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Abstract

The asymptotic behaviour of stochastic three-dimensional Lagrangian-averaged Navier-Stokes equations with infinite

delay and nonlinear hereditary noise is analysed. First, using Galerkin’s approximations and the monotonicity method,

we prove the existence and uniqueness of solutions when the non-delayed external force is locally integrable and the delay

terms are globally Lipschitz continuous with an additional assumption. Next, we show the existence and uniqueness of

stationary solutions to the corresponding deterministic equation via the Lax-Milgram and the Schauder theorems. Later,

we focus on the stability properties of stationary solutions. To begin with, we discuss the local stability of stationary

solutions for general delay terms by using a direct method and then apply the abstract results to two kinds of infinite

delays. Besides, the exponential stability of stationary solutions is also established in the case of unbounded distributed

delay. Moreover, we investigate the asymptotic stability of stationary solutions in the case of unbounded variable delay by

constructing appropriate Lyapunov functionals. Eventually, we establish criteria on the polynomial asymptotic stability

of stationary solutions for the special case of proportional delay.
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1. Introduction

Navier-Stokes equations are known to model the motion of many important fluids which include water, air,
oil, etc. Motivated by the first published paper of Leray [29], the authors in references [3, 6, 7, 9–18, 20, 23–
25, 27, 31–35, 37, 40] have extensively studied the well-posedness and long-time behavior of solutions to Navier-
Stokes equations.

Due to the importance of delay effects in many physical, biological and engineering models [1, 8, 42], delay
differential equations have received much attention over the recent years. Besides, the future state of systems
may not only depend on their current state, but also on their past history, which plays a nontrivial role in some
cases. It is worth mentioning some typical examples, such as the investigation of high-viscosity liquids under
the condition of low temperatures, the thermomechanical analysis with respect to polymers, population models,
etc (see [22, 36] and the references therein). Thus, we need to take into account some hereditary characteristics
such as aftereffect, time lag, memory and time delay in our models.

Many researchers have focused on the relationship between the Navier-Stokes equations and the phenomenon
of turbulence for a long time. It is worth stressing that the common assumption relates the onset of turbulence
to the randomness of background movement. Moreover, the systems we study are affected by a variety of
random factors in real life, so it is necessary to consider some kind of noise in our models. The concept of
random dynamical systems was first introduced by Ulam and von Neumann [41] in 1945. Due to the fact that
stochastic differential equations originated from random dynamical systems, a growing number of people have
studied random dynamical systems since 1980s. Amongst the many notable results, it is remarkable that the
importance of the work in [4], Bensoussan and Temam in this article discussed the stochastic Navier-Stokes
equations driven by white noise and random forces, providing a more realistic model to solve the problem.
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Based on the previous discussion, we investigate in this paper the stochastic dynamics of the following non-
autonomous stochastic three-dimensional Lagrangian-averaged Navier-Stokes (LANS) equation with infinite
delay and nonlinear hereditary noise:

∂t(u− α∆u) + ν(Au− α∆(Au)) + (u · ∇)(u− α∆u)

− α∇u∗ ·∆u+∇p = f(t) + g1(t, ut) + g2(t, ut)Ẇ , in (τ,+∞)×O,
∇ · u = 0, in (τ,+∞)×O,
u = 0, Au = 0 on (τ,+∞)× ∂O,
u(τ + s, x) = φ(s, x), s ∈ (−∞, 0], x ∈ O,

(1.1)

where O ⊆ R3 is a bounded open set with sufficiently regular boundary ∂O, τ ∈ R, A is the Stokes operator, the
pair (ν, α) of positive coefficients denotes the kinematic viscosity of the fluid and the square of the spatial scale
at which fluid motion is filtered respectively, the symbol ∗ denotes the transpose of a matrix, u = (u1, u2, u3)
is the averaged (or large-scale) velocity of the fluid, ut denotes the segment of solutions up to time t, i.e.
ut(s) = u(t + s) for all s ≤ 0, p is the pressure of the fluid, f is a non-delayed external force field, the terms
g1, g2 contain some hereditary characteristics, such as memory, unbounded variable or infinite distributed delay,
etc, φ is an initial velocity field defined in (−∞, 0]×O, and Ẇ denotes the generalized derivative (white noise)
of a cylindrical Wiener process, which will be specified later. The LANS model was first used to deal with the
turbulence closure problem by using the method of Lagrangian averaging. The study of such models, including
the well-posedness of solutions and the existence, uniqueness and asymptotic stability of stationary solutions,
has been carried out in some papers, e.g., [12–14, 16] and the references therein. In the special case that α = 0,
the system (1.1) is reduced to the usual three-dimensional Navier-Stokes equation whose dynamical behavior
had been widely investigated in [9, 15, 17, 18, 25, 27, 37]. The deterministic and non-delay version of (1.1),
i.e. g2 = 0 and g1 is independent of u, has been considered in [20, 35]. In the stochastic case without delay,
Caraballo et al. in [16] studied the stochastic dynamics of such a system for the first time.

In addition, the delay version of Navier-Stokes equations has also received much attention over the last
years. The analysis of Navier-Stokes equations with some hereditary features was first studied by Caraballo and
Real in [15] and developed in [9, 12, 14, 23–25, 30–34]. On the one hand, for bounded delay, the authors have
discussed several issues including the existence, uniqueness, asymptotic behavior and regularity of solutions,
the existence, uniqueness and stability of stationary solutions, the existence, uniqueness of global or pullback
(random) attractors. On the other hand, the case of unbounded or infinite delays has been analyzed in [24, 26,
30–34].

We may choose several phase spaces for dealing with the infinite delay as given in above references. The
first one is the Banach space

Cγ(H) = {ϕ ∈ C((−∞, 0];H) : lim
s→−∞

eγsϕ(s) exists in H}, where γ > 0, (1.2)

where H is the 3D Lebesgue-type Hilbert space. The second one is

C−∞(H) = {ϕ ∈ C((−∞, 0];H) : lim
s→−∞

ϕ(s) exists in H}, (1.3)

see [30, 31]. We also use Cγ(V ) and C−∞(V ), where V is the Sobolev-type subspace instead of H in (1.2) and
(1.3).

Our first goal in this paper is to prove the existence and uniqueness of solutions to the stochastic three
dimensional LANS Eq. (1.1) in the Banach space Cγ(V ). As done by Liu and Caraballo [31] for the usual
two-dimensional system, we need to assume that the non-delayed external force f is locally integrable (see
Hypothesis F) and the delay forcing terms gi(t, ut)(i = 1, 2) are globally Lipschitz continuous (see Hypothesis
G). An example is given in the last part of Section 2. The calculation shows that the example (corresponding
to infinite distributed delay) satisfies all conditions of Hypothesis G in the space Cγ(V ) for γ > 0. Besides,
we also need an extra assumption on the nonlinear diffusion term g2 of noise (see Hypothesis I).

Under the above assumptions, we use the Galerkin method to construct an approximating sequence. We then
give a priori estimates for the approximating sequence ensuring the solutions exist for the whole time interval
[τ, τ + T ] for all T > 0. Next, by the monotonicity method established in [39], we obtain the well-posedness of
solutions.

Another interesting and challenging topic is to consider the asymptotic behaviour of solutions for Eq. (1.1)
towards to the stationary solution. This issue will provide some useful information on future evolution of the

2



system. Thanks to the Lax-Milgram and the Schauder theorems, we first prove the existence and uniqueness
of stationary solutions to the corresponding deterministic equation. We then show the local stability of the
stationary solution for the general delay term by using a direct method, where the general delay contains the
unbounded variable delay and the infinite distributed delay in C−∞(V ). Next, we prove the global stability of
the stationary solution. However, to obtain stability results in Cγ(V ) with γ > 0, the exponential stability in the
case of unbounded variable delay fails to be proved in general (see [31] and [34] for more details). Fortunately,
in the case of infinite distributed delay, we are able to prove not only stability of stationary solutions in
Cγ(V ), but also exponential asymptotic stability. Since we can not analyze the exponential stability in the
unbounded variable delay case in Cγ(V ), we will explore, at least, the asymptotic stability in C−∞(V ), by
using the Lyapunov functionals construction proposed by Kolmanovskii and Shaikhet [28]. Furthermore, we
eventually discuss the polynomial asymptotic stability in the particular case of proportional delay (also known
as pantograph delay).

The article is organized as follows. In Section 2, we introduce the cylindrical Wiener process, some notations
and linear operators, describe some suitable assumptions about the non-delayed external force f and delay
terms gi(i = 1, 2). In Section 3, we prove the existence and uniqueness of solutions to system (1.1). In Section
4, stationary solutions and their stability results are established. More precisely, on the one hand, we provide
some sufficient conditions ensuring the existence and uniqueness of stationary solutions. On the other hand, we
further study the convergence of stationary solutions including local stability, exponential stability, asymptotic
stability via Lyapunov method and polynomial asymptotic stability.

2. Preliminaries

2.1. The cylindrical Wiener process
Let (Ω,F , {Ft}t∈R, P ) be a complete filtered probability space such that {Ft}t∈R is an increasing right

continuous family of sub σ-algebras of F , which contains all P -null sets, and further Ft = F0 for all t ≤ 0.
Let {βjt , t ≥ 0, j = 1, 2, 3, . . .} be a sequence of mutually independent standard real valued Ft-Wiener

processes and K a separable Hilbert space with an orthonormal basis {ej ; j = 1, 2, 3, . . .}. Suppose that
{W (t); t ≥ 0} be a K-valued cylindrical Wiener process (with the covariance operator Q : K → K) given by

W (t) =

∞∑
j=1

βj(t)ej , t ≥ 0. (2.1)

Given a separable Hilbert space H0, we denote by L2(K,H0) the space of Hilbert-Schmidt operators from
K into H0 with following norm

‖S‖2L2(K,H0)
= tr(SQS∗), ∀S ∈ L2(K,H0), (2.2)

where tr denotes the trace of an operator and S∗ is the adjoint operator of S.
For any separable Banach space X, interval (a, b) ⊂ R and p ≥ 1, we denote by Ip(a, b;X) the Banach space

of all processes ϕ ∈ Lp(Ω×(a, b),F⊗B((a, b)), dP ⊗dt;X) such that ϕ(t) is Ft-progressively measurable for a.e.
t ∈ (a, b), where B(·) denotes the Borel σ-algebra. We also denote by Lp(Ω,F , dP ;C(a, b;X)) with p ≥ 1 the
space of all continuous and Ft-progressively measurable X-valued processes ϕ such that E(supa≤t≤b ‖ϕ(t)‖pX) <
∞, where C(a, b;X) is the Banach space of all continuous functions from [a, b] into X. For convenience, we
write Lp(Ω,F , dP ;C(a, b;X)) as Lp(Ω;C(a, b;X)).

For any positive constant T > 0, process Φ ∈ I2(τ, τ + T ;L2(K,H0)) and t ∈ [τ, τ + T ], the stochastic

integral
∫ t
τ

Φ(s)dW (s) is defined by the unique continuous H0-valued Ft-martingale such that(∫ t

τ

Φ(s)dW (s), w
)
H0

=

∞∑
j=1

∫ t

τ

(
Φ(s)ej , w

)
H0

dβj(s), ∀w ∈ H0, (2.3)

where the integral with respect to βj(s) is the Ito integral. By [21], if Φ ∈ I2(τ, τ + T ;L2(K,H0)) and
φ ∈ L2(Ω, L∞(τ, τ + T ;H0)) is Ft-progressively measurable, then

∞∑
j=1

∫ t

τ

(
Φ(s)ej , φ(s)

)
H0

dβj(s) =:

∫ t

τ

(
Φ(s)dW (s), φ(s)

)
, τ ≤ t ≤ τ + T,

converges in L1(Ω, C(τ, τ + T )).
Recall that given a function φ : (−∞, τ + T ]→ X, for each t ∈ (τ, τ + T ), the segment φt of φ is defined by

φt(s) = φ(t+ s), ∀ s ∈ (−∞, 0]. (2.4)
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2.2. Notations and hypotheses

In this subsection, we introduce some notations and linear operators, recall some properties with respect to
the nonlinear term (u · ∇)(u−α∆u)−α∇u∗ ·∆u in the problem (1.1), and impose some suitable assumptions.

Denote by L2(O) := (L2(O))3, H1
0(O) := (H1

0 (O))3, C∞0 (O) = (C∞0 (O))3 and

V = {u ∈ C∞0 (O) : ∇ · u = 0 in O}. (2.5)

Let H be the closure of V in L2(O). Then H is a Hilbert space with the inner product and norm

(u, v) =

3∑
j=1

∫
O
uj(x)vj(x)dx, |u|2 = (u, u), ∀u, v ∈ H. (2.6)

Let V be the closure of V in H1
0(O). Then V is a Hilbert space with the inner product

((u, v)) = (u, v) + α(∇u,∇v) = (u, v) + α

3∑
i,j=1

∫
O

∂uj
∂xi

∂vj
∂xi

dx, ∀u, v ∈ V, (2.7)

and the norm ‖u‖2 = ((u, u)). We have V ⊂ H ⊂ V ∗, where V ∗ is the dual space of V , the injections are dense,
continuous and compact.

Denote by P the Leray projector from L2(O) onto H and define the Stokes operator A by

Aw = −P(∆w), ∀ w ∈ D(A) = H2(O) ∩ V, (2.8)

where H2(O) = (H2(O))3. We deduce

(Au, v) = (∇u,∇v), ‖u‖H2(O) ≤ C1|Au|, ∀u ∈ D(A), v ∈ V, (2.9)

where C1 is a positive constant. In particular, D(A) is a Hilbert space.
Denote by 〈·, ·〉 the duality product between (D(A))∗ and D(A), and define a continuous linear operator

Ã ∈ L(D(A), (D(A))∗) by

〈Ãu, v〉 = ν(Au, v) + να(Au,Av), ∀u, v ∈ D(A) =: D(Ã). (2.10)

It is well-known that the Stokes operator A has a sequence {λk : k ∈ N} of eigenvalues satisfying

0 < inf
v∈V \{0}

‖v‖2

|v|2
= λ1 ≤ λ2 ≤ · · · , λk →∞ (2.11)

and a sequence {ξk ∈ D(A) : k ∈ N} of eigenvectors which is orthonormal in H. From (2.10) we have

〈Ãξk, v〉 = νλk((ξk, v)) (2.12)

and the eigenvalues of the operator Ã are given by λ̃k := νλk. By (2.10)-(2.12), the operator Ã ∈ L(D(A), (D(A))∗)
satisfies the following conditions:

(A1) Ã is self-adjoint;

(A2) For all u ∈ D(A), 2〈Ãu, u〉 ≥ α̃(Au,Au), where α̃ = 2να;

(A3) Ãξk = λ̃kξk with λ̃k = νλk.

