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Abstract. This paper is mainly concerned with a kind of fractional stochastic evolution equa-
tions driven by Lévy noise in a bounded domain. We first state the well-posedness of the problem via
iterative approximations and energy estimates. Then, the existence and uniqueness of weak pullback
mean random attractors for the equations are established by defining a mean random dynamical sys-
tem. Next, we prove the existence of invariant measures when the problem is autonomous by means
of the fact that H7Y(O) is compactly embedded in L?(O) with v € (0,1). Moreover, the unique-
ness of this invariant measure is presented, which ensures the ergodicity of the problem. Finally, a
large deviation principle result for solutions of stochastic PDEs perturbed by small Lévy noise and
Brownian motion is obtained by a variational formula for positive functionals of a Poisson random
measure and Brownian motion. Additionally, the results are illustrated by the fractional stochastic
Chafee—Infante equations.
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1. Introduction. In this paper, we consider the following fractional stochastic
PDEs driven by Lévy noise and Brownian motion:

du(t) + (=A) u(t)dt + f(u(t))dt = g(t,u(t))dW(t)

(1.1) */EM““—),@N(dt,dgx in O x (r,00),
u(t,z) =0, on 80 x (7,00),
u(r, @) =uo(@), in O,

where O C R? (d > 1) is a bounded domain with smooth boundary, 7 € R, the
operator (—A)7 with v € (0,1) is the so-called fractional Laplacian, f: R — R is a
polynomial of odd degree with positive leading coefficient, and the functions g(¢,u)
and h(u, &) satisfy some conditions which will be specified later. We consider problem
(1.1) with respect to a given stochastic basis (2, F,{F:}ter, P, W, N) and a Hilbert
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space U, where W is a two-sided U-valued cylindrical Wiener process and N is a
Poisson measure induced by a stationary JF;-Poisson point process on (7,7] x E with
a o-finite intensity measure Ly_, ® A, Lr_, is the Lebesgue measure on (7,7] and A
is a o-finite measure on a measurable space E, and N (dt,d¢) := N(dt,d¢) — \(d€)dt
is the compensated Poisson random measure. Assume W and N are independent.

Stochastic PDEs arise in many different fields since stochastic perturbations orig-
inated from many natural sources cannot be ignored in a realistic modeling. In recent
decades, stochastic PDEs driven by Brownian motion have been extensively studied
theoretically [31, 53], concerning well-posedness, existence of stationary solutions, sto-
chastic attractors, and invariant measures. However, the fact that forcing terms may
be treated stochastically does not mean that details of the stochastic treatment are
arbitrary [37]. In fact, it turns out that a process not only may be Gaussian but also
can exhibit skew, fat tails, and other properties usually associated with more exotic
types of stochastic phenomena, such as non-Gaussian Lévy noise. For example, they
have been used to develop models for neuronal activity that account for synaptic
impulses occurring randomly, both in time and at different locations of a spatially
extended neuron. Other applications arise in chemical reaction-diffusion systems and
stochastic turbulence models [22, 33, 56].

The fractional Laplacian operator, which is written as (—A)7 with v € (0,1), has
multiple equivalent characterizations [40, 42]. In the present paper, we will mainly
adopt the nonlocal one (see (2.1)). Although the eigenfunctions of (—A)Y are not
smooth in the sense that they are just Holder continuous up to the boundary of O
but not Lipschitz continuous, it is possible to construct a continuous operator A which
involves (—A)Y (see (2.12)). By means of the fact that W72(0) is compactly em-
bedded in L?(0Q) and the Hilbert-Schmidt theorem, we can find the eigenfunctions
e; (j €N) of A which form an orthonormal basis of L?(O) with corresponding eigen-
valuess 0 < A\ < Ay <--- = 00 (Aej = \Aje;j). Moreover, the domain of A" is denoted
by D(A") which is equipped with the norm |jul|p(ary = ||A"ul|z2(0) for u € D(A").
Notice that {e;/A}} is a complete orthonormal system of D(A"). By the Riesz rep-
resentation theorem, D(A~") is the dual space of D(A"). In this way, we know that
D(A") is continuously embedded into LP(O) as long as r is large enough [46].

Nonlocal or memory effects are ubiquitous in physics and engineering [3, 44, 45].
Therefore, evolutionary equations with fractional Laplacian operator can be used to
model these nonlocal effects (see [1, 12, 14, 20, 23, 49, 50, 51] and the references
therein). Particularly, the solutions and their dynamics of fractional PDEs have been
extensively studied by a great many researchers; see [22, 24, 32, 41, 46] and the
references therein.

Consequently, it is meaningful to study the dynamics of problem (1.1). To
be precise, the first goal of this paper is to analyze the well-posedness of (1.1) in
LA(Q;D([r, T]; L*(RY))) N L2(Q; L2 (7, T; W2(RY))) N LPH(Q; L4 (7, T; LPTH(RY))),
the existence and uniqueness of weak pullback mean random attractors for the mean
random dynamical systems generated by the solution operators. The second goal is
to prove the existence of invariant measures and ergodicity to problem (1.1) in the
autonomous case. This result holds true since W72(0) is compactly embedded in
L?(0), where O C R? is a bounded domain.

The third goal, which is also the main novelty of this paper, is to establish a
large deviation principle to fractional stochastic PDEs (1.1) with Lévy noise by a
variational representation obtained in [9] and weak convergence approach. The large
deviation principle is an active and important topic in probability and statistics.
Large deviation properties of stochastic PDEs driven by infinite dimensional Brownian
motions and Poisson random measure have been studied in [7, 8, 9]. However, as far
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as the authors are aware, there are no results about the large deviation principle for
fractional stochastic PDEs, and our work will fill this gap. To this end, we follow
some ideas introduced by [9] which can be properly adapted to our problem. This is
mainly due to the fact that the eigenfunctions of the fractional Laplacian operator
(—A)7 share properties similar to the ones of the classical Laplacian operator —A. By
carrying out a Careful analysis, we need to impose some assumptions on v, d, and p
(namely, p+1 € (2, 2% 2 ]) such that W72(R%) is continuously embedded in LP+1(RY),
which allows us to accomplish the proposed study.

The paper is organized as follows. In section 2, we review the definition of frac-
tional Laplacian operator, impose the conditions on the nonlinear terms, and intro-
duce the concept of a large deviation principle. Then, the well-posedness of problem
(1.1) is established in section 3 by an iterative method. Section 4 is devoted to the
existence and uniqueness of weak pullback mean random attractors. In section 5, we
study the existence of invariant measures and ergodicity to problem (1.1) when it is
autonomous. In section 6, a general large deviation result to (1.1) is proved by a vari-
ational formula for positive functionals of a Poisson random measure and Brownian
motion. An illustrative example concerning the Chafee-Infante model is exhibited
in section 7 and an appendix with the proofs of some results concludes our paper in
section 8.

2. Preliminaries. In this section, we will introduce some basic definitions and
properties of the fractional Laplacian operator, impose proper assumptions on non-
linear terms in (1.1), and recall the general criteria for a large deviation principle.

2.1. Fractional setting. Let S be the Schwartz space of rapidly decaying C*°
functions on R%. Then the integral fractional Laplacian operator (—A)Y with 0 < < 1
is defined, for u € S, by

21 (A ue) =50 [ MG Z B, e,

where C(d,y) is a positive constant given by

TT(H)

(2.2) C(d,y) = m

The reader is referred to [36] for more details on the integral fractional operators.
Moreover, for any real 0 <« < 1, the fractional Sobolev space W:2(R%) := HY(R9) is
defined by

d 2(pd u(y)®
H'(R%) = {ueL R?) /Rd/Rd |a:— |d+2’Y dxdy<oo}7

endowed with the norm

1
. W, N\
ol = ([ topar [ [ O )

We denote the Gagliardo seminorm of H?(R9) as || - | 7+ (mays 1€,

uy)|?
lullf gy = //]Rd |:Ef \d+2v e dedy, we HY(RY).
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Note that H7Y(R?)

Then, for all u € HY(R?), we have |[u%, (Rd) = = [lull® + [, ()’

is a Hilbert space with inner product

(U7’U>H7(Rd)—/ dx—&—/Rd /Rd |$7 (ZJ(FQ_ (y))dxdy, Vu,UEH'V(Rd).

By [36], we infer that for every fixed v € (0,1) and u € H?(R?), the norm [|ul| g+ (ga)
is equivalent to (|[u|72ga) + H(*A)%“Him{d))%' More precisely, we have

2 7
HUH%H(W) = ”uH%?(Rd) + m”(—ﬁ) 2 UH2L2(W)> Vue H(R?).

Since the fractional Laplacian operator (—A)?Y defined above is a nonlocal one, we
here interpret the homogeneous Dirichlet boundary as v =0 on R4\ O instead of u =0
only on 0. Such an interpretation is consistent with the nonlocal nature of the
integral fractional Laplacian and has been used in many publications. Based on this
interpretation, we recall H and V are two Hilbert spaces given by H = {u € L?(R%) :
u=0 ae. in RN\O} and V= {u € HY(R?) :u =0 a.e. in RY\O}, respectively. Then
we have V— H = H* — V*, where H* is identified with H by the Riesz representation
theorem, and V* and H* are the dual spaces of V and H, respectively.

We conclude this subsection by introducing some notation. For p > 1, we denote
by LP(R?) the usual LP-space over R? with the standard norm | - ||,. The norms and
inner products of H and V are denoted by |-| and || - ||, (+,+) and ((-,-)), respectively.
Moreover, the norm of V* is denoted by || - ||«. For simplicity of notation, when
no confusion may arise, we will use the unified notation < -,- > to denote the dual
relations between different spaces. For a Polish space E, denote by C([0,T]; E) and
D([0,T]; E) the spaces of continuous functions and right continuous functions with
left limits from [0,7T] to E, respectively, endowed with the uniform topology both, if
not specified.

2.2. Stochastic setting and assumptions. Let (2, F, {F;}ier,P) be a filtered
probability space satisfying the usual conditions, i.e., {F;}ter is an increasing right
continuous family of sub-o-algebras of F that contains all P-null sets. The collection
of all strongly measurable, square-integrable H-valued random variables, denoted by
L?(Q;H), is a Banach space equipped with the norm ||u(- )H%z(g ) = Elu(, w)|?, where
the expectation E is defined by Eu = fQ w)dP. Furthermore, let H and U be
two separable Hilbert spaces, and let £o(U; H) denote the space of Hilbert—Schmidt
operators from a separable Hilbert space U to H with norm || - ||z, (u;x) (see [17] for
more details).

Throughout this paper, we impose the following conditions on f, g, and h.

e Assumptions on nonlinear term f. Suppose the nonlinear term f: R — R
has the following form:

(2.3) f@)=>"fopru?™',  fo>0, peN.

In fact, no significant changes in the proofs of the results presented here are
required if we consider, more generally, a continuously differentiable function
f on R satisfying

(FOLF)] S LA+ [ulP), (f2) - f(u) = ~lo +Is[ulP* (fs) f/(u) = —la,
for some [; >0, j=1,2,3,4.
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For convenience, we fix a positive number ¢, and set
(2.4) F(u) = f(u) — du, Yu e R.

By (2.4) and conditions (f1)—(f3), after simple calculations, we find that
(F1) [F(u)] < k(L +[ufP), (F2) w- F(u) > =k + ks[ulP™, (Fy) F'(u) > —ks =
—ly — 0,
for some k; >0, j=1,2,3,4.

e Assumptions on nonlinear term g. Suppose g : [1,00) x H — Lo(U;H)
is locally Lipschitz continuous and grows linearly in its second argument
uniformly for ¢ € [1,00), that is:

(g91) For every r >0, there exists a positive constant L,(r) depending on
r such that for all ¢t € [1,00), uy,us € H with |ui| <r and |uz| <,

(2.5) lg(t, 1) — g(t u2) 12, ey < Lo(r)lus — uaf*;

(g92) There exists a positive constant Cy, such that for all ¢ € [r,00) and
u € H,
(2.6) lg(t, )7, 0y < Co(1+ [uf);

(g3) For every fixed u € H, g(-,u) : [1,00) = Lo(U;H) is progressively
measurable.

e Assumptions on nonlinear term h. Suppose h: H x E — H is locally
Lipschitz continuous and grows linearly in its first argument uniformly for
£ € E', where E' C E satisfying A(E') < oo, precisely:

(h1) For every r > 0, there exists a positive constant Ly (r) depending on
r, such that, for all uy,us € H with |ui| <7 and |ug| <7,

(2.7) |P(u1,€) — h(uz, §)PA(E) < Li(r)ur — ual*;
E/
(ha) There exists a positive constant Cj, such that, for all u € H,
28) [ Inw €A < a1+ )
E/

(h3) h:Hx E — H is a measurable mapping,.
In light of (2.4), problem (1.1) can be put into the form when the boundary
condition is replaced by u =0 on Rd\(’):

du(t) + (—A) u(t)dt + F(u(t))dt + du(t)dt

(2:9) =g(t,u /h N(dt,d¢), zcO, t>r,

with boundary and initial conditions,
(2.10) u(t,z)=0, xeRNO, t>r, and u(r,z) =ug(x), z€O.

