MEAN ATTRACTORS AND INVARIANT MEASURES OF LOCALLY MONOTONE
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ABSTRACT. We study the global solvability, mean attractors and invariant measures for an abstract locally
monotone and generally coercive SPDEs driven by infinite-dimensional superlinear noise defined in a dual
space of intersection of finitely many Banach spaces. The main feature of this abstract system is that it covers
a larger class of fundamental models which are included or not included previously. Under an extended locally
monotone variational setting, we establish the global well-posedness, 1td's energy equality and existence of
mean random attractors in some high-order Bochner spaces. The existence, uniqueness, support, (high-order
and exponential) moment estimates, ergodicity, (pointwise and Wasserstein-type) exponentially mixing and
asymptotic stability of invariant measures and evolution systems of measures are discussed for autonomous
and nonautonomous stochastic equations. A stopping time technique is used to prove the convergence of
solutions in probability in order to overcome the difficulty caused by the local monotonicity and superlinear
growth of the coefficients. Our abstract results and unified methods are expected to be applied to various
types of SPDEs like 2D Navier-Stokes equations, 2D MHD equations, 2D magnetic Bénard problem, Burgers
type equations, 3D Leray a-model, convective Brinkman-Forchheimer equations, fractional (s, p)-Laplacian
equations with monotone nonlinearities of polynomial growth of arbitrary order, and others.

1. INTRODUCTION

1.1. Statement of problems. Let (H, (-,-)n) be a separable Hilbert space identified with its dual space

H* by Riesz’s representation theorem. Fori=1,2,...,m € N, let (V;,||-||v;) be a reflexive Banach space

continuously and densely embedded into H. Let V :=(,_; 5, Vi with the norm ||v||v = S vl
and y-(,-)y and v+(,-)v; be the duality products of V,V; and their dual spaces V*,V;*. Then V* =
S VE feVrifand only if f =Y fi with f; € V75, and v (f,v)y = > iy v (fi,v)y, forv e V.
The norm of V* is defined by || f|lv+ = ; in"g ; > || fillv+. Assume that V' is separable. Then we get
“2ui=11i
the variational triples: V; C H = H* C V* and V C H = H* C V*. Given a separable Hilbert space
(U, {-,)u), we denote by Lo(U, H) the space of Hilbert-Schmidt operators from U to H with the norm
| - | o(u,mry and inner product (-, )z, w,m). Let W be a two-sided U-valued cylindrical Wiener process
defined on the complete filtered probability space (2, F, {F; }er, P).
In this work we are concerned with the global solvability and long-time dynamics of the following
stochastic evolution equation defined in V*:
dX(t) =Y Ai(t, X(t))dt + B(t, X(£))dW (1), t>, 1)
i=1 .
X(T) = Xo,
where the progressively measurableﬂ evolution operators

A [, 7+ T xQxV; =V and B:[r,7+T|xQxV = Lo(U H), T >0,

satisfy some locally monotone, generally coercive and superlinear growth conditions: there exist constants
Ly >0,% >0,0, >0a; >1, 5 € [l,a5), K =2 0, w > 0, and F;-adapted nonnegative processes
b1, 03,05 € LH([1, 7+ T)x Q, dt X P; RY), ¢o, g, dg € L°([7, 7+ T x Q, dt xP; RT) and n; € Lﬁ([T,T—F
T] x Q;dt x P;RY") such that A := """ | A; and B satisfy, for all ({,w) € [r,7+T] x Q and v,v1,v5 € V,
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(C1) (Hemicontinuity) The map s — v« (A(t,w,v1 + sv2),v)y is continuous from R to R;
(C2) (Local Monotonicity)

2v- <A(t,w,’01) - A(tvw7v2)a U1 — UQ>V + ||B(t,w,’01) - B(t7wvv2)”%2(U,H)

=St vl + (200) 4 Y i) )lon = valr
=1

i=1

where p; : V; — [0,4+00) is a measurable, hemicontinuous and locally bounded function satisfying

f: pi(v) < LO(
i=1

o)L+ Jloll); (1.2)
(C3) (General Coercivity)

2 v+ (A(t,w,0),v)v + | B(t,w, )12, @,m) < Vot oot w)llvllE + st w);

(C4) (Superlinear Growth)

m

IB(t,w, )7 w.m) < Z (& )llolly: + dalt,w)lvlF + ¢5(t,w),

Z| 71 tw(

1.2. Global well-posedness of (1.1). Under our settings, we demonstrate the global existence, unique-

) @+ el ).

ness and It6’s formula of solutions to (|1.1)) in some high-order Bochner spaces.

Definition 1.1. (Probabilistically strong solutions) We say a continuous H-valued Fi-adapted stochastic
process { X (t) }efr,r4+1) 95 @ solution to ([L.1) if its dt x P-equivalent class X satisfies

X e ( ﬂ Lo‘i([T,T—I—T]XQ,dtxP;%))ﬂLQ([T,T—i—T]xQ,dtxP;H),

i=1,2,...,m

and P-a.s., the following equation holds true in V*:
t t
X(t) = Xo —|—/ A(s, X (s))ds —|—/ B(s, X(s))dW (s), te€[r,7+T].

Theorem 1.2. (Well-posedness, It6’s formula, mean energy equality) Suppose (C1)-(C4) hold true for
b3, 05 € LY([1, 7+ T)] x Q,dt x P;RT) and n; € L% &z ([r, 7+ T] x Q,dt x P;RT) with some £ > 5 + 1.
Then, for any Xo € L*(Q, Fr,P; H), problem (L.1} . has a unique solution {X (t)}ie(r,r41) according to
Deﬁnition such that X € C([r,7 +T),L*(Q,P; H)), and satisfies Ité’s formula

X0 = IXolF + 2606~ 1) [ IXGIE 1Bl X () X0l
w20 [ LX) X ), Bl X)W ()

0 / IX ()13 (2 v (A(s, X (), X))y + [ B(s, X () )ds. t> 7, P-as., (13)
the mean energy equality
L BIX 113 = 2600 - DE[IX DI (B X)) X(©) 2]
+E[IX W22 v (AW X @), XO) + 1BEXO) )] 127 (14)

and the uniform estimate

m

B _sw_IX(0)H] +E| [ IxeR S x|

te[r,7+T i—1

“)}:ds] < C(r, T, Xo). (1.5)
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The global well-posedness results in Theorem permit us to investigate the behavior of solutions
to . In the literature, the behavior of solutions to stochastic systems has been discussed in several
different directions: pathwise random attractors (behavior in almost sure, see [3, 4 [6] 23] 27, 43, 44
47, 56, [61]), mean random attractors (behavior in mean, see [25] 50, 52]), invariant measures (behavior
in distribution, see [7, [I77, 22], 28], [29] 32} B3]), large or moderate deviation principle (behavior in small
probability, and the law of large numbers or central limit theorems [28] [29]. In the present paper we
study mean random attractors and invariant measures of . To do this, we shall need the following

remark.

Remark 1.3. Assume that there exists i1 € [1,m]| NN such that oy = 2. Then by (C2)-(C3) we deduce

2 | <A(t,w,v1) - A(tvw7’02)a U1 — U2>V + HB(tawvvl) - B(tawa v2)||%2(U,H)

<=3 Billor —wallE + (— Ny + bu(t,) +n2pi<v2>>nv1 ~val% + 94, Con
=1

i=1
and

2y~ <A(t,w,’U),’U>V + ||B(t’w7v)||iz(U7H) S - ZezHUH% + (¢2(t,W) - Alloll)”UHif + ¢3(t,¢d) + ailcai17
=1

where Co, =0 if a;, =2 and Co,, = a; (i, — 2)(0y, /2)YP7%0) if a;, > 2, and N;, > 0 is the best
embedding constant such that /A, ||vl|a < [|v]lv;, -

1.3. Mean random attractors of . A basic but very restrictive condition to investigate almost
sure behavior of solutions to SPDEs by pathwise random attractors is that SPDEs should be converted
into pathwise systems via an Ornstein-Uhlenbeck process, see [6l 8] [9, [T0] [T}, 12 [14] 15} 23] 31, 42} 48
49, 54], 55, B8, [62]. In general, such a transformation can be achieved for SPDEs driven by additive or
linear multiplicative noise. For SPDEs like with nonlinear noise, it seems that there are no methods
available in the literature to achieve such a conversion. Then, we alternatively study the mean (not
pathwise) random dynamics of , and prove that the mean random dynamical system (RDS) generated
by the solution operators has a unique mean random attractor in L2¢(Q2, F,P; H) over (Q, F,{F:}ter, P)
in the sense of Wang [50} [52], see Theorem If ¢ =1, then similar results can be found in [25] (0} 51]
for stochastic parabolic equations. If £ = 2, the reader is referred to Wang [52] for the existence of mean
random attractors of stochastic Navier-Stokes equations. We notice that a new concept of mean random

invariant manifolds for mean RDSs was recently proposed by Wang [53].

1.4. Invariant measures of : autonomous case. An important and universal conclusion in the
theory of pathwise RDSs is that all invariant measures are supported by pathwise random attractors.
Since the existence of a pathwise RDS for SPDEs like with nonlinear noise is still unknown, we are
currently unable to discuss the relationship between pathwise random attractors and invariant measures
of . Although we can establish the existence of mean random attractors of , we still do not know
the relationship between mean random attractors and invariant measures of . In this paper we also
discuss the existence and some properties of invariant probability measures of with nonlinear noise.
Owing to the local monotonicity and superlinear growth of A; and B, it is difficult to prove the Feller
property of the transition operators which will be used to prove the existence of invariant probability
measures of . A stopping time technique is used to overcome this difficult by proving the continuous
dependence on initial data of the solutions in probability, see Lemma For a global monotonous and
linear growth case, the reader is referred to [51, [57].

For the autonomous case, we prove the existence and regularity of invariant measures of when

A; and B are independent of sample and time.
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Theorem 1.4. (Existence and support) Let assumptions in Theorem hold true.

(i) If there exist ig,iy € [1,m] NN such that V;, < H is compact, a;, > 2 and 6;, > A "¢, then the
transition semigroup (P 4)i>o0 for has an invariant probability measure on H.

(i) If there exists i1 € [1,m] NN such that oy, > 2 and 6;, > )xi_llqﬁg, then each invariant probability
measure of (Po¢)i=0 on H is supported by V = mi=1,2,...,m Vi.

Next, we take a stationary solution of (1.1} to look at the moment estimates of invariant measures

of (Po,t)t>0, which are useful to discuss the uniqueness, ergodicity and mixing of invariant measures of

).

Theorem 1.5. (High-order and exponential moment estimates) Let assumptions in Theorem hold.
(i) If there exists i1 € [1,m] NN such that a;, =2 and 0;; > 2/\;1?\2[1[@ +2(€ — 1)¢p4], where Ry =2

if =1 and Xy =1 if £ > 1, then every invariant measure 1 of (Pot)i>0 on H satisfies

m
{—
[ el > e
H i=1

(i) If there exists i1 € [1,m] NN such that o, > 2, then every invariant measure n of (Po¢)i>o0 on H

vin(dr) <oo, Y I>1. (1.6)

satisfies

/ l]2-2 3 [zl n(de) < o0, ¥ €3 1. (1.7)
H i=1

(iii) If B(v) = B, and there exists iy € [1,m] NN such that a;, > 2 and 0;, > A\ '¢a, then every
XigOiy — 2 }

" 2| BIZ

invariant measure n of (Po.t)i>0 on H satisfies, for any € € [0
Ly(u,m)

m
/ ecllelE Z9il|$|
H i=1

Under some specified assumptions, we then further look at the uniqueness, ergodicity, strong mixing

-1 ) 2/
?/Zn(dl‘) < (¢3 + eilcozil)/ eEHIH%T](d.T) < 2(¢3 +9i10a1-1)€6(297"1 (¢3+9110D¢11)) 1 )
H

and exponential mixing of invariant measures of (Pyt)¢>0 on H.

Theorem 1.6. (Uniqueness, ergodicity and mixing) Let assumptions in Theorem hold.

(i) If & = 0 and there exists iy € [1,m]NN such that a;, = 2, ¥;; > )\i_ll¢1 and 6;, > )\i_llqbg, then every
invariant measure n of (Pot)i>0 on H is unique, ergodic, strongly mizing, and exponentially mizing in
the sense that for any ¢ € Lip,(H) and Xy € H,

(Por)(X0) = [ planln)] < e(1 + | Xola)e Pt (1)

where ¢ > 0 is a constant independent of Xy and t. Furthermore, n is also exponentially mizing under the

Wasserstein metric of P(H), that is, for any ¢ € Lip,(H) and p € P(H) satisfying [} ||z]|3n(x) < oo,

1/2
d@(Qo,tu,n)<c<1+/ leliﬂ(d:r)> em 2 Mudu =0t (1.9)
H

where ¢ > 0 is a constant independent of t, Qo+ is the adjoint operator of Py .
(it) If w = 0, k # 0, B(v) = B and there exists i1 € [1,m]| NN such that o;; = 2, ¥;, > )\;1[% +
kLo(1+6¢3)] and 6;, > /\Z-_ll[q52+2(1+/<¢9L0)||B||%2(U)H)], where 0 := i:{fl?).(.,m{ei_l}’ then every invariant

measure n of (Pot)iso on H is unique, ergodic, strongly mizing, and exponentially mizing in the sense
that for any ¢ € Lip,(H) and Xy € H,

(Po,ep)(Xo) — / @(m)n(dm)] < C(Xo)ed At +or+rLo(1+66a)t (1.10)
H

where C(Xo) > 0 is a constant independent of t. Furthermore, 1 is also exponentially mixing under the

Wasserstein metric of P(H), that is, for any ¢ € Lip,(H) and p € P(H) satisfying [, el py(dz) < oo,

11 9, P
Al (Qo.ett,m) < CpedlAinPintortnlo(14+06s)]t (1.11)
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where C, > 0 is a constant independent of t.