As in [14], we associate another inner product on D(A) = D(Ã), defined by

(u, v)D(A) := 〈Ãu, v〉, and so λ̃1‖u‖2 ≤ ‖u‖2D(A), ∀u, v ∈ D(A). (2.13)

By (2.9), the above is equivalent to the original inner product ((u, v)) + (Au,Av) for u, v ∈ D(A).
For u ∈ D(A) and v ∈ L2(O), we regard (u · ∇)v as the element of (H−1(O))3 =: H−1(O) given by

〈(u · ∇)v, w〉−1 =

3∑
i,j=1

〈∂ivj , uiwj〉−1, ∀ w ∈ H1
0(O), (2.14)
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where 〈·, ·〉−1 denotes the duality product between H−1(O) and H1
0(O) or between H−1(O) and H1

0 (O), and
uiwj ∈ H1

0 (O) due to the continuous injections of H2(O) ⊂ L∞(O) and H1
0 (O) ⊂ L6(O). Hence, there exists a

positive constant C2 := C2(O) such that

|〈(u · ∇)v, w〉−1| ≤ C2|Au||v|‖w‖, ∀ (u, v, w) ∈ D(A)× L2(O)×H1
0(O). (2.15)

If u ∈ D(A), then ∇u∗ ∈ (H1(O))3 ⊂ (L6(O))3, where H1(O) = (H1(O))3 and L6(O) = (L6(O))3. For all
v ∈ L2(O), we have ∇u∗ · v ∈ (L3/2(O))3 ⊂ H−1(O) satisfying

〈∇u∗ · v, w〉−1 =

3∑
i,j=1

∫
O

(∂jui)viwjdx, ∀ w ∈ H1
0(O), (2.16)

which implies that there exists a positive constant C3 := C3(O) such that

|〈∇u∗ · v, w〉−1| ≤ C3|Au||v|‖w‖, ∀ (u, v, w) ∈ D(A)× L2(O)×H1
0(O). (2.17)

Now, we introduce the trilinear operator as follows:

b#(u, v, w) = 〈(u · ∇)v, w〉−1 + 〈∇u∗ · v, w〉−1, ∀ (u, v, w) ∈ D(A)× L2(O)×H1
0(O). (2.18)

By [16, Proposition 2.2], we obtain

b#(u, v, w) = −b#(w, v, u), ∀ (u, v, w) ∈ D(A)× L2(O)×D(A), (2.19)

which implies that b#(u, v, u) = 0,∀ (u, v) ∈ D(A) × L2(O). Moreover, there exists a positive constant c# :=
c#(O) such that

|b#(u, v, w)| ≤ c#|Au||v|‖w‖, ∀ (u, v, w) ∈ D(A)× L2(O)×H1
0(O), (2.20)

and

|b#(u, v, w)| ≤ c#‖u‖|v||Aw|, ∀ (u, v, w) ∈ D(A)× L2(O)×D(A). (2.21)

We then define a bilinear mapping B̃ : D(A)×D(A)→ (D(A))∗, denoted by

〈B̃(u, v), w〉 = b#(u, v − α∆v, w), ∀ (u, v, w) ∈ D(A)×D(A)×D(A), (2.22)

and B̃(u) := B̃(u, u) for all u ∈ D(A). By the definition and properties of b#, we find that there exists a positive
constant c̃ := c̃(O) such that

(B1) 〈B̃(u, v), u〉 = 0 and 〈B̃(u), v〉 = −〈B̃(v, u), u〉, ∀ (u, v) ∈ D(A)×D(A);

(B2) ‖B̃(u, v)‖(D(A))∗ ≤ c̃‖u‖‖v‖D(A), ∀ (u, v) ∈ D(A)×D(A);

(B3) |〈B̃(u, v), w〉| ≤ c̃‖u‖D(A)‖v‖D(A)‖w‖, ∀ (u, v, w) ∈ D(A)×D(A)×D(A).
Recall the phase space

Cγ(V ) = {ϕ ∈ C((−∞, 0];V ) : lim
s→−∞

eγsϕ(s) exists in V }, where γ > 0, (2.23)

which is a Banach space with the sup norm

‖ϕ‖Cγ(V ) = sup
s∈(−∞,0]

eγs‖ϕ(s)‖. (2.24)

We now establish some assumptions on the non-delayed external force and delay terms respectively.
Hypothesis F. f ∈ I2(τ, τ + T ;H−1(O)) for any τ ∈ R and T > 0.
Hypothesis G. Let g1 : R × Cγ(V ) → H−1(O) and g2 : R × Cγ(V ) → L2(K,L2(O)) satisfy the following

conditions.
(G1) For any η ∈ Cγ(V ), gi(·, η) are measurable, i = 1, 2.
(G2) gi(·, 0) = 0, i = 1, 2.
(G3) There exists Lgi > 0 (i = 1, 2) such that for all t ∈ R and η, ζ ∈ Cγ(V ),

‖g1(t, η)− g1(t, ζ)‖H−1(O) ≤ Lg1‖η − ζ‖Cγ(V ),
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‖g2(t, η)− g2(t, ζ)‖L2(K,L2(O)) ≤ Lg2‖η − ζ‖Cγ(V );

(G4) There exists Cgi > 0 (i = 1, 2) such that for all t ∈ R and η, ζ ∈ Cγ(V ),∫ t

τ

‖g1(s, us)− g1(s, vs)‖2H−1(O)ds ≤ C
2
g1

∫ t

−∞
‖u(s)− v(s)‖2ds,∫ t

τ

‖g2(s, us)− g2(s, vs)‖2L2(K,L2(O))ds ≤ C
2
g2

∫ t

−∞
‖u(s)− v(s)‖2ds;

(G5) There exists C̃gi > 0 (i = 1, 2) such that for all τ ∈ R, t ≥ τ , all decreasing function $ ∈ C0([τ, t]) and
u, v ∈ C0((−∞, t];V )∫ t

τ

$(s)‖g1(s, us)− g1(s, vs)‖2H−1(O)ds ≤ C̃g1
∫ t

τ

$(s)‖u(s)− v(s)‖2ds,∫ t

τ

$(s)‖g2(s, us)− g2(s, vs)‖2L2(K,L2(O))ds ≤ C̃g2
∫ t

τ

$(s)‖u(s)− v(s)‖2ds.

We infer from (G2)-(G3) that, for all η ∈ Cγ(V ),

‖g1(t, η)‖H−1(O) ≤ Lg1‖η‖Cγ(V ), ‖g2(t, η)‖L2(K,L2(O)) ≤ Lg2‖η‖Cγ(V ).

Next, let us define f̃(t) as

((f̃(t), w)) = 〈f(t), w〉−1, ∀ (t, w) ∈ R× V.

By the hypothesis F, f̃ ∈ I2(τ, τ + T ; (D(A))∗) for any τ ∈ R and T > 0.
In addition, we define g̃1 : R× Cγ(V )→ V such that

((g̃1(t, η), w)) = 〈g1(t, η), w〉−1, ∀ (t, η, w) ∈ R× Cγ(V )× V.

Finally, we define g̃2 : R× Cγ(V )→ L2(K,V ) such that

g̃2(t, η) = (I + αA)−1 ◦ P ◦ g2(t, η), ∀ (t, η) ∈ R× Cγ(V ),

where I is the identity operator in H and I + αA : D(A)→ H is bijective, moreover,

(((I + αA)−1u,w)) = (u,w), ∀ u ∈ H, w ∈ V.

Hence, for the orthonormal basis {ej} of K, we have

(g2(t, η)ej , w) = ((I + αA)g̃2(t, η)ej , w) = ((g̃2(t, η)ej , w)),

for all j ≥ 1 and (t, η, w) ∈ R× Cγ(V )×D(A), by (2.3), we further obtain that(∫ t

τ

g2(s, η)dW (s), w
)

=

∞∑
j=1

∫ t

τ

(g2(s, η)ej , w)dβj(s)

=

∞∑
j=1

∫ t

τ

((
g̃2(s, η)ej , w

))
dβj(s)

=
((∫ t

τ

g̃2(s, η)dW (s), w
))
. (2.25)

By the same method as in [13], one can prove that g̃1 : R × Cγ(V ) → V and g̃2 : R × Cγ(V ) → L2(K,V )
satisfy the following conditions:

(H1) For any η ∈ Cγ(V ), g̃i(·, η) are measurable, i = 1, 2;
(H2) g̃i(·, 0) = 0, i = 1, 2;
(H3) Taking Lg̃1 = Lg1 , Lg̃2 = Lg2/

√
1 + αλ1, we deduce, for all t ∈ R and η, ζ ∈ Cγ(V ),

‖g̃1(t, η)− g̃1(t, ζ)‖ ≤ Lg̃1‖η − ζ‖Cγ(V ),
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‖g̃2(t, η)− g̃2(t, ζ)‖L2(K,V ) ≤ Lg̃2‖η − ζ‖Cγ(V );

(H4) Setting Cg̃1 = Cg1 , Cg̃2 = Cg2/
√

1 + αλ1, we obtain, for all t ∈ R and η, ζ ∈ Cγ(V ),∫ t

τ

‖g̃1(s, us)− g̃1(s, vs)‖2ds ≤ C2
g̃1

∫ t

−∞
‖u(s)− v(s)‖2ds,∫ t

τ

‖g̃2(s, us)− g̃2(s, vs)‖2L2(K,V )ds ≤ C
2
g̃2

∫ t

−∞
‖u(s)− v(s)‖2ds;

(H5) Letting C̃g̃1 = C̃g1 , C̃g̃2 = C̃g2/
√

1 + αλ1 such that for all τ ∈ R, t ≥ τ , and all decreasing function
$ ∈ C0([τ, t]) and u, v ∈ C0((−∞, t];V )∫ t

τ

$(s)‖g̃1(s, us)− g̃1(s, vs)‖2ds ≤ C̃g̃1
∫ t

τ

$(s)‖u(s)− v(s)‖2ds,∫ t

τ

$(s)‖g̃2(s, us)− g̃2(s, vs)‖2L2(K,V )ds ≤ C̃g̃2
∫ t

τ

$(s)‖u(s)− v(s)‖2ds.

It follows from (H2)-(H3) that for all t ∈ R and η ∈ Cγ(V ),

‖g̃1(t, η)‖ ≤ Lg̃1‖η‖Cγ(V ), ‖g̃2(t, η)‖L2(K,V ) ≤ Lg̃2‖η‖Cγ(V ). (2.26)

An example of the delayed terms with (H1)-(H5) is given as follows.
Example 1: For all t ∈ R and ξ ∈ Cγ(V ), let

g̃i(t, ξ) =

∫ 0

−∞
G̃i(t, s, ξ(s))ds, i = 1, 2, (2.27)

where G̃1 : R×(−∞, 0]×V → V with G̃1(t, s, 0) = 0, and G̃2 : R×(−∞, 0]×V → L2(K,V ) with G̃2(t, s, 0) = 0,
and both are measurable. Assume that there exist LG̃i ∈ L

2(−∞, 0) (i = 1, 2) with LG̃i(·)e
−(γ+θ)· ∈ L2(−∞, 0)

for certain θ > 0 such that for all t ∈ R, s ∈ (−∞, 0] and η, ζ ∈ V,

‖G̃1(t, s, η)− G̃1(t, s, ζ)‖ ≤ LG̃1
(s)‖η − ζ‖,

‖G̃2(t, s, η)− G̃2(t, s, ζ)‖L2(K,V ) ≤ LG̃2
(s)‖η − ζ‖.

Thus, we can rewrite the delay terms g̃i (i = 1, 2) in our problem as g̃i(t, ut) =
∫ 0

−∞ G̃i(t, s, u(t+s))ds (i = 1, 2).
It follows that the example is within our framework, and g̃i(i = 1, 2) fulfill conditions (H1)-(H5) (e.g., see [34]
for more details).

3. Well-posedness of stochastic 3D LANS equations with infinite delay

In this section, we prove the well-posedness of the stochastic Eq. (1.1), which can be transferred into the
following abstract equation:

du

dt
+ Ãu(t) + B̃(u(t)) = f̃(t) + g̃1(t, ut) + g̃2(t, ut)

dW

dt
, ∀ t > τ,

u(τ + s) = φ(s), s ∈ (−∞, 0].
(3.1)

Definition 3.1. Suppose that φ ∈ L2(Ω, Cγ(V )) (which is a F0-progressively measurable V -valued processes)
and τ ∈ R. A stochastic process u defined on R is called a solution to system (3.1) if

u ∈ I2(τ, τ + T ;D(A)) ∩ L2(Ω, L∞(τ, τ + T ;V )), ∀ T > 0,

uτ = φ and P -almost surely

((u(t), w)) +

∫ t

τ

〈Ãu(s), w〉ds+

∫ t

τ

〈B̃(u(s)), w〉ds

= ((φ(0), w)) +

∫ t

τ

((
f̃(s) + g̃1(s, us), w

))
ds+

((
w,

∫ t

τ

g̃2(s, us)dW (s)
))

(3.2)

for all t ≥ τ and w ∈ D(A).
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Lemma 3.2. For all u, v ∈ D(A), we have

〈−Ãw − 2(B̃(u)− B̃(v)), w〉 ≤ σ‖w‖2‖v‖2D(A), (3.3)

where w = u− v and σ = c̃2.

Proof. Note that

〈−Ãw,w〉 = −‖w‖2D(A). (3.4)

By the property (B1) of the operator B̃, we have

〈B̃(u), w〉 = −〈B̃(w, u), u〉 = −〈B̃(w, u), v〉, (3.5)

and similarly

〈B̃(v), w〉 = −〈B̃(w, v), v〉. (3.6)

Subtracting (3.6) from (3.5),

〈B̃(u)− B̃(v), w〉 = −〈B̃(w), v〉, (3.7)

which, together with (B2), implies that

|〈B̃(u)− B̃(v), w〉| = |〈B̃(w), v〉|

≤ ‖B̃(w)‖(D(A))∗‖v‖D(A)

≤ c̃‖w‖‖w‖D(A)‖v‖D(A)

≤ 1

2
‖w‖2D(A) +

c̃2

2
‖w‖2‖v‖2D(A). (3.8)

Combining (3.4) and (3.8), we obtain (3.3) as desired.

In the following, we present the well-posedness of problem (3.1). For this end, we further assume
Hypothesis I. For all u, v ∈ L2(−∞, τ + T ;D(A)) and t ∈ [τ, τ + T ], Eq. (3.1) satisfies∫ t

τ

‖g̃2(s, us)− g̃2(s, vs)‖2L2(K,V )ds+ 2

∫ t

τ

((g̃1(s, us)− g̃1(s, vs), u(s)− v(s)))ds

≤ σ
∫ t

τ

‖v(s)‖2D(A)‖u(s)− v(s)‖2ds

+ 2

∫ t

τ

〈Ã(u(s)− v(s)) + B̃(u(s))− B̃(v(s)), u(s)− v(s)〉ds, (3.9)

where σ is given by (3.3) in Lemma 3.2.