To prove the existence and uniqueness of weak solutions to problem (2.9)—(2.10),
we follow the ideas of [46]. To this end, let a:V x V—R be a bilinear form given by

(2.11)

1 vy (@ () (v2(z)—v2(y))
a(vl,vg):(5(01,1)2)4—50(0{77)/ /Rd |x_y|d+2'y dzdy, Vvi,v2 €V,
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where C(d,7) is the constant in (2.2) and ¢ the one in (2.4). For convenience, we
associate an operator A:V — V* with a in the following way:

(212) <A(1)1),”UQ >(V*,V):CL(U1,U2) Yui,v2 €V,

where < -,- >(y«y is the duality pairing of V* and V. It follows from [46] that
the inverse operator A~ : V* C H — V C H is symmetric and compact. Therefore,
the Hilbert-Schmidt theorem shows that A has a family of eigenfunctions {e;}?2,
such that {e; 52 forms an orthonormal basis of H. Moreover, if A; is the eigenvalue
corresponding to e;, i.e., Ae; = Aje;, j = 1,2,..., then A; satisfies 0 < § < Ay <
Ag < oo < Aj = o0 as j — oo. Actually, e; (j € N) are eigenfunctions of the
integral fractional Laplacian operator (—A)7. We will consider the fractional power
of the operator A. Given u € H, we have u =72 aje; with a; = [p, u(z)e;(r)dz.
Then, for r > 0, define A"u = Z]Oil ajAe; provided the series is convergent for u
in H. The domain of A" is denoted by D(A"), which is equipped with the norm
llull pary =|A"u| for u € D(A"). By the Riesz representation theorem, D(A™") is the
dual space of D(A").

2.3. Large deviation principle. For a topological space &£, denote the cor-
responding Borel o-field by B(£). For a measure A on £ and a Hilbert space H,
let L2(€,\;H) denote the space of measurable functions f from € to H such that
Je 1f(w)|*A(du) < 0. For a function  :[0,T] — £, we use the notation x(t) to denote
the evaluation of = at t € [0,7]. A similar convention will be followed for stochastic
processes. Eventually, we say a collection {u®} of £-valued random variables is tight
if the distributions of u® are tight in P(£) (the space of probability measures on £).
A function I : £ — [0,00] is called a rate function on & if for each M < oo, the level
set {u € &:1(u) < M} is a compact subset of £. A sequence {u®} of E-valued ran-
dom variables is said to satisfy the Laplace principle upper bound (respectively, lower
bound) on £ with rate function I if for each h € Cy(E) (the space of real continuous
bounded functions),

limsupelog E {eXp [—ih(us)} } <~ inf {h(u) + I(u)}

e—0

and
1
o RSN | G
llirilgfalogE {exp { gh(u )} } > 7ilrelfg{h(u) + I(u)},

respectively. The Laplace principle is said to hold for {u®} with rate function I if
both the Laplace upper and lower bounds hold. It is well known that when £ is a
Polish space, the family {u®} satisfies the Laplace principle upper (respectively, lower)
bound with a rate function I on & if and only if {u®} satisfies the large derivation
upper (respectively, lower) bound for all closed sets (respectively, open sets) with the
rate function I. For more details, see [10] and the references therein.

3. Well-posedness of problem (2.9)—(2.10). We will prove the existence and
uniqueness of solutions to (2.9)—(2.10) in the following sense.

DEFINITION 3.1. Let ug € L?($;H) be F,-measurable. An H-valued F;-adapted
cadlag stochastic process u is called a solution of (2.9)—(2.10) if,

(3.1) we L*(Q;D([r,T);H)) N L2(Q; L*(r,T;V)) N LPTH(Q; LPH (7, T; LPTL(R?))),
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and, for allt> T,

u(t)+/T( ) u(s ds+5/ ds+/F
—upt /:g<s, / | huts=). )N s, a9)

n (VN LPTYRY))*, P-almost surely.

THEOREM 3.2. Assume conditions (F1)—(F3), (g91)—(g3) and (h1)—(h3) hold.
Then, for every F,-measurable initial value ug € L?(€;H), problem (2.9)—(2.10) has a
unique global solution in the sense of Definition 3.1. Moreover, the solution u depends
continuously on ug from L?(Q;H) to L?(;D([r,T];H)) N L2(Y; L2(7,T;V)).

Proof. The proof of this theorem follows a standard scheme, for example, [30,
Theorem 3.2] and [38, Theorem 2.1], but with particular technical difficulties caused
by Lévy noise and the fractional Laplace operator. We will split the proof into five
steps.

Step 1. As X is o-finite on the Polish space E, there exist measurable subsets
E,, /' E satisfying A(Ey,) < oo for all m € N and USS_, E,,, = E. Now, for each m € N
and ¢t > 7, we define the function uj* = o and consider recursively the equations,

)= [ Ay (s)ds — / " (s)ds / P
" /:g<s,u;"1<s>>dvv<s>+ / /| B () ON (s ), P

Applying the Itd formula to [u™|?, we have

(3.2)

(3.3)

(3.4)
Jup (8]

ol =2 [ < (ZAV ) + 807 (5) + Pl (s)) i (s) > ds
2 [ (@) gl (DAW ) + [ ot (6Dl s

+2// ™ (52),€)) N(ds, de) // 5=),6)*N(ds, de).

By definition of the fractional Laplacian operator (—A)7 and (2.11)—(2.12), setting
" ming €@ ;
7= min{=3",4}, we obtain

(3.5)
—2/ <(—A)mms)wums),ums)>ds=—2/ (123 ()2 + sl (s)]?) ds

=2 [ (DO oy + 0 I ) s <20 [ i) P

Making use of condition (Fy), we derive
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*2 / [ Fapionzonsis=-2 [ [ Fugzio

<2 / / by — ks ()/P*) deds < 2kalOl(t — ) — 2k [ 12541 oo ey

Substituting (3.5)—(3.6) into (3.4), taking supremum with respect to ¢ € [, "] for any
7 <T’ <T and expectation, we find

T’ T
max{IE ; 2nE/ IIU?(t)I\th?kaE/ |Iu$(t)||§i%dt}

SlEuO|2+2k2|0|(T—T)+2]E< sup ]/ (U?(8)79(8,U?(8))dW(8))>

telr, T

sup |ugy (4)[?
tel[r, T’]

(3.7) . T,
B [ ot O @t +E [ o). 0PN @)

+2FE <t€s[gg,]/T /Em(uZn(S),h(uzl_l(s—),g))zv(d&dg)).

By applying assumption (gz2), the Burkholder-Davis—Gundy and Young inequalities,
we have

2E< sup ]/ (UZL(S)ag(&Un 1( ))dW( )))

te(r, T’

T’ 3
<2C,E </ IuZ(S)IQIg(s,uS1(8))II3:2(U;H>dS>

1
2

T/
(3-8) §2CbE< sup |up(t)]? / IIg(t,uT_l(t))Hi(U;H)dt)
te(r,T’] T
1 2 2 T 2
<G| sup [P +4GEE [ ot st
te(r,T’] T
1 '
<ZE| sup |u™(t)]? +4C§Cg(T—T)+4C’ngIE/ lu™ | (t)|%dt,
te(r,T’] T

here and in what follows, C} is the constant obtained from the Burkholder-Davis—
Gundy inequality for Brownian motion and the Poisson process. Similarly, we con-
clude from assumption (hs), the Burkholder-Davis—Gundy and Young inequalities

that
<teS[ITlI%’// ml(s—),é))N(ds,d£)>
(3.9) <2ch</ / ) |h(u <—>,5>2A<ds>ds)
m 2 m 2 ’
<0E (E#Eq'“" (t) / /| (), ) A(df)ds)

SIS
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1
<lg lsup o | +acis [ / 52, )P A(de)ds
4 telr, T’
1 T
SEE sup |u™(t)|? +4C'1?Ch(T—T)+4Cz?ChE/ Jup_y (8)[?dt.
tel[r,T’] T

By means of (g2) and (hs), we infer

(3.10)
T’ T
E/ Hg(tuzl_l(t))llizw;m)dtSCg(T*T)+CgE/ up 1 (t)[*dt, ¥T" € [7,T],

and
3 11
T/
/ / LOIPA(dE)dt < CW (T *T)‘FC}IE/ lu™ | (t)|%dt, VT' € [, T],

T

respectively. Thus, it follows from (3.7)—(3.11) that, for all 7" € (7, T,

E| sup |uy'(t)*| <2E|uol® + (4k2|O|

te[r,T’]

(3.12) -
+2C’1)(T—T)+201/ E l sup |u;' (s )|2] dt,

s€[T,t]

where we have denoted by Cy :=4C2C, +4CZCy, + Cy + Cp,. Let us define UT(T") :=
sup,,< n E[supye(r 7 [upy ()[?] for all N € N,T" € [r,T]. Subsequently, 1nequahty (3.12)
implies for each T" € [, T],
T/
UT(T") < 2o ? + (4ko|O] + 2C1)(T — 7) + 2C) / U (1) dt.

The Gronwall lemma implies for each m € N and for any 7 <7’ <T that

E

sup |u$(t)|21 < (2EJug|? + (4k2| O] 4+ 2C1)(T — 7)) 241 T=7) .= Co(T), ¥n €N,
te(r,T’]

where Cy(T') is a positive constant depending on T'. This, together with (3.7), shows

T T
B[ JupolPde+E [ @) < cam),

for a positive constant C5(T"). In conclusion, we proved in Step 1 that for all m,n € N,
there exists a constant C4 > 0 depending on T such that

(3.13) E| sup |[u™(t)]?
te[r,T)

T T
{E / ™ (8)|2dt + E / ()| dt < Cu(T).

Step 2. For each m € N and ny,ny € N, define !, ,,, = uy (t) — u; (), using
similar arguments as in Step 1, by (F3), (g1), (hl), the Burkholder - Davis-Gundy and
Young inequalities, we obtain

(3.14) lg

| 2
2

sup |x7' 5, (%)

T/
b2 [ 0] e
te[r,T'] T
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T

T/
§4k4/ E | sup |Xﬁ17n2(s)|2 dt+205/ E | sup |XZ7;—17n2—1(S)|2 dt,
T se[T,t] T s€[7,t]
V7r<T <T,

where we have denoted by C5 = 4C§Lg + L, + 4C§Lh + Ly,.
Let V™(T") = limp, n, 00 E[SUDse 7 77 [X0: ny (t)]?]- Then, by the Fatou-Lebesgue

theorem and (3.14), we have V™ (T") < 4(2k4+C5) fTT/ V™ (t)dt for all T € [1,T]. The
Gronwall lemma implies that

(3.15)

VT) = Tm E

ni,n2—>00

T
sup xiﬁm(t)F]:O and T E/ I o (8)2de = 0.

te[r,T) n1,M2—00

Hence, for each m € N, there exists an adapted process u™ € L*(Q;D([r,T]; H)) N
L2(Q; L*(r,T;V)) such that limy, o Efsupe, 7 [u (t) — w™(8)[?) = lim, oo E [T
lu(t) — u™(t)||?dt = 0. Additionally, thanks to (3.13), we immediately derive

(3.16) E |?

sup_[u™ (1)

T T
B [ un P+ [ @l < Cur),
te[r,T) T T

Now, for each m € N, taking the limit in (3.3) as n — oo, by means of the continuity
of function F', the Lipschitz condition imposed on g and h, it is easy to show that u™
is the unique solution of the equation

(3.17) t . )
u™(t) =g 7/7 (=A)"u™(s)ds — 5/7 um(s)dsf/ F(u™(s))ds

+/g(s,um(s))dW(s)+//E h(u™(s—), )N (ds, de), 7<t<T, P-as.

Notice that equality (3.17) holds in (VN LPTI(RY))*.

Step 3. For my, me € N with mo < mq, we have \(E,,,) < M(E,,,) since F,,
is increasing. Define B™™2(t) = «™1(t) — u™2(t). Applying the Itd formula to
|B™1:2($)|2 and proceeding likewise as in Step 1, we obtain for all 7" € [, T that

max {]E

T/
§2k4E/ |B™1™2 (t)|dt

te[r,T']

T/
sup |Bmm<t>|2]  E / B"“-rm%t)n?dt}

te([r,T’]

+2E< sup / <Bmhm2<s>,<g<s,uml<s>>—g(s,um(s)))dvv(s)))

"
(3.18) +E / g5, ™ () — 95,6 ()12, vy 5
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+m@m//<wwwwwwmwmwkaw@>

te[r, T’

+E/ /m 5=),€) — h(u™ (s-), ) [N (ds, d€)

-I-QE( sup // . (B™™2(s), h(u™ (s—),€))N(ds, d§)>

telr, T’]

mo

mi(a 2
+E/r /Eml\Em2 (™ (5=),€) "N (ds, d€)

T/
gm/ E

For I, similar to (3.8), by (g1), the Burkholder-Davis—Gundy and Young inequalities,
we have

sup |Bm1’m2(8)|2 dt+ Il +IQ +]3 + I4 +I5 +I6

s€[T,t]

2E< sup ]/ (B2 (s), (g(s,u™ (s)) —g(s,um’Q(S)))dW(S))>

te[r, T’

te[r,T’] s€[r,t]

1
(3.19) §4El sup |[B™mz2(t))?