Let B(X(t)) be replaced by eB(X(t)) in (L.1) for € € [0,1/v/2]. Let P(H) be the collection of all
invariant measures of (T.1) for € € [0,1/+/2]. Then we discuss the limiting stability of invariant measures
taken from P¢(H). In particular, we show that the union of P¢(H) over [0,1/+/2] is tight on H, and the

limit of every sequence of invariant measures taken from | J c€[0,1/v3] P¢(H) must be an invariant measure
of a limiting system of (L.1)).

Theorem 1.7. (Limiting stability) Let assumptions in Theorem hold.
(i) For every 6 >0, T > 0, ey € [0,1/v/2] and bounded set B C H, we have

lim sup sup P(||X€(¢,0,X0) — X(t,0, Xo)||lg = d) =0.
E—€Q tE[O,T] XoEB

(ii) If there exists ig,i1 € [1,m]| NN such that V;, — H is compact, ;; > 2 and 0;, > A;lgbg, then
Ueepo,1/v31 P<(H) is tight on H. If, in addition, n° € P (H) and €, — €o with €, €, € [0,1/+/2], then
there exists a subsequence €,, and n®° € 756°(H) such that n®r — n° weakly.

1.5. Invariant measures of : nonautonomous case. In many applications to physics and other
fields of science, the evolution equations are often driven by stochastic and nonautonomous forcing si-
multaneously. In such a case the classical concept of invariant measures for time homogeneous tran-
sition semigroups does not work for nonautonomous stochastic equations like (1.1). To close the gap,
a new concept called evolution systems of probability measures of time inhomogeneous transition oper-
ator (Pry)i>r was introduced and studied in [I8, 19, 28] 29]. By an evolution system of probability
measures of (Pr;);>r we mean a family of probability measures {n;};cr on H satisfying the invariance
[y Prog(x)ns(dz) = [ p(x)n(dx) for any ¢t > 7 € R and continuous bounded function ¢ on H.

As far as we know, there are not many results on the investigation of evolution system of probability
measures for nonautonomous SPDEs, and the quoted results are all concerned with SPDEs with linear
drift terms and additive noise. In this paper we study the existence, uniqueness, global exponentially mix-
ing, forward strongly mixing and backward strongly mixing of evolution system of probability measures

for a class of abstract SPDEs with nonlinear drift and diffusion terms.

Theorem 1.8. Let assumptions in Theorem hold. If Kk = 0 and there exists iy € [1,m] NN such that
o = 2, ’191'1 > )\;11¢1, 91'1 > )\;1(1)2, )"il (1921 — 921) 4¢3 — Pp1 = 0 and fzoo e[/\i19i1*¢2]8¢3(8)d8 < o0 fOT'

any T € R, then (Prt)i>- has a unique evolution system of probability measures {n;}ier on H such that

t
/||fﬂ||§mt(dx)</ i =25~ g (5)ds, V¥t e R. (1.12)
H —00

In addition, {n:}1er is exponentially mizing in the sense that for any ¢ € Lipy(H), Xo € H andt > 7 € R,
(Prae)(X0) = [ plahm(a)] < 20l iy (20221 Xol

- 1/2
-+ e%[_)\ilﬂil—‘rq{)l]te%[)‘il (Fig =04y )+¢2—¢1]T</ €Hi19i1_¢2]5¢3(8)d8> ) (113)

Furthermore, {n:}ier is also exponentially mizing under the Wasserstein metric of P(H), that is, for
any ¢ € Lip,(H), t > 7 € R and {pi}ier C P(H) satisfying [ ||z||3;pe(dz) < ffoo el O =d2ls o (5)ds,

.
d’EV(QT,t,uT? 77t) < 26%[7/\i119i1+¢1]t6%[>‘i1 (Vi =0y )+ d2—alT (/

— 00

1/2
e[)‘ileilm]sqﬁg(s)ds) ) (1.14)

Remark 1.9. (i) Unlike the autonomous case, we prove the existence of evolution system of probability

measures without using compact Sobolev embeddings. (ii) Every evolution system of probability measures
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satisfying (L.12) must be unique and exponentially mixing in the sense of (1.13)-(1.14)). (%i) By (1.13])
we find that for every ¢ € Cy(H) and Xo € H,

t—+o0

lim_|(P-0)(¥0) = [ elohm(d) =0, 7 € R

T——00

lim_[(Pree) (X0) = [ plam(da)] =0, t R

(iv) The restrictive condition k = 0 means that operators A and B have to be global monotone. We plan a

future work to prove the existence of evolution systems of probability measures of (1.1)) in the case k # 0.

1.6. Remarks on models. If m =1, 9 =k =w =0, 1 =0 and ¢1 = 2 = ¢4 = ¢g = ¢, then
above framework reduces to the standard or locally monotone variational framework [I3] 26, 34, [40]. A
significant advantage of the present variational framework is k # 0, @w # 0, m # 1, ¥ # 0 and n; # 0,
which permits us to possibly study the global well-posedness and long-term dynamics for a wide class
of SPDEs covering several important models included or not included before. A typical example within
the present framework but not the clcial setting of is the tamed Navier-Stokes equation in dimension
N =2,3: %—;‘ — pAu+ (u-V)u+ Blul"~tu+ Vp = 0, where i, > 0 and 7 > 1. It is known that
the 2D Navier-Stokes equation (8 = 0) satisfies the framework of with m = 1. However, we can
show that the tamed Navier-Stokes equation satisfies the present setting for N = 2,3. Let P be the
Helmholtz-Hodge projection, and consider A;(u) = P(pAu — (u- V)u) and Az(u) = —4P(Ju[""tu). It
can be proved that A; satisfies (C2)-(C4) only when N = 2. While, currently, it is impossible to prove
that A; satisfies (C2) and (C4) simultaneously if N = 3 due to the term (u-V)u. Nevertheless, by using
the dissipative effect of Blu|"~tu to carefully control (u- V)u, we can prove that A = A; + A, satisfies
(C2) and (C4) together.

TABLE 1. A satisfies (C2) and (C4) (see Proposition [7.11)

m . PR
2 v <A(V1) — A(VQ),Vl — V2>v < -Zl |:HAi(t7UJ,U)| “3‘;*/(&1 1) +Pi(v):| <
1= i
N=23 —pllvi = vz} = Brlvi = vall[ e
1 T—
o(L+ IEON3.) (14 IvIE + VIS ) (1+ i)
_4 1-7 _2
r>3 +[2’*3 ::‘i’uT*3 (,8(7“71))3*T]||vlfVQ||iI
N =2, —pllvi = val|2 = 2B87||vi — vo|"FL +
v = velly = 2671 = el o1+ 18- (1+ w13 + v ) (1+ v,
r>1 s val Ival2llve = vali,

1
—pllvi = vall3 — 287llvi = vallI L o(1+ IEOI3.) (1+ VI3 + Vi)

1.7. Applications of abstract results. As applications of our abstract results for problem , we
show that the stochastic tamed Navier-Stokes equation (see Example ) and a stochastic fractional
(s, p)-Laplacian equation with polynomial growth nonlinearities of arbitrary order for all s € (0,1) and
p € [2,00) (see Example (7.9)), do fall within our abstract variational setting. Then by directly applying
our abstract results in Theorems [[.2HT.8] we obtain the global well-posedness and long-time dynamics
results for the two typical examples under some specified conditions. Our abstract results are expected

to be applied to many different types of SPDEs.
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1.8. Outline of paper. In the next section we establish the well-posedness and 1t6’s formula of .
In Section 3 we prove the existence a uniqueness of a mean random attractor for . In Section 4 we
discuss the existence and properties of invariant measures and evolution systems of measures of in
autonomous and nonautonomous cases. In the last section we illustrate our abstract results with two

typical models.

2. WELL-POSEDNESS OF ([1.1I) IN HIGH-ORDER BOCHNER SPACES: EXISTENCE, UNIQUNESS AND ITO’S
FORMULA

In this section we prove our first main result on the global well-posedness of problem (|1.1)) under
assumptions (C1)-(C4). The proofs are based on the Galerkin approximation and the theory of monotone
operators, see e.g., [I1 5l 38, [39] [45], 46, 59, [60] for deterministic case, and [26], [34] [40] for stochastic case.

2.1. Approximate systems and functional spaces. Note thatif f € H andv € V, then v+ (f,v)y =v=
(fi,v)v;, = (f,v)m. Since the separable Banach space V is continuously and densely embedded into H,
there exists an orthonormal basis {e;,i € N} of H such that {e;,i € N} C V, and the span{e;,i € N}
is dense in V. For n € N, let P, : V* — H, := span{ej,es - -,e,} be the projection given by
Pof =31, v+{f,ei)ve; for f € V*. This is crucial to treat the operator A =" | A,;. Note that P, |g
defines an orthogonal projection onto H,, in H, and hence v« (P, A(t,w,u),v)v = (P A(t,w,u),v)g =
v {A(t,w,u),v)y for all u € V and v € H,,. Let {g;,i € N} be an orthonormal basis of U. Let P, U —
U, :=span{g1, g2, gn} be an orthogonal projection, and write W, (t) := ]BnW(t) =30 ((W(t),9:)ug:-
Then we consider a finite-dimensional stochastic system on H,:

{an(t) = P, A(t, X, (t))dt + P, B(t, X,,(t))dW,(t), t>T1€R,

X, (1) = P, Xo. 21)

According to the classical results for the solvability of finite-dimensional SDEs, see e.g., [26], we can
prove that problem has a unique continuous strong solution. In what follows, we will derive a priori
estimates of solutions to in the spaces K; = LY ([r,7 + T] x Q,dt x P;V}), K} = L%([’T,T +
T) x Q,dt x P;Vr), i = 1,2,....,m, J = L*([r,7 + T] x Q,dt x P;Ly(U,H)) and S = L®([r,7 +
T),dt; L>(Q,P; H)). In addition, the letter ¢ > 0 denotes a generic constant which may change its value

in different places.

2.2. A priori estimates. The main difficulty of deriving a priori estimates of solutions to in the
spaces above is how to estimate the nonlinear diffusion term B(t,w,v) with a superlinear growth rate in
v. This difficulty can be surmounted by using the dissipativeness of the operator A to carefully control
the superlinear growth of B(t,w,v). To simplify calculations, we derive the following two formulations

which are just direct consequences of (C4).

Proposition 2.1. Let (C4) be valid. If B; < «;, then for any e,e1,e2,71, K > 0 and 1o > 11,

K| B(t,w,v HEZ(UH

%+ Koult, w)||v||H+cZn°“ 2 (t,w) + Kos(t,w), (2.2a)
=1

E[vll 1Bt w, v)IZ, 0.0 < e1llvlF ZHIIUI '+ eallollF + Koalt,w)llol 7

a;rg

—|—c¢)r2 & (t,w +CZ R (%)) (2.2b)

=1

Lemma 2.2. Let (C1)-(C4) hold. Then for any Xo € L?(Q2, F,,P; H), we have the following conclusions.
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Loy
(i) If ¢3, 05 € LE([1,7 + T x Q,dt x P;R*) and n; € L5 ([r,7 + T] x Q,dt x P;R*) hold for any
£ > 1, then there exists a constant C(1,T, Xo) > 0 independent of n such that

m

T+T
E / XIS X0 (5)]

i=1

E| suwp [Xa()|F

te[r,7+T]

vids| < C(1,T, Xg), V=1

Lo
(ii) If ¢3, 05 € L([r,7 +T] x Q,dt x P;RY) and n; € L7 ([1,7 + T| x Q,dt x P;R*) hold for all
L > w/24 1, then for every n € N, there exists a constant C(7,T, Xo) > 0 independent of n such that

X0 350 021200 (s sz D [1Xnl + 4G, Xl | + 1B Xa)3 < O, T, Xo).
i=1

Proof. (i) Applying the finite-dimensional 1td formula to (2.1) we find, P-a.s.,
t

1Xa ()13 = 1P Xol1% + / (2 v (PuA(5, X (5)), X ()

1P B, X () Pall2y 000y )ds + 2 / (X0 (5), PuB(s, X0 () AW, (s))rds.  (2.3)

Note that by Parseval’s identity we have ||(P,B(s, Xn(s))lgn)*Xn(s)Hb(U,R) = |(P.B(s, Xn(5)Pn)* X0 (s)|lo <
1PaB (s, X () Pallea w0 | Xn (9l < 1B (5, X () ey | X ()17 For any € > 1, applying the
finite-dimensional Ité formula to (2.3) again, we infer from (2.2b) with K = ¢(2¢ — 1), e1 = &3 = {/2,
ry = 2¢ — 2 and ro = 2/ that P-a.s.,

1 (8) 12 = 1P Xoll2 + 206 — 1) / 1 () L1 (Pa B (s, X () Pa)* X (5) |2, 15,
o f ()22 v (PaAls, X)) XDy + [ Pu B, X)) Pl )5 + M)
< 1P Xol[% — 21 / 1 ()2 229||X 9l ds
(20~ 1) / 1 () 242 1B (5, X ()2 011,
+c/ (14 62() | X (I3 + 05(5)) ds + Mo (1)
NG NECT ) SO
o / ((1+ 3 o) 1.0 +Znafa’ﬂ7 9+ X 6t(e) s + M) (2.4)

i=2,4 1=3,5

where M, (t) := 2€f 1 X0 (8)122( X, (5), PuB(s, X0 (5))dWy(s)) . For k € N, we define a stopping time

mo o
ck :inf{t27:||Xn(t)||H >k and Z/ Xn(s)||(",jds>k},

where inf ) = +00. Since we can control B(s, X, (s) by Proposnlonu 2.1] by the definition of ¢¥ we know the

quadratic variation of M, (tAcF): (M, (-:Ac¥)); < 402 ft“" X ()3 1 (PaB(s, Xn(s ))Pu) X (s )||£2(U,]R) <
k

402 f:/\cn 1 X (5)][ 4~ 2||B(3’Xn(s))|\%2(U’H)ds < C(7,T,k), P-a.s.. Then M, (t) is a real-valued continuous

local martingale. By (2.4) we obtain, for all t € [r,7 + T7,

/T " (o1 zzenxn
wp (142 @(rmﬁ))xn(mc,’:>||%)]ds

TSTSS i=2,4
;