Remark 3.3. Let

C2
g̃2

+
2

λ̃1
C2
g̃1
≤ λ̃1

2
and u(s+ τ) = v(s+ τ) = φ(s), s ≤ 0. (3.10)

Then (3.9) in hypothesis I is satisfied. Indeed, by (2.13) and Lemma 3.2, we only need to prove that the
following inequality holds:∫ t

τ

‖g̃2(s, us)− g̃2(s, vs)‖2L2(K,V )ds+ 2

∫ t

τ

((g̃1(s, us)− g̃1(s, vs), u(s)− v(s)))ds

≤ λ̃1
∫ t

τ

‖u(s)− v(s)‖2ds. (3.11)

The Young inequality, (H4) and (3.10) imply∫ t

τ

‖g̃2(s, us)− g̃2(s, vs)‖2L2(K,V )ds+ 2

∫ t

τ

((g̃1(s, us)− g̃1(s, vs), u(s)− v(s)))ds
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≤ C2
g̃2

∫ t

−∞
‖u(s)− v(s)‖2ds+

2

λ̃1

∫ t

τ

‖g̃1(s, us)− g̃1(s, vs)‖2ds+
λ̃1
2

∫ t

τ

‖u(s)− v(s)‖2ds

≤
(
C2
g̃2

+
2

λ̃1
C2
g̃1

)∫ t

−∞
‖u(s)− v(s)‖2ds+

λ̃1
2

∫ t

τ

‖u(s)− v(s)‖2ds

=
(
C2
g̃2

+
2

λ̃1
C2
g̃1

+
λ̃1
2

)∫ t

τ

‖u(s)− v(s)‖2ds

≤ λ̃1
∫ t

τ

‖u(s)− v(s)‖2ds, (3.12)

which implies (3.11) as desired.

Theorem 3.4. Suppose that hypotheses F, G, I hold, moreover, φ ∈ L4(Ω, Cγ(V )) and f̃ ∈ I4(τ, τ + T ;V ),
then there exists a unique solution u to (3.1), which satisfies in addition,

u ∈ I4(τ, τ + T ;V ) ∩ L4(Ω, L∞(τ, τ + T ;V )). (3.13)

In fact, there exists a positive constant R depending on T , E
(
‖φ‖4Cγ(V )

)
and E

( ∫ τ+T
τ

‖f̃(s)‖4ds
)

such that

E
(

sup
τ≤r≤τ+T

‖ur‖4Cγ(V )

)
+ E

(∫ τ+T

τ

‖u(s)‖4ds
)
≤ R. (3.14)

Proof. We split the proof into several steps as follows.
Step 1: We use the Galerkin method to construct an approximating sequence. Consider the Hilbert basis

{wj ; j ∈ N} ⊂ D(A) of V such that Ãwj = λ̃jwj , ∀ j ≥ 1, denote by Vm the linear space spanned by
{w1, w2, . . . , wm} for m ∈ N, and then put

um(t) =

m∑
j=1

am,j(t)wj , (3.15)

where am,j(t) (j = 1, · · · ,m) will be obtained as the solution of the following finite dimensional system:

((um(t), wj)) +

∫ t

τ

〈Ãum(s), wj〉ds+

∫ t

τ

〈B̃(um(s)), wj〉ds

= ((um(τ), wj)) +

∫ t

τ

((
f̃(s) + g̃1(s, ums ), wj

))
ds

+
((
wj ,

∫ t

τ

g̃2(s, ums )dW (s)
))
, ∀ t ∈ [τ, τ + T ], j ∈ [1,m], P -a.s.

um(τ + s) = Pmφ(s), ∀ s ∈ (−∞, 0],

(3.16)

where Pm : V → Vm is the projector.
By the similar argument in [5], for each m ∈ N, the stochastic ODE (3.16) possesses a (local) solution

{am,j(·)}mj=1 in [τ, tm) with τ < tm (by the initial condition, the value of am,j(·) in (−∞, τ ] is well defined).
From this, um(·) is well-defined in [τ, tm) (and thus in (−∞, tm)). Next, we will give a priori estimate to ensure
that the solutions um is global, i.e. tm = +∞.

Step 2: We give a-priori estimates for the approximating sequence. We first claim that, for any T > 0, the
following inequality holds:

E
(

sup
τ≤r≤τ+T

‖umr ‖2Cγ(V )

)
+ E

(∫ τ+T

τ

‖um(s)‖2D(A)ds

)
≤ R1, (3.17)

where R1 is a positive constant depending on T , E
(
‖φ‖2Cγ(V )

)
and E

( ∫ τ+T
τ

‖f̃(s)‖2ds
)
.

Indeed, multiplying (3.16) by am,j , summing those relations for j = 1, · · · ,m and applying Ito’s formula to
‖um(t)‖2, we obtain that

‖um(t)‖2 + 2

∫ t

τ

‖um(s)‖2D(A)ds = ‖um(τ)‖2 + 2

∫ t

τ

((
f̃(s) + g̃1(s, ums ), um(s)

))
ds (3.18)
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+

∫ t

τ

‖g̃2(s, ums )‖2L2(K,V )ds+ 2

∫ t

τ

((
um(s), g̃2(s, ums )dW (s)

))
.

By (2.26), we can rewrite (3.18) as

‖um(t)‖2 + 2

∫ t

τ

‖um(s)‖2D(A)ds ≤ ‖φ(0)‖2 + 2

∫ t

τ

((
f̃(s) + g̃1(s, ums ), um(s)

))
ds

+

∫ t

τ

‖g̃2(s, ums )‖2L2(K,V )ds+ 2
((∫ t

τ

um(s), g̃2(s, ums )dW (s)
))

≤ ‖φ(0)‖2 + 2

∫ t

τ

‖f̃(s) + g̃1(s, ums )‖‖um(s)‖ds

+ L2
g̃2

∫ t

τ

‖ums ‖2Cγ(V )ds+ 2

∣∣∣∣(( ∫ t

τ

um(s), g̃2(s, ums )dW (s)
))∣∣∣∣. (3.19)

By (2.13), the Young inequality and (2.26), we find

2

∫ t

τ

‖f̃(s) + g̃1(s, ums )‖‖um(s)‖ds

≤ 2λ̃
− 1

2
1

∫ t

τ

‖f̃(s) + g̃1(s, ums )‖‖um(s)‖D(A)ds

≤ 2λ̃−11

∫ t

τ

‖f̃(s)‖2ds+ 2λ̃−11 L2
g̃1

∫ t

τ

‖ums ‖2Cγ(V )ds+

∫ t

τ

‖um(s)‖2D(A)ds. (3.20)

Substituting (3.20) into (3.19), we obtain

‖um(t)‖2 +

∫ t

τ

‖um(s)‖2D(A)ds ≤ ‖φ(0)‖2 + 2λ̃−11

∫ t

τ

‖f̃(s)‖2ds+ c1

∫ t

τ

‖ums ‖2Cγ(V )ds

+ 2

∣∣∣∣ ∫ t

τ

((
um(s), g̃2(s, ums )dW (s)

))∣∣∣∣, (3.21)

where c1 = L2
g̃2

+ 2λ̃−11 L2
g̃1

. The above inequality implies

‖umt ‖2Cγ(V ) ≤ max
{

sup
θ≤τ−t

e2γθ‖um(t+ θ)‖2, sup
τ−t≤θ≤0

e2γθ‖um(t+ θ)‖2
}

≤ max
{

sup
θ≤τ−t

e2γθ‖φ(t+ θ − τ)‖2, sup
τ−t≤θ≤0

e2γθ‖um(t+ θ)‖2
}

≤ max

{
sup
θ≤0

e2γ(θ−t+τ)‖φ(θ)‖2, sup
τ−t≤θ≤0

e2γθ
(
‖φ(0)‖2 + 2λ̃−11

∫ t+θ

τ

‖f̃(s)‖2ds

+ c1

∫ t+θ

τ

‖ums ‖2Cγ(V )ds+ 2

∣∣∣∣ ∫ t+θ

τ

((
um(s), g̃2(s, ums )dW (s)

))∣∣∣∣)
}

≤ e−2γ(t−τ)‖φ‖2Cγ(V ) + ‖φ‖2Cγ(V ) + 2λ̃−11

∫ t

τ

‖f̃(s)‖2ds+ c1

∫ t

τ

‖ums ‖2Cγ(V )ds

+ 2 sup
τ−t≤θ≤0

e2γθ
∣∣∣∣ ∫ t+θ

τ

((
um(s), g̃2(s, ums )dW (s)

))∣∣∣∣. (3.22)

Taking supremum and expectation of (3.22), we find

E
(

sup
τ≤r≤t

‖umr ‖2Cγ(V )

)
≤ 2E

(
‖φ‖2Cγ(V )

)
+ 2λ̃−11 E

(∫ t

τ

‖f̃(s)‖2ds
)

+ c1

∫ t

τ

E
(

sup
τ≤r≤s

‖umr ‖2Cγ(V )

)
ds

+ 2E
(

sup
τ≤r≤t

sup
τ−r≤θ≤0

e2γθ
∣∣∣∣ ∫ r+θ

τ

((
um(s), g̃2(s, ums )dW (s)

))∣∣∣∣). (3.23)

By the Burkholder-Davis-Gundy inequality and (2.26), the last term of (3.23) is bounded by

2E
(

sup
τ≤r≤t

sup
τ−r≤θ≤0

e2γθ
∣∣∣∣ ∫ r+θ

τ

((
um(s), g̃2(s, ums )dW (s)

))∣∣∣∣)
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≤ 2E
(

sup
τ≤r+θ≤t

∣∣∣∣ ∫ r+θ

τ

((
um(s), g̃2(s, ums )dW (s)

))∣∣∣∣)

≤ 2c1E

((∫ t

τ

‖um(s)‖2‖g̃2(s, ums )‖2L2(K,V )ds

) 1
2

)

≤ 2c1E

(
sup
τ≤r≤t

‖umr ‖Cγ(V )

(∫ t

τ

‖g̃2(s, ums )‖2ds
) 1

2

)

≤ 1

2
E
(

sup
τ≤r≤t

‖umr ‖2Cγ(V )

)
+ 2c21L

2
g̃2

∫ t

τ

E
(

sup
τ≤r≤s

‖umr ‖2Cγ(V )

)
ds. (3.24)

It follows from (3.23)-(3.24) that, for all t ∈ [τ, τ + T ],

E
(

sup
τ≤r≤t

‖umr ‖2Cγ(V )

)
≤ 4E

(
‖φ‖2Cγ(V )

)
+ 4λ̃−11 E

(∫ t

τ

‖f̃(s)‖2ds
)

+ c2

∫ t

τ

E
(

sup
τ≤r≤s

‖umr ‖2Cγ(V )

)
ds, (3.25)

where c2 = 2c1(1 + 2c1L
2
g̃2

). Set

cT := 4E
(
‖φ‖2Cγ(V )

)
+ 4λ̃−11 E

(∫ τ+T

τ

‖f̃(s)‖2ds
)
, (3.26)

which is finite due to φ ∈ L4(Ω, Cγ(V )) and f̃ ∈ I4(τ, τ + T ;V ). Applying the Gronwall lemma to (3.25), we
find, for all t ∈ [τ, τ + T ],

E
(

sup
τ≤r≤t

‖umr ‖2Cγ(V )

)
≤ cT ec2T =: R11. (3.27)

Finally, we infer from (3.21) and (3.24) that, for all t ∈ [τ, τ + T ],

E
(

sup
τ≤r≤t

∫ r

τ

‖um(s)‖2D(A)ds

)
≤ E

(
‖φ(0)‖2

)
+ 2λ̃−11 E

(∫ τ+T

τ

‖f̃(s)‖2ds
)

+
c2
2

∫ τ+T

τ

E
(

sup
τ≤r≤s

‖umr ‖2Cγ(V )

)
ds+

1

2
E
(

sup
τ≤r≤t

‖umr ‖2Cγ(V )

)
, (3.28)

which, together with (3.27), implies that there exists a positive constant R12,

E
(∫ t

τ

‖um(s)‖2D(A)ds

)
≤ R12, ∀ m. (3.29)

Combining (3.27) and (3.29), we obtain (3.17) for R1 = R11 +R12.
We also need to give the following estimate:

E
(

sup
τ≤r≤τ+T

‖umr ‖4Cγ(V )

)
+ E

(∫ τ+T

τ

‖um(s)‖4ds
)
≤ R, (3.30)

where R depends on T , E
(
‖φ‖4Cγ(V )

)
and E

( ∫ τ+T
τ

‖f̃(s)‖4ds
)
.

Indeed, by (3.18) and Ito’s formula, we infer from (2.26) that

‖um(t)‖4 + 4

∫ t

τ

‖um(s)‖2‖um(s)‖2D(A)ds

≤ ‖φ(0)‖4 + 4

∫ t

τ

‖um(s)‖2
((
f̃(s) + g̃1(s, ums ), um(s)

))
ds+ 2

∫ t

τ

‖um(s)‖2‖g̃2(s, ums )‖2L2(K,V )ds

+ 4

∫ t

τ

‖g̃∗2(s, ums )um(s)‖2Kds+ 4

∫ t

τ

‖um(s)‖2
((
um(s), g̃2(s, ums )dW (s)

))
≤ ‖φ(0)‖4 + 4

∫ t

τ

‖um(s)‖3‖f̃(s) + g̃1(s, ums )‖ds
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+ 6

∫ t

τ

‖g̃2(s, ums )‖2L2(K,V )‖u
m(s)‖2ds+ 4

∫ t

τ

‖um(s)‖2
((
um(s), g̃2(s, ums )dW (s)

))
≤ ‖φ(0)‖4 + 4

∫ t

τ

‖um(s)‖3‖f̃(s) + g̃1(s, ums )‖ds

+ 3L4
g̃2

∫ t

τ

‖ums ‖4Cγ(V )ds+ 3

∫ t

τ

‖um(s)‖4ds+ 4

∫ t

τ

‖um(s)‖2
((
um(s), g̃2(s, ums )dW (s)

))
, (3.31)

where g̃∗2 is the adjoint operator of g̃2. By (2.13), the Young inequality and (2.26), we obtain

4

∫ t

τ

‖um(s)‖3‖f̃(s) + g̃1(s, ums )‖ds

≤ 4λ̃
− 1

2
1

∫ t

τ

‖um(s)‖2‖um(s)‖D(A)‖f̃(s) + g̃1(s, ums )‖ds

≤ 2λ̃−11

∫ t

τ

‖um(s)‖2‖f̃(s) + g̃1(s, ums )‖2ds+ 2

∫ t

τ

‖um(s)‖2‖um(s)‖2D(A)ds

≤ 4λ̃−11

∫ t

τ

‖um(s)‖2‖f̃(s)‖2ds+ 4λ̃−11 L2
g̃1

∫ t

τ

‖um(s)‖2‖ums ‖2Cγ(V )ds

+ 2

∫ t

τ

‖um(s)‖2‖um(s)‖2D(A)ds

≤ 2λ̃−11

∫ t

τ

‖f̃(s)‖4ds+ c3

∫ t

τ

‖um(s)‖4ds+ 2λ̃−11 L2
g̃1

∫ t

τ

‖ums ‖4Cγ(V )ds

+ 2

∫ t

τ

‖um(s)‖2‖um(s)‖2D(A)ds, (3.32)

where c3 = 2λ̃−11 (1 + L2
g̃1

). Substituting (3.32) into (3.31),

‖um(t)‖4 + 2

∫ t

τ

‖um(s)‖2‖um(s)‖2D(A)ds

≤ ‖φ(0)‖4 + 2λ̃−11

∫ t

τ

‖f̃(s)‖4ds+ c4

∫ t

τ

‖um(s)‖4ds+ c5

∫ t

τ

‖ums ‖4Cγ(V )ds

+ 4

∫ t

τ

‖um(s)‖2
((
um(s), g̃2(s, ums )dW (s)