T/
+4C2L, / E [ sup |Bm1m(s)|2] dt.

For I3, similar to (3.9), making use of (h1) and the Burkholder-Davis—Gundy and
Young inequalities, we obtain

<su>/"/ (Bmma(s h(mw—xa—hwm%&moﬂwwda>

te[r,T7]
(3.20)
1 T
< g| sup Bmm)2| +402L, / E| sup [B™™(s)]2] dt.
4 te[r,T'] T s€[7,t]

For Iy and Iy, similar to (3.10)—(3.11), by means of (g1) and (h1), we derive
(3.21)
T/

T/
BB [ flls.um ()~ glsu™ ) eymds < Iy [ B

s€[r,t]

sup ‘Bml,mz (S) |2‘| dt,
and

(3.22) MZE/ L (™ (5—),€) — h(u™ (s—), ) 2N (ds, dE)

T/
SLh/ E

respectively. For I5, by assumption (hs), the Burkholder-Davis—Gundy and Young
inequalities, we have

(3.23)
Is= <$%[AM wm@mwwmwm@>

%AOE/ / (1), €)PA(dE)dt
Ermy \Emy

sup [B™v™2(s)|?| dt
s€(T,t]

1
<-E| sup |B™v™z2(t)]?
4 tel[r,T']
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Consequently, substituting (3.19)—(3.23) to (3.18), we find

1
_E sup ‘Bnll,’fﬂz (t)‘Q
4 te[r,T’]

T/
(3.24) < (2ks +4C7 Ly + Ly +4CF Ly, —i—Lh)/ E

T

sup [B™v™m2(s)|?| dt
s€[T,t]

+(4C§+1)E/ /E . |R(u™ (t=), €)|>A(d€)dt.

It follows from the fact E,,, C E,,, with A(Ey,, \En,) — 0 as my,ma — 00, assumption
(h2) and the property of an absolutely Lebesgue integrable function that, for any € > 0,
there exist M (e) >0 and §’ > 0 such that for all mq,mq > M (e),

(3.25) MNE\En,) <8 and /E ), PAE) <=

Immediately, the Gronwall lemma, together with (3.24)—(3.25) and (3.18), implies
that

T

El sup |Bm1’m2(t)|2] —0, and E/ |[B™™2(t)[|2dt — 0, as my, My — 00.
te[r,T) T

Therefore, there exists an Fi-adapted process u € L*(Q;D([r, T];H%) N L2y

L2(7,T;V)) such that lim, oo B[supe(, 7y [u™(t) — u(t)[?] = limy, 50 E [ [u™(t) —

u(t)||?dt = 0, which, combining with (3.16), yields

E| sup [u(t)?

T T
+E / u(t)|2dt + E / lu(®) |2 de < Cu(T).
te(r,T) T T

Eventually, taking the limit in (3.17) shows that u is the unique solution of (2.9) on
the interval [7,T].

Step 4. By repeating the above arguments, we obtain the existence of the unique
solution of (2.9) on the interval [T,2T — 7], which finally leads to the completion of
the global existence and uniqueness of solutions to (2.9)—(2.10) by further iterations.

Step 5. Continuity of solutions with respect to initial data. Let wug1, uo2 €
L?(Q;H) be two F,-measurable initial data, and u; and uy are the corresponding
solutions of (2.9)—(2.10) on [r,T] for any T' > 7, respectively. Denote by @ = u; — ug
and @ = up,1 — up,2. Then by the Ité formula, the definition of fractional Laplacian
operator (—A)7, (2.11)—(2.12) and condition (F3), similar to (3.5), we have for every
meN,

20 @O 20 [ 7))
<luof?+2 [ (@(5), (90,4 (5)) — g5, (5))dTV (5)
w2k [ s [ oo, 6) = o5 O 005
2 t [ ) B (5),6) — R (), €) ¥ s )
+ [ t [ TR (). €) — B ), O N s ).
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On the one hand, by (3.26), we find that for all 7 <7’ < T,
(3.27)

E [ sup |am<t>|2}
r<t<T’

<]E|ﬂo|2+2E< sup /(ﬂm(S)»(g(S,UT(S))—g(S»UE"(S)))dW(S))>

r<t<T' J7

T T
T ok, / E[sup ™ (s >|2]dt+ﬂz [ oo () = gl 5D s

T<s<t

+ 22 ( sup / [ @ B (5-).€) — h(u (5-). )V s d)

T<t<T’
+ ]E/T /E |h(ui*(s—),&) — h(ub'(s—),&)|* N (ds, d€).

Similar to (3.8)—(3.9), by the Burkholder-Davis—-Gundy and Young inequalities, (g1)
and (hy), we have

21E< sup /t(ﬂm(S)v(g(s,UT(S))g(svugl(S)))dW(S)))

(3.28) TSI .y
giE[ sup |um(t)|2} +4c;f‘Lg/ ]E{sup um(s)ﬂ dt
T<t<T’ T T<s<t
and
2 (s [ [ @b )0~ (o). )N s ) )
(3.29) !

T/
4[[*3{ sup |a™(t )|2} +4C§Lh/ E [ sup |um(3)2} dt,

T<t<T"’ T<s<t
respectively. It follows from (3.27)—(3.29) and conditions (g;) and (hq) that

B[ swp la"(0)]

T<t<T’

T/
< 2E|dg|* 4+ 2(2kq +4CZL, + 4CELy + L, +Lh)/ E { sup |a”1(5)2} dt.

T<s5<t
Applying the Gronwall lemma to the above inequality, we obtain in particular for
=T,

(3.30) E [ sup |um(t)|2] < 2eCs (TR |?,

T<t<T

where Cg := 2 (2ky +4C2Ly 4+ 4CZLy + Ly + Ly). By (3.26) and (3.30), for some
Cr:=C7(T), we derive

T
(3.31) ]E/ ™ (8)]|2dt < CoE | 2.

In Step 3, we have proved for each initial value uy € L?(Q;H) and every m € N,
the corresponding solution sequence {u™} is Cauchy in L?(;D([r,T];H)) N L3(£;
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L3(1,T;V)). Therefore, uy, ug € L*(Q;D([r,T|;H)) N L*(Q; L3(7,T;V)) and satisfy
(3.30)—(3.31). Moreover, there exists a positive constant C(T") such that

2 2 2
(3.32)  |lur — w2l Z2(0;p(pr iy + lur — w2llT2(0i2(r vy < Clluog — wo2ll72(0m)-
Namely, the solution depends continuously on initial data. The proof of this theorem
is complete. 0

Remark 3.3. Notice that, under assumptions of Theorem 3.2, if u is the unique
solution to problem (2.9)—(2.10) corresponding to the initial value ug € L?(£2; H), then
there exists a sequence

u™ € L2(Q; D([r, T); H)) N L*(; L2 (7, T; V) N LPTH(Q; LPTY (1, T; LPTLRY))) (m > 1),

which converges to u in L?(Q;D([r,T];H)) N L?(; L?(7,T;V)) and satisfies (3.17).
In other words, each u™ is a solution to problem (2.9)—(2.10) but replacing E by E,,.
This fact has been used in Step 5 in the previous proof and will be used repeatedly
in the following sections.

4. Existence of weak mean random attractors. This section is devoted to
the existence and uniqueness of weak mean random attractors for the nonautonomous
fractional stochastic differential equations (2.9)—(2.10). To this end, we first define a
mean random dynamical system for (2.9)—(2.10), then prove the existence and unique-
ness of weak pullback mean random attractors.

Observe that it follows from Theorem 3.2 that for every 7 € R and every F,-
measurable initial datum ug € L%({;H), problem (2.9)—(2.10) has a unique cadlag
H-valued F-adapted solution u(t,7,up) with initial condition ug at 7 in the sense of
Definition 3.1. Theorem 3.2 presented that u(-,7,ug) € L?(€;D([r,00);H)), which
implies that u € D([r,00); L?(€;H)). In this way, we are able to define a cocycle
generated by the problem under consideration. Given ¢t € RT and 7 € R, let ®(¢,7) be
a mapping from L?(Q, F,;H) to L?(Q, Fy.;H) defined by ®(¢,7)(uo) = u(t+7,7,u0),
where ug € L?(Q, F,;H). The uniqueness of solution to (2.9)—(2.10) implies that for
every t,s >0 and T €R, ®(t+s,7) = D(t,s+ 1) 0 (s, 7). This cocycle ® is called the
mean random dynamical system generated by (2.9)—(2.10) on L?(Q, F;H). We will
study the existence and uniqueness of weak pullback random attractors for ®.

Let B = {B(r) C L*(Q,F-;H) : 7 € R} be a family of nonempty bounded sets
such that
(4.1) TEmoo 6(267L1)THB(T)H%Z’(Q,J-‘T;H) =0,
where 20 > L1 with L; = Cg + C, and HQHLZ(Q,]:T;H) = SUP,eco HUHLQ(Q,]—};H) for a
subset Q in L?(Q,F,;H). We will use D to denote the collection of all families of
nonempty bounded sets satisfying (4.1).

We will first derive uniform estimates on the solutions of (2.9)-(2.10), then con-
struct a D-pullback absorbing set for the system ®.

LEMMA 4.1. Suppose (F1)—(F3), (91)—(g93) and (h1)—(hs) hold. In addition, as-
sume 26 > Ly := Cy + Cp. Then for every T € R and B € D, there ewists
T =T(r,B) >0 such that for all t > T, the solution u of (2.9)~(2.10) satisfies
2k, |0| + Ly

20— Iy

Proof. We will split the proof into two steps.

Step 1. As X is o-finite on the Polish space E, there exist measurable subsets
E,, /' E satisfying \(E,,) < oo for all m € N and USY_, E,,, = E. Taking into account

Elu(r, T — t,ug)|* < +1, Yug € B(T — t).
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Remark 3.3, for each m € N, applying Itd’s formula to e20=50)¢ |y (r, 7 —t,ug)|? with
r>7 —t (see, for example, [11]), we obtain

(4.2) 6(25_L1)T\um(r,7'—t,uo)\2+2/r e(25_L1)s|(—A)%um(s,T—t,u0)|2ds
T—t
+25/T e20=L0)s|ym (s 7 — tug)|ds
T—t
+2/T e=LUs <« P(u™(s, 7 — t,ug)), u™ (s, T — t,ug) > ds
T—t
:6(26*L1)(T*t)|u0|2+(257L1)/T 6(25*L1)S|um(5,7ft,uo)|2ds
T—1
+2/T 6(25_L1)S(um(s,7'—t,uo),g(s,um(s,T—t,uo))dW(s))
—t
b [ B g s ) s
+2/T /E 6(25_L1)S(um(5,7'—t,uo),h(u(s—,T—t,uo),«f))]\?(ds,dg)
r—t JEp,
+/T [E PO (™ (s—, 7 — t,u0), §)[* N (ds, df),
T—1 'm

which implies that for all r > 7 — ¢,

(4.3)
e(zé_Ll)TEmm(r,T —t,up)|* 4+ C(d, 'y)/ e(zé_Ll)sEHum(s, T— t,uo)||]%1w(Rd)ds
T—1
+ 25/ e =LVSE ™ (5,7 — t,u0)|*ds
T—1
+ 2/ e(20-L1)sE < F(u™(s,7 —t,up)),u™ (8,7 — t,ug) >ds
T—1
= e LT IE ug|* + (26 — Ly) / e EOSE 0™ (s, 7 — t,up)|ds
T—1
+/ 6(26_L1)SE||g(s,um(s,T—t,uo))||2£2(U;H)ds
T—t1
+/ / e LUSE | p(u™ (s—, T — t,ug), &) 2N (ds, dE).
T—tJEp,
We now do estimates one by one for (4.3). On the one hand, by (Fz), we have
(4.4)
2E < F(u™(r,7—t,ug)),u™ (r,7—t,up) >= 2]E/ F(u™(r,7—t,ug))u™ (r,7—t,up)dx
Rd

= 2IE/ F(u™(r,7—t,up))u™(r,7—t,ug)dx > ZE/ (—ko+kz|u™ (r, 7—t,uo)[PT)dx
o o
= —2ks|O| + 2ksE[u™ (r, 7 — t,u0)[|211.
On the other hand, by means of assumptions (g2) and (hs), we obtain

(4.5) Ellg(r,u™(r,7 — t,u0)) |7, 31y < Cg + CoBlu™ (r,7 = t,u0) |,
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and

(4.6) / E|h(u™ (r—,7 = t,u0),6)PA(d€) < Ch + ChElu"™ (r, 7 — t,u0) [,

separately. Substituting (4.4)—(4.6) into (4.3), ignoring the second term of the left-
hand side of (4.3) and the second term of the right-hand side of the estimate to (4.4),
for every m € N, we find

PO LR [™ (1 — £, ug)[? < eI LT DRy 2 4 23~ L1)r 2ko|O| + Ly
26 — Ly
Therefore, we infer on the interval (7 —¢,7) that
2k L
(4.7) Elu™ (7,7 — t,ug)|* < e~ @IV Eug | + zlsoii vm €N,
— Ly

Step 2. Let us proceed like in Step 3 in Theorem 3.2. For my, ms € N with
mg < mq, then we have AM(E,,) < M(Ep,, ). Define Ry, m, (7,7 — t,up) = w™ (r,7 —
t,ug) — u™(r,T — t,up). Similar arguments as (3.18)—(3.25) imply (replace B™1."2
and t € [1,T] by Ry,.m, and s € [T —t,7], respectively) for every 7 € R, ¢t > 7 and
r>7 —t that

T
El sup |Rmhm2(s)|21 —0, IE/ IRy my (8)||2ds — 0 as mq, Mg — 00.
T—1

se[r—t,r]

Therefore, for every r > 7 —t, there exists an Fi-adapted process u € L?(Q;D([r —
t,r);H)) N L*(Q; L?(7 — t,r;V)) (thanks to the uniqueness of solution, this limit is
denoted by the same u) such that

lim E| sup |u™(s)— u(s)|2] = lim ]E/ |u™(s) —u(s)||*ds =0,
T—t

m—r 00 [SE[T—t7T] m—r o0
which, together with (4.7), yields

2k2|O] + Ly

(438) Blu(r, = t, o) [* < =0 F ) EJug | + =25

Since ug € B(t —t) and B € D, one has
e B g P <em BV B(r — 1) 0 as t— oo,

which along with (4.8) concludes the proof. 0

We will present now the existence of weakly compact D-pullback absorbing sets
to problem (2.9)—(2.10).