3/
E[ sup |Xn<rA<:§>||%f]+ ¥y
Tr<t 2

2E(|P.XolH]) + [ E

T
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T+T Loy
+c/ E|> ¢i(s +Z’7°” % (s) ds+2]E[ sup |Mn(r)|] (2.5)

i=3,5 ‘rgrgt/\s‘],f

By the BDG inequality for real-valued continuous local martingales, we infer from ([2.2b)) with e, = ¢/4,
€9 =1/4, 711 = 20 — 2 and 9 = 2¢ that the stochastic term in (2.5)) is bounded by

21E[ sup |Mn(r)|] < 120E [(/:Mf‘ (X (8)]| 4

q—grgmgﬁ

1
2
H 2|B(57Xn(5))|262(U,H)d5> }

k

1
tAS, 2
< m[i‘l‘it (s A )i ( [ e 2|B(s,Xn<s>>||%2<U,H>ds> ]

N | =

Tr<t

tAck
E [ sup HXn(rAcs)n%f) LB ( / |Xn(s>|”2|B<s,xn<s>>||i2<u,mds}
k 24 é t/\gﬁ 2[ 2 «@
[ 1] + G5 | [ I S 0 o
TEr<t T

’ k ky 26 T+T Cren
+c | E| su 14 rAey) ) || Xn(r A, derc/ )+ ai_ (s)]| ds.
[ 2] s (1461008 ) 1x. m)} T }jn

(2.6)

N | =

By (2.5)-(2.6]) we see, for all £ > 1

E { sup ||Xn<rm:§>||%f} TE

thsn |22
Xon( X, (s)|vids
B [ Z 1% (5) 3
T+ ZaL
< efteXizaall®illiLoerrsmixe) <]E[||X0||2}ze] Jr/ IE{ Z oL(s) + Zn }ds) (2.7)

i=3,5
By Markov’s inequality and ( we find P{r < ¢ <7+ T} <P{sup,c,cryr | Xn(r Al >k} <
Ck=2% < oo for any T € N, Where C > 0 is a constant independent of k. Let Qr = >-_, Ure,, {sF <
7+ T}. By the Borel-Cantelli lemma we know P(Q7) = P((r_; Upe, {7 < ¥ <7+ T}) = 0. This
implies, for every w € Q\ Qr, there exists kg = ko(w) > 0 such that ¢*(w) > 7+ 7T for all k > ko. Taking
Qo = Uren 7, we have P(Qp) = 0 and ¢f(w) > 74 T for all w € Q\ Q, and thus ¢& — oo as k — oo,
P-a.s. Consequently, we complete the proof of (i) by letting £ — oo in .

(ii) Note that condition (ii) implies condition (i). Then by (C4), (i) and Proposition there exists
a constant C(7,T, Xo) > 0, independent of n, such that for all £ > w/2 4+ 1,

Z]E {/ [Ai(s, Xn ()l v ds} +E [/ |1B(s, Xn(s ))||%2(U7H)ds < C(r,T, Xo). (2.8)
This yields (ii). O

2.3. Proof of Theorem A special attention in the proof of Theorem [I.2]is that the approximated
solutions converge in both Sobolev and finitely many Banach spaces simultaneously. The idea of the
proof is motivated by the classical works in [26, 34], where the SPDEs is defined in a single Banach space
and the growth rate of the noise is linear. In Theorem we consider a large class of SPDEs defined in
a dual space of intersection of finitely many Banach spaces driven by superlinear noise in order to cover
more models which do not fall within the variational framework. Our approaches are different from the
semigroup method [I7], and the regularization method [51] since the operator A in there is restricted to

be linear.

Proof. Proof of Theorem By Lemma [2.2] there exist a subsequence {n;}72, of {n}32; such that
Xn, — X weakly star in (L2(Q,P; L' ([r,7 + T}, dt; H)))"; (2.9a)
X, — X weakly in L2(Q,P; L?([7, 7 + T),dt; H]), K1, Ka,. .. ,Kn; (2.9b)
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Ai(-, Xpn,) =Y, weakly in K, i=1,2,...,m; (2.9¢)
Po,B(-,Xn,) — Z weakly in J. (2.9d)

By (2.1) we infer that for all v € 5, Hn and ¢ € L([r, 7 + T] x 2, dt x P;R),

/TT+T <p(t)<PnkX0 + /Tt zm: Poy Ai(s, X, (5))ds

i=1

E[ / T (X (1), )| = B

+ /t pnkB(s,Xnk(s))dek(s),v>Hdt]. (2.10)

Passing to the limit in (2.10]) as k¥ — oo according to -m, we deduce that

/TT+T¢(t)<X(t),v>Hdt /TT <X0+/ ds+/: Z(s)dW(s)7v>Hdt]. (2.11)

Define Y := > 1", YV; and X(t) := Xo + f: Y(s)ds + f: Z(s)dW(s). Then by ([2.11) we find X =
X, dt x P-a.e.. Note that X € Nicio, .mKin Y € S Ky and Z € J, as in [35, 41], we can

similarly prove that {X(t)}ic[r,r+1 is a H-valued continuous Fi-adapted stochastic process satisfying

E =E

E[suptE[TﬁJrT] ||X(t)||?{} < oo and the following Itd energy equation, P-a.s.,

X =1%ol + [ 2 v (Y6 XDy + 12 ds +2 [ (X6 Z6aW () (212

Applying the finite-dimensional It6 formula to (2.12]) we find the It6 energy equation for any ¢ > 1
t
IX O = [1XollF +26(¢ ~ 1)/ 1X ()5 1(Z ()" X (s)Frdds

+€/ IX ()17 22 velY (), X())v + 1 Z(5)| 2y 0,1y ) ds + M (1), P-as, (2.13)

where M(t) = 2£f | X (s)|| % 2(X (s), Z(s)dW (s)) . By a stoping-time argument, as in Lemmaﬁ7 we
can show that E [supte[ﬂﬂrﬂ |\X(t)||%} < 00, and that M(t) is a real-valued continuous local martingale.
Taking the expectation in (2.13]), by the property of 1td’s integral (see e.g.,[17]), we then obtain the mean

energy equation:

L E(x )13 = 260~ DENX O (Z(0) X (@3]

+E[IX O3 2 v- (Y0, X O + 12023000 (2.14)

Next, we use the monotonicity method to verify A(-,-, X) =Y and B(-,-, X) = Z, dt x P-a.s.. Let ¢
be a V-valued Fi-adapted process such that

ve( () KOO L (r,7+ T, dt; H)).

i=1,2,....,m

For R € N, we define a stopping time by
mo
= (1 +1T) Ainf {t emr+T]: o)V Z/ b(r)|I5dr > R}.
i=1Y7T
Note that ¢f' — 7+ T as R — oo, P-a.s.. By (2.3) and the product rule we find that

Al m
— 175 (p1(9)+m 35 pilo(s)))ds
Ele 1 X, (E A | = E [ Poy Xol3]

S p2 (604 35 pil@(r)) ) dr
EU e (ore 2y ) 2 v Py A8, Xny (8)), Xy, (8))v

+ HPnkB(SvXnk(S))ﬁnkH%Q(U7H) - ( +szz )|Xnk( )||%1>d3]
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_E [ [ (nr o) (2 V- {A(s, X (8)) = Als, 6(5)), Xoe(5) — 9(5))v
+ HPTLkB(S Xnk (S))ﬁ nkB(S7 (b(s))ﬁnkH%Z(U,H)

P
( +HZ pi(¢ >||Xn (s )—¢(S)||%1>d81
)

/ CoF (%(”*”E ) (2 v {A(s, Xy (5)) = Als, 6(5)). 0(5))v

+2v- <A(Sv (b(s))’ Xn (S)>V - ||P7lk:B(87 ¢(S))ﬁnk H%Q(U,H)
+2(P,, B(s, Xy, (5))ﬁnkvpnk3(5 ¢(s))ﬁnk>£2(U,H)

+( +nzpz )(||¢ ()% <Xnk<s>,¢<s>>H)>ds]. (2.15)

This together with condition (C2) and (2.9a)-(2.9d) implies that for any nonnegative ¢ € L*([r,7 +
T}, dt;R),

T S (pas) e $ 3 pi(0(s))) ds
E [ / (1) ( 1X(E A B2 — 1%l | dt
+T t/\cd)R ( m )
T — [+ P1(s)+rK Y pi(Pp(s)))ds
< liminf B [ / (1) ( / X0 ()13 — ||PnkXo|%I) dt]
— 00 T

+T o e . i (¢(r)) ) dr
/ e / 1 I (e o) (2 V(Y (s) — Als, 6(5)), d(5))v

+2 v+ (A(s, ¢(5)), X (5))v = | B(s, d() |2y v,11) + 2(Z(s), B(3,6(5))) £a0,11)

+ (ol +mzpz ) (19661 <X<s>,¢<s>>H)>dsdt], (216)

By (2.14) and the product rule we can similarly find that

R m
+T — 17 ($1(9)+x 3 pilo(s)))ds
E [/ o) (e = IX(EASHIE — 1 Xoll7 | dt
T tASY — 2 ($1(r) 4w > pil@(r))dr
[ [ e B (o o

+1Z() 2, — < +f€2pz >||X )||%r) dsdt]- (2.17)

+E

<E

=E

Submitting (2.17)) into (2.16]), and rearranging the resulting terms, as in (2.15)), we arrive at

+T thsy e 1(r mmpi r r
/ b(t) / o (s o) (2 V(Y (3) — A(s, 6(s)), X (s) — 6(s))v

+||B<s,¢<s>>Z<s>||%2(U,H)( +H2m )|X> <s>||%>dsdt]<o. (2.18)

E

Take ¢ = X in (2.18)), and letting R — oo, we find that Z = B(+, X), dt x P-a.s., on [1,7+T] x 2. Taking
¢=X—edv withe >0, ¢ € L®([r,74T] x Q;dt x P;R) and v € V in (2.18)), dividing both sides by ¢,
and letting £ — 0, we infer from (C1), (C4), the hemicontinuity of p;, and Lebesgue’s theorem that

4T tAsy  _ s ¢(r)+ni (X (r))) )dr ~
]E/ wm/ o oot pixon)Jar 5

(s) v+(Y(s) — A(s,X(s)),v)Vdsdt] <0.
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This along with the arbitrariness of v, c;S and v 1rnp11es by letting R — oo, that Y = A(-, X), dt x P-a.s.,
on [r,7+T] x Q. Then X is a solution to in the sense of Def. [1.1] . The energy equations (|1 —-

follow from ([2.13))-(2.14). The mean uniform estimates (1.5)) are derived by using (1.3) as we did in
Lemma 2.2

Finally, we prove the pathwise uniqueness of solutions to (L.1)). Let X (¢) and Y (¢) be two solutions to
(1.1) in the sense of Definition For each R > 0, we define a stopping time

=t {o 7 (XL v IV O v / ZHX( gt ds v / ZHY Nizas| > R} (219

y (C2) and the product rule, we have
t/\;R m
e 0 (@R S e YD) x (1) Y ()13 < X0 - Yolld + M(EAGR), (2:20)

where M (tAcR) =2 f:/\gR e 7 (61w iy o (¥ (1)) e (X(s)=Y(s), (B(s,X(s))—B(s,Y(s)))dW(s))
By (2.19) and Prop. we know that E[M (¢t A ¢®)] = 0. Taking the expectation in (2.20)), we find

taclt m
B o (OB O (6 — v A6l < B (1 - Yol

t/\CR m
If Xy = Yy, P-as., then E[|| Xy — Yp||%] = 0, and so E[e— ST (S0 S pi (YD) ds ) x4 p GRY —
t/\;R m
Y(t ASP)%] = 0. This implies ¢ 7" (41 Z A E)d) (1) — ¥ (1) = 0, P-as. Note that

tAclt m
el (61 () 0 pi(Y () ds < o0, P-a.s.. Therefore X (t A ¢®) = Y (t AcF), P-a.s.. Then we complete
the proof by letting R — oo. (]

In the following sections, we assume that there exists i1 € [1,m] NN such that «;, > 2. By Theorem
we are able to discuss mean random attractors and invariant measures for (1.1) by using the two
inequalities in Remark [1.3| rather than (C2)-(C3).

3. MEAN RANDOM ATTRACTORS OF (|1.1)): EXISTENCE AND UNIQUENESS
Given £ > 1, t € R* and 7 € R, we define a mapping ®(¢,7) : L?*(Q, F,,P; H) — L*(Q, Fr 4, P; H)
by ®(t,7)Xo = X(t + 7,7, Xo). By Theorem we can check that ® defines a mean RDS for (1.1]) on
L2(Q, F,P; H) over (Q, F, {F; }ter,P) in the sense of Wang [50] such that ®(t+s,7) = ®(¢,s+7)o®(s, )
for all s € R*. If £ = 1, then we may call ® is a mean-square RDS in the sense of Kloeden and Lorenz

[25]. Let D = {D(7) C L?(Q, F,,P; H) : 7 € R,D(7) # 0 is bounded} be a family of attracting sets:

lim e =5y Oiy t4L [T, [162(<) | oo (@) +2(6=1) |94(S) | Lo ()] dCHfD(

t——+o0

T — t)H%ZN(Q,]-',._t,P;H) =0, (3.1)

where \;, and 6;, are given in Remark Ny is the same as in Theoremand ID(T =) 2e (2,7, o1y =
SUPyep(r—1) Ul 226, 7, _, b,y Denote by D the collection of all families D of sets satisfying (3.1).