))
, (3.33)

where c4 = c3 + 3, c5 = 3L4
g̃2

+ 2λ̃−11 L2
g̃1

. By (3.33), we find

‖umt ‖4Cγ(V ) ≤ max
{

sup
θ≤τ−t

e4γθ‖um(t+ θ)‖4, sup
τ−t≤θ≤0

e4γθ‖um(t+ θ)‖4
}

≤ max

{
sup
θ≤τ−t

e4γθ‖φ(t+ θ − τ)‖4, sup
τ−t≤θ≤0

e4γθ
(
‖φ(0)‖4 + 2λ̃−11

∫ t+θ

τ

‖f̃(s)‖4ds

+ c4

∫ t+θ

τ

‖um(s)‖4ds+ c5

∫ t+θ

τ

‖ums ‖4Cγ(V )ds

+ 4

∣∣∣∣ ∫ t+θ

τ

‖um(s)‖2
((
um(s), g̃2(s, ums )dW (s)

))∣∣∣∣)
}

≤ e−4γ(t−τ)‖φ‖4Cγ(V ) + ‖φ‖4Cγ(V ) + 2λ̃−11

∫ t

τ

‖f̃(s)‖4ds+ c4

∫ t

τ

‖um(s)‖4ds

+ c5

∫ t

τ

‖ums ‖4Cγ(V )ds+ 4 sup
τ−t≤θ≤0

e4γθ
∣∣∣∣ ∫ t+θ

τ

‖um(s)‖2
((
um(s), g̃2(s, ums )dW (s)

))∣∣∣∣. (3.34)

Taking supremum and expectation of (3.34), we infer

E
(

sup
τ≤r≤t

‖umr ‖4Cγ(V )

)
≤ 2E

(
‖φ‖4Cγ(V )

)
+ 2λ̃−11 E

(∫ t

τ

‖f̃(s)‖4ds
)

+ c6

∫ t

τ

E
(

sup
τ≤r≤s

‖umr ‖4Cγ(V )

)
ds

12



+ 4E
(

sup
τ≤r≤t

sup
τ−r≤θ≤0

e4γθ
∣∣∣∣ ∫ r+θ

τ

‖um(s)‖2
((
um(s), g̃2(s, ums )dW (s)

))∣∣∣∣), (3.35)

where c6 = c4 + c5. By the Burkholder-Davis-Gundy inequality and (2.26), the last term of (3.35) satisfies

4E
(

sup
τ≤r≤t

sup
τ−r≤θ≤0

e4γθ
∣∣∣∣ ∫ r+θ

τ

‖um(s)‖2
((
um(s), g̃2(s, ums )dW (s)

))∣∣∣∣)
≤ 4E

(
sup

τ≤r+θ≤t

∣∣∣∣ ∫ r+θ

τ

‖um(s)‖2
((
um(s), g̃2(s, ums )dW (s)

))∣∣∣∣
)

≤ 4E

(
sup
τ≤r≤t

‖umr ‖2Cγ(V ) sup
τ≤r+θ≤t

∣∣∣∣ ∫ r+θ

τ

((
um(s), g̃2(s, ums )dW (s)

))∣∣∣∣
)

≤ 1

2
E
(

sup
τ≤r≤t

‖umr ‖4Cγ(V )

)
+ 8E

(
sup

τ≤r+θ≤t

∣∣∣∣ ∫ r+θ

τ

((
um(s), g̃2(s, ums )dW (s)

))∣∣∣∣2
)

≤ 1

2
E
(

sup
τ≤r≤t

‖umr ‖4Cγ(V )

)
+ 8c7E

(∫ t

τ

‖um(s)‖2‖g̃2(s, ums )‖2L2(K,V )ds

)
≤ 1

2
E
(

sup
τ≤r≤t

‖umr ‖4Cγ(V )

)
+ 4c7E

(∫ t

τ

‖um(s)‖4ds
)

+ 4c7L
4
g̃2

∫ t

τ

E
(

sup
τ≤r≤s

‖umr ‖4Cγ(V )

)
ds

≤ 1

2
E
(

sup
τ≤r≤t

‖umr ‖4Cγ(V )

)
+ c8

∫ t

τ

E
(

sup
τ≤r≤s

‖umr ‖4Cγ(V )

)
ds, (3.36)

where c8 = 4c7(1 + L4
g̃2

). Substituting (3.36) into (3.35), we obtain

E
(

sup
τ≤r≤t

‖umr ‖4Cγ(V )

)
≤ 4E

(
‖φ‖4Cγ(V )

)
+ 4λ̃−11 E

(∫ t

τ

‖f̃(s)‖4ds
)

+ c9

∫ t

τ

E
(

sup
τ≤r≤s

‖umr ‖4Cγ(V )

)
ds, (3.37)

where c9 = 2(c6 + c8). Setting

c∗ := 4E
(
‖φ‖4Cγ(V )

)
+ 4λ̃−11 E

(∫ τ+T

τ

‖f̃(s)‖4ds
)
, (3.38)

then applying the Gronwall lemma to (3.37), we deduce that

E
(

sup
τ≤r≤t

‖umr ‖4Cγ(V )

)
≤ c∗ec9T =: R21, ∀ t ∈ [τ, τ + T ]. (3.39)

It follows from (2.13), (3.33) and (3.36) that for all t ∈ [τ, τ + T ] such that

2λ̃1E
(

sup
τ≤r≤t

∫ r

τ

‖um(s)‖4ds
)
≤ 2E

(
sup
τ≤r≤t

∫ r

τ

‖um(s)‖2‖um(s)‖2D(A)ds

)
≤ E

(
‖φ(0)‖4

)
+ 2λ̃−11 E

(∫ t

τ

‖f̃(s)‖4ds
)

+
1

2
E
(

sup
τ≤r≤t

‖umr ‖4Cγ(V )

)
+
c9
2

∫ t

τ

E
(

sup
τ≤r≤s

‖umr ‖4Cγ(V )

)
ds, (3.40)

which, together with (3.39), φ ∈ L4(Ω, Cγ(V )) and f̃ ∈ I4(τ, τ + T ;V ), implies that there exists a positive
constant R22 such that

E
(∫ t

τ

‖um(s)‖4ds
)
≤ R22, ∀ t ∈ [τ, τ + T ]. (3.41)

Combining (3.39) and (3.41), we obtain

E
(

sup
τ≤r≤t

‖umr ‖4Cγ(V )

)
+ E

(∫ t

τ

‖um(s)‖4ds
)
≤ R := R21 +R22, ∀ t ∈ [τ, τ + T ], (3.42)
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which implies (3.30) as desired.
Step 3: We prove the existence of solutions to Eq. (3.1) by using the monotonicity method. Indeed, by

Step 2,

um is bounded in L4(Ω, L∞(τ, τ + T ;V )) ∩ I4(τ, τ + T ;V ) ∩ I2(τ, τ + T ;D(A)),

um(τ + T ) is bounded in L2(Ω;V ).

By (B2), (3.39) and (3.40), B̃(um) is bounded in I2(τ, τ + T ; (D(A))∗). Moreover, by (2.26) and Step 2,

g̃1(t, umt ) is bounded in I2(τ, τ + T ;V ),

g̃2(t, umt ) is bounded in I2(τ, τ + T ;L2(K,V )).

Thus, there exists a subsequence um (still denoted by itself) and five elements

u ∈ L4(Ω, L∞(τ, τ + T ;V )) ∩ I4(τ, τ + T ;V ) ∩ I2(τ, τ + T ;D(A)),

µ ∈ L2(Ω;V ), ι ∈ I2(τ, τ + T ; (D(A))∗), κ1 ∈ I2(τ, τ + T ;V ) and κ2 ∈ I2(τ, τ + T ;L2(K;V )) such that

um
∗
⇀ u in L4(Ω, L∞(τ, τ + T ;V )),

um ⇀ u in I4(τ, τ + T ;V ),

um ⇀ u in I2(τ, τ + T ;D(A)),

um(τ + T ) ⇀ µ in L2(Ω;V ),

− Ãum − B̃(um) ⇀ ι in I2(τ, τ + T ; (D(A))∗),

g̃1(t, umt ) ⇀ κ1 in I2(τ, τ + T ;V ),

g̃2(t, umt ) ⇀ κ2 in I2(τ, τ + T ;L2(K,V )).

As in [19], we extend Eq. (3.16) to an open interval (−δ + τ, τ + T + δ) for any δ > 0 such that all terms
are equal to 0 outside of the interval [τ, τ + T ].

Let ψ(t) be a function in W1,4/3(−δ+ τ, τ +T + δ) with ψ(τ) = 1. Put wj(t) = ψ(t)wj for all integers j ≥ 1,
where we recall that {wj} is the Hilbert basis of V such that {wj ; j ≥ 1} ⊂ D(A). Applying the Ito formula to
the function (um(t), wj(t)), we obtain

(um(τ + T ), wj(τ + T )) = (um(τ), wj) +

∫ τ+T

τ

(
um(s),

dwj(s)

ds

)
ds+

∫ τ+T

τ

〈−Ãum(s)− B̃(um(s)), wj(s)〉ds

+

∫ τ+T

τ

((
f̃(s) + g̃1(s, ums ), wj(s)

))
ds+

∫ τ+T

τ

((
wj(s), g̃2(s, ums )dW (s)

))
. (3.43)

Taking limit of (3.43) as m→∞, we refer to the similar calculation as in [39, Theorem 2.6], then

−
∫ τ+T

τ

(
u(s),

dwj(s)

ds

)
ds = (φ(0), wj) +

∫ τ+T

τ

〈ι, wj〉ψ(s)ds+

∫ τ+T

τ

((
f̃(s) + κ1(s), wj

))
ψ(s)ds

+

∫ τ+T

τ

ψ(s)
((
wj , κ2(s)dW (s)

))
− (µ,wj)ψ(τ + T ). (3.44)

Consider a sequence of functions {ψk} such that ψk → 1[τ,τ+T ] and the time derivative of ψk tends to υt weakly
as k →∞. We use ψk in (3.44) to replace ψ and then let k →∞, we find that

(u(t), wj) = (φ(0), wj) +

∫ t

τ

〈ι(s), wj〉ds+

∫ t

τ

((
f̃(s) + κ1(s), wj

))
ds+

∫ t

τ

((
wj , κ2(s)dW (s)

))
(3.45)

for all t < τ + T with (u(τ + T ), wj) = (µ,wj) for all j ≥ 1, then

u(t) = φ(0) +

∫ t

τ

(ι(s) + f̃(s) + κ1(s))ds+

∫ t

τ

κ2(s)dW (s) (3.46)

with u(τ + T ) = µ.
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Let %(t) =
∫ t
τ
‖y(s)‖2D(A)ds, where y ∈ I2(τ, τ + T ;D(A)) with y(τ + s) = φ(s), s ≤ 0. Applying Ito’s

formula to the process e−σ%(t)‖u(t)‖2 and e−σ%(t)‖um(t)‖2 respectively, where σ is the same as in Lemma 3.2,

E
(
e−σ%(t)‖u(t)‖2

)
= E

(
‖φ(0)‖2

)
− E

(∫ t

τ

σe−σ%(s)‖y(s)‖2D(A)‖u(s)‖2ds
)

+ 2E
(∫ t

τ

e−σ%(s)〈ι(s), u(s)〉ds
)

+ 2E
(∫ t

τ

e−σ%(s)
((
f̃(s) + κ1, u(s)

))
ds

)
+ E

(∫ t

τ

e−σ%(s)‖κ2‖2L2(K,V )ds

)
, (3.47)

and

E
(
e−σ%(t)‖um(t)‖2

)
= E

(
‖um(τ)‖2

)
− E

(∫ t

τ

σe−σ%(s)‖y(s)‖2D(A)‖u
m(s)‖2ds

)
+ 2E

(∫ t

τ

e−σ%(s)〈−Ãum(s)− B̃(um(s)), um(s)〉ds
)

+ 2E
(∫ t

τ

e−σ%(s)
((
f̃(s) + g̃1(s, ums ), um(s)

))
ds

)
+ E

(∫ t

τ

e−σ%(s)‖g̃2(s, ums )‖2L2(K,V )ds

)
. (3.48)

Define three elements Xm, Ym and Zm by

Xm =− E
(∫ t

τ

σe−σ%(s)‖y(s)‖2D(A)‖u
m(s)− y(s)‖2ds

)
+ 2E

(∫ t

τ

e−σ%(s)〈−Ãum(s)− B̃(um(s)), um(s)− y(s)〉ds
)

− 2E
(∫ t

τ

e−σ%(s)〈−Ãy(s)− B̃(y(s)), um(s)− y(s)〉ds
)

+ 2E
(∫ t

τ

e−σ%(s)
((
g̃1(s, ums )− g̃1(s, ys), u

m(s)− y(s)
))
ds

)
+ E

(∫ t

τ

e−σ%(s)‖g̃2(s, ums )− g̃2(s, ys)‖2L2(K,V )ds

)
.

Ym =− E
(∫ t

τ

σe−σ%(s)‖y(s)‖2D(A)‖u
m(s)‖2ds

)
+ 2E

(∫ t

τ

e−σ%(s)〈−Ãum(s)− B̃(um(s)), um(s)〉ds
)

+ 2E
(∫ t

τ

e−σ%(s)
((
g̃1(s, ums ), um(s)

))
ds

)
+ E

(∫ t

τ

e−σ%(s)‖g̃2(s, ums )‖2L2(K,V )ds

)
.

Zm =− E
(∫ t

τ

σe−σ%(s)‖y(s)‖2D(A)

(
‖y(s)‖2 − 2(um(s), y(s))

)
ds

)
+ 2E

(∫ t

τ

e−σ%(s)〈−Ãum(s)− B̃(um(s)),−y(s)〉ds
)

− 2E
(∫ t

τ

e−σ%(s)〈−Ãy(s)− B̃(y(s)), um(s)− y(s)〉ds
)

− 2E
(∫ t

τ

e−σ%(s)
((
g̃1(s, ys), u

m(s)− y(s)
))
ds

)
+ 2E

(∫ t

τ

e−σ%(s)
((
g̃1(s, ums ),−y(s)

))
ds

)
+ E

(∫ t

τ

e−σ%(s)
((
g̃2(s, ys)− 2g̃2(s, ums ), g̃2(s, ys)

))
L2(K,V )

ds

)
.