LEMMA 4.2. Under assumptions of Lemma 4.1, the mean random dynamical sys-
tem ® related to (2.9)—(2.10) has a weakly compact D-pullback absorbing set K =
{K(7):7 € R} € D, which is given, for each T €R, by

2ks|O) + Ly

(4.9) K(t)={ue L*(Q, F;H) : Elu(7)|* < R}, where R:= 5T
- L1

+ 1.
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Proof. For each 7 € R, it is easy to see that K(7) given by (4.9) is a bounded
closed convex subset of L?(Q, F,;H). Therefore, it is a weakly compact subset of
L?(Q, F,;H). Moreover, it follows from Lemma 4.1 that, for every 7 € R and B =
{B(r —1t)} € D, there exists T'=T(7, B) > 0 such that ®(¢t,7 —¢,B(7 —t)) C K(r) for
all ¢t >T. On the other hand,

. B 2%ks|O] + L
6—L1)T 6—L1)T 2 1
im eI (7 G o,y S lim e (MH):O'

Hence, we have verified K(7) € D. Namely, K is a weakly compact D-pullback
absorbing set for ®. ]

Now, we are in a position to address the existence and uniqueness of weak D-
pullback mean random attractors to problem (2.9)—(2.10) (see [48] for the definition
of this kind of attractors).

THEOREM 4.3. Assume the conditions of Lemma 4.1 hold. Then the mean ran-
dom dynamical system ® to problem (2.9)—(2.10) has a unique weak D-pullback mean
random attractor A= {A(r):7 € R} € D in L*(Q,F;H) over (Q, F,{F:i}icr,P).

Proof. The existence and uniqueness of the weak D-pullback mean random at-
tractors A € D of ® are immediate consequences of Lemma 4.2 and [48, Theorem
2.13]. |

5. Invariant measures and ergodicity. In this section, we establish the exis-
tence of invariant measures and ergodicity to the following autonomous problem, for
reO and t>0,

(5.1)

du(t) + (—A) u(t)dt + F(u(t))dt + du(t)dt = g(u(t))dW (t) + /E h(u(t—),€)N(dt,de),

with boundary and initial conditions,
(5.2) u(t,z) =0, zeRNO, t>0, and u(0,2) =ug, x€0,

respectively, where § is a positive constant as in (2.4), and W and N are indepen-
dent real-valued standard Wiener process and compensated Poisson random measure,
respectively.

In the remainder of this section, we will assume the nonlinear functions g : R — R,
h:R x E — R are globally Lipschitz continuous with linearly growing rate. More
precisely, there exist positive constants ay, as, 81 and (2 such that, for every s,r € R,

(5.3) l9(s) —g(r)P <auls =7, |g(s)” §ﬁ1+g|8|2»

and for \(E") < oo with E' C E, suppose
(54) [h(s,€) = h(r,€)PA(d€) < asls —r[?, / (s, €)PA(dE) < B2 + \ 2.
E/

Under assumptions (Fy)—(F3), (5
measurable initial value ug in L?(£);

.3)—(5.4), Theorem 3.2 shows that for every Fo-
H-valued Fi-adapted solution u(t,ug)

H), problem (5.1)—(5.2) possesses a unique cadlag
0) in the sense of Definition 3.1.
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5.1. Introduction to invariant measures and ergodicity. We first provide
the definitions of invariant measures and ergodicity (for more details, see [18, 34, 35]
and the references therein). Let X be a Polish space, and let P, and P(t,z,T'), t >0,
z € X, I' € B(X), be the corresponding transition semigroup and transition function,
respectively.

DEFINITION 5.1. A probability measure p on (X, B(X)) is said to be an invariant
measure or a stationary measure for a given transition probability function P(t,z,dy)
if it satisfies

u(A):/XP(t,:c,A)y(dx) VA e B(X),vt>0.

Equivalently, if for all p € Cy(X) (the space of bounded and continuous Borel functions
onX) and t >0,

/X (@) u(de) = / (Pop) (@) pu(de),

X

where the Markov semigroup (Py)¢>o s defined by

Pip(e) = / () P(t,, dy).

DEFINITION 5.2. Let p be an invariant measure for (Py)i>0. We say that the
measure p is an ergodic measure if for all p € L*(X; ),

T
Jim [Py [ plantan) in 228p).

The next lemma is crucial to proving the existence of ergodicity.

LEMMA 5.3 (see [18, Theorem 3.2.6]). If u € M(X) (the set of all probability
measures defined on (X,B(X)) is the unique invariant measure for the semigroup
P(t>0), then it is ergodic.

Now, we will introduce the transition operators to problem (5.1)—(5.2). By the
construction of the solutions, we find that the transition operators are homogeneous.
Therefore, let u(t,ug) be the unique solution to (5.1)—(5.2); then for any ¢ € Cy(H),
t >0, and ug € H, the corresponding Markov transition operator P; can be defined as
[17, Theorem 9.8, p. 244]

(5:5) (Prp)(uo) = Elp(u(t, uo))]-

As usual, for I' € Z(H), t > 0 and ug € H, we set P(¢,up,I") = (Pixr)(uog) =P{w e Q:
u(t,up) € I'}, where xr denotes the characteristic (or indicator) function of I'. Then
P(t,up,-) is the probability distribution of w(t,ug). In addition, Theorem 3.2 (cf.
(3.32)) proved the solution to (5.1)—(5.2) depends continuously on initial value, which
implies the Feller property of P; for ¢ > 0. Similar arguments as in [47] show that the
solution u(t,ug) of problem (5.1)—(5.2) is an H-valued Markov process, which implies
that if ¢ : H — R is a bounded Borel function, then (P;)(ug) = (Pr(Pi—rp))(ug) for
all ug € H, for any 0 <r <t, P-a.s.

5.2. Existence of invariant measures. We will prove the existence of invari-
ant measures to problem (5.1)—(5.2) by using the Krylov—Bogolyubov method. To
this end, we first derive uniform estimates on the solutions via the following lemma.
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LEMMA 5.4. Assume (F1)—(F3) and (5.3)—(5.4) hold. Then, the solution u(t,ug)
of (5.1)—(5.2) satisfies

2ka|O| + B1 + B2
1)

t
Bfu(b) + C(d.) | e IEu(5) o s < e Bl + V20,

and
¢
1
%E/ ||u(s)H2d5§TIE|u0|2+2k2\O|+51+52, Y t>Ty>0, where n =min{C(d,~),d}.
0 0

Proof. As X\ is o-finite on the Polish space E, there exist measurable subsets
E,, /' E satistying A(Ey,) < oo for all m € N and U2>_, E,,, = E. Now, on account of
Remark 3.3, for each m € N, similar to (4.3), applying Itd’s formula to e’*E|u™(t)?,
we obtain

t t
EJtE|Um(t)‘2+O(d,V)A 655]E||um(5)”§ﬂw(Rd)dS+25/0 655E|Um(5)|2ds

+2 /t ePE < F(u™(s)),u™(s) > ds
(5.6) 0

¢ ¢
:E\u0\2+5/ 655E|um(s)|2ds+/ e *Elg(u™(s))|?ds
0 0

¢ ds m(.— 2
N / /E IR (s7),6)PAdE)ds

Making use of the same estimates as in (4.4), we have

(5.7 ~2E < F(u™(3)).u" (5) < 2k5/O)] — 2kl (5) 11

By means of (5.3)(5.4), we find

(5.8)

Blo(u™ (@) < 1 + SER" () and [ B (s), O < 5o + S (0)

It follows from (5.6)—(5.8) that
(5.9)
t
SO +C(d7) [ BN ()] gy ds < Bluol +

(2k2|O] + B1 + B2) 45
6 e .

Thus,
(5.10)

t
Bl () +C(d,) | e OB ()] oy ds < ¢ Eluol? +
0

2k|O] + B1 + P2
5 )

On the other hand, using Itd’s formula to |u™(¢)|?, we derive
¢ ¢
E|um(t)|2 + C(d{Y)/ EHum(S)H]%I”’(Rd)dS + 26/ E|Um(s)\2ds
0 0

+ 2/075 eE < F(u™(s)),u™(s) > ds

<Efuol? + / Elg(u™(s))|2ds + / / E|n(u™ (s7),€) [2A(d€)ds
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Let 71 =min{C(d,~), 4}, by means of (5.7)—(5.8), we obtain
t
Efu™ (1) +m / Ellu(s)[|*ds < Eluo|* + (2k2|O] + 1 + f2)t,  VE>0,
0

which implies

t E 2
(5.11) %]E Hum(s)||2ds§$+2kg|(9\+ﬁ1 + B, vt > Ty > 0.
0 0
Since {u™}%°_, converges to u in L2(£;D([0,7];H)) N L3(£; L%(0,T;V)), then u sat-
isfies energy estimates (5.6) (see also Step 3 of Theorem 3.2), which, together with
(5.10)—(5.11), concludes the proof of this lemma. |

THEOREM 5.5. Under conditions of Lemma 5.4, problem (5.1)~(5.2) has an in-
variant measure on H.

Proof. Using the Chebyshev inequality and Lemma 5.4, we infer for 7y > 0 and
R>0,

t t
sup %/ P({||u(s,uo)|| > R})ds < sup #/ E|u(s,uo)|*ds
t>To 0 t>To 0

< Eluo|* n 2k2|O| + B1 + Bo

- T0R2771 R2’l71 ’

The above inequality implies, for all ¢ > T, and every € > 0, there exists Ry :=
\/E|u°|2 4 (2k2[O1451452) ) guch that, for any R > Ry,

(5.12)

Tomnie ne

t t
Pt g (D) == %/ P(s,up,I)ds = %/ P({we Q:u(s,up) €T})ds
0 0

(5.13) > %/0 P({we Q: [[u(s, uo)|| < Ro})ds

1 t
:17/ P({we Q: u(s,u)|| > Ro})ds =1 —e,  Ti=B(0,R),
0

where B(0,R) is the ball centered at 0 with radius R in V. Since V is compactly
embedded in H (V << H), (5.13) shows for every € > 0, there exists a compact set
K € H such that g ,(K) > 1 —¢ for all ¢ > Ty. Hence, the sequence of probability
measure [l ., is tight on H.

As a result, an application of the Krylov—Bogoliubov theorem (see [15]) shows
that there exists a sequence t, — co as n — oo such that py, ., — p weakly as
n — co. Moreover, p is an invariant measure for this transition operator P;, defined
by (Prp)(ug) = Elp(u(t,up))] for all ¢ € Cy(H). Thus, the proof of this theorem is
complete. O

5.3. Ergodicity. We are now interested in the ergodicity of problem (5.1)—(5.2).
Lemma 5.3 states that if p is the unique invariant measure for P;, then it is ergodic.
Thus, in what follows, we will prove the invariant measure g in Theorem 5.5 is unique.
To this end, the following lemma is needed.