Lemma 3.1. Let assumptions in Theorem[1.9 and Remark[1.3 hold. If for any ¢ > 1

GZ(T) - / e%e?v)‘ilgil(T_T)""Zf:[‘ld’?(c)HL°°(Q)+2(£_1)H¢4(§)||L°°(Q)]d<

<1+E{Zn“f%ﬁ’ )+Z¢)§(r)]>dr<oo, V7ieR,  (32)

7j=3,5

then for each 7 € R, D = {D(7) : 7 € R} € D, there exist T = T(r,D) > 0 and a constant ¢ > 0,
independent of T and D, such that sup,>7 supx,cp(- [||X(T T —t,Xo)||H] < cGi(T).
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Proof. By (1.4), Remark and (2.2b) for K = 20(0 — 1), €1 = €/2, g3 = £X;,0;, /4, r1 = 20 — 2 and
ro = 20, we have

SEIX ()] < H10n(r) o) — b EIX0IIE) - B |1X I 229 x|

+20(¢ = DEIX ()15 1Br X ()12, 0] +4E[(¢3(T)+9i10ai1 X ()17 ]

1
<0 = GRA B+ 192 e + 200 = D3 ey )ENIX (]

_KE[X 126 229 1X (r) “L} +c+cE{Znah‘x‘“ N+ Y ¢§(r)} (3:3)
i=1 j=3,5

Multiplying (3.3)) by e2eXir0ir 7= J§ (192(r)l[ Lo (@) +2(E=D)lI¢a(r)ll oo @))dr and integrating over (r—t,7), and
by (3.2]) we complete the proof. a

Theorem 3.2. If conditions in Lemma[3.1] hold, then we have the following conclusions.

(i) ® has a weakly compact D-pullback absorbing set K = {K(7) : 7 € R} € ® in L?*(Q, F,P; H) over
(Q, F, {Fi}ier, P), given by K(1) = {u € L*(Q, Fr,P; H) : E[||ul|¥] < ¢G ()}, that is, for every T € R
and D € D, there exists T =T(7,D) > 0 such that ®(t,7 —t)D(r —t) CK(7) for allt > T

(ii) ® has a unique mean random attractor A = {A(1) : 7 € R} € D in L*(Q,F,P;H) over
(Q, F A Fihier, P) with A(T) = ,50 U, @, 7 = )K(7 — t)", where the closure is taken in the weak
topology of L?*(Q, F,,P; H), that is, (1) A(T) is a weakly compact subset of L?>*(Q, F,, H) for every T € R;
(2) A is a ©-pullback weakly attracting set of ®; (3) A is the minimal one in D satisfying (1)-(2).

Proof. By G*() < oo we know that K(7) is bounded in L?(Q, F,,P; H). It can be checked that K(7) is
convex. Note that a convex subset is closed in the weak topology if and only if it is closed in the strong
topology, and hence K(7) is weakly compact in L%(Q, F,,P; H). By Lemma we find that K is a
pullback absorbing set for ®. It remains to prove £ € ®. By , we have, as t — 400,

e*%mﬂ\il iy t+£ JLJH%(C)HLO@(Q)+2(5*1)H¢4(<)\|L°°<Q)]d<”;C(T —t) ||%Z2€(Q P i)
T —t

—t
< C/ 3O 03,7 [T [162(9) ]| oo (o) F2(=D)l|64(S) | oo (o s
— 00

(1+]E{Zn‘“ KSR ¢§(T+T)Ddr

j=3,5

T—1
< c/ e3ReXiy Oiy (r=7)+L [T [|62(S) Loo (@) +2(€=1) | ¢ ()| Loe ()] ds
— 00

(1+E{Zn‘” 7 quf })drﬁo,

7=3,5
which completes the proof of (i). By (i) and [50, Theorem 2.13] we complete the proof of (ii). O

Remark 3.3. (i) The weak attraction of such a mean attractor is defined by a weak neighborhood base of
L*(Q, F,P; H) rather than the weak metric. (ii)If n;, = ¢; =0 for j =2,3,4,5 and i = 1,2,...,m, then
the solutions are exponentially stable to the zero point in L%(Q,]:7 P; H), see e.g., Caraballo, Kloeden
and Schmalfuf [I1]. In this case, the attractor reduces to A = {A(r) : T € R} with A(r) = {0}.

Remark 3.4. If both ¢o and ¢4 are independent of t, then we shall strictly assume 0;, > 2)\;1?‘2[1 [[|d2]l oo () +
2(¢ = 1)||¢al| oo ()] In this case, Theorem holds true if

_lay

Tt (ERenG 00, —llall oo e 200 1>|¢4|Loo<m)rE[ it .
7, (r) + ¢ (r)|dr <oo, VTeR.
/. > > 4

i=1 7=3,5
While, if both ¢ and ¢4 are dependent of t, then ||p2(t)| L) and ||¢4(t)||L=(q) should behave as small

numbers when t — 400, and we do not need to assume any additional conditions on ¢ and ¢y.
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4. PRELIMINARIES FOR INVARIANT MEASURES AND EVOLUTION SYSTEMS OF MEASURES

4.1. Notations. Let M(H) and P(H) be the sets of all finite and probability measures defined on
the Borel o-field B(H), respectively. If a measure n € M(H) satisfies n(H) = 1, then it becomes
a probability measure. Denote by By(H) (Cy(H), Cy'(H), Lip,(H)) the space of all bounded Borel
(continuous, uniformly continuous, Lipschitz continuous) real-valued functions on H. Then Lip,(H) C
Cy(H) C Cy(H) C By(H). The space Cy,(H) is equipped with the supremum norm ||¢||s = sup,c g |¢()]
for ¢ € Cy(H). The spaces Cy(H) and Lip,(H) are endowed with the norms:
p\T) — Py .
[¢loe = sup o(@)], % € Cy(H) and ||sa||Llp et sup LRI PO ),
zeH z,yeH, x#y ||.’L‘ - y”H
For ¢ € By(H) and n € M(H), we set (p,n) = [,; ¢(x)n(dz). The Wasserstein metric of P(H) is
diy(wm) == sup (s 111) = (s 12)|s g1, p2 € P(H).
pelip, (H). el i, <1
Next, we take an idea from [I7, Theorem 7.1.4] to prove an abstract result on the pointwise approxi-

mation of any bounded and continuous real-valued functions on a separable Hilbert space.

Proposition 4.1. Let X be a separable Hilbert space. Then every function of Cy(X) can be approzimated
pointwisely by a function of Lip,(X), that is, if ¢ € Cp(X), then there exists v, € Lip,(X) such that
SUP,en SUPc x |¢n ()| < 00 and pp(x) = ¢(x) as n — oo for each x € X.

Proof. Let {e,}52, be a Schauder basis of X. Without loss of generality, we identify R"™ = span{e;,es -
~yent. Let P, : X — span{ej,es - -, e,} be the orthogonal projection given by P,z = Y i xe; for
T =Yoo ze; € X, where z; = (z,¢;) x. For any ¢ € C(X), we define ¢, (z fRn 2)pn(Prx — 2)dz
for x = Zfol z;e; € X, where ¢, is a nonnegative smooth function on R" Wlth compact support in the
ball B(0,1) of R™, such that [, ¢,(z)dz = 1. Then

o () — enly)] = /n (2) [Pn (Paz = 2) = ¢n (Pay — 2)]dz| < C(n)||¢]loclle — yllx, ¥V 2,y € X,

where C(n) > 0 is a constant independent of z and y. Thus ¢, € Lip,(X). By ¢ € Cy(X) and

Jgn &n(2)dz =1, we find that sup,,cy sup,cy @n(z) < co.

By the continuity of ¢ at the point z (fixed), we find that for every € > 0, there exists 6 = d(g,z) > 0
such that |¢(z) — ¢(z)| < € for any z € B(z,0). Note that for any z € B(P,z, 1), we have |z —
2| € |z — Pyx| + |Ppx — x| < 1/n+ |Pyx — x| — 0 as n — oo, which implies that there exists a
N = N(x,e) = N(z,0(¢,2)) € N (independent of z) such that z € B(x,¢) for all n > N. This also means
that B(P,z, 1) C B(z,6) for all n > N. And hence, we have, for all n > N,

o () = o(z)] =

[ 02) = pl@)n(Pus — 2)d=

< / 10(2) — (@)|én (Paz — 2)dz
B(Pnac,l)

< E/ On(Ppx—2)dz=¢ | ¢p(z)dz=¢.
B(Pnzv 711 ) R™
This completes the proof. O

From now on, we assume that ¢, ¢ and ¢4 are constants, and the operators A; and B as well as other
functions in (C1)-(C4) are independent of w. Let X (¢, 7, X) be the unique solution of (1.1} . ) fort >7€R
and Xy € H. For ¢ € By(H), we define an operator (P-;);>, acting on By(H) for (L.1) by (P;1)(Xo) =
Elp(X(t,7,X0))]. For A € B(H), we set P (Xo,A) := (Prixa)(Xo) = ]P’{w € Q: X(t,1,Xo) € A},

where x. is the characteristic function. Then P ;(Xo,-) is the law or transition probability function of
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X(t,7,Xo). For A € B(H) and n € M(H), we define an adjoint operator (Q¢):>- acting on M(H) for
(Prt)izr by Qrin(A) =[5 Pr.i(z, A)n(dz).

The theories and applications of invariant measures for autonomous systems have been extensively
investigated in the literature, see e.g., [17, 22, B30, 5I]. Following the ideas in [I8, 19, 28| 29], it is
natural to introduce a family of time-dependent evolution systems of probability measures for the time
inhomogeneous transition operator (Pr;):>-. This notation can be regarded as a generation of invariant
probability measures in nonautonomous setting.

A family of measures {n; }+er C P(H) is called invariant or an evolution system of probability measures
for (Pr,t)t>7- if Qr,mr = M-

A family of probability measures {n; }:cg C P(H) is called T-periodic with period T > 0 if ny 1 = n;.

A measure n € P(H) is called ergodic for (P ):>o if for any p € L*(H,n),

1 /7
Jim / Pospdt = (p,n) in L2(H,n).

A family of measures {n; }1er C P(H) is called forward strongly mizing for (Pr;)i>, if

tliin [(Pri)(Xo) — (o, m)] =0, VT eR, Xy € H, p € Cy(H).

A family of measures {1 }+er C P(H) is called backward strongly mizing for (Pr)i>, if

lir_n [Piro(Xo) —(o,m)] =0, VteR, Xy € H, o€ Cy(H).

) —
A family of measures {n; }ter € P(H) is called global exponentially mizing for (Pr ;). if for all t >
Xo € H, p € Lip,(H), there exists a constant 6 > 0 independent of ¢, x and ¢ such that

|(Pr0)(Xo) = {2, 16)] < Copp, [O(X0)e® T + e~ R(7)],

where C,, . > 0 is a constant depending on ¢, ©(-) is a nonnegative bounded function on H and A(7) is

a real-valued function satisfying lim, . (1) = 0.
4.2. Feller properties, Markov process and process laws.

Lemma 4.2. If assumptions in Theorem[I.9 hold, then we have the following properties.

(i) The transition operator (Pri)t>. is Feller.

(i) X(t,7,Xo) is an H-valued Markov process for all t > T

(i11) The process laws Py = Py Ps . and Chapman-Kolmogorov’s relation PE (Xo, ) fH «(Xo,dy)P<
hold for any —oo < 7 < s <t < +00.

Proof. (i) For any t > 7 € R and ¢ € Cp(H), we show P, € Cy(H), that is, E[p(X (¢, 7, X, 0))] —
Elp(X (¢, 1, X0))] if X0 — Xo in H as n — 0. Since X, o0 — Xo in H, by Theoremfor X (t, 7, Xn0)
and X (t,7, Xo) we find that there exists a constant M; > 0 independent of n such that
t m
B s X0 X)) + | [ 31X Xl
T =1

re(r,t]

t m
+E[ sup 1% X017 +E[ [ 3 17 X0)
T =1

‘0/de1| < Ml-

relr,t)

By Markov’s inequality, for every € > 0, there exists a constant R(e) > 0 such that

P({w €Q: sup || X(r,7, Xno)|la > R(e)}) < < and P({w € Q: sup || X(r,7, Xo)||la > R(e)}) < 5 (4.1)
re(r,t] re(r,t]

Define Qf, = {w € Q : sup,.c |, X (r,7, Xp0)llz < R(e) and sup,¢(, 4[| X (r, 7, Xo)||z < R(e)}. Then by
(4.1) we have P(Q\ Q) < e. Define a stopping time

\V]

t m
. mf{ [|X(t o Xoo)la VX (E 7, XO)HH\// S 11X (s, Xoo) |2 ds

T i=1

()
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/[ ZnXsTXo)n%ds} > RO} (02)

As before, by (1.1]), (C2) and the product rule we find
@ TS T LI KO XN X (4 A 6 7 X g) = X(EAS™ 7 Koy
< [ X0 = Xollfr + Ma(t AS™), (4.3)

where M, (t A¢™) is given by

iACT
Ma(ine) = [ et S S Ko
x (X (s, 7, Xn0) — X(s,7, X0), (B(s,X(s,T, Xno)) — B(s, X(s,, Xo)))dW(s)>H.
By (4.2) and Proposition we can prove that the expectation of the quadratic variation of M (t A ¢™)
is finite. Then, taking the expectation in (4.3)), we obtain
]E[ff‘bl(“tAq )=k STy [ pi(X (r,7, X)) dr
<X (A 7 Xo0) ~ X (A" 7 X)[E] < X0 — ollr

By (1.2) and (4.2)) there exists another constant C(7,T, R(e)) to bound Y ", ftM (X (r, 7, Xo))dr <
C(7,T,R(e)), P-a.s.. This implies

E[IX(t A", 7, Xno) = X(EAS", 7, Xo)[}] < e THEOTRONIX, o - Xl (4.4)

Note that ¢"(w) > ¢, for all w € QF, by the definitions of ¢ and Qf. Then by (4.4), Chebyshev’s
inequality and P(Q2\ Qf) < €, we conclude that for every § > 0,

P({w € Q1 1X(t,7, Xuo) = X (6,7 Xo)l|u > 6})
= P({w € O\ 05+ X (7, Xn0) — X(t,7, Xo) 1 > 6})
+ ]P’({w e I X7, Xno) — X7, Xo)||lu = })
e+t 5*2]E{\|X(t A" T, Xno) = X(tAG", T, Xo)H%r]
e+ 0 2enTHOCTRE)| X, o — X% (4.5)
Since € is arbitrary and X,, 0 — Xo in H, we infer from that nler;P({w € Q|| X7 Xno) —

X, 7, Xo)||lg = 6}) = 0. Then there exists a subsequence {n;}72, C {n}°2; such that khﬂnolo 1 X (t, 7, X, 0)—
X(t,7,X0)||lg = 0, P-a.s.. By a contradiction argument we deduce from the uniqueness of the so-
lutions that the original sequence X (¢,7, X, 0) — X(¢,7,Xo) in H as n — oo, P-a.s.. This along
with the continuity of ¢ shows that ¢(X(t,7,X50)) — @(X(t,7,X0)) in R as n — oo, P-a.s.. Since
(X (t,7,Xn0)) < |l¢lleo for all n € N, by Lebesgue’s theorem we complete the proof of (i).