We infer from the above equalities that Xm = Ym + Zm. By (3.3) in Lemma 3.2 and (3.9), we have Xm ≤ 0,

0 ≥ lim inf
m→∞

Xm
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≥ −E
(∫ t

τ

σe−σ%(s)‖y(s)‖2D(A)‖u(s)− y(s)‖2ds
)

+ 2E
(∫ t

τ

e−σ%(s)〈ι, u(s)− y(s)〉ds
)

− 2E
(∫ t

τ

e−σ%(s)〈−Ãy(s)− B̃(y(s)), u(s)− y(s)〉ds
)

+ 2E
(∫ t

τ

e−σ%(s)
((
κ1 − g̃1(s, ys), u(s)− y(s)

))
ds

)
+ E

(∫ t

τ

e−σ%(s)‖κ2 − g̃2(s, ys)‖2L2(K,V )ds

)
. (3.49)

Taking y(t) = u(t) in (3.49), since e−σ%(t) is bounded with respect to t ∈ [τ, τ+T ], we find that κ2 = g̃2(t, ut), t ∈
[τ, τ + T ]. By (3.48), we derive

Ym = E
(
e−σ%(s)‖um(t)‖2

)
− E

(
‖um(τ)‖2

)
− 2E

(∫ t

τ

e−σ%(s)
((
f̃(s), um(s)

))
ds

)
, (3.50)

which, together with (3.47), implies

lim inf
m→∞

Ym ≥ E
(
e−σ%(s)‖u(s)‖2

)
− E

(
‖φ(0)‖2

)
− 2E

(∫ t

τ

e−σ%(s)
((
f̃(s), u(s)

))
ds

)
= −E

(∫ t

τ

σe−σ%(s)‖y(s)‖2D(A)‖u(s)‖2ds
)

+ 2E
(∫ t

τ

e−σ%(s)〈ι, u(s)〉ds
)

+ 2E
(∫ t

τ

e−σ%(s)
((
κ1, u(s)

))
ds

)
+ E

(∫ t

τ

e−σ%(s)‖g̃2(s, us)‖2L2(K,V )ds

)
. (3.51)

Besides,

lim inf
m→∞

Zm ≥ −E
(∫ t

τ

σe−σ%(s)‖y(s)‖2D(A)

(
‖y(s)‖2 − 2(u(s), y(s))

)
ds

)
+ 2E

(∫ t

τ

e−σ%(s)〈ι,−y(s)〉ds
)

− 2E
(∫ t

τ

e−σ%(s)〈−Ãy(s)− B̃(y(s)), u(s)− y(s)〉ds
)

− 2E
(∫ t

τ

e−σ%(s)
((
g̃1(s, ys), u(s)− y(s)

))
ds

)
+ 2E

(∫ t

τ

e−σ%(s)
((
κ1,−y(s)

))
ds

)
+ E

(∫ t

τ

e−σ%(s)
((
g̃2(s, ys)− 2g̃2(s, us), g̃2(s, ys)

))
L2(K,V )

ds

)
. (3.52)

Therefore, by (3.49), (3.51) and (3.52), we have

0 ≥ lim inf
m→∞

Xm = lim inf
m→∞

Ym + lim inf
m→∞

Zm

≥ −E
(∫ t

τ

σe−σ%(s)‖y(s)‖2D(A)‖u(s)− y(s)‖2ds
)

+ 2E
(∫ t

τ

e−σ%(s)〈ι, u(s)− y(s)〉ds
)

+ 2E
(∫ t

τ

e−σ%(s)
((
κ1 − g̃1(s, ys), u(s)− y(s))ds

)))
− 2E

(∫ t

τ

e−σ%(s)〈−Ãy(s)− B̃(y(s)), u(s)− y(s)〉ds
)

+ E
(∫ t

τ

e−σ%(s)‖g̃2(s, us)− g̃2(s, ys)‖2L2(K,V )ds

)
. (3.53)

We further obtain

0 ≤ E
(∫ t

τ

e−σ%(s)‖g̃2(s, us)− g̃2(s, ys)‖2L2(K,V )ds

)
≤ 2E

(∫ t

τ

e−σ%(s)〈−Ãy(s)− B̃(y(s)), u(s)− y(s)〉ds
)

+ 2E
(∫ t

τ

e−σ%(s)
((
g̃1(s, ys)− κ1, u(s)− y(s)

))
ds

)
− 2E

(∫ t

τ

e−σ%(s)〈ι, u(s)− y(s)〉ds
)

+ σE
(∫ t

τ

e−σ%(s)‖y(s)‖2D(A)‖u(s)− y(s)‖2ds
)
. (3.54)
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Let y(t) = u(t)− ϑz(t) with for any z ∈ I2(τ, τ + T ;D(A)) ∩ I4(τ, τ + T ;V ) and ϑ ∈ [0, 1], then

0 ≤ 2E
(∫ t

τ

e−σ%(s)〈−Ã(u− ϑz)− B̃(u− ϑz), ϑz〉ds
)

+ 2E
(∫ t

τ

e−σ%(s)
((
g̃1(s, us − ϑz)− κ1, ϑz

))
ds

)
(3.55)

− 2E
(∫ t

τ

e−σ%(s)〈ι, ϑz〉ds
)

+ σϑ2E
(∫ t

τ

e−σ%(s)‖y(s)‖2D(A)‖z‖
2ds

)
.

Dividing by ϑ on both sides of (3.55), and then letting ϑ→ 0, we have

E
(∫ t

τ

e−σ%(s)〈ι+ Ãu(s) + B̃(u(s)), z〉ds
)

+ E
(∫ t

τ

e−σ%(s)
((
κ1 − g̃1(s, us), z

))
ds

)
≤ 0. (3.56)

Since I2(τ, τ + T ;D(A)) ∩ I4(τ, τ + T ;V ) is dense in I2(τ, τ + T ;V ), we find

e−σ%(s)
(
ι+ Ãu(s) + B̃(u(s)) + κ1 − g̃1(s, us)

)
= 0, a.e. t ∈ [τ, τ + T ], ω ∈ Ω. (3.57)

Note that κ2 = g̃2(t, ut), t ∈ [τ, τ + T ], we can rewrite (3.46) as

u(t) +

∫ t

τ

Ãu(s)ds+

∫ t

τ

B̃(u(s))ds

= φ(0) +

∫ t

τ

(f̃(s) + g̃1(s, us))ds+

∫ t

τ

g̃2(s, us)dW (s), a.e. t ∈ [τ, τ + T ], ω ∈ Ω. (3.58)

Therefore, the existence of a weak solution has been proved.
Step 4: We derive the estimate (3.14). For each n ∈ N and T > 0, we can define a stopping time τmn as

follows.

τmn = inf

{
t ≤ τ + T : ‖um(t)‖2 +

∫ t

τ

‖um(s)‖2D(A)ds ≥ n
}
. (3.59)

For fixed m, the sequence {τmn ;n ≥ 1} is increasing to τ + T . By (3.42) and (3.59), we obtain

E
(

sup
r∈[τ,t∧τmn ]

‖umr ‖4Cγ(V )

)
+ E

(∫ t∧τmn

τ

‖um(s)‖4ds
)
≤ R, ∀ t ∈ [τ, τ + T ]. (3.60)

Thanks to (3.60) and Fatou’s lemma, we deduce that (3.14) holds for every T > 0.
Step 5: We prove the uniqueness of solutions to Eq. (3.1). Let u, v be two solutions of Eq. (3.1) with the

same initial condition u(s) = v(s) = φ(s − τ), s ≤ τ , and let w := u − v. For every n ∈ N and T > 0, we can
define a stopping time Tn by

Tn = inf
{
t ≤ τ + T :

∫ t

τ

‖v(s)‖2D(A)ds ≥ n
}
. (3.61)

In addition, let ς(t) := e−σ
∫ t
τ
‖v(s)‖2D(A)ds, where σ is given by (3.3) in Lemma 3.2 and E(

∫ t
τ
‖v(s)‖2D(A)ds) is

finite due to the steps 2-3. Applying Ito’s formula to the process ς(t)‖w(t)‖2, we infer from (3.3) in Lemma 3.2
that

ς(t ∧ Tn)‖w(t ∧ Tn)‖2 = −σ
∫ t∧Tn

τ

ς(s)‖v(s)‖2D(A)‖w(s)‖2ds

+ 2

∫ t∧Tn

τ

ς(s)〈−Ãw(s)− B̃(u) + B̃(v), w(s)〉ds

+ 2

∫ t∧Tn

τ

ς(s)
((
g̃1(s, us)− g̃1(s, vs), w(s)

))
ds

+ 2

∫ t∧Tn

τ

ς(s)
((
w(s),

(
g̃2(s, us)− g̃2(s, vs)

)
dW (s)

))
17



+

∫ t∧Tn

τ

ς(s)‖g̃2(s, us)− g̃2(s, vs)‖2L2(K,V )ds

≤ −
∫ t∧Tn

τ

ς(s)‖w(s)‖2D(A)ds+ 2

∫ t∧Tn

τ

ς(s)
((
g̃1(s, us)− g̃1(s, vs), w(s)

))
ds

+ 2

∫ t∧Tn

τ

ς(s)
((
w(s),

(
g̃2(s, us)− g̃2(s, vs)

)
dW (s)

))
+

∫ t∧Tn

τ

ς(s)‖g̃2(s, us)− g̃2(s, vs)‖2L2(K,V )ds. (3.62)

Taking supremum and expectation of (3.62), we find

E
(

sup
τ≤r≤t

ς(r ∧ Tn)‖w(r ∧ Tn)‖2
)

+ E
(∫ t

τ

ς(s ∧ Tn)‖w(s ∧ Tn)‖2D(A)ds

)
≤ 2E

(
sup

τ≤r≤t∧Tn

∣∣∣∣ ∫ r

τ

ς(s)
((
g̃1(s, us)− g̃1(s, vs), w(s)

))
ds

∣∣∣∣)
+ 2E

(
sup

τ≤r≤t∧Tn

∣∣∣∣ ∫ r

τ

ς(s)
((
w(s),

(
g̃2(s, us)− g̃2(s, vs)

)
dW (s)

))∣∣∣∣)
+ E

(
sup

τ≤r≤t∧Tn

∣∣∣∣ ∫ r

τ

ς(s)‖g̃2(s, us)− g̃2(s, vs)‖2L2(K,V )ds

∣∣∣∣). (3.63)

The Young inequality and (H5) imply

2E
(

sup
τ≤r≤t∧Tn

∣∣∣∣ ∫ r

τ

ς(s)
((
g̃1(s, us)− g̃1(s, vs), w(s)

))
ds

∣∣∣∣)
≤ E

(∫ t∧Tn

τ

ς(s)‖g̃1(s, us)− g̃1(s, vs)‖2ds
)

+ E
(∫ t∧Tn

τ

ς(s)‖w(s)‖2ds
)

≤ (C̃g̃1 + 1)E
(∫ t

τ

ς(s ∧ Tn)‖w(s ∧ Tn)‖2ds
)

≤ (C̃g̃1 + 1)E
(∫ t

τ

sup
τ≤θ≤s

ς(θ ∧ Tn)‖w(θ ∧ Tn)‖2ds
)
. (3.64)

By the Burkholder-Davis-Gundy inequality and (H5), we have

2E
(

sup
τ≤r≤t∧Tn

∣∣∣∣ ∫ r

τ

ς(s)
((
w(s),

(
g̃2(s, us)− g̃2(s, vs)

)
dW (s)

))∣∣∣∣)

≤ 2c10E

((∫ t∧Tn

τ

(
ς2(s)‖w(s)‖2‖g̃2(s, us)− g̃2(s, vs)‖2L2(K,V )

)
ds

) 1
2

)

≤ 2c10E

(
sup
τ≤s≤t

ς1/2(s ∧ Tn)‖w(s ∧ Tn)‖
(∫ t∧Tn

τ

ς(s)‖g̃2(s, us)− g̃2(s, vs)‖2L2(K,V )ds

) 1
2

)

≤ 1

2
E

(
sup
τ≤s≤t

ς(s ∧ Tn)‖w(s ∧ Tn)‖2
)

+ c11E
(∫ t∧Tn

τ

ς(s)‖g̃2(s, us)− g̃2(s, vs)‖2L2(K,V )ds

)

≤ 1

2
E

(
sup
τ≤s≤t

ς(s ∧ Tn)‖w(s ∧ Tn)‖2
)

+ c11C̃g̃2

∫ t

τ

E

(
sup
τ≤θ≤s

ς(θ ∧ Tn)‖w(θ ∧ Tn)‖2
)
ds, (3.65)

where c11 = 2c210. By (H5), the last line of (3.63) is bounded by

E
(

sup
τ≤r≤t∧Tn

∣∣∣∣ ∫ r

τ

ς(s)‖g̃2(s, us)− g̃2(s, vs)‖2L2(K,V )ds

∣∣∣∣)
≤ E

(∫ t∧Tn

τ

ς(s)‖g̃2(s, us)− g̃2(s, vs)‖2L2(K,V )ds

)
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≤ C̃g̃2
∫ t

τ

E

(
sup
τ≤θ≤s

ς(θ ∧ Tn)‖w(θ ∧ Tn)‖2
)
ds. (3.66)

It follows from (3.63)-(3.66) that

E
(

sup
τ≤r≤t

ς(r ∧ Tn)‖w(r ∧ Tn)‖2
)
≤ c12

∫ t

τ

E
(

sup
τ≤θ≤s

ς(θ ∧ Tn)‖w(θ ∧ Tn)‖2
)
ds, ∀ t ∈ [τ, τ + T ],

where c12 = 2
(
C̃g̃1 + 1 + c11C̃g̃2 + C̃g̃2

)
. The Gronwall Lemma, together with 0 < ς ≤ 1, implies

E
(

sup
τ≤r≤t

‖w(r ∧ Tn)‖2
)

= 0, ∀ t ∈ [τ, τ + T ],

and thus,

u(r ∧ Tn) = v(r ∧ Tn), a.e., ω ∈ Ω.

Furthermore, by Markov’s inequality,

P (Tn < τ + T ) = P

(∫ t

τ

‖v(s)‖2D(A)ds ≥ n
)
≤

E
( ∫ t

τ
‖v(s)‖2D(A)ds

)
n

.

We infer from E
( ∫ t

τ
‖v(s)‖2D(A)ds

)
<∞ that Tn → τ +T as n→∞. Therefore, u(r) = v(r), a.e., ω ∈ Ω for all

r ≤ τ + T . The proof is concluded.

4. Stationary solutions and their stability results

In this section, we are concerned with existence, uniqueness and stability properties of the stationary solutions
to (1.1). For this end, we need to assume that f̃(t) ≡ f̃ ∈ (D(A))∗ (i.e. f(t) ≡ f ∈ H−1(O)), which is
independent of the time.