LEMMA 5.6. Under assumptions of Lemma 5.4, additionally, suppose 26 > 2k, +
o1 + az. Let u and v be two solutions of problem (5.1)—(5.2) with initial data uy,
vo € L2(S;H), respectively. Then, we have

Elu(t) — v(t)|? < Elug — vo|?e™ (30~ (katartaz))t, Yt > 0.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/11/24 to 150.214.182.233 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1036 JIAOHUI XU, TOMAS CARABALLO, AND JOSE VALERO

Proof. Denote by z=u—v, zg = ug—2vg, 2™ =u™—v". According to Remark 3.3,
by similar computations to (3.26), applying It6’s formula to e(20—(katartaz))t| m ¢y2
and making use of condition (F3), we obtain

(5.14)

t
e(26—(2k4+o¢1+a2))t‘zm(t)|2+26/ e(26—(2k4+a1+a2))s‘zm(S)‘st
0

t
< |ZO‘2 + (25 —oq — 042)/ 6(267(2k4+a1+az))8‘Zm(s)‘st
0

+ 2/0 o207 Bhutartaa))s (1 (), (g(u™(5)) — (0™ (5)))dW (s)

[ et nigun(e) — (o) Pas
0 t

dr [ [ el Gkt o o) B (5-),€) (e (5-), ) N ds, )
0 JE,

t
Jr// e(20=(@katantaz))s|p (s €) — h(v™(s—),&) 2N (ds, dE).
0 JEn,

Taking expectation on both sides of (5.14) and thanks to (5.3)—(5.4), we have
E|Zm(t)|2 SE‘ZO|2€_(26_(2k4+a1+a2))t, vtzo.

Since the sequences {u™}°_; and {v™}°_; are converging in L?(Q;D([0,T];H)) N
L2($;L%(0,T;V)), so is {z™}5°_,. By taking limits on both sides of (5.14), we can
conclude the proof of this lemma. O

Let us now establish the uniqueness of invariant measure to (5.1)—(5.2) which
ensures its ergodicity.

THEOREM b5.7. Suppose the conditions of Lemma 5.6 hold true. Then, for any
initial value ug € L?*(S;H), there exists a unique invariant measure y to problem
(5.1)~(5.2). In addition, this measure p is ergodic.

Proof. Assume there is another invariant measure f for transition operator (P;);>o.
Then, for every ¢ € Lip(H) (¢ is a Lipschitz function with Lipschitz constant L) and
initial data ug, vo € L2(€;H). By means of Definition 5.1 and Lemma 5.6, we have

/H (o) (i) — /H (o) i(do) /H (Pug) (o) u(dug) — /H (Pug) (v0) i dvo)
/H / [(Prp) (110) — (Pysp) (v0) (o) (o)

/ / El(u(t, uo)) — Ep(o(t,v0))a(duo) (o)
HJH

(26— (2kg+aq4an))
o [ i Hagetealt t//E\uo—vom(duo)ﬂ(dvo)—)O as oo,
HJH

Since p is the unique invariant measure for transition operator (P;);>0, by the density
of Lip(H) in Cp(H), we know p is ergodic. d

6. Large deviation principle. In this section, we will consider the following
stochastic perturbations of the fractional PDE, where ¢ is a small parameter,

du® (t) + (—A) us(t)dt + F(u®(t))dt + du(t)dt

(6.1) — VEg(t, u (1) dW (¢) + 5/ Bt uf (=), )N (dt, de), w0, t>0,
E
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with boundary and initial conditions,
(6.2) uf(t,z) =0, xeRNO, t>0, and u®(0,2) =up(z), x€0,

respectively. Assume O is a bounded domain in R? with smooth boundary satisfying
2y < d and F satisfies conditions (F1)—(F3) with p+1 € (2, 5 (é”/] such that V is
continuously embedded in LPT1(O) (see [36, Theorem 6.7]). Here E is a locally
compact Polish space, W is a cylindrical Brownian motion in U, N =" is a Poisson
random measure on [0,7] x E with a o-finite intensity measure e 'Ly ® \, Ly is
the Lebesgue measure on [0,7], and A a o-finite measure on E. N¢ ' ([0,t] x O) =
N '([0,1] x O) — e~ HA(0), for all O € B(E) with A(O) < oo, is the compensated
Poisson random measure. We emphasize that in this section, D([0,7]; E) denotes the
space of right continuous functions with left limits from [0,7] to E endowed with the
Skorokhod topology.

Let {uf,e > 0} be a family of random variables defined on a probability space
(Q, F,P) taking values in a Polish space £. The large deviation principle of problem

(6.1)—(6.2) is concerned with the exponential decay of P(u® € O) as e — 0.

6.1. Controlled Poisson random measure. Let F be a locally compact Pol-
ish space. Denote by Mpc(FE) the space of all measures A on (E,B(E)) such that
AMK) < oo for every compact K in E. Endow Mpc(E) with the weakest topology
such that for every f € C.(F) (the space of continuous functions with compact sup-
port), the function X — (f,\) = [, f( u) (A € Mpc(E)) is continuous. This
topology can be metrized such that MFC( ) is a Polish space (see, for example, [9]).
Fix T € (0,00) and let Er =[0,7T] x E. Fixing a measure A € Mpc(FE), we denote by
A =Lt ® A\

We recall that a Poisson random measure n on Er with intensity measure Ar is
an Mpc(E7) valued random variable such that for each B € B(Er) with Ar(B) < o,
n(B) is Poisson distributed with mean Ap(B) and for disjoint By,...,By € B(Er),
n(By),...,n(By) are mutually independent random variables (see, for example, [25]).
Denote by P the measure induced by n on (Mpc(E7), B(Mpc(Er))). Then letting
M = Mpgc(E7), P is the unique probability measure on (M, B(M)) under which the
canonical map, N : M — M, N(m) =m, is a Poisson random measure with intensity
measure Ap. With applications to large deviations in mind, we also consider, for
6 > 0, the probability measure Py on (M, B(M)) under which N is a Poisson random
measure with intensity #Ar. The corresponding expectation operators will be denoted
by E and Ey, respectively.

Set F = E x [0,00) and Fp = [0,7] x F. Similarly, let M = Mpc(Fr) and
let P be the unique probability measure on (M, B(M))) under which the canonical
map, N :M — M, N(m) :=m, is a Poisson random measure with intensity measure
At =Ly @ A® Lo, with Lo, being Lebesgue measure on [0,00). The corresponding
expectation operator will be denoted by E. Let F; :=o{N((0,s] x 0):0<s<t,0 €

B(F)} and denote by F; the completion under P. Set P the predictable o-field on
[0,7] x M with the filtration {F; : 0 <¢ < T} on (M,B(M)). Let A be the class of
all (P x B(E))/B0,00)-measurable maps ¢ : B x M — [0,00). For ¢ € A, define a
continuous process N¥ on Er by,

(6.3)
N?((0,4] x K)( /oﬂxx/m Lo (0NN (dsdzdr),  t€[0,T), K € B(E).
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N¥ is the controlled random measure, with ¢ selecting the intensity for the points
at location z and time s, in a possibly random but nonanticipating way. When
o(s,2,m) =0 € (0,00), we write N¥ = N?. Note that N% has the same distribution
with respect to P as N has with respect to Pg.

6.2. Poisson random measure and Brownian motion. Set W= C([0,T];U),
U=W xM and U=W x M. Then, for (w,m) € U, let the mapping NV : U — M be
defined by NV(w, m) =m, and let WV :U — C([0, T] U) be defined by WY (w,m)(t) =
> ey (w(t),a;)ai, recalling that the sequence {a;}52, is an orthonormal basis of the
separable Hilbert space U. The mappings NV : U — M and WY : U — C([0,T];U) are

defined analogously. For every t € [0, T, define the o-filtration
Gl =0 ({(W(s),NY((0,s] x 0)):0<s<t,0€B(E)}).

For every 6 > 0, for a given A € Mpc(E), it follows from [25, section 1.8] that there
exists a unique probability measure P§ on (U, B(U)) such that
(i) W is a cylindrical Brownian motion in U;
(i) NV is a Poisson random measure with intensity measure OAr;
(iii) W and N are mdependent
Anaulogously7 we define (Pe,gt ) and denote ]Pe 1 by B”. We denote by {F'} the

p’ -completion of {GP} and PY the predictable o-field on [0, 7] x U with the filtration
{FP} on (U, B(D)). Let A; be the class of all (PU® B(E))/B|0, 00 )-measurable maps
¢:Er x U—[0,00).

On the one hand, define [ : [0,00) — [0,00) by I(r) =rlogr —r+1, r € [0,00).
Then, for any ¢ € A;, the quantity

(6.4) Lr(p)(w) = : (p(t,z,w))A\p(dtdx), wel,

is well defined as a [0, 0c]-valued random variable. On the other hand, define
_ T .
(6.5) Ay:= {¢ 29 is PY/B(U) measurable and / |4 () |7 dt < oo, a.s.—IPU} .
0

Set U = Ag x Ay. Define Ly (¢) := 5 S () ||Zdt for v € Ag, and Ly (u) := Ly () +
Ly (p) for u= (4, p) €U.

6.3. A general criterion. In this subsection, we recall a general criterion for
a large deviation principle established in [9]. Let {G%}.~o be a family of measurable
maps from U to Z, where U is introduced in section 6.2 and Z is some Polish space.
We present below a sufficient condition for the large deviation principle to hold for
the family Z° = G¢(y/EW,eN¢ ') as £ — 0.

Define for each T € N, ST = {p: Er = [0,00) : Lr(p) < Y}, and ST = {0 €
L2(0,T;U) : Ly(o) < T}. A function p € ST can be identified with a measure \2. € M,
defined by

30 = [ plsOr(@sde). 0 eB(En)

This identification induces a topology on ST under which ST is a compact space, see
the appendix of [10]. Throughout this paper we use this topology on SY. Set ST =
ST x SY. Define S = Uy>1SY, and let U™ = {u = (¢, ) €U : u(w) € ST, P’ -ae. wh.
The following condition will be sufficient to estabhsh a large deviation prlnClple for a
family {Z°}.-¢ defined by Z¢ = G*(\/eW,eN¢ ).
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CONDITION 6.1. There exists a measurable map G° : U — = such that the following
hold.
(a) For any Y € N, let (on,pn), (0,p) € ST be such that (on,pn) — (0,p) as
n— o0o0. Then,

¢ (A'an(s)ds,A;n> N (/0 a(s)ds,xg> in 2.

(b) For any T €N, let uc = (VY- 0:), u= (1, ) EUT such that u. converges in
distribution to u as € — 0. Then,

G° (\ﬁW—i— /O'wg(s)ds,aNal%) =g° (/o'w(S)d&)\;) in =.

We use the symbol “=" to denote the convergence in distribution.
For ¢ € E, define S¢ = {(0,p) € S: ¢ =G"([,0(s)ds,\})}. Let I:E— [0,00] be
defined by

(6:5) @)= it (Le(m).  oe=.
m=(0,p)ESy

By convention, I(¢) =00 if Sy =10.
The following criterion was established in [9, Theorem 4.2].
THEOREM 6.2. Fore >0, let Z¢ be defined by Z¢ = G°(\/eW, estl) and suppose

that Condition 6.1 holds. Then, I defined as in (6.6) is a rate function on ZE and the
family {Z¢}eso satisfies a large deviation principle with rate function I.

For applications, the following strengthened form of Theorem 6.2 is useful. Let
{Em CE,m=1,2,---} be an increasing sequence of compact sets such that US°_; F,,, =
E. For each m, let

AY™={p e Ay :Y(t,w) €[0,T) x M,
1/m<ep(t,z,w)<mif z€ E, and ¢(t,z,w)=1if z € ES,},
and let Ab = U2_ AP™. Define UT =UY N {(y,p): p € AL}
THEOREM 6.3. Suppose Condition 6.1 holds with UY replaced by UY. Then,
Theorem 6.2 holds true.

6.4. Hypotheses. In addition to assumptions (Fy)—(F5) and (g1)—(g3) stated
above, we impose the following conditions on the jump noise term. Let h : [0,T] x
H x E — H be a measurable map.

CONDITION 6.4. For the locally compact Polish space E, there exist Lj >0 and
C}, >0 such that

(1) [ |h(tur, &) —h(t,ug, £)[PA(dE) < Lj, |uy —us|? for allt € [0,T] and uy, uy € H;

(ii) [ |h(t,u,)|PA(dE) < C (L4 |ul?) for all t € [0,T] and u e H.

Define

|h(t,u, &)

el e T xE

[17(t,€)llo,5z = sup
uweH

and

Hh(taf)”LH: sup |h(t’u1’£)_h(t7u2a€)|

w1 ,uz €H,u1 #usg |'LL1 _u2‘

, (t,€) €[0,T] x E.

CONDITION 6.5 (exponential integrability). Fori=0,1, there exists §i >0 such
that for all X € B([0,T] x E) satisfying Ar(X) < oo, it follows that
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/ SillAO 12 )\ (d€)ds < oo.
X

Remark 6.6 (see [55, Remark 3.1]). Condition 6.5 implies that, for every 6% > 0
(i=0,1) and for all X € B([0,T] x E) satisfying Ar(X) < co, we have

/ SOl \ (dg) ds < oo.
X

LEMMA 6.7 (see [55, Lemma 3.1]). Under Conditions 6.4 and 6.5:
(i) Fori=0,1 and every T €N,

(67) Climsup [ [(s.&)lualols,€) - UN@E)ds < o,

peSY JEr
©8)  Clhimsw [ [0 Rale(s.€) + DA < oci

peSY JErp

(ii) For every m > 0, there exists § > 0 such that for A C [0,T] satisfying
AT(A)<5;
(6:9) swp [ 1G5, O)llslo(s,) ~ UNEE)ds <,
peSYJAJE

LEMMA 6.8 (see [55, Lemma 3.2]). (i) If supcpo,r)|Y ()] < oo, for any m =
(o,p) €S, then

9(-Y (-)o() € L (0, T;H), /Eh(',y(')af)(/’(vf) — 1)A(d€) € L'(0, T3 H).