(ii) By the argument of proving (i), we can follow [I7, Theorem 9.14] to show that X (¢, 7, Xy) is an
H-valued Markov process for t > 7

(iii) By (ii) and [I7, Corollaries 9.15], we can similarly prove (iii). O

Lemma 4.3. Let assumptions in Theorem[1.4 hold. If there exist iy € [1,m] NN such that oy, > 2 and
0, > A ba, then

HX ||H +Z€/ Aiq Oiy —¢2](t—s) [”X( )||‘€,ﬂ ds

t
<Pt BNy 4 [P0, O+ (ol

T
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and

t
ds < ||Xo||?q+/ 163, Car. -+ 3(5)]ds

Z o [ EIXOIE
Proof. The proof is similar to that in Lemma [3.1] and so omitted. O

5. INVARIANT MEASURES OF (1.1)): AUTONOMOUS CASE

In this subsection we discuss the existence and several important properties including integrability,
uniqueness, ergodicity, mixing and stability of invariant probability measures for equation in the
autonomous case. In this part we further assume that operators and functions in (C1)-(C4) are all
independent of t. Then we know P, = Py —, and P;(Xo, ) = Py1—-(Xo,-) for any t > 7 > 0.

5.1. Proof of Theorem [1.4]
Proof. Proof of Theorem (i) (Existence) By Lemma[d.3] there exist io,; € [1,m] NN such that
k
bt [ B[1X(.0.x0)
0

where Cy := 9;)1(||X0H%I +0i,Ca;, + ¢3). For e > 0 and | € N, we define Jj = {v € Vi, t vllv;, <

3;3} ds < Cy, keN. (5.1)

(5_100221)1/0”0} and Zf = {u € H : |lu —v| g < 5 for some v € Y§}. By Markov’s inequality we get

IP’({w €0 X(L0,X0) ¢ Zf}) < P({w €0 X(L0,X0) ¢ yf})
+]P’({w €0 X(1,0,X0) ¢ ZF and X(t,0,X) € yf})

< P({w € Q| X(1,0,Xo)|v,, > (5100221)%})

<G 221 E(|X (t,0, Xo)[y;%)- (5:2)

By the compact Sobolev embedding V;, < H we know Z. := (o 2 is compact in H. Define a family

of probability measures {ny }ren € P(H) by np = k=1 fo Py +(Xo,-)dt. By (5.1) and . we have
k
_ € o 5
me(H N\ Z5) = k 1/0 Plwe Q: X(40,Xo) ¢ Z{}dt < 22%/ E[IX (4,0, Xo)lI)dt < 37 (5:3)

It follows from (5.3) that ny(H \ Z.) < 3.2 me(H \ Z7) < 3.2, 55 < &, and so ng(Z2.) > 1 —e. Then

the sequence {7y }ren is tight on H. By the Prokhorov’s theorem, there exists a probability measure

n € P(H) such that, up to a subsequence, 1, — n weakly as k — oo. Therefore by Lemma and the
classical Krylov-Bogolyubov method (see [I7]), we know, for any ¢ > 0 and ¢ € Cy(H),

k
{p:m) = lim k! (/ PO,T(XOady)(PO,t‘P)(y)>dT = lim (Po 0, mr) = (@, Py47m)-
—00 " k—oo

This completes the proof of (i).

(ii) (Regularity) It is sufficient to show that each invariant probability measure 7 of (Pp¢)i>0 on H
satisfies (V) = 1. Given R > 0, we consider the ball BY, := {z € V : ||z||y < R} in V. Denoting
a:= min ay, by Lemma and 0;, > A, ¢2 we find that for every Xy € H, there exists ko(Xp) € N

1=1,2,....m

such that for all & > kO(XO),

m k
= / (1 (5,0, Xo) [} ds < e+ k™Y [ B [1X(5,0. X))
0 i=1"0

where ¢ > 0 is a constant independent of k£ and Xy. By Markov’s inequality and (5.4)), for all k& > ko (Xo),

“)}1] ds < ¢, (5.4)

= /ORP({W €0 X(5,0,X0) € Bg})ds 1—cR® (5.5)
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By the invariance of 1 and Fubini’s theorem we deduce that for all k& > ko(Xo),

/H (k—1 /O’“PGW €Q:X(s,0,Xo) € BK})ds)n(dXo) — n(BY).

This along with and Fatou’s lemma implies

n(BE) = /Hlikrggf (kl /Osz»({w €0: X(s,0,X0) € B}é})ds)n(dXo) >1-—cR™“
Letting R — oo in the above, we derive n(V) > 1, and hence n(V) = 1. O
5.2. Proof of Theorem [L.5l

Proof. Proof of Theorem We choose an H-valued Fy-measurable random variable Xy with law
v such that v = 7. Noting that (Py.¢)(Xo) = E[p(X (t,0, X0))] = (¢, Po.i(Xo,)) = (Pop,v) for any
¢ € Cyp(X), we have Py +(Xo,-) = Py . By the invariance of n = v we have Py ;(Xo,-) = 1, which means
that the law of X(¢,0, Xo) does not change for all time ¢ > 0. Then by [I7] we know X (¢,0, Xo) is a
stationary solution of (I.I)). Then we are able to show (i)-(iii) of Theorem

(i) (High-order integrability for «;, = 2). By with a;, = 2 we find

BX (0] + 05000 — 62 =20~ Den) [ ENX O] ar

¢ [ N
+5 [ E|1xe mzenx i ar < B 101 + et

Since 6;, > 2)\-71(@ + 2(¢ — 1)¢4) and n is the law of the stationary solution X(¢,0, X(), we obtain

[o llzl[FEn(dz) + [, =3 20 vin(dz) < c. This implies (L.6).
(ii) (ngh—order integrability for a;, > 2). By (3.3) we obtain

ElX O+ 5 [ E|1x0) 2“Z9HX I3 ar < (101%] + ¢ [ EIXOIH]r+et. 6.0

By the Sobolev embedding V; < H we know \/ allzlla <
of the stationary solution X (¢, 0, Xy), by (5.6) and Young s 1nequahty we have

/ el ¥n(de) < c1 + e / 2223 |
=1

where ¢z,¢3 > 0, 0 < ¢; < ¢4. Letting R > 0 and splitting [}, |z||%n(dx) into two parts, by (5.7) we

i =1,2,...,m. Since 7 is the law

Sin(dz) < cs /H lel2n(dz) + cs, (5.7)

deduce

/||x|| (dz) < R* 4 ¢cR*~ %/ (B

Since o, > 2, there exists R > 0 such that cR?>~®1 = 1, then we obtain the finiteness of [}, ||z||%fn(dz)
immediately. This along with (5.7)) completes the proof of (1.7)).
(iii) (Exponential integrability for a;, > 2) By It6’s formula and (1.3]) with ¢ =1, for any € > 0,

o‘” n(dz) < R** + cR?*~%n / ||| %n(dx) + cR*~*n.
H

de XDl = ecl X (2<X(t), BdW (£)) i + 2€|| B* X (t)|| 3 dt

+ (2 v (A1), X (O + 1B 0, ).
Taking the expectation in the above equality, and by a stopping time argument as in Lemma[2.2] we infer
from (C3) and Remark [1.3| that

d € 2 € 2 *
S [N O] = g [eIX O (26 B*X (1)} +2 v (AX (1), X(O)v + 1BI2,0.00) )

< ek {eGHX(t)HH ((25||B||2112(U,H) + 2 — X, 03,) I X (017 — Z@‘HX@)\

i=1

%4yt 9ilca,i1)]
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This implies for all € € [0, 2*1||B||222(U iy (Xi i, — $2)].,

¢ m ¢

E[eclX®I%] 4 EEU e IXOIE S 0,1 X (s)] C‘}ng} < E[eIXOI] 4+ (g5 + 92’10%)1EU ee|x(s)|zd3}
0 — 0

As before, we have [, ecllzlin yom Oillz||yin(de) < (¢3 +60:,Ca,,) [y el=liy(dz). Then, for all R > 0,

/ el p(d) < o +R—O¢i1/ eclel ]
H H

a; eR? _ s € 2
viin(de) < e + 071 (¢3 + 05, Ca, ) R™O /H eIl (dz).

Taking R = (20" (¢3 + 6;,Ca,,))*/*1, we then complete the proof. O
Remark 5.1. The finiteness of [, ||z||%n(dz) is unknown if a; € (1,2) for any i € [1,m] N N.
5.3. Proof of Theorem [L.6l

Proof. Proof of Theorem (i) Let X(t,0,Xo) and X(¢,0,Yp) be two solutions to (L.I). Then by
Remark [1.3{ with a;, = 2, we have E [||X(¢,0,Xo) — X (¢,0,Y0)[1%] < e~Pa?a=904 Xy — Yy||3,. Let
n € P(H) be an invariant probability measure of (P +)¢>0. By Cauchy-Schwarz’s inequality we deduce,
for any ¢ € Lip,(H) and X, € H,

|(Po,e)(Xo) = (o, m)|* = ‘]E[w(X(t,07Xo))] - /H(PO,t%O)(YO)n(dYO)

- ‘ /H Efp(X (1,0, X0)) — 9(X(£.0, Y))In(dYo)

<20l (1Kol + [ I Xolfm@xo)e®atasor, (5

where [, | Xo[|3,n(dXo) < oo due to (i) of Theoremwith ¢=1. Then follows from (5.8)).
Given ¢ € Cy(H), by Proposition [4.1] there exists ¢,, € Lip,(H) satisfying sup, ¢ x sup,,cy @n(z) < 00
such that ¢, (z) = o(x) for any z € H. By we have (P t¢n)(Xo) = (pn,n) as t — +o0. Then by
Lebesgue’s theorem we deduce that (P +¢)(Xo) — (¢, n) as t — 400, and hence 7 is strongly mixing on
H for (Pot)t>0-
Furthermore, for € P(H) satisfying [}, [|2||3;1(dz) < co, we have

/ Elp(X (¢, 7, Xo))u(dXo) — / Elo(X(t, 7, Yo))In(dYo)
H H

Ay (Qoepsm) = sup
pelip, (H).lelip i, <1

/H /H Elo(X (1,7, X)) — o(X (t, 7. Yo) ) Ju(dXo)n(dYo)

= sup
pelip, (1), Il i, <1

1/2
<ﬁ< [ 1 Xolfmtaxo) + [ ||Yo||%m<dyo>) e~ HOu P o0
H H
This gives (1.9).

Let 7 € P(H) be another invariant measure for (Py¢)i>0. As before, for any ¢ € Lip,(H),

(o) — (o, = \ /H (Po.ro)(Xo)n(dXo) /H (Po.vo) (Yo)(dYo)

2
- ‘/H /H E[p(X (1,0, Xo)) = @(X (1, 0, Y0))]n(dXo)if(dYo)

<2||so||iipbe“im¢l>f( /H | Xoll3m(dXo) + /H ||Y0||%ﬂ7(dyo))—>0 as ¢ — +00.

Then, by Proposition and Lebesgue’s theorem, we have (p,n) = (¢, n) for all ¢ € C,(H). This further

gives the uniqueness of 7. From this and [I7], we know that 7 is ergodic on H for (Py4)¢>o0-
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(ii) Let Z(¢t) := X(¢,0,X0) — X(¢,0,Yp) be the difference of two solutions to ([L.1). By Remark

with a;, = 2 we find

d m
ZNZWF < [ = X, + é1+ 1Y X0, YD) 121

i=1
This along with (|1.2)) for co = 0 yields
E[|Z2()|5]) < 1Z(O)[E[el-3 2 #or1t4Ji Siza o (X000

< 1Z0O)5E [ (“huy9iy +1-bRLo)tHmdLo ff T, 01X (50, YO”‘”‘“}, (59)

where 6 = max {6;'}. To estimate the term elo Titi GillX(5.0.Y0)llyids ) 5.9), we let Y(t) :=
1=

1 (2,0, Yo) |3 + [y S50, 051X (5,0, Yp)||$ds. Then by (L.3) with £ = 1 for X (t,0,Yp) we obtain
0:l| X (¢,0,Yo)[|V; dt + 2(X(¢,0,Y0), BAW (1)) u
1

i=

+2 v+ (A(X(,0,Y0)), X (£,0,Y0)) vt + || Bl|Z, gy dt-

Then using It6’s formula to the above equation, we find, for any € > 0,

m
de€T®) — oeT (D) {Z 0:]| X (t,0,Yo)|

i=1

+ 2(X (t,0,Yy), BAW (t)) i + 2¢|| B*(X (t,0, Yp)) |7 dt |- (5.10)

Taking expectation in (5.10)), as in Lemma we infer from Remark with a;, = 2 that

d i, 0i, — bo
—E[eTO] C epsBleT®], veg LU T2
Pl < ol BT 00
This implies
T OIX 00T | elllVoltoat) o ¢ Niabin = P2 (5.11)
2| BlIZ, w.m

By the condition on 6;,, we have k0Ly < 2”3Hl71¢2_ This along with (5.9) and (5.11]) for e = x0Lg

Lo(U,H)

yields
E[|X (£,0, Xo) — X (1,0, Yo)[};] < | Xo — Yo|[ el P +orsnboQiosalttntLol Vol

Let n € P(H) be an invariant measure of (P ;);>0. As before, for any ¢ € Lip,(H) and X, € H,
2
Phae(Xo) — (o) =| [ BIoX (0.0, X0) = (X0, ¥0)nfaYo)

< H"OHLipbe *)\ilﬁi1+¢l+’iL0(1+0¢3)]t/ | X0 — YOH%{(iHGLoHYoH?zn(dyO)

< 2l el A tnrerrloaosol uxonH/ HROLO) Y0 (7).