4.1. Existence and uniqueness of stationary solutions

We now consider the abstract equation associated to Eq. (1.1):
du

dt
+ Ãu(t) + B̃(u(t)) = f̃ + g̃1(t, ut) + g̃2(t, ut)

dW

dt
, ∀ t > 0,

u(t) = φ(t), t ∈ (−∞, 0].
(4.1)

We denote by u(t) := u(t;φ) the solution of (1.1) with τ = 0, where φ = u0.
By a stationary solution to (4.1), we mean a constant solution (in other words, an equilibrium point) of

(4.1). Therefore, u∞ ∈ D(A) will be a stationary solution if formally

Ãu∞ + B̃(u∞) = f̃ + g̃1(t, u∞) + g̃2(t, u∞)
dW

dt
, ∀ t ≥ 0. (4.2)

However, this equation depends on t and a noisy term. Therefore, we would need to assume that g̃1 and g̃2
would not depend on t, moreover, to get rid of the noise, we must assume that g̃2(t, u∞) = 0.

Consequently, we will focus on the existence of stationary solutions for the deterministic equation (i.e. g̃2 = 0
in (4.1)) which will be any u∞ ∈ D(A) such that

Ãu∞ + B̃(u∞) = f̃ + g̃1(t, u∞), ∀ t ≥ 0, (4.3)

and then analyze the behavior of the solutions to (4.1) around these stationary solutions of (4.3).
Now, in order to study the existence of solutions to (4.3), we have to restrict ourselves to assume that for

constant elements ξ ∈ Cγ(V ), g̃i(t, ξ) (i = 1, 2) can be rewritten as

g̃i(t, ξ) = G̃i(ξ∗) if ξ(s) = ξ∗,∀s ≤ 0, (4.4)
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where G̃1 : V → V with G̃1(0) = 0, G̃2 : V → L2(K,V ) with G̃2(0) = 0, they are Lipschitz continuous, that is,
there exist LG̃i > 0 (i = 1, 2), for all η, ζ ∈ V,

‖G̃1(η)− G̃1(ζ)‖ ≤ LG̃1‖η − ζ‖, (4.5)

‖G̃2(η)− G̃2(ζ)‖L2(K,V ) ≤ LG̃2‖η − ζ‖. (4.6)

For example, if g̃i (i = 1, 2) are driven by unbounded variable delay, defined by

g̃i(t, ξ) = G̃i(ξ(−h(t))), i = 1, 2, (4.7)

with G̃i satisfying conditions (4.4)-(4.6), where h ∈ C1([0,+∞)), h(t) ≥ 0 and h∗ = supt≥0 h
′(t) < 1. In this

case, the delay terms g̃i (i = 1, 2) in our problem become g̃i(t, ut) = G̃i(u(t− h(t))).
Another example is the case of infinite distributed delay, that is, the delay terms g̃i (i = 1, 2) are defined by

g̃i(t, ξ) =

∫ 0

−∞
H̃i(s, ξ(s))ds, (4.8)

where H̃1 : (−∞, 0] × V → V with H̃1(s, 0) = 0, and H̃2 : (−∞, 0] × V → L2(K,V ) with H̃2(s, 0) = 0 are
measurable, and they are Lipschitz continuous with respect to their second variable, that is, there exist LH̃i(s) ∈
L2(−∞, 0) (i = 1, 2) with LH̃i(·)e

−(γ+θ)· ∈ L2(−∞, 0), for certain θ > 0, such that for all s ∈ (−∞, 0], η, ζ ∈ V,

‖H̃1(s, η)− H̃1(s, ζ)‖ ≤ LH̃1
(s)‖η − ζ‖, (4.9)

‖H̃2(s, η)− H̃2(s, ζ)‖L2(K,V ) ≤ LH̃2
(s)‖η − ζ‖. (4.10)

In this case, we can rewrite the delay terms g̃i (i = 1, 2) in our problem as g̃i(t, ut) =
∫ 0

−∞ H̃i(s, u(t+ s))ds (i =
1, 2).

The above both situations are within our framework, the conditions (H1)-(H5) are fulfilled for the infinite
distributed delay in Cγ(V ) for γ > 0, but not necessarily for the unbounded variable delay. However, conditions
(H1)-(H5) are satisfied for both delays in C−∞(V ).

Now, we are interested in studying the existence and uniqueness of a stationary solution to Eq. (4.3).

Theorem 4.1. Assume that the above assumptions and notations hold. If λ̃1 > Lg̃1 , then:

(a) For all f̃ ∈ (D(A))∗, then there exists at least one stationary solution to (4.3), which belongs to D(A) if

f̃ ∈ V ;
(b) If (1− λ̃−11 Lg̃1)2 > c̃λ̃−11 ‖f̃‖, then the stationary solution to (4.3) is unique.

Proof. We can prove this result by using the same method as in [14, Theorem 10] (or [13, Lemma 3.2]), which
is based on the Lax-Milgram, the Schauder theorems. Therefore, we omit the details.

4.2. Local stability of stationary solutions

In this subsection, we will prove the local stability of stationary solutions to (4.3) for general delay terms
by using a direct method and then apply the abstract results to two specific situations.

Theorem 4.2. Suppose that the same hypotheses and notations in Theorem 3.4 and Theorem 4.1 hold. In
addition, let

2λ̃1 ≥
2c̃‖f̃‖

1− λ̃−11 Lg̃1
+ 2Cg̃1 + C2

g̃2
. (4.11)

If u(·) is any solution of Eq. (4.1), u∞ is the unique stationary solution of Eq. (4.3) and w(t) = u(t) − u∞,
then

E
(
‖w(t)‖2

)
≤ E

(
‖w(0)‖2

)
+ (Cg̃1 + C2

g̃2
)

∫ 0

−∞
E
(
‖φ(s)− u∞‖2

)
ds. (4.12)
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Proof. Applying Ito’s formula to ‖w(t)‖2, we obtain

‖w(t)‖2 = ‖w(0)‖2 + 2

∫ t

0

〈−Ãw(s)− B̃(u(s)) + B̃(u∞), w(s)〉ds

+ 2

∫ t

0

((
g̃1(s, us)− g̃1(s, u∞), w(s)

))
ds+ 2

∫ t

0

((
g̃2(s, us)− g̃2(s, u∞), w(s)

))
dW (s)

+

∫ t

0

‖g̃2(s, us)− g̃2(s, u∞)‖2L2(K,V )ds. (4.13)

Taking expectation of (4.13), thanks to Fubini’s theorem,

E
(
‖w(t)‖2

)
+ 2

∫ t

0

E
(
‖w(s)‖2D(A)

)
ds = E

(
‖w(0)‖2

)
− 2

∫ t

0

E
(
〈B̃(u(s))− B̃(u∞), w(s)〉

)
ds

+ 2E
(∫ t

0

((
g̃1(s, us)− g̃1(s, u∞), w(s)

))
ds

)
+

∫ t

0

E
(
‖g̃2(s, us)− g̃2(s, u∞)‖2L2(K,V )

)
ds. (4.14)

By (2.13), (B2) and (3.7), we deduce

−2

∫ t

0

E
(
〈B̃(u(s))− B̃(u∞), w(s)〉

)
ds = −2

∫ t

0

E
(
〈B̃(u∞, w(s)), w(s)〉

)
ds

≤ 2c̃

∫ t

0

E(‖u∞‖‖w(s)‖2D(A))ds

≤ 2c̃λ̃
− 1

2
1

∫ t

0

E(‖u∞‖D(A)‖w(s)‖2D(A))ds. (4.15)

By (2.13), (2.26) and (4.3), we find

‖u∞‖2D(A) = 〈Ãu∞, u∞〉

= ((f̃ , u∞)) + ((g̃1(t, u∞), u∞))

≤ λ̃−
1
2

1 ‖f̃‖‖u∞‖D(A) + λ̃−11 Lg̃1‖u∞‖2D(A), (4.16)

which, together with λ̃1 > Lg̃1 , implies that

‖u∞‖D(A) ≤
λ̃
− 1

2
1 ‖f̃‖

1− λ̃−11 Lg̃1
. (4.17)

Thanks to (4.16)-(4.17), we can rewrite (4.15) as

− 2

∫ t

0

E
(
〈B̃(u(s))− B̃(u∞), w(s)〉

)
ds ≤ 2c̃λ̃−11 ‖f̃‖

1− λ̃−11 Lg̃1

∫ t

0

E(‖w(s)‖2D(A))ds. (4.18)

We now estimate the last two terms of (4.14) respectively. On the one hand, by (H4), (2.13) and the Young
inequality, with ε0 > 0 to be specified later on, we deduce

2E
(∫ t

0

((
g̃1(s, us)− g̃1(s, u∞), w(s)

))
ds

)
≤ 2λ̃

− 1
2

1

∫ t

0

E
(
‖g̃1(s, us)− g̃1(s, u∞)‖‖w(s)‖D(A)

)
ds

≤ 1

ε0

∫ t

0

E
(
‖w(s)‖2D(A)

)
ds+ ε0λ̃

−1
1 C2

g̃1

∫ t

−∞
E
(
‖w(s)‖2

)
ds

≤ 1

ε0

∫ t

0

E
(
‖w(s)‖2D(A)

)
ds+ ε0λ̃

−1
1 C2

g̃1

(∫ 0

−∞
E
(
‖φ(s)− u∞‖2

)
ds

21



+ λ̃−11

∫ t

0

E
(
‖w(s)‖2D(A)

)
ds

)
. (4.19)

On the other hand, by (H4) and (2.13), we find∫ t

0

E
(
‖g̃2(s, us)− g̃2(s, u∞)‖2L2(K,V )

)
ds

≤ C2
g̃2

(∫ 0

−∞
E
(
‖φ(s)− u∞‖2

)
ds+ λ̃−11

∫ t

0

E
(
‖w(s)‖2D(A)

)
ds

)
. (4.20)

It follows from the above inequalities that

E
(
‖w(t)‖2

)
≤ E

(
‖w(0)‖2

)
+

(
2c̃λ̃−11 ‖f̃‖

1− λ̃−11 Lg̃1
+

1

ε0
+ ε0λ̃

−2
1 C2

g̃1
+ λ̃−11 C2

g̃2
− 2

)
×(∫ t

0

E
(
‖w(s)‖2D(A)

)
ds

)
+ (ε0λ̃

−1
1 C2

g̃1
+ C2

g̃2
)

∫ 0

−∞
E
(
‖φ(s)− u∞‖2

)
ds

≤ E
(
‖w(0)‖2

)
+ λ̃−11

(
2c̃‖f̃‖

1− λ̃−11 Lg̃1
+
λ̃1
ε0

+ ε0λ̃
−1
1 C2

g̃1
+ C2

g̃2
− 2λ̃1

)
×(∫ t

0

E
(
‖w(s)‖2D(A)

)
ds

)
+ (ε0λ̃

−1
1 C2

g̃1
+ C2

g̃2
)

∫ 0

−∞
E
(
‖φ(s)− u∞‖2

)
ds. (4.21)

In order to minimize the right-hand side of (4.21), we choose ε0 = λ̃1C
−1
g̃1

such that λ̃1

ε0
+ ε0λ̃

−1
1 C2

g̃1
achieves its

minimum value 2Cg̃1 . Then, by (4.11), we have (4.12) as desired.

In what follows, we will discuss the local stability of stationary solutions to (4.3) when the delay terms have
particular forms in C−∞(V ), and establish some sufficient conditions in the next corollaries. In this way, it is
much easier for us to check the conditions than (4.11) in practical application.

Corollary 4.3. Under the same hypotheses and notations in Theorem 3.4 and Theorem 4.1, let the delay terms
g̃i(t, ut) = G̃i(u(t− h(t)))(i = 1, 2) satisfy (4.5)-(4.7), moreover,

2λ̃1 ≥
2c̃‖f̃‖

1− λ̃−11 Lg̃1
+

2(1− h∗) 1
2LG̃1 + L2

G̃2
1− h∗

(4.22)

is satisfied. If u(·) is any solution of Eq. (4.1), u∞ is the unique stationary solution of Eq. (4.3) and w(t) =
u(t)− u∞, then

E
(
‖w(t)‖2

)
≤ E

(
‖w(0)‖2

)
+

(1− h∗) 1
2LG̃1 + L2

G̃2
1− h∗

∫ 0

−∞
E
(
‖φ(s)− u∞‖2

)
ds. (4.23)

Proof. Taking h̃ = s− h(s), we obtain ds = 1/(1− h′(s))dh̃ ≤ 1/(1− h∗)dh̃. Then, by (4.5), it follows∫ t

0

‖g̃1(s, us)− g̃1(s, vs)‖2ds =

∫ t

0

‖G̃1(u(s− h(s)))− G̃1(v(s− h(s)))‖2ds

≤ L2
G̃1

∫ t

0

‖u(s− h(s))− v(s− h(s))‖2ds

≤
L2
G̃1

1− h∗

∫ t

−∞
‖u(s)− v(s)‖2ds, (4.24)

Let Cg̃1 :=
LG̃1√
1−h∗ , we deduce that, there exists Cg̃1 > 0 such that the first inequality in (H4) holds. Similarly,

there exists Cg̃2 =
LG̃2√
1−h∗ > 0, such that the last one in (H4) holds. Thanks to (4.22), we find

2λ̃1 ≥
2c̃‖f̃‖

1− λ̃−11 Lg̃1
+

2(1− h∗) 1
2LG̃1 + L2

G̃2
1− h∗
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≥ 2c̃‖f̃‖
1− λ̃−11 Lg̃1

+ 2Cg̃1 + C2
g̃2
, (4.25)

which implies (4.11). Therefore, by Theorem 4.2, we obtain (4.12) as desired, and thus,

E
(
‖w(t)‖2

)
≤ E

(
‖w(0)‖2

)
+ (Cg̃1 + C2

g̃2
)

∫ 0

−∞
E
(
‖φ(s)− u∞‖2

)
ds

≤ E
(
‖w(0)‖2

)
+

(1− h∗) 1
2LG̃1 + L2

G̃2
1− h∗

∫ 0

−∞
E
(
‖φ(s)− u∞‖2

)
ds. (4.26)

The proof is concluded.

Corollary 4.4. Assume that the same hypotheses and notations in Theorem 3.4 and Theorem 4.1 hold. Let

the delay terms g̃i(t, ut) =
∫ 0

−∞ H̃i(s, u(t+ s))ds (i = 1, 2) satisfy (4.8)-(4.10), moreover,

2λ̃1 ≥
2c̃‖f̃‖

1− λ̃−11 Lg̃1
+ 2‖LH̃1

‖L2(−∞,0) + ‖LH̃2
‖2L2(−∞,0) (4.27)

holds. If u(·) is any solution of Eq. (4.1), u∞ is the unique stationary solution of Eq. (4.3) and w(t) = u(t)−u∞,
then

E
(
‖w(t)‖2

)
≤ E

(
‖w(0)‖2

)
+
(
‖LH̃1

‖L2(−∞,0) + ‖LH̃2
‖2L2(−∞,0)

)∫ 0

−∞
E
(
‖φ(s)− u∞‖2

)
ds. (4.28)

Proof. The proof is similar to the one of Corollary 4.3. It follows from (4.9) and (4.10) that there exist
Cg̃i = ‖LH̃i‖L2(−∞,0) > 0 (i = 1, 2) such that (H4) hold, and then by (4.27), we obtain (4.11). By Theorem
4.2, we deduce (4.28) as desired.