(i) If the family of mappings {Y, :[0,T] — H,n > 1} satisfies

C'=sup sup |Y,(t)| < o0,
neNte€[0,T]

then

ds

/E (s, Ya(5).€) (p(s,€) — DA(E)

T
Cy:= sup sup /
m=(o,p)€ST nEN | JO

T
+/ g(s,Yn(s))a(s)|d51 < 00.
0
We also need the following lemma, the proof of which can be found in [10, Lemma
3.11].
LEMMA 6.9. Let d: [0,T] x E— R be a measurable function such that

/ d(s, )P A(dE)ds < oo,
Er

and for all §3 € (0,00), X € B([0,T] x E) satisfying Ap(X) < oo, it follows that
fy exp(Bsld(s. ODAAE)ds < 0.
(i) Fiz Y €N and let p,,p€SY be such that p, — p as n— co. Then

lim [ d(s,§)(pn(s,6) = DA(dE)ds = [ d(s,§)(p(s,£) —1)A(d€)ds.

n—roo ET

(ii) Fiz T € N. Given ¢ >0, there exists a compact set K. C E such that

T
Sup/o /§|d(5»€)llp(s,§)—1|A(d§)d5§€.

peSY
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(iii) For every compact K C E,

T
lim sup / /K 1d(5,€)[Lpas ary (5, A (dE)ds =

M —o00 peST Jo

The previous lemmas will be used together with the following compactness result,
which represents a variant of the criterion for compactness stated in [29, Chapter I,
Section 5] and [43, Section 13.3], to prove main results of this section. Given p > 1,
a € (0,1), let W*P(0,T;H) be the Sobolev space of all u € L?(0,T;H) such that
fo Jo %dtds < oo, endowed with the norm [[ul[y e sy = Jo [u(®)[Pdt +

s " w0 ur dtds.

0 |t—s|ttep

LEMMA 6.10 (see [21, Theorem 2.1]). Let By C B C By be Banach spaces, By
and By reflexive with compact embedding of By in B. Let p € (1,00) and a € (0,1)
be given. Let X be the space X = LP(0,T;By) N W*P(0,T; By), endowed with the
natural norm. Then, the embedding of X into LP(0,T; B) is compact.

6.5. Main results. In this section, assume ug is deterministic. Let u® be the H-

valued solution to (6.1)—(6.2) with initial value ug. In what follows, we will establish
a large deviation principle for {u®} as e — 0. We start with the following definition.

DEFINITION 6.11. Let (U, B(TU),]F’U, {F Yi>0) be a filtered probability space. Sup-
pose ug s an Fo-measurable H-valued random variable such that I_E\u0|2 < o00. A
stochastic process {u®(t)}e(0.1) defined on U is said to be an H-valued solution to
(6.1)—(6.2) with initial value ug if:

e u(t) is an H-valued F;-measurable random variable for all t € [0,T);

e DL D(0 TFE)AL 20, TV)AL (@10, T: L4 1)),
P’ -a.s.;

e For all t e[0,7],

(6.10)
u6<t)=u0—/( Vs ds—é/ ds—/ F(uf (s))ds

+\f/ (s,u®(s))dW (s +s// (s,u® )Na_l(dsvdf),

in L2(0,T;V*) + L9(0,T; LI(R%)), where q is the conjugate number of p+ 1.

DEFINITION 6.12. The stochastic fractional PDE (6.1)—(6.2) is said to satisfy the
pathwise uniqueness property if any two H-valued solutions uj and us, defined on the
same filtered probability space, with respect to the same Poisson random measure and
Brownian motion, starting from the same initial condition ug, coincide almost surely.

We begin by introducing the mapping G° that will be used to define the rate
function and verify Condition 6.1. Recall that S = uyzlsT. As a first step, we show
that under the conditions stated below, for every m = (o,p) € S, the deterministic
integral equation,

u” —uo—/ Au™( ds—/ F(u ds—&—/t (s,u™(s))o(s)ds

T / [ (5. €) (005, €) = D),

has a unique continuous solution. Here m = (o, p) plays the role of a control.

(6.11)
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THEOREM 6.13. Let ug € H and m = (o,p) € S. Suppose (F1)—~(F3), (g1)—(g3),
and Conditions 6.4 and 6.5 hold. Then, there ezists a unique u™ € C([0,T];H) N
L2(0,T; V)N LPFL(0,T; LPT1(RY)) such that

(6.12)
" (t)—uo—/ Au™( ds—/ Pu ))ds—i—/otg(s,u”(s))a(s)ds

// (s,u™ (p(s,€) — DA(d€)ds, in L*(0,T;V*) 4+ L0, T; L4 (RY)).

Moreover, for fived Y €N, there exists a constant Cy >0 (which depends on Y) such
that

T
(6.13) sup ( sup |u”(t)|2+/0 |u”(t)||2dt> <Oy

7eST \ t€[0,T]

Proof. Existence of solutions. Given n € N, similar to [46], let X,, be the
space spanned by {e;,j = 1,2,...,n} and P, : H — X,, be the projection given
by P,u™ = Z?Zl(u“,ej)ej for all u™ € H. We can extend P, to V* and (LP(R%))* by
P,¢= Z;;l(d), e;)e; for all ¢ € V* or ¢ € (LP(RY))*. Consider the following Fadeo—
Galerkin approximations: u”(t) € X,, denotes the solution of

dul (t) = —Aul (t)dt — P, F(ul (t))dt + Pag(t,ul (t))o(t)dt

6.14
(044 +/EPnh(t7UZ(t)7§)(P(t,§)—1)/\(d£)7 vt € (0,71,

with initial condition w7 (0) := P,uo = uy,0. We will state the existence and uniqueness
of solutions to problem (6.14) for each n € N. Let vg(t) = P,ug with ¢ € [0,T]. Suppose
v has been defined for m —1 > k > 1. Define v,, € C([0,T];H) N L?(0,T;V) N
LPTY(0,T; LPT1(RY)) as the unique solution of

Qg (£) = — Avy (£)dt — P F (05 (£))dt + Prog(t, vm1(£))o(t)dt

6.15
( ) +/EPnh(tuvmfl(t%g)(p(taf) - 1))‘(d£)7

and v, (0) = Pyug. By slightly modifying the proof of [54, Theorem 3.1], one can
verify that the limit u? of v,,, as m — 0o, is the unique solution of (6.14) satisfying
C([0,T);H) N L2(0,T; V) N LPHL(0, T; LPTH(RY)).

Next we will prove that there exists a constant C' > 0 depending on T such that

T T
(6.16) sup< sup_[uf (t)]* + /0 oz (1) |2t + /0 ||uz<t>||§i1dt> <,

n>1 \ t€[0,T)

and for a € (0,1/2), there exists C, > 0 depending on T and « such that
(6.17) sup 4 .0 1. < Cn

Let us first show (6.16). By means of energy estimates, proceeding likewise as in
Theorem 3.2, letting n = min{w,é}, with the help of (F3), we have
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t t
(1) + 21 / 7 ()]s + 2k / iz (s) [+ ds
t
< o2 +2 / (Pag(s,u7i(5))o(s), u(s)) ds
0 t
(6.18) +oklOli+2 [ (Pn [ 1z, 00059 - 1>A<d5>,u:;<s>) s
0 E
t
< Jumof? + 2k2] O]t + 2 / 9,7 ()| cawsn o ()| e ()] ds

+2 / / (s, umi(), )| 10(5.€) — Lllun () \(d€)ds, Vi€ [0,T].

On the one hand, it follows from assumption (go) and inequality x+v/1 + 22 < 1 + 222
that,

/ lg(s, 7 ()| a v o)l ()] ds
(6.19) <2,/C, / VI Pllo(s) ol (s)]ds

<2,/C, / lo()llods +4+/C, / 7 (5) 2o (5) rds.

On the other hand,

/ / (.07 (5),€)] (5. £) — 1]Ju ()| A(dE)ds
2 [ EW(HI TDIo(s.€) — 1lF(s)A @) ds
(6.20) //HhSEIIOH\p(s €) — 1(1+ 2Jull () [2)A(d€)ds

<2//Hh o(5,€) — 1A(dE)ds
4 / o) ( /E (s, 6) - 11(de) ) s

Hence, it follows from (6.18)—(6.20) that

(6.21)
t t
IUZZ(t)I2+2n/ HuZ(S)HstHks/ [ury ()l 1ds
0 0

< bunal+ 26:100-+2/ [ o 6lods +2 [ [ 16 Oloallo &)~ 1)
4 [ R (VENo@l + [ 1hs0loslo(s.) - 1xe) ) s

Taking supremum with respect to ¢ € [0,7], we have
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sup |ufy (t)[* < |un ol
te[0,T)

T T
+ 20|01 +21/C, / lo(s)llds + 2 / /E (s, 6)llos
1 s o (m|a<s>||U+ [ Ibts.&)lozlo(s.6 —1|A<d5>) ds.

te[0,s]

p(s,€) — 1A(dE)ds

Using the fact that o € L?(0,7;U) and Lemma 6.7, applying the Gronwall lemma to
the above inequality, combining with (6.21), we can prove (6.16).
Now we will check (6.17). Notice that

ur(t) = Pyug — | Aul(s)ds — /0 P, F(ur(s))ds+ /0 P,g(s,ur(s))o(s)ds

+ /0 /E Puh(s,uZ(s),€) (p(5,€) — DA(dE)ds
=T T2+ T3+ T + I3 (t),  Vteo,T).

Using the same arguments as [29, Theorem 3.1], there exists a positive constant Cy
such that

(6.22) | Jp 2 = |tn0]* < Cy.

For J2(t), thanks to the Holder inequality, we infer there exists a constant Ca > 0 such
that
2

dJ23(t) B

dt

T T
623 1o = | IRORd+ [

:/OT

T
<417 [ Aol <c,
0

*

t 2 T
/Au;;(s)ds dt+/ | Aur ()| 2t
0 * 0

For J3(t), on the one hand, taking into account of (F}), we find

F(ur)|t = / P (u7 ()] 1da = / F(ur ()| 9d < kS / (1 -+ uf (2)|P)" de
R4 O (@}
< 20110 4 207k Juz L

Since P, : (LP*1(R9))* = L9(R?) — X,, C H, we know P, F(uT) € H for a.a. t € [0,T].
The above estimate, the Holder inequality and (6.16) imply that there exists a constant

C3 > 0 such that
(6.24)
q T
dt = /
0

T T
12 o = | [Tt +
0 0

T
+/O | P F'(ur (t))]dt

q

3
4z »

dt

/O t P, F(u(s))ds

1 1 T
< (3 +1)/0 | F(uri(s)) |2ds < Cs.
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We will do an estimate for J now. For 0 < s <t < T, it follows from assumption
(g92), the Holder inequality and the fact u € C([0,T); H) that

A (E) — T(5)P 2 2
<(/ Bl w0 )otrar)

/tPng< u(r)o
</ g (r,ug (P )l 2o llo(r )”UdT)QS(/t Cg(1+|u;;(r)|2)||a(r)||Udr)
<Cylt—s) <1+ sup u(t )/ ()13

t€[0,T]

By means of the above estimate and the Holder inequality, for o € (0,1/2), there
exists C4 > 0 such that

(6.25)

42 4 2 ‘J4 3)|2
”Jn”W"‘»z(O,T;H) / |J dt+/ / ‘t—8|1+2a i itoq dsdt
dt+Cy [ 1+ sup |uT (1)) / / o) |2|Udddt
+€[0,T) [t—s|?

T2—2a
<Cy 1+ sup [uf(n)P :m—/ ) <cn
g( te[o,rzr]| (>>< (1—2a)(2—2a) o ” ()”U 4

For J3, with the help of Lemma 6.7 and the fact that T € C([0,T];H), for 0 < s <
t<T, we derive

2

29 (s )o(s)ds

2
| Tn(t) =

P, / h(r, (1), €) (p(r,€) — 1)A(dE)dr

(//h &)|lp(r,€) — 1A(d€)d )2
<([ [nt ”0H1+“()|)|P(T7§)1|/\(d§)dr>

<Cyy <1+temépT T (t )//h (r,&) — 1\(dE)dr

Using similar arguments as for J3 (cf. (6.25)), we deduce that there exists C5 > 0 such
that

(626) ||J751HI2/V‘%2(0,T;H) S C5.

Moreover, since V. C LPTHO) C H := H C LY(0O) C V*. Immediately, we conclude
(6.17) by (6.22)—(6.26).

The estimates (6.16)—(6.17) ensure the existence of an element u™ € L2(0,T;V) N
L>=(0,T;H) N LPFL(0,T; LP+1(R?)) and a subsequence u7, such that, as n’ — oo,

up, — u™ weak-star in L°°(0,7T; H);
ul, —u™ weakly in L2(0,T;V);
(6.27) u™, —u™ weakly in LPT1(0,T; LPT1(RY));
up, — u™ strongly in L9(0,T;H);
F(uT,) — F(u™) weakly in L(0,T; LY(R%)),

2
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where the strong convergence holds thanks to Lemma 6.10, and the last weak conver-
gence follows from the same arguments as [52, Theorem 2.7], respectively.