H

Since 1+ kfLg < 2HBH2171¢2 by taking e = 1 4+ kfLg in the above inequality and (iii) of Theorem
Lo(U,H)

we find ([1.10)). This also implies that 7 is strongly mixing.
Furthermore, for any ¢ € Lip,(H) and p € P(H) satisfying [, el Xoll 1y (d X)) < 0o, we have

A5 ( Qo) = sup / / E[p(X(t,0, X0)) — 9(X (1,0, Yo)) (X0 ) (dYo)

weLipb(HLHwHLipb@

1/2 1/2
< \/565[—Ailml+¢1+ﬁLo<1+e¢3>n(/ e|xo|i,u(dxo)> (/ e(”“"LO)IYol%n(dYO)) .
H H

By taking e = 1 4+ k0L in the above inequality and (iii) of Theorem we have (1.11).
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Let 7 be another invariant measure of (P ¢):>0, then for any ¢ € Lip,(H), as t — +o0,

2
o) = (P =| [ [ B0 (0.0, X0) = o(X(0.0. Y6 n(aXo)itavo)
< 2||(pHLipbe[—/\i119i1+¢1+KL0(1+9¢3)]t/ eHXo”?{n(dXo)/ €(1+N‘9L0)\|Y0H§1ﬁ(dyo) =0
H H
This proves the uniqueness and ergodicity of 7. O

5.4. Proof of Theorem [1.7l

Proof. Proof of Theorem . ) By Theorem . 1.2 we find, for any € € [0,1/+/2],

al}

+[ sup X Xol] + 5| / X5 (s, Xo) 22 S %50 s Xoltds] <
t€[0,T] i=1

E[ sup X7t X0)l] +E[/ 1% (s, Xo) 24~ QZIIXE 5 Xo)
t€[0,T) 0

where M is a constant independent of e. By Markov’s inequality we can prove that for every v > 0,
there exists a constant R(v) such that for any e € [0,1/v/2],

p({ocns s X xIn > RO} ) <

te[0,T]

1\3\«2

d]P’({wGQ: sup || X°(t, Xo)||u >R(W)}> <

te[0,T)

=2

Define QY = {w € Q: supseo, ) 1X (¢, Xn0)llm < R(v) and sup,eo 7 [[ X (¢, Xo)||n < R(v)}. Define

t m t m
= int {1205 1K X0l VX 0 X0l v [ 1N o) dsv [ 301X Xl | > R
0 =1

By we have -
d(X*(t) — X(t)) = A(X(t) — A(X(t)) + [(€ — €0) B(X(t)) + €[ B(X“(t)) — B(X(1))] dW (t).
As before, by (C2) and €y € [0,1/+/2] we have
1X(8) = X @)l = /Ot [2 v (A(X(s)) — A(X(s)), X(s) = X(s))v
+ [l(e = €0) B(X(5)) + €[ B(X(s)) — B(X“’(S))HIZ(U,H)}CZS

2 [ (00°(5) = X705 (e = e0) BOY(5) + ol BX(8) = BOX(s))]]aW (5)
<[ e+ w3 A D] IX ) = X s
2 [(30(5) = X9 (e = ) BY(5) + ol BX(8) = BOX(s))]JaW (5)

wole—aft [ 1B s
By the product rule we deduce

¢ o (Br+R Ty X 0GN)dr ey _ X0 (1) 2,

t
<2|€_60‘2/ 6_f0 (¢1+KZZ’11P1(X0 )dr”B(Xe( ))||2L2(U,H)d3+ME(t)a (5.12)
0
where M(t) is a continuous real-valued local martingale given by
t 3
M_(t) := 2/ =I5 (6105 STy pu(x 0 () ) ar
0

X (X(s) = X*0(s), [(€ — €0) B(X(5)) + €[ B(X*(s)) — B(X“(s))]]dW (s)) ,
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By Proposition we can prove that E[M,(t A¢¢)] = 0. Replacing ¢t by ¢ A ¢ and taking the expectation
in , we obtain

E{e 3 (@rem DI XOON) ) (g A 6y — X0 (2 A ce)lif]
tAGE R m o

<2l |E[ / =I5 (orm iy pi(X W)d’"B(s,X%s))nz(U,H)ds}
0

tAGE
< 2le — 60|2]E|:/0 ||B(S,X€(s))||%2(U,H)ds} < C(T,R(7))|e — €o]* — 0 as € — e, (5.13)

where C(T, R(~y)) > 0 is a constant independent of €. Note that there exists another constant C (T, R(7))
independent of e such that .-, fot pi(X€o(r))dr < C(T,R(7)), P-a.s.. This along with implies
lime e E[[|X€(t Ac€) — X(t Ac®)||3] = 0. Then by the arguments of we know that X¢(t, Xo) —
X (t, Xo) in H in probability as e — €y, and thus we complete the proof of (i).

(ii) We prove that the union J.cio.1//3 P(H) is tight on H, that is, for any § > 0, € € [0,1/v/2] and
n° € P(H), there exists a compact set Z° independent of e such that 7(Z°) > 1 — 4. By € € [0,1/v2],
0;, > A;lgbg and Lemma we find that for every Xy € H, there exists kg = ko(Xo) € N such that for
all k > ko,

k1 /OkE {||X€(3,XO)|

where Cy > 0 is a constant independent of Xy, k and e. For [ € N, we define J) = {v € V;, : [vllvi, <
(671Co22) Yo} and 20 = {u € H : |lu— |y < o for some v € Y0} and Z° := (2, Z). By the
compactness of V;, < H we know that Z° is compact in H. It is sufficient to show n¢(2%) > 1 —§. For
n €N, weset XJ := (), Z7. Then (,—, X3 = Z° and X%, C XJ, and hence n°(2%) = n° (N, XJ) =
lim ¢ (X3). Thus, there exists N = N(6) € N such that 0 < n°(X2) — n°(2°) < §/3 for all n > N. By

the invariance of n¢ and Fubini’s theorem,

[ (k[ e 0030 < a8 YooY =ty

This along with the Fatou’s lemma, Markov’s inequality and m 5.14)) yields

k
nE(va)zhminf/ (kl/ P({weQ X(s, Xo) € XY ) )n (dXo)
k—o00 H 0
k
>/ <1iminfk—1/ ]P’({WGQ X<(s, Xo) EXN ) )n (dXo)
H k— o0 0

k
21—/ (hmsupk1 P({weﬂ X<(s,Xo) ¢ X5 )d) (dXo)
H k—o0 0
N k
2172/ <limsupk1/ IP’<{wEQ X(s,Xo) ¢Zl }) > (dXo)
-1 vH k—o0 0
N k
>1—Z/ <limsupk—1/ ]P’({weﬂ X(s, Xo) géyl}) ) (dXo)
=1 7/H k—o0 0
N & )
>1- Z/ <limsupk1 ]P’({w € Q[ X (s, Xo)lvi, > (5100221)%}>d3>n5(d)(0)
1=17H 0

k—o0
s
ouo]ds) (dXo) > ZT/ 3

N k
AT
>1- — limsup k E[|| X (s, Xo)]
; Co2? Ju 0
Then we know n(Z2?) > n°(X%) — g >1—4. By (i) and [30, Theorem 6.1] we complete the proof. [

3;}} ds < Co, (5.14)

k—o0

Remark 5.2. Let nf = k! fok P5 ,(Xo,-)dt, where P ,(Xo,-) denotes the law of X(t,0,Xy). Then, as

m Theorem we know nj, converges (up to a subsequence) weakly to n® as k — oo, which is an invariant
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probability measure of (P ,;)i>0. Set PE(H) = {0 : nis a weak limt point of nf, as k — oc}. Since we

can prove that the estimates of Lemmafor X<(t,0,Xo) are uniform for e € [0,1//2], following the

proof of Theorem we can prove that for every § > 0, € € [0,1/v/2] and n° € P(H), there ezists a

compact set Z5 C H (independent of €) such that nj,(Z5) > 1 — 9, and hence n°(Zs) > liin sup n5(Zs) =
—> 00

1=6. Then U.cp,1/v3 P<(H) is tight on H.

6. EVOLUTION SYSTEMS OF MEASURES OF ([I.I): NONAUTONOMOUS CASE

In this subsection we investigate the existence, uniqueness, forward strongly mixing, backward strongly

mixing and global exponential mixing for evolution systems of probability measures of nonautonomous

@),
6.1. Proof of Theorem [1.8l

Lemma 6.1. Let assumptions in Theorem hold. Then, for each t € R and Xo € H, there exists
¢ € L3(Q, F, Py H), independent of Xg, such that lim X(t,7,Xo) = (; in L*(Q, F,P; H) and
T——00

E[|X (¢, Xo) = Gilfy] < A“%””tT@X0H+/ 4“&1M“”@@MQ,T<t
Proof. Given h > 0, t € R and X, € H, let Z(t) := X(t 7,X0) — X (t,7 — h, Xo) for 7 < t. Then, by
Remark.vmth @i, =2, we obtain E(||Z(1)%) < el=*u?u+lt=7E(||Z(1)||%). Thus, by Lemma
we see

E(| X (t, 7, Xo) = X(t, 7 — h, Xo) %)
< 26[ Xiy 9y +1](t—7 (XO||H+€[ /\11911+¢2]h”X HQ / e[—/\n9i1+¢2](‘r—s)¢3(s)d8)
7—h
= 9el=Aiy iy +al(t—7) (||X0||%1 + e[_)\i19i1+¢2]h||XO||%I)
4 26l Py +orlt+ Ny (95, —0i, ) +62— 1] /T e[/\i19i1*¢’2]s¢3($)d8. (6.1)
T—h

By the conditions on 9;,, 6;, and ¢3 we derive E[|| X (¢, 7, Xo) — X(t,7 — h, X0)||%] — 0 as 7 — —0
and h — +oo. Then, by the completeness of L?(2, F,P; H) and a contradiction argument, there exists
G(Xo) € L?(Q,F,P; H) such that ((Xo) = li)r_n X(t,7,Xo) in L?(Q, F,P; H). Note that, for any
7 <te€Rand Xo,Yy € H, EB[|X(t,7,X0) — X(t,7,Y0)||%] < ela?atelt=7)| X, — V5|2, — 0 as
T — —oo, and hence (;(Xo) = (:(Yp). Then (;(Xj) is independent of Xy. Letting h — oo in (6.1]), we
complete the proof. O

Proof. Proof of Theorem By Lemma [6.1] we deduce that, for all t € R and Xy € H, there exists

¢ € L?(Q, F,P; H), independent of Xg, such that lim X(¢,7,Xo) = ( in L?(Q, F;,P; H). Let n; be
T——00

the law of ;. Then, for all ¢ € Lip,(H), we have

|(Pr0)(Xo0) = (0,1 [* = [Elp(X (£, 7, X0)) — 0(G1)][*
<4||@||L1p TPt T)HX HH

+4H90||L1p =iy Qi+l o (Mg (’197:1707:1)‘1‘4)27(1)1)7'/ e[)xileilfdb]sqsg(s)ds' (6.2)

This along with Proposition[4.1)implies (1.13) and _lim (Pr+¢)(Xo) = [;; ©(y)m:(dy) for any ¢ € Cy(H).
T——00
Letting 7 — —oo in (Pmr‘P) Xo) = (Prt(Prop))(Xo) for any o > t > 7, and by the Feller property of

(Prt)t>r in Lemma we find fH o(y)ne(dy) = fH P, o(y)n(dy). So, {n:}ier is an evolution system
of probability measures of (Pr)¢>- on H.
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Let ¢, () := ||z]|% An for n € Nand z € H. Then ¢, € C,(H). By Lemma we see

<§Dnant> g |(P'r,t90n)(0) - <90n777t>| +E“|¢€(tv7—v O)H%I]

t

< |(Pr,t§0n)(0) _ <S0n,77t>| +/ e[x\nail—¢2](S—t)¢3<s)d8.

—o0
Letting 7 — —oo in the above inequality, we find
t
[ el Aty < [ bt o0y s, (6.3)
H —o00

Letting n — oo in (6.3]), by Fatou’s lemma we find (1.12)). Note that for any {u;}ter € P(H) satisfying
Ju )13 e (d) < ffoo elirfin =215 g (5)ds, we have

dzij(QT,tMTant) = sup / / E[@(X(taﬂ XO)) - @(X(tTvyb))]:ur(dXO)n‘r(dY0>
HJH

pelip, () llelip i, <1
1/2
< ([ [ Bt Xo) - X0 Yol e (@) (a70)
HJH
) 1/2
g\/iez[—/\iﬂ%ﬁm](t—r)(/ \|X0||%1MT(dX0)+/ |Y0||%ﬂ)7(dYo)>
H H
- 1/2
< 265[_>‘i119771+¢1](t_7')(/ ep‘heh _¢2](S_7)¢3(8)d5> .

This proves (1.14]). The uniqueness of {n; }+cr can be proved similarly. |

7. APPLICATIONS TO MODELS

In this section we will present two typical examples (do not fall within the previous frameworks in the
literature) for our abstract results. From now on, we let O be a bounded open subset of RY with smooth
boundary 00.