Remark 4.5. In the case of infinite distributed delay, we can prove not only stability of stationary solutions in
C−∞(V ) (see Corollary 4.4) even in Cγ(V ), but also their exponential asymptotic stability will be established
as follows.

4.3. Exponential convergence of stationary solutions

Under suitable assumptions, we prove that the solution u(t) to problem (4.1) with infinite distributed delay
converges exponentially to the unique stationary solution u∞ of Eq. (4.3) in Cγ(V ) for γ > 0.

Theorem 4.6. Assume that the same hypotheses and notations in Theorem 3.4 and Theorem 4.1 hold. Let the

delay terms g̃i(t, ut) =
∫ 0

−∞ H̃i(s, u(t+s))ds (i = 1, 2) satisfy (4.9)-(4.10), and moreover, there exists a constant
0 < ρ < 2γ such that for all t ≥ 0,

2λ̃1 ≥
2c̃‖f̃‖

1− λ̃−11 Lg̃1
+ 2(2ρ)−

1
2 ‖LH̃1

(·)e−(γ+ρ)·‖L2(−∞,0) +
1

2ρ
‖LH̃2

(·)e−(γ+ρ)·‖2L2(−∞,0) + ρ (4.29)

is satisfied. If u(·) is any solution of Eq. (4.1), u∞ is the unique stationary solution of Eq. (4.3) and w(t) =
u(t)− u∞, then

E
(
‖w(t)‖2

)
≤ e−ρt

(
1 +

1

2ρ(2γ − ρ)

(
(2ρ)

1
2 ‖LH̃1

(·)e−(γ+ρ)·‖L2(−∞,0)

+ ‖LH̃2
(·)e−(γ+ρ)·‖2L2(−∞,0)

))
E
(
‖φ− u∞‖2Cγ(V )

)
, (4.30)

and

E
(
‖wt‖2Cγ(V )

)
≤ e−ρt

(
2 +

1

2ρ(2γ − ρ)

(
(2ρ)

1
2 ‖LH̃1

(·)e−(γ+ρ)·‖L2(−∞,0)

+ ‖LH̃2
(·)e−(γ+ρ)·‖2L2(−∞,0)

))
E
(
‖φ− u∞‖2Cγ(V )

)
. (4.31)
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Proof. Applying Ito’s formula to eρt‖w(t)‖2 with 0 < ρ < 2γ, we find, for all t ≥ 0,

eρt‖w(t)‖2 = ‖w(0)‖2 + ρ

∫ t

0

eρs‖w(s)‖2ds

+ 2

∫ t

0

eρs〈−Ã(w(s))− B̃(u(s)) + B̃(u∞), w(s)〉ds

+ 2

∫ t

0

eρs
((∫ 0

−∞

(
H̃1(r, u(s+ r))− H̃1(r, u∞)

)
dr, w(s)

))
ds

+

∫ t

0

eρs
∥∥∥∫ 0

−∞

(
H̃2(r, u(s+ r))− H̃2(r, u∞)

)
dr
∥∥∥2
L2(K,V )

ds

+ 2

∫ t

0

eρs
((

w(s),
(∫ 0

−∞
H̃2(r, u(s+ r))− H̃2(r, u∞)dr

)
dW

))
. (4.32)

Taking expectation of (4.32), then using (2.13), we obtain

E
(
eρt‖w(t)‖2

)
+ 2

∫ t

0

E
(
eρs‖w(s)‖2D(A)

)
ds

≤ E
(
‖φ− u∞‖2Cγ(V )

)
+ ρλ̃−11

∫ t

0

E
(
eρs‖w(s)‖2D(A)

)
ds

− 2

∫ t

0

E
(
eρs〈B̃(u(s))− B̃(u∞), w(s)〉

)
ds

+ 2E
(∫ t

0

eρs
((∫ 0

−∞

(
H̃1(r, u(s+ r))− H̃1(r, u∞)

)
dr, w(s)

))
ds

)
+ E

(∫ t

0

eρs
∥∥∥ ∫ 0

−∞

(
H̃2(r, u(s+ r))− H̃2(r, u∞)

)
dr
∥∥∥2
L2(K,V )

ds

)
. (4.33)

Thanks to (4.18), we deduce

−2

∫ t

0

E
(
eρs〈B̃(u(s))− B̃(u∞), w(s)〉

)
ds ≤ 2c̃λ̃−11 ‖f̃‖

1− λ̃−11 Lg̃1

∫ t

0

E
(
eρs‖w(s)‖2D(A)

)
ds. (4.34)

By (2.13), (4.9) and the Young inequality with ε̂ > 0 to be specified later on, the fourth line of (4.33) is bounded
by

2E
(∫ t

0

eρs
((∫ 0

−∞

(
H̃1(r, u(s+ r))− H̃1(r, u∞)

)
dr, w(s)

))
ds

)
≤ 2λ̃

− 1
2

1 E
(∫ t

0

eρs
(∫ 0

−∞
LH̃1

(r)‖w(s+ r)‖dr
)
· ‖w(s)‖D(A)ds

)
≤ ε̂λ̃−11 E

(∫ t

0

eρs
(∫ 0

−∞
LH̃1

(r)‖w(s+ r)‖dr
)2
ds

)
+

1

ε̂
E
(∫ t

0

eρs‖w(s)‖2D(A)ds

)
=: ε̂λ̃−11 I +

1

ε̂
E
(∫ t

0

eρs‖w(s)‖2D(A)ds

)
, (4.35)

where I is estimated as follows. By the Hölder inequality,

I = E
(∫ t

0

eρs
(∫ 0

−∞
LH̃1

(r)‖w(s+ r)‖dr
)2
ds

)
≤ E

(∫ t

0

eρs
(∫ 0

−∞
LH̃1

(r)e−γr‖ws‖Cγ(V )dr
)2
ds

)
= E

(∫ t

0

eρs‖ws‖2Cγ(V )

(∫ 0

−∞
LH̃1

(r)e−(γ+ρ)reρrdr
)2
ds

)
≤ E

(∫ t

0

eρs‖ws‖2Cγ(V )

(∫ 0

−∞
L2
H̃1

(r)e−2(γ+ρ)rdr

∫ 0

−∞
e2ρrdr

)
ds

)
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≤ 1

2ρ
‖LH̃1

(·)e−(γ+ρ)·‖2L2(−∞,0)E
(∫ t

0

eρs‖ws‖2Cγ(V )ds

)
≤ 1

2ρ
‖LH̃1

(·)e−(γ+ρ)·‖2L2(−∞,0)×

E

(∫ t

0

eρs max

{
sup
θ≤−s

e2γθ‖w(s+ θ)‖2, sup
θ∈[−s,0]

e2γθ‖w(s+ θ)‖2
}
ds

)

≤ 1

2ρ
‖LH̃1

(·)e−(γ+ρ)·‖2L2(−∞,0)E

(∫ t

0

(
e−(2γ−ρ)s‖φ− u∞‖2Cγ(V )

+ λ̃−11 sup
θ∈[−s,0]

e(2γ−ρ)θeρ(s+θ)‖w(s+ θ)‖2D(A)

)
ds

)
. (4.36)

Thanks to (4.10), we obtain the following result by using the same method in (4.36):

E
(∫ t

0

eρs
∥∥∥∫ 0

−∞

(
H̃2(r, u(s+ r))− H̃2(r, u∞)

)
dr
∥∥∥2
L2(K,V )

ds

)
≤ E

(∫ t

0

eρs
(∫ 0

−∞
LH̃2

(r)‖w(s+ r)‖dr
)2
ds

)
≤ E

(∫ t

0

eρs
(∫ 0

−∞
LH̃2

(r)e−γr‖ws‖Cγ(V )dr
)2
ds

)
≤ 1

2ρ
‖LH̃2

(·)e−(γ+ρ)·‖2L2(−∞,0)E

(∫ t

0

(
e−(2γ−ρ)s‖φ− u∞‖2Cγ(V )

+ λ̃−11 sup
θ∈[−s,0]

e(2γ−ρ)θeρ(s+θ)‖w(s+ θ)‖2D(A)

)
ds

)
. (4.37)

Substituting (4.34)-(4.37) into (4.33), then by 0 < ρ < 2γ, we have

E
(
eρt‖w(t)‖2

)
≤ E

(
‖φ− u∞‖2Cγ(V )

)
+ λ̃−11

(
2c̃‖f̃‖

1− λ̃−11 Lg̃1
+

ε̂

2ρλ̃1
‖LH̃1

(·)e−(γ+ρ)·‖2L2(−∞,0) +
λ̃1
ε̂

+
1

2ρ
‖LH̃2

(·)e−(γ+ρ)·‖2L2(−∞,0) + ρ− 2λ̃1

)∫ t

0

E
(

max
r∈[0,s]

{eρr‖w(r)‖2D(A)}
)
ds

+
1

2ρ

(
ε̂λ̃−11 ‖LH̃1

(·)e−(γ+ρ)·‖2L2(−∞,0) + ‖LH̃2
(·)e−(γ+ρ)·‖2L2(−∞,0)

)
×

E
(
‖φ− u∞‖2Cγ(V )

)∫ t

0

e−(2γ−ρ)sds. (4.38)

Notice that

min
ε̂>0

{ ε̂

2ρλ̃1
‖LH̃1

(·)e−(γ+ρ)·‖2L2(−∞,0) +
λ̃1
ε̂

}
= 2(2ρ)−

1
2 ‖LH̃1

(·)e−(γ+ρ)·‖L2(−∞,0), (4.39)

which is achieved by ε̂ = (2ρ)
1
2 λ̃1‖LH̃1

(·)e−(γ+ρ)·‖−1L2(−∞,0). Then, we infer from (4.38), (4.39) and (4.29) that

(4.30) holds.
By (4.30), and by 0 < ρ < 2γ, and thus e(2γ−ρ)θ ≤ 1 when θ ≤ 0, we find, for all t ≥ 0,

E
(
‖wt‖2Cγ(V )

)
= E

(
sup
θ≤0

e2γθ‖w(t+ θ)‖2
)

= E
(

max
{

sup
θ∈(−∞,−t]

e2γθ‖φ(t+ θ)− u∞‖2, sup
θ∈[−t,0]

e2γθ‖w(t+ θ)‖2
})

= E
(

max
{
e−2γt‖φ− u∞‖2Cγ(V ), sup

θ∈[−t,0]
e2γθ‖w(t+ θ)‖2

})
≤ max

{
e−ρtE

(
‖φ− u∞‖2Cγ(V )

)
, e−ρt

(
1 +

1

2ρ(2γ − ρ)

(
(2ρ)

1
2 ‖LH̃1

(·)e−(γ+ρ)·‖L2(−∞,0)
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+ ‖LH̃2
(·)e−(γ+ρ)·‖2L2(−∞,0)

))
E
(
‖φ− u∞‖2Cγ(V )

)}
≤ e−ρt

(
2 +

1

2ρ(2γ − ρ)

(
(2ρ)

1
2 ‖LH̃1

(·)e−(γ+ρ)·‖L2(−∞,0)

+ ‖LH̃2
(·)e−(γ+ρ)·‖2L2(−∞,0)

))
E
(
‖φ− u∞‖2Cγ(V )

)
. (4.40)

Therefore, the proof is complete.

Remark 4.7. In Section 4.2, we only analyzed the stability (rather than asymptotic stability) in the case of
unbounded variable delay and proved in the current subsection the exponential stability in the particular case
of distributed delay in Cγ(V ). Therefore, next, we are interested in studying the asymptotic stability for such
variable delay in C−∞(V ). More precisely, on the one hand, we will prove the asymptotic stability by the
method of Lyapunov functionals construction. On the other hand, we will prove the polynomial asymptotic
stability with proportional delay, which is a particular case of unbounded variable delay.

4.4. Asymptotic stability: the Lyapunov functional method

In this subsection, we first investigate the asymptotic stability of the trivial solution of the following abstract
nonlinear stochastic partial functional differential systems by constructing suitable Lyapunov functionals. In
the last part of this subsection, we will apply the abstract results to Eq. (1.1).

Now, we consider the following problem:{
du(t) = (Â(t, u(t)) + F̂1(t, ut))dt+ F̂2(t, ut)dW (t), ∀ t ∈ [0, T ],

u(t) = φ(t), t ∈ (−∞, 0],
(4.41)

where Â(t, ·) : D(A) → (D(A))∗ satisfies 〈Â(t, u), u〉 ≤ 0, for all u ∈ D(A), F̂1(t, ·) : C−∞(V ) → V and
F̂2(t, ·) : C−∞(V ) → L2(K,V ) satisfy the following conditions: F̂1(t, 0) = F̂2(t, 0) = 0 and they are Lipschitz
continuous, that is, there exist LF̂i > 0 (i = 1, 2) such that for all t ≥ 0 and η, ζ ∈ C−∞(V ),

‖F̂1(t, η)− F̂1(t, ζ)‖ ≤ LF̂1
‖η − ζ‖C−∞(V ),

‖F̂2(t, η)− F̂2(t, ζ)‖L2(K,V ) ≤ LF̂2
‖η − ζ‖C−∞(V ). (4.42)

By the similar estimates as in Section 3, the well-posedness of (4.41) can be proved. Fixed T > 0 and
given an initial value φ ∈ L2(Ω, C−∞(V )), a solution to (4.41) is a stochastic process u ∈ I2(0, T ;D(A)) ∩
L2(Ω, L∞(0, T ;V )) satisfying

u(t) = φ(0) +

∫ t

0

Â(s, u(s))ds+

∫ t

0

F̂1(s, us))ds

+

∫ t

0

F̂2(s, us)dW (s), P − a.s., ∀ t ∈ [0, T ],

u(t) = φ(t), t ∈ (−∞, 0],

(4.43)

where the first equation is understood in (D(A))∗.
We denote by u(·;φ) the solution of Eq. (4.41) corresponding to the initial condition φ.

Definition 4.8. The trivial solution of Eq. (4.41) is said to be p-stable, with p > 0, if for any ε > 0,
there exists δ > 0 such that E(‖u(t;φ)‖p) < ε, for all t ≥ 0, provided that ‖φ‖p1 := supθ≤0 E(‖φ(θ)‖p) < δ.
If, besides, limt→+∞ E(‖u(t;φ)‖p) = 0 for every initial function φ, then the trivial solution of Eq. (4.41) is
called asymptotically p-stable. In particular, if p = 2, then the trivial solution of the system (4.41) is called
asymptotically mean square stable.

Consider the stochastic differential of the process η(t) = x(t, u(t)), where u(t) is a solution of the system
(4.41) and the function x : [0,∞)×D(A)→ R+ has continuous partial derivatives:

x′t =
∂x(t, u)

∂t
, x′u =

∂x(t, u)

∂u
, x′′uu =

∂2x(t, u)

∂u2
.
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Applying Ito’s formula to η(t) we obtain

dη(t) = Lx(t, u(t))dt+ 〈x′u, F̂2(t, ut)dW (t)〉, (4.44)

where 〈·, ·〉 denotes inner products in Hilbert spaces, and L is called the generator of Eq. (4.41), defined by

Lx(t, ut) = x′t(t, u(t)) + 〈x′u(t, u(t)), Â(t, u(t)) + F̂1(t, ut)〉+
1

2
tr
(
x′′uu(t, u(t))F̂2(t, ut)QF̂

∗
2 (t, ut)

)
.