Next, we will show u™ is the solution of (6.11). Let 9 be a continuously differen-

tiable function on [0,7] with ¢(T") = 0. For each fixed n € N, we multiply (6.14) by
Y(t)e; and then integrate by parts. This leads to the following equation:

- [ wh e e [ at.euar
0 0
T
+ / (B (£)). €50 (1)t = (s 0. 3)8(0)
T T
+ [ tano.eppas [ [ neano.000.9 - 0xa.e ) v

0

Taking the limit when n’ — co and using (6.27), we deduce

T T
(6.28) lim l_/o (uzl(t),ej)w’(t)dt—&—/o a(ul, (t),e;)(t)dt

T
4 / (F (1)), e o 0)dt — <un/,o,ej>w<t>]
0
- / (™ (), )0 ()t + / a(u™(t), e,y (t)dt
0 0

T
+ / (B (™ (£)), ) (t)dlt — (o, )8 (8).
0

Hence, we only need to check

T
(6.20) Jim [ gt ()00~ g(t. 0 )o(0)] dt =
and
(6.30)
T
fim [ [ T 0. (69 — )~ bl (0,(p(t.€) - DM@ =0.

On the one hand, for every € >0, let A,/ . ={t€[0,T]:|ul,(t) — u"(t)| > ¢}; then by
(6.27) and the Chebyshev inequality, we have

T, » o 9
(6.31) lim Lp(Ay.) < fim Jo () —u"@Fdt

n’—oco n’—o0 82

0.

Consider M = sup;cy Supejo,ry [uf ()| V supepo, 7y [u™ (t)| < oo. This assertion holds
true thanks to (6.27). Thus, due to assumption (g;) and the Holder inequality, we
derive

T
/O |g(t, up, (8))o(t) — g(t,u™ ()0 (£)|dt

T
< / gt (6)) — gt ()| eawan o (8) [t
0
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T
VI [ o - @l
<MVE, [ lelvde+eVT, [ lolud:

1/2
§2M\/LTTM\/L>9<A ||a(t)||%]dt> +e L9T</AC

, .
n' e n’ e

1/2
IIU(t)II%dt> :

Thanks to (6.31), the fact o € ST, and the above inequality, (6.29) holds. On the
other hand, since

T
/0 /E It (£),€) — Bt ™ (£),€)|o(t, ) — UA(dE)dt
T T _ u™
= [ MBS METO: ) w0l 9) - 1)t
o JE [ul, (t)

—u(t)]

T
S/O /EHh(t,f)HLHIug,(t)—u”(t)‘|p(t7£)_1|/\(d€)dt
SQM/ /E||h(t7€)||1,H|P(t,f)—1|>\(d§)dt—|—€/Ac /EHh(t,{)||17H|p(t7£)_1|/\(d§)dt'

Taking into account (6.31) and Lemma 6.7, together with the above inequality, (6.30)
is also proved. Therefore, it follows from (6.28)—(6.30) that, when n’ — oo,

(6.32)
T

T T

—/ (u”(t),ej)w’(t)dt—i—/ a(u”(t),ej)w(t)dt—i—/ (F(u”(t)),ej)w(t)dt:(umej)l/)(O)
OT 0 r 0

+ / (g(t. ™ (£))o(t), 3 () dt + / ( /E h(t,U”(t)@)(p(t,f)1)A(d€),ej>w(t)dt,

which implies ™ is solution of (6.11). Moreover, by means of Lemma 6.8 and using
the same arguments as in the proof of [46, Theorem 2.3], we also obtain

d”Tt(t) € L*(0,T;V*) + LU0, T; L(R?)) + L' (0, T; H).

Hence, it follows from [29, Lemma 1.2] that ™ € C([0,T];H) and

1d ™ 2 _ duﬂ—(t) s
sl = (252

) (V*+La(RL),VALP+1 (R4)) .

At last, as u™ is solution of (6.11), (6.27) and (6.16) imply (6.13) holds.

Uniqueness of solution. Eventually, we show that ™ is the unique solution of
(6.11). To this end, assume that v and uJ are two solutions of (6.11) with the same
initial value wg. Letting W = u] — u3, we have

2
% +2n|WE)I* +2(F (u] () — F(u3 (1), W(1))

(6.33) <2(g(t,uf (t))o(t) — g(t,uz (t))o(t), W(t))

2 /E (Bt (1), €) — h(t uE (1), €, W(E)) (p(t.€) — DA(dE).
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With the help of assumption of (F3), we arrive at
(6.34)

2(F(u7f(t))—F(US(t)),W(t))ZQ/O(F(UT(Rx))—F(US(t7x)))W(tw)dx > — 2k W(1)|*.

By condition (g1 ), we derive

2(g(t,uT (8))o(t) — g(t,ug (t))o(t), W(t))
(6.35) <2llg(t,uT () = gt uz ()l o o () [[u V()]

<2/ LW () |lollu.
For the last term, we have

(6.36) 2 / (Wt (1),€) - <t,u ().€). W) (p(t, £) — DA(dE)

|h(t, uT (¢ — h(t,u5 (t),8)|
_2/ |u1 S IVOP 66~ 1NE)

<oW(n)? /E 18,11l (£,€) — LIA(E).

Substituting (6.34)—(6.36) into (6.33), we obtain
dp?
dt

+2]W]? <2 (m VElolly +
E

p(t.€) 1|A<d§>) W2,

The Gronwall lemma and the fact o € ST, together with Lemma 6.7, conclude the
proof of uniqueness of solution to (6.11).

We now prove the main result. Recall that for m = (0,p) € S, N(dtd¢) =
p(t,&)A(d€)dt. Define

(6.37) G° </ a(s)ds,)\g) =u", for m=(o,p) €S as given in Theorem 6.13.
0

Let I:D([0,T];H) — [0,00] be defined as in (6.6).

THEOREM 6.14 (Main theorem). Suppose (F1)—(Fs), (91)—(g3) and Conditions
6.4-6.5 hold. Then, the family of solutions {u®}.~o satisfies a large deviation principle
on D([0,T]; H) with the good rate function I with respect to the topology of uniform
convergence.

PROPOSITION 6.15 (Verifying Condition 6.1(a)). Fiz Y € N. Let 7, = (0n, pn),
7= (0,p) €ST be such that w1, =7 as n— co. Then, for G° defined as in (6.37), we

have
e (/O.crn(s)ds,)\gﬂ"> N (/O a(s)ds,A;> . in C([0,T); H).

Proof. By definition (6.37), we know that G°( [, on(s)ds, \j") = u™. Since m, €
ST CS, using similar arguments as for (6.16)—(6.17), we deduce that there exist two
positive constants Cy and Cy v, such that

T T
(6.38) sup [u™ ()] + / ™ (1) 2dt + / Ju™ (#)[2Hid < O,

t€[0,T]
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and for a € (0, 3),
n 2
(6.39) [[u™ HW‘%‘I(O,T;V*) <Car.

Hence, it follows from Lemma 6.10 that there exist an element @ € L?(0,T;V) N
L0, T;H) N LPTY(0, T; LP*1(R?)) and a subsequence u™ (relabeled the same) such
that, as n — oo,

u™ — 4 weak-star in L°(0,T;H);
u™ — 7 weakly in L*(0,T;V);
(6.40) u™ — @ weakly in LPT1(0,T; LPT (R));
u™ — 4 strongly in LY(0,T;H);
F(u™) — F(u) weakly in L(0,T; LY(R%)).

Next, we will prove & = u™. Let @ be a continuously differentiable function on

[0,T] with (T) =0. We multiply u™ (t) by 1¥(t)e;, then use integration by parts to
obtain,

T T
- / (u™ (), e5)' (£)dt + / a(u™ (1), ;) ()dt

T
+/ )’(/J(t)dt:<’U,0,€j)’L/J(0)
(6.41) 0.
+/0 u™ (t)on, (1), ej)w(t)dt
T
- ( / Bt (6),€) (pu(1,€) — DA <d§>,ej)w<t>dt.
Set

// (t;u™ (1), €)(pn(t,€) = 1), €)Y () A(dE)dt,
0= [ [ 4t .90, - . v
n= [ [ 005090600, - .0 NG

Thus, we have

(6.42) INT) — I(T) = I}(T) — I*(T) + I3(T) — I(T).

n

It follows from (6.30) that

(6.43) lim (I(T) — I(T)) = 0.

n—oo

To obtain the result, it is enough to prove that there exists a subsequence {m} of {n}
such that

(6.44) lim (I}(T)—I2(T))=0.

m—r oo
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Thanks to (6.38) and Lemmas 6.7 and 6.9, we infer that for any given € > 0, there
exists a compact subset K. C E such that

(6.45) / / . &) (om () — 1), €5) () A(dE)dt
/ / h(t,w™ (£), E)llpm (¢, §) — 1|[¥(t)|A(d€)dt
S/O /gh(t,f)llo,H(Hu”’"'(t)l)lpm(t,&)—1||w(t)|A(dg)dt

<1+ sup |W<>|> s [0(0) / / 1At ) ol om (1,€) — LIAdE)dE

te[0,T] tel0,T

< sup [P(@)|(1+ Cr)e,

te[0,T]

(6.46) // L) (p(t,€) — 1),e,)p()N(dE)dt < sup [1h(t)|(1+ Cr)e.

t€[0,T]

To prove (6.44), applying a diagonal principle, it suffices to show that, for every
compact K C E and n = 2sup,co, 71 [¢(¢)|(1 + Cr)e > 0, there exists a subsequence
{m} (denoted the same) such that

n}iflm/ / )P (t,€) = 1), ;) () A (d€)dt
/ / ) (p(t,€) = 1), ;) (HA(E)dt
(6.47)
= / / E)pm(t:€), €5 (DA (dE)dt
A / )p(t,€), € )0 (E)A(dE)dt]| <.

Denote Ay = {(¢,€) € [0,T] x K : ||h(t,&)|lom > M}. By Lemma 6.9(iii) and (6.38),
for any € > 0, there exists M > 0 such that

(6.48) / / (™ (£),) o (£,€), )| 0(E) Ly, M)t
<[ [ e 0.00om OO A
§<1+ _— u”m) sup [i(t \/ /pmtgnhtg)umw (d€)dt

te[0,T] te[0,T]

< sup |ip(B)|(1+Cr)e,

te[0,T]

(6.49) / / (h () )P0 Lay A(dE)dt < sup [(8)|(1+ Cr)e.

t€[0,T)
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Denote Hi(1,€) = (h(t:u™ (1)€),€5)0(0) and H(0,8) = (h(t0(0).€).¢)0(0): Then

| o (1,€) 1 45,

(6.50) < <1+ sup |u”m<t>|> s [BOII()

t€[0,T]

< sup [¢(1)[(1+Cy)M,
t€[0,T]

<At w™ (1), [l ()| Lag,

ol ag,

and [H(t, )15, | < supyeqo ) [1(1)](1+ C) M.

Let O(-) = ’W be a probability measure on [0,7] x E. It follows from

[65, Proposition 4.1] that there exists a subsequence, denoted the same, such that
lim,;, 00 Hyn = H, ©-a.s. Therefore, using arguments similar to those in [10, Lemma
3.4], together with [4, Lemma 2.8] and (6.50), we know there exists a subsequence
{m'} of {m}, such that

(6.51)
T T
lim / /K Ho (4.6) o (1,€)La, A(d€)dt = / /K H(1,€)p(t,€)1as, A(d€)dt,

m’—oo

and

lim /o /K o (1,€)p(t,€)Lag, Md)dt = /0 /K H(1,)p(,€)1ac. A(dE) .

m’— 00

Hence, the above inequality, (6.48)—(6.49) and (6.51) imply (6.47). Moreover, by
(6.45)—(6.47), we obtain

lim |1,,(T) = I, (T)| <4 sup [()|(1+ Cr)e.

m’—o0 t€[0,T]

Thus, (6.44) follows immediately and there exists a subsequence of {m’} (still denoted
the same) such that

(6.52) lim I},(T)=I(T).

m’— o0
Let us proceed likewise as before. We infer that

059 Jm [ (ot @) 0.0 = [ aan)eo.e v

By (6.41) and (6.52)—(6.53), using the same arguments as in (6.32), we see @ satisfies

(6.54)

—/OT(u(t),ej)w (t)dt+/0 :
+ / (g(t,a(t))o (1), e ) (B)dt + / ( [E h(t,w),s)(p(t,s)1>A<d5>,ej)¢<t>dt.

