 8; = 0 for i € Z¢, we have E(||u(t,T,ul) —
u(t, T, u?.)||f2)) < E(||lut — u?.\|i)e(*2“+2mL¢+52Li)(t*ﬂ, from which we obtain the uniqueness of the
invariant measure of (1.1). Similarly, we can prove the uniqueness of the invariant measure of (1.3)
and (1.4). Then by Theorem 3.2, it follows that ™ = 1 weakly, which implies that for any e >
0, there exists a ng = ng(e) € Z* such that for any n > ny and for any bounded and continuous

function ¢ : l?, SR, || e)du™w) — | ou)du(u) |< % Fix n, by the uniqueness of the invariant
12 12
measure of (1.4) and Theorem 3.3, we find there exists a N* = N*(n,e) > n such that for any N >

N* | / o(u)dp™™ (u) —/ o(u)dp'™ (u) |< % For every n and N, we infer from Theorem 3.4 that
12 12

P

A,N,n N,n

] — " weakly, so there exists a constant A* = A*(N,n,¢) > 0 such that for any 0 < A < A",
| [ etwdnt )~ [ ptua @ < & Then | [ pdi¥ @) ~ [ puida(w) |< ¢ for any
A A A A
n>mng, N > N*and fi € (0,h*). Therefore, lim lim lim N = 1 weakly. O
n—+00 N—+oo h—0
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