We then apply the generator L to some functionals U(t, ξ) : [0,∞) × L2(Ω, C−∞(V )) → R+. In addition,
assume that U(t, ξ) = U(t, ξ(0), ξ(θ)), θ < 0, and for ξ = ut, then set

Uξ(t, u) = U(t, ξ) = U(t, ut) = U(t, u, u(t+ θ)), θ < 0,

u = ξ(0) = u(t). (4.45)

Let D be the universe of functionals which satisfy conditions (4.45). Any functional Uξ(t, u) ∈ D has a
continuous derivative with respect to t and two continuous derivatives with regard to u. Then,

LU(t, ut) =
∂Uξ(t, u(t))

∂t
+
〈∂Uξ(t, u(t))

∂u
, Â(t, u(t)) + F̂1(t, ut)

〉
+

1

2
tr
(∂2Uξ(t, u(t))

∂u2
F̂2(t, ut)QF̂

∗
2 (t, ut)

)
.

Thanks to Ito’s formula, we obtain, for functionals from D,

E
(
U(t, ut)− U(s, us)

)
=

∫ t

s

E
(
LU(r, ur)

)
dr, t ≥ s. (4.46)

In the next proposition, we generalize the idea of Shaikhet in [38, Theorem 2.1] to the infinite delay version
of stochastic partial differential equations. Let us now prove the following result which plays an important role
in our stability investigation.

Proposition 4.9. Suppose that there exists a continuous functional U(t, ξ) : [0,∞) × Lp(Ω, C−∞(V )) → R+

such that for the solution u(t) of problem (4.41) and p ≥ 2, the following inequalities hold for some positive
constants µ1, µ2 and µ3,

E(U(t, ut)) ≥ µ1E(‖u(t)‖p), ∀ t ≥ 0,

E(U(0, φ)) ≤ µ2‖φ‖p1,

E(U(t, ut)− U(0, φ)) ≤ −µ3

∫ t

0

E(‖u(s)‖p)ds, ∀ t ≥ 0. (4.47)

Then the trivial solution of equation (4.41) is asymptotically p-stable, that is,

lim
t→+∞

E(‖u(t)‖p) = 0. (4.48)

Proof. We infer from (4.47) that

µ1E(‖u(t)‖p) ≤ E(U(t, ut)) ≤ E(U(0, φ)) ≤ µ2‖φ‖p1 = µ2 sup
θ≤0

E(‖φ(θ)‖p), (4.49)

which proves the trivial solution of equation (4.41) is p-stable. Taking supremum of (4.49) with respect to t,
we find

sup
t≥0

E(‖u(t)‖p) ≤ µ2

µ1
‖φ‖p1. (4.50)

Thanks to the last two lines of (4.47), we obtain∫ ∞
0

E(‖u(s)‖p)ds ≤ 1

µ3
E(U(0, φ)) ≤ µ2

µ3
‖φ‖p1 <∞. (4.51)
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Applying the generator L to the function U(t, ut) = ‖u(t)‖p, by the Young inequality and (4.42), we have

LU(t, ut) = L‖u(t)‖p = p‖u‖p−2〈Â(u), u〉+ p‖u‖p−2((F̂1(t, ut), u))

+
p

2
‖u(t)‖p−2‖F̂2(t, ut)‖2L2(K,V ) +

p(p− 2)

2
‖u(t)‖p−2‖F̂2(t, ut)‖2L2(K,V )

≤ p‖u‖p−2((F̂1(t, ut), u)) +
p(p− 1)

2
‖u(t)‖p−2‖F̂2(t, ut)‖2L2(K,V )

≤ p‖u‖p−2(‖F̂1(t, ut)‖ · ‖u‖) +
p(p− 1)

2
‖u(t)‖p−2‖F̂2(t, ut)‖2L2(K,V )

≤ p

2
‖u(t)‖p +

p

2
L2
F̂1
‖u(t)‖p−2‖ut‖2C−∞(V ) +

p(p− 1)

2
L2
F̂2
‖u(t)‖p−2‖ut‖2C−∞(V )

=
p

2
‖u(t)‖p + ĉ1‖u(t)‖p−2‖ut‖2C−∞(V )

≤
(p

2
+ ĉ2

)
‖u(t)‖p + ĉ3‖ut‖pC−∞(V )

≤
(p

2
+ ĉ2 + ĉ3

)
‖ut‖pC−∞(V ) =: ĉ4‖ut‖pC−∞(V ), (4.52)

where ĉ1 = p
2L

2
F̂1

+ p(p−1)
2 L2

F̂2
, ĉ2 = ĉ1(p−2)

p and ĉ3 = 2ĉ1
p . The above inequality implies

E(LU(t, ut)) ≤ ĉ4E(‖ut‖pC−∞(V )) =: ĉ5 <∞. (4.53)

Combining (4.46) and (4.53) , we obtain, for any t ≥ s ≥ 0,∣∣E(‖u(t)‖p)− E(‖u(s)‖p)
∣∣ ≤ ĉ5(t− s), (4.54)

which implies that E(|u(r)|p) is Lipschitz continuous, together with (4.50) and (4.51), shows that E(‖u(t)‖p)→ 0
as t→ +∞. This completes the proof.

We state our asymptotic stability result by applying the previous abstract results to our model in the next
theorem.

Theorem 4.10. Assume that the same hypotheses and notations in Theorem 3.4 and Theorem 4.1 hold. In
addition, let the delay terms g̃i(t, ut) = G̃i(u(t− h(t)))(i = 1, 2) satisfy (4.5)-(4.7), f̃ = 0 and

2λ̃1 ≥
2(1− h∗) 1

2LG̃1 + L2
G̃2

1− h∗
. (4.55)

Then u∞ = 0 is the unique stationary solution to problem (4.3). Moreover, the trivial solution of (4.1) is
asymptotically mean square stable.

Proof. We first infer from the assumption f̃ = 0 and Theorem 4.1 that u∞ = 0 is the unique stationary solution
to Eq. (4.3). We then let

U(t, ξ) = ‖ξ(0)‖2 +
(1− h∗) 1

2LG̃1 + L2
G̃2

1− h∗

∫ 0

−h(t)
‖ξ(s)‖2ds, (4.56)

if ξ is replaced by ut, then

U(t, ut) = ‖u(t)‖2 +
(1− h∗) 1

2LG̃1 + L2
G̃2

1− h∗

∫ t

t−h(t)
‖u(s)‖2ds, (4.57)

and then let Â(t, u) = −Ãu(t)− B̃(u(t)), F̂1(t, ut) = g̃1(t, ut) = G̃1(u(t− h(t))), F̂2(t, ut) = g̃2(t, ut) = G̃2(u(t−
h(t))) in (4.41), by (2.11), (2.13), (4.5) and (4.6), we obtain

L‖u(t)‖2 = 2〈−Ã(u)− B̃(u), u〉+ 2((G̃1(u(t− h(t))), u)) + ‖G̃2(u(t− h(t)))‖2L2(K,V )

≤ −2‖u‖2D(A) + 2‖G̃1(u(t− h(t)))‖‖u‖+ L2
G̃2
‖u(t− h(t))‖2
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≤ −2λ̃1‖u‖2 +
(1− h∗) 1

2LG̃1
(1− h∗)

‖u‖2 + (1− h∗) 1
2LG̃1‖u(t− h(t))‖2 + L2

G̃2
‖u(t− h(t))‖2

=
(
− 2λ̃1 +

(1− h∗) 1
2LG̃1

(1− h∗)

)
‖u‖2 +

(
(1− h∗) 1

2LG̃1 + L2
G̃2

)
‖u(t− h(t))‖2, (4.58)

then

LU(t, ut) = L

(
‖u(t)‖2 +

(1− h∗) 1
2LG̃1 + L2

G̃2
1− h∗

∫ t

t−h(t)
‖u(s)‖2ds

)

≤ L‖u(t)‖2 +
(1− h∗) 1

2LG̃1 + L2
G̃2

1− h∗
‖u(t)‖2 −

(
(1− h∗) 1

2LG̃1 + L2
G̃2

)
‖u(t− h(t))‖2

≤
(
− 2λ̃1 +

2(1− h∗) 1
2LG̃1 + L2

G̃2
1− h∗

)
‖u(t)‖2, (4.59)

which, on account of (4.55), implies LU(t, ut) ≤ 0. Moreover, the functional U(t, ut) defined in (4.57) satisfies
the conditions in Proposition 4.9, and thus the trivial solution of (4.1) is asymptotically mean square stable in
the sense of Definition 4.8.

Remark 4.11. By using the method of Lyapunov functionals construction, we obtain the asymptotic stability
of the trivial solution to (4.1) with unbounded variable delay. Notice that condition (4.55) becomes exactly
condition (4.22) when f̃ = 0. Therefore, Theorem 4.10 ensures asymptotic stability under the same sufficient
conditions which ensures only stability in Corollary 4.3, which means that the construction of Lyapunov func-
tionals may provide better stability results. Furthermore, our analysis is also valid to study the asymptotic
stability for the general case, that is, if the stationary solution is not the origin, in this case, we can shift it to
the origin by a coordinate transformation.

4.5. Polynomial asymptotic stability for a particular case of unbounded variable delay

In this subsection, we study the polynomial asymptotic behaviour of solutions to deterministic pantograph
equations. In the particular case of proportional delay, we not only prove asymptotic stability but we can
determine that the rate of convergence is at least polynomial. Now, let us consider the following deterministic
pantograph equation: {

X ′(t) = a1X(t) + a2X(θt), ∀ t ≥ 0,

X(0) = X0,
(4.60)

where a1, a2 ∈ R, and θ ∈ (0, 1).
Recall that the Dini derivative D+F , where F is a continuous real-valued function of a real variable defined

by

D+F = lim sup
δ↓0

F (t+ δ)− F (t)

δ
.

Thanks to [2, Lemma 3.4], we present the following result which is useful to obtain the polynomial asymptotic
stability of stationary solutions to (4.60).

Lemma 4.12. Let a1 ∈ R, a2 > 0 and θ ∈ (0, 1). Assume that X satisfies (4.60) with X0 > 0. If there exists a
continuous non-negative function t 7→ Y (t) : R+ 7→ R+,

D+Y (t) ≤ a1Y (t) + a2Y (θt), t ≥ 0 (4.61)

with 0 < Y (0) < X0, then Y (t) ≤ X(t) for all t ≥ 0.

Lemma 4.13. Assume that X is the solution of (4.60). If a1 < 0 and a2 ∈ R, there exists a constant
M0 = M0(a1, a2, θ) > 0,

lim sup
t→+∞

|X(t)|
tβ

= M0|X0|, (4.62)
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where β ∈ R satisfies

a1 + |a2|θβ = 0. (4.63)

Then, for some M = M(a1, a2, θ) > 0,

|X(t)| ≤M |X0|(1 + t)β , t ≥ 0. (4.64)

Proof. The proof is similar to [2, Lemma 3.5], thus the details are omitted here.

Note that the polynomial asymptotic stability of the trivial solution to (4.60) is presented in the above
Lemma when β < 0. In the following, we apply the idea to derive the polynomial asymptotic stability of
stationary solution to (4.1).

Theorem 4.14. Assume that the same hypotheses and notations in Theorem 3.4 and Theorem 4.1 hold. In
addition, let the system (4.1) satisfy f̃ = 0, the delay terms g̃i(t, ut) = Lg̃iu(θt) (i = 1, 2) with θ ∈ (0, 1) and

2λ̃1 > 2|Lg̃1 | + L2
g̃2

, then the origin is the unique stationary solution of Eq. (4.3), moreover, any solution u(t)

of Eq. (4.1) converges to zero polynomially, that is, there exist M̃ = M̃(Lg̃1 , Lg̃2 , λ̃1, θ) > 0 and β < 0,

E(‖u(t;φ)‖2) ≤ M̃E(‖φ‖2C−∞(V ))(1 + t)β , t ≥ 0, (4.65)

where β satisfies −2λ̃1 + |Lg̃1 |+ (|Lg̃1 |+ L2
g̃2

)θβ = 0.

Proof. The conclusion that the origin is the unique stationary solution of Eq. (4.3) follows from f̃ = 0 and
Theorem 4.1. Applying Ito’s formula to ‖u(t)‖2, then taking expectation, we obtain

E(‖u(t)‖2)− E(‖u(0)‖2)

≤ −2E
(∫ t

0

‖u(s)‖2D(A)ds
)

+ |Lg̃1 |E
(∫ t

0

‖u(s)‖2ds
)

+ (|Lg̃1 |+ L2
g̃2

)E
(∫ t

0

‖u(θs)‖2ds
)

≤ (−2λ̃1 + |Lg̃1 |)E
(∫ t

0

‖u(s)‖2ds
)

+ (|Lg̃1 |+ L2
g̃2

)E
(∫ t

0

‖u(θs)‖2ds
)
, ∀ t > 0,

where we used (2.13). Let v(t) = E(‖u(t)‖2), then

v′(t) ≤ (−2λ̃1 + |Lg̃1 |)v(t) + (|Lg̃1 |+ L2
g̃2

)v(θt). (4.66)

By Lemmas 4.12-4.13, we obtain that there exist M̃ = M̃(Lg̃1 , Lg̃2 , λ̃1, θ) > 0 and β ∈ R,

v(t) ≤ M̃v(0)(1 + t)β . (4.67)

Since −2λ̃1 + 2|Lg̃1 |+ L2
g̃2
< 0, we deduce β < 0 and

E(‖u(t)‖2) ≤ M̃E(‖φ‖2)(1 + t)β ≤ M̃E(‖φ‖2C−∞(V ))(1 + t)β .

The proof is complete.

Remark 4.15. As a matter of fact, we can take into account a more general case in the form of g̃i(t, ξ) =

G̃i(ξ(−(1− θ)t)), where G̃i(·) is Lipschitz continuous.

5. Conclusion

On the one hand, we proved some results on the existence and uniqueness of the solutions for a stochastic
three-dimensional Lagrangian-averaged Navier-Stokes model with infinite delay. On the other hand, the stability
and asymptotic stability of stationary solutions are established. We first proved the local stability of stationary
solutions for general delay terms by using a direct method. It is worth mentioning that all conditions are
general enough to include several kinds of delays, where we mainly consider unbounded variable delays and
infinite distributed delays. As we know, it is still an open and challenging problem to obtain sufficient conditions
ensuring the exponential stability of solutions in case of unbounded variable delay. Fortunately, we obtained
the exponential stability of stationary solutions in the case of infinite distributed delay. However, we are able
to further investigate the asymptotic ability of stationary solutions in the case of unbounded variable delay
by constructing suitable Lyapunov functionals. Besides, we proved the polynomial asymptotic stability of
stationary solutions for the particular case of proportional delay.
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