Lemma 7.1. Forp € [1,00) and a,b € R, there exists a constant v > 0, depending only on p, such that

(lal""ta — [bP~b)(a = b) > y]a — bJFH, (7.1a)
1
(alalP~ = bpfP~)(a — b) = §(|a|p*1 + [P (a - b)%. (7.1b)
Proof. We only focus on (7.1b). Rearranging (ala|P~! — b|b|P~1)(a — b), as in [36], to find
(alalP~ = bbP~)(a — b) = (alal’~" = blalP~" + bla[’~! —alpP~ +albfP~t —bJp[P~)(a — b)
lalP™ + [bIP~) (@ = 0)* + (blalP~ — albP~)(a — b)
a4 1) 82l P b — o — 2

—~

—~

—~

! 1
— §(|a\p71 + \b|P*1)(a - b)2 + 3 (|a\p+1 + |b|p+1 _ |a|p71b2 _ |b|p,1a2)
1 1 b1
> Z(lalP~! + [BlP 1 (a — b)? 7( ptl |t P o
(a7 + P @ = 7 4 5 (Jap 4 b = 2
- %prﬂ — p%hb‘zﬂrl _ %ap+1)
> S(lal" ™"+ plP ™) (@ — b)*.
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7.1. Fractional (s,p)-Laplacian equations. Fractional calculus has many applications in modeling
complex phenomena arriving from a wide range of fields within finance, engineering, physics, chemistry,
biology, and others, see e.g., [2]. In particular, the solutions and their associated dynamical behavior of
SPDEs with fractional Laplacian driven by nonlinear white noise have been studied in [51]. In contrast,
both well-posedness and dynamics of SPDEs with fractional (s, p)-Laplacian driven by nonlinear white
noise have not been studied in the literature. However, our abstract frameworks can be used to study the
well-posedness and dynamics of a class of fractional (s, p)-Laplacian equations driven by nonlinear white
noise for any s € (0,1) and p > 2.
For s € (0,1) and p > 2, we define the fractional (s, p)-Laplacian operator by, for € RV,

u(z) — u(y) P~ (u(z) — u(y))

- (*A);u(l’) = 7C(vavs) /]RN |$ _ y|N+ps dy
_CO(N,p,s) [ |u(@) —u(z +y)[P> (ule +y) — u(@)) + |uz) —ule —y) P> (u(z — y) — u(z))
-2 /RN [y| Ve .

S4SF(ps+p;N72)

where the normalized constant C'(N,p, s) = is defined by the Gamma function. If p = 2,

N
w2 (1—s)
then the fractional (s, p)-Laplacian operator reduced to the standard fractional Laplacian operator. The

fractional Sobolev space W*P(R™) is defined by W*?(RY) = {u € LP(RN) : [on fan Llu@=v@” 7y < oo}.

lz—y[NV+pe

. P 1/p
The norm of W*?(RY) is defined by [[ullys» @) = (||u(ac)H1£p(RN + fon Jon dedy) . The

E=rlisis

lled Gagliard f WeP(RN) is defined b = a1 g,
so-called Gagliardo semi-norm of W*P(RY) is defined by [[ullyie.pmr) = (fRN Jrn W T y)
Then ||u||WS,p(RN) = [u(x)][7, p@®N) T ”u”Wsm(RN)‘ Due to the non-local nature of the fractional (s, p)-
Laplacian, we introduce the spaces L"(O) := {u € L"(RY) : u = 0 a.e. on. RN\O} and W*P(0) :=
{ue WsP(RN):u=0ae on RV\O} for s€(0,1),p>2and r > 1.

Recall the fractional Poincaré inequality [16], Theorem 6.5]:

u(z) — u(y)[?
— > P $P 2
. /O i dzdy > ¢ [ u(@)Pds, ¥ u e WO, (7.2)
where ¢ is a positive constant depending only on p, s, N and O. Then || - ||str(0) is an equivalent norm
of | - [wer(o) - For convenience we agree || - [lwsr(0) = || - llyire.n(0)-

Given s € (0,1), p > 2, v > 0 and 7 € R, we consider the fractional (s, p)-Laplacian equation on O:

6t()+y Zthu , t> T,
u(t,r) =0, xRV \ (97 t>T, (73)
u(r,z) = up(x), xz€O.
Here F; : R x O x 2 x R — R is a continuous nonlinear function satisfying
Fi(t,z,w,s)s < 9 |s|¥" 4+ s (t, x,w), (7.4)
|F;(t, z,w, s)| < wi(t,x,w)|s|ab_1 + (L, 2, w), (7.5)
(Fi(t, @, w,51) — Fy(t, 2, w, 52)) (51 — s2) < —Vs]s1 — s2|* + 1, (t, ,w)|s1 — s2|?, (7.6)

where 0;,9; > 0, a; > 2, ¥ € L([7, 7+ T] x Q, dt x P; L(O)), 4; € L% (|7, 7+ T] x Q, dt x P; L=(0)),
P € L%([T,T—FT} x €, dt x P;L%(O)) and 9, € L®([r,7 +T] x Q,dt x P; L(0)) are Fs-adapted
nonnegative processes.
Let H := L?(0), Vi :== W*P(0), ay :==p, V; := L*(0),i=2,....,m € Nyand V := Nic12...m Vi
Then we get VC H=H*CV*and V; C H=H* CV;*. Define A; = —(=A), : V1 — V{* by
A = O [ ) o) o) () ) gy,
RN JR

|z —y|Nreas
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Due to the non-local structure of the fractional (s, a1 )-Laplacian, we extend F (¢, -,w, s) : O — R to RY by
setting F(t,z,w,s) = 0 for all z € RNV \ O. Then we define A;(t,w,-): V; — V;* by v (Ai(t,w,v),E)v, =
Jon Fi(t,z,w,v(x))é(x)de, i=2,...,meN. Let A=3" A;.

Example 7.2. Let us consider the following stochastic fractional (s, p)-Laplacian equation defined in V*:
du(t) = A(t,u(t))dt + B(t,u(t))dW, t>71 R,

{u(r) =ug € H, -7
Here B:RxQx H— L2(U, H) satisfies | B(t,w,v1) — B(t,w U2)||[,2(U m <1+ lva|lZ) |1 — v2||% and
HB(t,w,v)HZ(U’H) < |vll3 +b(t,w), where b € LY ([r, 7 +T] x Q,dt x P;R") is a F;-adapted nonnegative

process.

7.1.1. Global well-posedness of Example [7.4 Let us show that the Example satisfies the abstract
framework in Section 2, and hence it is an example of the abstract SPDE (1.1]).

Proposition 7.3. Example satisfies conditions in Theorem [1.9.  Then for any 7 € R, T > 0,
¢>1 and ug € L¥*(Q, F,,P; L2(0)), Example has a unique solution {u(t)}icirr4+1) in the sense of
Definition such that uw € C([r, + T], L*(,P; L*(0))). In addition, u satisfies Ité’s formula and
energy equation (1.3)-(1.4) and the uniform estimate
T+T m
B, u0)lEso) + B( [ 1B (14O yno) + > )5 05 ) <

7,7+T)

Proof. By Theorem we only need to check that A and B satisfy conditions (C1)-(C4).
Step 1. It is easy to check that A satisfies (C1).

Step 2. By we have
vl (00) = Ar(oa) o = o)y, = R [ () < (o) = (01000 o)
) — @) 20 (0) — 1) ~ [ea(a) — 020 2(x) — wa(0)]

|z —y|N+eas

dxdy

3 a
S =5 0llor — vl (7.8)

where 9 = M By (7.6), it follows that v (A;(t,w,v1) — Ai(t,w,v2),v1 — va)v, < —Vil|vr —
va |y + ||;lz).i(t,w)||Loo(O)||'U1 — g% for i =2,...,m € N. Then, by (7.8), we deduce

2 yu(A(t,w,v1) — A(t,w,v2),v1 — va)v + || B(t,w,v1) — B(t7w’v2)H%2(U,H)

=320 = vall + (23 10l + (1l s = valfr
=1 =2

Then (C2) holds.

Step 3. Let 6, = ¥;. By (7.8) and (7.4), we find 2 v« (A(t,w,v),v)y + ||B(t,w,v)|\%2(U7H) <
ST 200l + 0l + 25 ()l o) + bs(t,w). Then (C3) holds.

Step 4. By the definition we get

—VC’Na, vi(z) —v “=2(y(z) —v1(y)) (v —va(y
vy (Ar(v1),v2)v, = : // [ 1w al((Ni(al)g 1 )lgﬂi( z) 2l )) dzdy
RN RN ‘.’IJ - y| e1-t ‘.’E - y| o1
o) ([ [ Iale) = o [ [, )
{ ——1 d
2 ( o~ givras 0 PRSI
RN RN RN RN

vC (N, aq, s)
2

loa152 = oz lvs -
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oy oy a;

< elli(t, ) 2 oy 1011 el t, w) | 7

223

) Lei—1(0)
“:_1 < egg(t,w) (1420 [|vll57), where ¢g(t,w) =
w1 )).Thus (C4) holds. 0
Lei~1(0)

So [[A1(v)[lvy < 201 [|v][7) L. By (7.5) we find || A;(t,w, v)||¢

for i = 2,...,m € N. Therefore Y /", || A;(t,w,v)
(1+ 50, (||wz<t DI oy + Wit )

For simplification, we assume that all functions in Example are independent of w, ¥; = 1/11 =0,

ag =2, 93 > 1 and 6 > 1. Note that ||ullv, = ||ullx.

7.1.2. Mean attractors of Example , By Proposition we define a mean RDS ® on L?(Q, F,P; L?(0))
over (0, F,{Fi}ier, P) for any £ > 1

Proposition 7.4. If 6 > 28, (20 — 1) and [”__ elaReb2==1)rp(1Ydr < oo for all T € R, then ® has
a unique mean attractor in L?*(Q, F,P; L?(O)).

7.1.3. Invariant probability measures of Example[7.4 We further assume that all functions in Example
[7-2 are independent of ¢. Note that V; < H is compact. By Theorems [I.4} [[.6] we have

Proposition 7.5. Ezample has an invariant probability measure on L?(0), and every invariant
probability measure of Example is supported by W*P(O) N (M1 o,...m L (0)).

Proposition 7.6. Each invariant probability measure n of Ezample|7.9 on L*(O) satisfies

. Wl + [ olBsd [lelfynco +Z|x||m ntde) <00, £21,p>2
L2(0 20

(ii)If B(v) = B, then every invariant probability measure n of Example|7.4 on L?(O) satisfies
Oy — 1

llll? 5 [ p i
e O xllysno) + D NTl e o | 1(dz) <00, Vee€ |0, mmmm——]|.
/L?(O) W2 (O) ; Lei(0) 2||B||%2(U,L2(O))

Proposition 7.7. If Kk = 0, then every invariant probability measure of Example on L?(O) must be

unique, ergodic, strongly mizing and exponentially mixing.

Let B(u(t)) be replaced by eB(u(t)) in Example for € € [0,1/+/2]. Let P<(L?(©O)) be the collection
of all invariant probability measures of Example for € € [0,1/+/2]. By Theorem we have

Proposition 7.8. The set U.c(o1,3 PE(L(0)) is tight. If, in addition, n € P (L*(O)) and e, — €
with €g, €, € [0,1/1/2], then there exists a subsequence andn € P (L?*(O)) such that ns — 7 weakly.

7.2. Convective Brinkman-Forchheimer equations. The convective Brinkman-Forchheimer (CBF)
equation is sometimes referred to as the tamed Navier-Stokes equation in the literature, see Kinra and
Mohan [24 [36],[37], which describes the motion of incompressible fluid flows in a saturated porous medium.
Given an initial time 7 € R, the CBF equation defined on @ C RN for N = 2,3 reads
ou
ot

with the boundary-initial conditions:

—pAu+ (u-V)u+Blu/"tu+Vp=£(t) and V- u(t)=0, t>r, (7.9)

u=0 on 00 x (r,00) and u(T)=uy, (7.10)

where 1 and [ are positive constants representing the Brinkman (effective viscosity) and Forchheimer
coefficients, respectively. The functions u(¢, z) € RV, p(t,z) € R and f(¢,z) € RY represent the velocity,
pressure and external force, respectively. The numbers r > 1 and r = 3 are called the dissipative and
critical exponents for the global solvability of —. Note that the CBF equation in the critical

case has the same scaling as the classical Navier-Stokes equation, see Hajduk and Robinson [21].
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Let V = {u € C°(O;RY) : V-u = 0}. Denote by V and L? the closures of V in the standard Sobolev
spaces H}(O;RY) and LP(O;RY) for p > 1, respectively. Since the boundary 9O is sufficiently smooth,
one can characterize these spaces as V = {u € Hi(O;RY) : V.u = 0} and L? = {u € LP(O;RY) :
V-u=0, u-nlpo = 0} with norms [|ully = [|Vu||z2(o;r~) and [[u|Lr = [[u|Lr(or~) respectively, where
n is the outward normal to 00O.

. -

Let r > 1 be the number in (7.9), and P : L+ (O;RY) — L~

If r = 1, then it becomes an orthogonal projection. Define the linear, bilinear and nonlinear operators:

be the Helmholtz-Hodge projection.

A(): D(A) =VNnH*(O,RY) - L? by A(u) = uPAu,
B(-,-) :L*xV—=L*by B(u,v)=-P((u-V)v),

4+

C(): L™ 5 L by C(u) = —AP(ju["""u).

By the Gelfand tripe V C L2 = (L?)* C V* we know A(+) : V — V* and B(-,:) : V x V — V* are well-
defined. By integration by parts we find v« (B(u,v), w)y = —y=(B(u, w), v)y and v+ (B(u,v),v)y = 0 for
all u,v. By the Gagliardo-Nirenberg inequality, we have, for all u,v,w €V,

1 1 1 1
v+ (B(w, v), w)v| < cllullz [allg [[vilviwi [ wl- (7.11)

r—1_ _ 2/(r=1) | (r=3)/(r=1) _2
For r > 3, by 31D — 1 T 2 i

for all u,v,w € VNL"!,

::? = 1 and by the interpolation inequality we find,

s
i Iwllv. (7.12)

2
LV

| v+ (B(w,v), w)v| =

v (B, w), v)v] < [[uflera [V 2een [wllv < [laflireiv]

Then B(-,-) : (VAL x (VAL — V* + L is also well-defined.
On taking the projection P onto (7.9)), we have

ou
5 = AW + Bu,w) +C(w) +£(1), t>7€R, (7.13)
u(7) = up.

Example 7.9. Let H =120 =2, apo =r+1, V; .=V, Vo :=L", V.=V NV,. Then we get the
Gelfand trips: VC H=H* CV* and V; CH=H* CV*, i=1,2. Let A1(¢t,-) = A(:) + B(-,-) + f(t),
As(-) =C(-) and A() = As(t,-) + Aa(-). Consider the stochastic CBF equation:

du= (A1(t, u(t)) + Az(u(t)))dt + B(u(t))dW,
(7.14)
u(t) =y € H,
where the nonlinear operator B : V — Lo(U, H) satisfies ||B(’U)H%2(U’H) < L1||v||% + La||v||% + L3 and
IB(v1) = B(va)| 2, w.m) < Lillor — wa|§ + Lallvi — a3,
here L1 < u, Ly and L3 are positive constants.

7.2.1. Global well-posedness of Example[7.9

Lemma 7.10. (see [20, p.53]) For all v€ HL(O;RY), we have, for @ > 1,

max(2, (N — 1)/N)\? 1, ; N(w —2)
Ivllz=(o ry) < < 2/ N 191 o rmy 10l g 0y, 0= —5——

Proposition 7.11. Ezample satisfies conditions in Theorem [I.3. Then for any T > 0 and uy €
L2(Q, F,,P; L2(0)), where £ can be taken from the following three cases:
Case 1. 7>3, N=2,3 and { > 2(::12) ;

Case 2. r >3, N=2,3 and { > 2;
Case 3. N=r=3,Bu>1and > 1.
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Ezample has a unique solution {w(t)}c(r,r4+1) in the sense of Def. such that w € C([1,7 +
T), L*(2,P;1L2)). In addition, u satisfies 1t6’s formula and energy equation (1.3)-(1.4), and

E| sup u<t>||%f;]+E[ /:+T||< Iy 2[||u<s>||%,+||u<s>||£ﬂl}ds}<oo.

te(r,7+T)
Proof. We will check that A and B satisfy all conditions in (C1)-(C4) by the following steps.
Step 1. Take a sequence u,, — u in V = VNL !, By (7.11)) and Holder’s inequality, for any v € V,
ve(A(t,up) — A(t,u), v)v = v-(A(un) — A(u), v)v
+ v+ (B(up, up) = B(w,u), vy + 01 (C(up) = C(), Vjpr

< plvlviu, —ully + v-(Bu, —u,u,),v)y + v-(B(u,u, —u),v)y

(4 1e—1) D=1 T
B o e (O ) o)
(@)

< pliviviiag —ally + c(lunllv + lfaflv)l[v]viw, —ully

+ B2 2|Vl (Tl + [l ) un =l =0 as 7 — oo

Then A(t,-) is demicontinuous, and hence hemicontinuous from V' to V*, and thus satisfies (C1).
Step 2. For any v € V = VNL"", by v« (B(v,v),v)y = 0 we obtain

2 v (A(t, V), V)v + IIBO Z2,w.m) < Ly = pllvly = 26]lv

r 1
L+ Lo v+ ;Hf(t)”%,* + Ls.

Then A and B satisfy condition (C3) with 6; = 2(u—L1) > 0, 62 = 8, ¢o = Ly and ¢3 = %||f(t)| 2. +Ls.
Step 3. We verify conditions (C2) and (C4) together by considering the following cases.
Case 1: N =2,3 and r > 3. By ([7.1a)) we find that for all v, vy € L™,
41 <C(V1) —C(Vg),Vl _V2>]L7'+1 RS ﬁ’yHVl _V2H]LT+1 (715)

L
If N = 2, similar to the 2D Navier-Stokes equation, such an inequality is enough to show that A satisfies
(C2) and (04) for all » > 1. The reader is referred to [34, Example 3.3] for more details. If N = 3, then
inequality (7.15]) is not sufficient to verify that A satisfies (C2) and (C4) due to the bilinear operator
B. In order to overcome the difficulty, we will improve inequality by taking an advantage of the
dissipative property of C(u) in order to control B when we verify the local monotonicity setting of A in
the case N = 3. More specifically, by (7.1b]) we find that for all » > 1 and vy, vy € L™+,

= (Vl — Va2 ||?{> . (716)

For any r > 3, by the bilinear property of B we find that for all vi,ve € VNL"+L,

L (C(v1) = C(v2),v1 — va)pr+1 < *ﬂ ( 7 (V1 -V ||H

v+ (B(v1,v1) — B(va,v2),vi — va)y < |v=(B(vi — Va2, vi — V2), Va)y|

N

[vi = vallv[|(vi — va)vallm

N

1
sV = valli+ ol v = va)vally

Bl — vl 4+ 20y, — vol BT vy — vo| o d
i = vall + 5 [ Pl = vl v = ¥ o

1 r— (r—3)
< Glvi vl g bl (v = o) | v -
< g||V1 — o3 + %Hvﬂ%(w - v2)||?{
+2E 2005 (5 - 1) v - vl (717)

Then by (7.15)-(7.17) and the condition on B, we find that for all » > 3, N = 2,3 and vy, vy € VAL™1,

2 v (A(t,v1) — A(t, va),vi — va)v + | B(v1) = B(v2)l|Z, 0.
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=2y« (A(v1) — A(v2),v1 = va)v + 2 v+ (B(v1,v1) — B(va,v2), Vi — va)v
+2 21 (C(v1) = C(va),vi = Va)irar + | B(vi) = B(v2)llZ, )

r

r 4 r—3 1-r 2 2
< (i = wllvi = vall§ = Brllve = vl EL + 272 (B = 1) 4 Lz] [vi = Vo (7.18)

For any v,w € V, by (7.12) and Holder’s inequality we find L (A2(v), w)pr+1 < BIV[I] oo [[W]|Lrsa
v ) Iwllv. Then [ A1 (¢ v)|3. < 4(k2Iv]3 +

r+l Since%<r+1f0rr>3,weﬁnd

+1 r=3
and v+ (A1 (t,v), W)y < (MHVHV + HVH]LT-H”V“IT-I_I + [I1£(2)

2(r41 2(r—3)

1) 1 2 jl +1
IVl vl + [ )“V*) and [[A2(V)] 74 <58

r+1

2(r— 3)
1ALV + A2 ()] s < e+ EOIF-) (1+ IVIT + [IVIEE) <1 + vy ) (7.19)

s

L

By (7.18 - we find that A and B satisfy (C2) and (C4) with ¥y = 2(u — L1), ¥2 = 187, ¢ =
L2 4273 3,ﬂ 5(B(r —1))77, ¢e(t,w) = (1 + [fB)]2.), & = 0 and @ = 2= when r > 3 and
=2,3.
Case 2: N =2andr > 1. By Lemma-we find an alternative estimate of - for all vi,vo €V,

v (B(vi,v1) — B(va, v2), vi — va)y < [[vi — vallpaorm) Vi — vallvl[vallLaor)
1 3 1 1
<273 v = val Zlvi — vall3 vl ZlIvall2

I 27
< Glvi=valf + WIIVQH%HWH@IIW — Vo[-

This along with (|7.15]) implies that for all vi,vy € V|

2 v (A(t,v1) = A(t, va),vi = va)v + | B(v1) = B(Vo)lIZ, 0.

) 27
< (L= llvi = vall - 267lvs = vall o+ (Lot s lvelialvell) s = vallye (720

For v € V', we have [ A; (1, v)[3. < e[u[[vI[3 + VI3 VI3 + 1£0)]

%,*] , and hence

r41

Fer (U IROIR-) (U VI + IVIERS) (1+ VI3 ()

141 (& V) + [ A2(v)]

=

By (7.20)-(7.21) we find that A and B satisfy (C2) and (C4) with ¥y = $(u — L1), 92 = 87, ¢1 = Lo,

K= %, p1=0, p2(:) = || - |4 - I3, @ =2 and ¢6(t,w) = (1 + ||f(t)||Z.) when r > 3 and N = 2, 3.
Case 8: N = r =3 and Bu > 1. By (7.17) we find v-(B(vi,vi) — B(va,va),vi — va)y < §f[vi —

vallZ + ﬁH(Vl —va)va|%. By we find Ld (C(vl) —C(va2),vi —va)p1 < —§H|V2|(V1 —Vg)H;. Then

2 vy (A(t,v1) = A(t, va),vi — Va)v + | B(v1) = B(V2)l|Z, 0 i)

. 2
< (Ly = w)lvi = va2ll§ = 2B7[vi — valli il + La|lvi — val[5,-

By (7.12) we have [[Ay(t, V)3 < c[?|VI + IVIiLe + [I£(2)]
ril

| A1(t,v)|[Z. + \|A2(V)HLZ+1 < (1 + [[E@)[13-) (1 + [[v[Z +[Iv]is). Hence, A and B satisfy conditions

(C2) and (C4) with ¥y = L(u— L1), 92 = By, ¢1 = Lo, K =0, @ = 0 and ¢g(t,w) = (1 + [|f(t)[|2.) in

the case N =r =3 and Su > 1. O

3] and )1, < BHIVIE. Then

Remark 7.12. Similar to the 3D Navier-Stokes equation as considered in [34, Example 3.3|, in the case
N =3 and r € [1,3), we are currently unable to show that A satisfies (C2) and (C4).

Next, we discuss the dynamics of Example[7.9] Let A; > 0 be the best constant such that the Poincaré
inequality ||ully = v/A1]|u|lLz holds. Let £ be the number taken form the three cases in Proposition
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7.2.2. Mean attractors of FExample . By Proposition we define a mean RDS & of (1.1) on
L*(Q, F,P;1L2) over (Q, F,{Fi}ier, P) for Example By Remark [3.4] we have the following result.

Proposition 7.13. If u > Ly + 4\['R; 1 (20 — 1)Ly and [7_ eflaRede=L)=CE=DLalr| f0) |2, dr < oo
for all T € R, then ® has a unique mean attractor in L?*(Q, F,P;1L2).

7.2.3. Invariant probability measures of Ezample[7.9. Assume that f is independent of ¢. The following
results are direct consequences of Theorems

Proposition 7.14. If p > L1 + 2)\;1L2, then Ezxample has an invariant probability measure on L2
which is supported by VN L1,

Proposition 7.15. If u > Ly +4AI1N21(2€— 1)L, then each invariant probability measure n of Example

on L2 satisfies [, |=l35 2= + llz[f Fh ] n(dz) < 0o, £> 1
(zz) If B(v) = B and p > 2/\1_1L2 + L1, then every invariant measure 1 of Example on L2 satisfies

_ l)\ Ly)-L
[ e 1l + el o) < oo, v e fo, Akt
3 2B

2(U,L2)
Proposition 7.16. Let one of the following conditions hold
(i)r>3, N=23and p> Ly +2\] [L2+2r 5135 s(ﬁ(r—l))s—%]
(ii) N=r=3, B> 1 and p > L1 + 2\] ' Lo.
Then every invariant probability measure of Example on L2 must be unique, ergodic, strongly

mizing and exponentially mizing.

Let B(u(t)) be replaced by eB(u(t)) in Example [7.9|for € € [0,1/+/2]. Let P¢(IL?) be the collection of
all invariant probability measures of Example . 7.9| for € € [0,1/v/2]. By Theorem we have

Proposition 7.17. If u > 2\ 'Ly + Ly, then Use[o,l/\/i] Pe(L2) is tight. If n» € P (L) and e, — €o
with €y, €, € [0,1/V/2], then there exist a subsequence and n° € P (IL?) such that n°rs — 7 weakly.

7.2.4. Ewvolution systems of probability measures of Example[7.9 By Theorems we have

Proposition 7.18. Let one of the conditions in Proposition 6| hold. Iff (32 (k=La)—Lals|| f(5 MNEads <

oo for any T € R, then Ezample has a unique exponentially mixing evolution system of proba-

bility measures on L2 such that sz(O) ||m|\%2(o)nt(dx) < Ly(3M(p — Ly) — L) Lelzri(p—La)=La)t 4
_1 f_ [3X\1(p—L1)—Lo]s || A(s )anﬁds'

APPENDIX: EXAMPLES OF F; AND B IN ([7.7) AND ([7.14)

Example of F; in . For i = 2,...,m € N, we consider F; : R x RY x Q x R — R given by
Fi(t,z,w,s) = —20;]s|*2s + hi (t z w) where 0; > 0, «; > 2 are constants, h; € L>®([r,7 + T] x Q,dt x
P; L>°(0)) is a Fi-adapted nonnegative processes. Then by we know F; satisfies — with
0; = 390;, i = 0; by = Uy = P, = hy.

Example of B in Let b € LY([r,7 + T)] x Q;dt x P,RT) be a F;-adapted process. For v € H,
we define a mapping By : R x Q@ x H — H by By(t,w,v) = %(v sinv + b(t,w)). Then we find that
|Bo(t,w, v1) — Bo(t,w, v2) |3 < (1 + [[o2]|F) o1 — w2l and || Bo(t, w,v)[[3 < [Jvll3 + b(t,w). Let eg € H
with ||eg]|r = 1, and consider a special space U by U := span{eg}. Given v € H, define B: Rx Q x H —
Ly(U,H) by B(t,w,v)u = (u,eq)yBo(t,w,v), u € U. Then |[|B(t,w,v)|zow,m = |B(t,w,v)eollf; =
1Bolt,w, )13 < ol + bit,) and [|B(t,w,01) — Bltw, 02)l[2, 010, = | Bolt:w,01) — Bolt,w, v2)]l3 <
(1+ ||v2]%)|lv1 — v2||%. Then we find that B satisfies all conditions in Example (7.2)).
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Example of B in (7.14]) Define a mapping By : V — H by By(v) = v + sin(v) + eB(v,h) with
h € D(A). Then for any vi,va,v € V, we have ||By(v)||% < ¢+ ¢||v|% + ec|[A(h)||%]|v]? and

1Bo(v1) = Bo(v2)llir < cllvi = vallfy +ecl AM) | [[vi — val3-

Let g € H with |leo|lyg = 1, and U := span{ep}. Given v € V, define B : V. — Lo(U,H) by
B(v)u = (u,e0)uBo(v), u € U. Then [|B(v)llzyw.my = [1Bo(v)llm and [[B(vi) = B(Va)llz,w.m) =
|Bo(v1) — Bo(v2)|| - By taking e small enough, we find that B satisfies the conditions in Example ([7.9).
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