T

a(a(t), e; o(t)dt + / (F(a(t)). e;)6(t)dt = (o, e5)(0)

Based on the uniqueness of solution to problem (6.11), we conclude that @ =u™.
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At last, we will prove v™ — «™ in C([0,T];H) as n — oco. Let W,, = u™ — u”.
Then

AW ()2
dt

<2(g(t,u™ (t))on(t) — gt u™ (X))o (t), Wa(t))
(),€)(pn(t,€) = 1) = h(t,u™ (1), §)(p(t,€) — 1), Wa (1)) A(dSE)

/ (ht, u™ (1), €)

E

W (1) (1) — g(t,u™ (£))o (£), Wa(£))

(gt ™ (£))o () — g(t,u™ (£))o (1), Wa(1))

/E (™ (1)) (o (1,€) — 1) — h(t, u™ (£), €) (ot ) — 1), W (1)) A(dE)
/E (it u™ (£), €) (p(£,€) — 1) — h(t,u™ (£),€) (p(t,€) — 1), Wi (1)) A(d€)

=1I7(t) + I3 (t) + I3 (t) + I (¢).

+ 20 Wa ()1 + 2(F (w™ (1)) = F(u™ (1)), Wa(t))

t,u™

+2 )
<2(yg(t,
+2 ol
+2 )
+2

Similar to estimates (6.34)—(6.36), we have
—2(F(u™ (1)) = F(u™ (1)), Wa(t)) < 2ka| Wi (),
I3 () <2y/Lyllo®)]luWa (®)1%,

(1) < 2W, (0) /E | p(1,€) — 1IA(dE).

Subsequently, collecting all the estimates above, we obtain

dW (1)

(6.55) o

+ 29[ ()12 <R Wi ()2 + 1T (8) + I3 (1),
where we have used the notation

N(t) = 2ka +2¢/Lyllo(t) v +2 . (t,€) = 1[A(d€) € L'(0,T).

Multiplying (6.55) by e~ JoR()ds and integrating it from 0 to t, we obtain
" t ; t
IO @ < [ e N (1) 13 (s)ds < [ ()] 11 () D
0 0
which implies

(6.56) sup W (8)]2 < exp (/0 N(t)dt)/o (1 ()] + |17 (8) ).

t€[0,T)

Since v € C([0,T];H) and uv™ € C([0,T];H) for each n € N (see Theorem 6.13),
together with the facts that bupneN bupte[o 7 [u™ ()] < Cv, supyepor lu™ ()| < Cx
and (6.40), we know u™ — u™ in L?(0,T;H) as n — oco. By condition (g2) and the
Holder inequality, we find
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T
/ I (1)t
0

T
<2 / gt ™ ()] ca v o (8) — o (8) [ W (1) dt
<2/, / VIT T OF(lon(t) — o(6) o) Wa(0)|dt
T 5/ .7 3
<24/Cy(1+C%) </0 Qan(t)||U+||0(t)||U)2dt> (/0 Wn(t)|2dt> — 0 as n—o0.

Similarly, for I§(t), it follows from Condition 6.4(ii), Lemma 6.7(i) and the Lebesgue
dominated theorem that

T T
/ TP (b))t <2 / / (Bt u™ (1), €) (pu(1,€) — 1), Wa () A(dE) dt
0 0 TE
2 / / (Bt 0™ (1), €) (p(£,) — 1), W (£))A(dE) dt
TO E
<2 / /E 1B, )l (1 + 0™ (8)) o (£, €) — 1] Wa (£) | A(dE)dt

+2/0T/E||h<t,£>

T
<2(1+ Cy) / /E 18,6l el o (1 €) — 1] W (£) A(dE) dt

o(1+ [ (®))]p(t, &) — 1| Wn (1) A(dS)dt

T
+2(1+0x) [ Iht&)los
0JE
Hence, by (6.56), we obtain lim, oo sup,co 7y [u™ (t) — u™(¢)| = 0, which implies
u™ — u™ in C([0,T];H). The proof of this proposition is complete. O

THEOREM 6.16. Assume (Fy)—(F3), (91)—(g3) and Condition 6.4 hold. If ug €
H, there exists a unique H-valued progressively measurable process such that u® €
L2(0,T;V)ND([0,T); H) N LPT(0, T; LPL(RY)) for any T >0, and

uf(t)zuo—/Ot(—A)me(s)ds—5/Otu€(s)ds—/0tF(u€(s))ds

p(t,€) — 1| Wa (£) | A(d€)dt — 0, as n—soo.

(6.57) . .
+\/§/0 g(s,ua(s))dW(s)—&—E/O /Eh(s,ua(s—),f)Nafl(dsdﬁ), a.s.

This theorem can be proved similarly as [5, Theorem 1.2] since (—A)" is a linear
operator, showing (6.57) admits a strong solution (in the probability sense). In par-
ticular, for every € > 0, there exists a measurable map G¢: U — D([0,7]; H) such that,
for any Poisson random measure ns " on [0,T] x E with intensity measure e ™' L7 ® A
given in some probability space, G¢(\/eW, en® 71) is the unique solution of (6.57) with
Ne " replaced by @i .

We have the following lemma introduced in [9, Lemma 2.3].

LEMMA 6.17. Let ¢ = (tpe, ) €U and \. = . Then,

Ef(A\e) :==exp {/ log(\:(s,2)) N (dsdxdr)
[0,t]x Ex[0,e—1]

Jr/ (=Ae(s, ) + 1)5\T(dsd:cd7’)}
[0,t]x Ex[0,e—1]
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£5 (1) .—exp{ /we JAW (s ——/ I6.(s |Uds}

are {FP}-martingales. Set E (e, Ao):=EF (1.)EE(Ae). Then

/8Ew67 &€ I

GeB(U

and

defines a probability measure on U.

Since \fW + fo e (s)ds,eN® E) under Q% has the same law as that of

(VEW,eN¢ ) under P” , there exists a unique solution %° to the following controlled
stochastic fractional differential equation:

(6.58) ff(t)uo/Ot(A)W(s)ds5/Ota€(s)ds/0tF(a€(s))ds
+/t (5, () (s ds+f/ 5, ())dW (s)
te / / )(NE “’E(dsdg)—a_lA(dg)ds)

:uo—/( Y ds—é/ ds—/ P (s))ds

+ [ ot 6ets ds+f/ 8. () AW (s)

/ [ s (50, 2 5.6) = D)
—|—s/ /h 5, i )(NE “’f(dsdg)—s_l%(s,f))\(dg)ds).

Moreover, we have

(6.59) (\fw+/ We(s)ds,eN®~ %) —

The following estimates will be used later.

LEMMA 6.18. Assume (Fy)—(F3), (g1)—(g3) and Condition 6.4 hold. Let ug € H.
Then there exists 0 < g L such that

< (1+16CZCyT+32CZC,)?’

B B T B T

(6.60) sup |E sup \ff(t)|2+E/ ||ﬂ5(t)||2dt+E/ @ () |21 1dt | < oo,
0<e<eo te[0,T] 0 0

where Cy, is the constant obtained from the Burkholder—Davis—Gundy inequality and
E is the expectation operator corresponding to P := B’ Moreover, for a € (0,1/2),
there exists Cp >0 such that

(6.61) sup E[|°[[3ya. aq,r;ve) < Ca-

0<e<eg

Thus, the family {G°,0 <e <eq} is tight in L1(0,T;H).
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Proof. The details of the proof of (6.60) are given in the appendix. Notice that
(6.58) is equivalent to

(1) = g — </t(—A)7ff(s)dS—|—6/t af(s)d5> —/OtF(ff(s))ds

+ [ ot 6ets ds+f/ 5. ()) AW (5

/ / (5, (5=),€) (92 (5,€) — DA(dE)ds
L. / / 5, (s—), E)N= "= (dsde)

=J 2 (t) + J3( t)+ J‘*( £)+ J2(t) + J2(t) + JI(t).

By the same arguments as in the proof of [21, Theorem 3.1], we know there exists
C! > 0 such that

(6.62) sup E|J'?<Ch

0<e<eq

For J2, using the same method as in [46, Theorem 2.3] and the Holder inequality, we
infer there exists a constant C? > 0 such that

(6.63)
R T 2 T
sup EJ|JZ[3 s 1) = SUP E/ /Aaf(s)ds dt+E/ | Aae (8) |2t
0<e<eg 0<e<eg 0 0 * 0
T_
< sup (T2+1)/ B|| At (£)||2d¢ < C2.
0<e<eg 0

For J3, similar to (6.24), by condition (F}) and the Hélder inequality, we know there
exists a constant C® >0 such that

(6.64)  sup EJ|J? ||W1q<ouq<o>>
0<e<eg

T
— sup (/ dt—HE/ 1P 1) o dt>
0<e<eo L1(0O) 0

< swp (13 41)E / PG @)t < €.

0<e<eq

ds

To estimate J2, we apply condition (g) and the Holder inequality for 0 <s <t <T,
2 t
st Oweryir] <E( [ lotrat ().l
’ 2
<k / o0 (0 les v 6
2
<op([ viF |af<r>|2||¢s<r>||udr)

<2C,Y(t—s)E (1 + sup |1]5(t)2> ,

t€[0,T)

t 2

E|JA(t) - JA(s)]? = E
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and the last inequality holds since (¢, @) € ur. Consequently, by the above estimate
and the Holder inequality, for « € (0,1/2), we have

E||J4|2 \J‘* |2dt—|—IE REAORESC i
ellwe2(0,T;H) = ‘t75|1+2a

T
<T°E / lo(r. @ <>>|\22<U;H)||¢s<r>||%dr

+2C,YE |1+ sup |&° // ——  dsdt
I ( te[OpT]| ) t—5|2“

<20, YE (14 sup |a°(¢ <T2 T“a>.
g ( b ”') mET

Therefore, there exists a constant C* > 0 such that

(6.65) sup E[lJ2([3ya.2 0,7 < C*.

0<e<ep

For J32, similar to J2, by [t6’s isometry and condition (g2), for 0 < s <t <T, we find

ElJf(t)—J?(SH:E’x/E/ g(r, s (r))dw (r) SEE/ lg(r, @ (M)Z, vy dr

<eCy(t—s)E (1 + sup |ﬂa(t)|2> .

t€(0,7]
Thus, for a € (0,1/2), there exists a constant C® > 0 such that

(6.66)

B J5 )‘2
sup E|J2|3 . < su J2(t) dt+IE/ / | el e dsdt
0<€£E [ ||W 2(0,T;H) = <E£€0 ( / |J2(1)] |t— S|1+2a

B T2 2a
CE (14 sup @ (1) <T2+)
I ( te[o,T]| | (1-2a)(2-2a)

For JE6 and 0<s<t<T, we have

< sup < C5.

0<e<eq

E|J2(t) - J6( )

=E h(r, @ (r=),8)(¢e(r,§) — DA(dE)dr

2

_E<L /Ellh(r,é)llo,H(1+ff(?")l)%(r,ﬁ)1|/\(d§)d7")

2 t
<E <1+t€sgé%]|ﬂ6(t)l> </S/E||h(h€)||o,ml%(h£)ll/\(di)d7’>

<CJE <1+ sup [t )//nhrs losslioe (. €) — 1A(dE)dr | |

2

te[0,T]
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where Cf; appears in Lemma 6.7 (see (6.7)). Using the above estimate to JS, we
obtain

6 2 |J6 3)|2
BTS00 = /|J dt+E// |t_5|1+2a P s
+OLE | [ 14 sup |as(t /// z(ff) ‘(df)drdtds
' te[0,T) t—s|0‘

Tl 2c
<(Cy,)’E (1"‘]&65;%%]'” (t )|> (T+2a(1—2a)>'

Therefore, there exists a constant C® >0 such that

h(s,a*(s=),8)(we(s,€) = 1)A(dE)ds| di

(6.67) sup EHJ ||Wa2(0TH) <C°

0<e<ep

For the last term JE7 and 0 <s<t<T, by Lemma 6.7, we derive

2

E|JI(t) — J (s)]* =’E h(r, af(r—),g)Nf‘l% (drd€)

<5E/ / I (r, 5 (=), €) [P (1, ) A(dE)dr
<cE / /E B0 )12 gl (r €)](1 + |82 (r)])2A(d)dr

<ck (1 + sup [i°( ) [ [ 18z alectr.ragiar

te[0,T)
Using similar arguments as for the bound of J¢ and Lemma 6.7, we infer there exists
C7 > 0 such that

sup ]EHJ ||Wa 2(0,T;H) = < C7,
0<e<eo

which, combining with (6.62)—(6.67), proves (6.61). d

To obtain the main results, we need to prove that {@°,0 < 5 <o} is tight in the
vector valued Skorokhod space D([0,7]; D(A™")) for some r > 3= d(1— ﬁ) such that
DA™y cVC P O)CH:=H C LY(O) C V* C D(A™") (see [46, Lemma 2.1] for
more details). To that end, we first recall the following two lemmas (see [2, 27] and
the references therein).

LEMMA 6.19. Let H be a separable Hilbert space with inner product (-,-). For
an orthonormal basis {xk}ken in H, define the function r3 : H — RT by ri(z) =
> oksra1 (T Xx)?, L €N. Let B be a total and closed under addition subset of H. Then,
a sequence {ug}ee(o,l) of stochastic processes with trajectories in D([0,T];H) is tight
if and only if the following two conditions hold:

(i) {uc}eepo,1) is B-weakly tight, that is, for everyl € B, {(uc,l)}cc(0,1) 15 tight in

D([0,T];R).
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(ii) For every v >0,
(6.68) hm lim supP (TL(UE( )) > v for some s € [0,T]) =0.

L—oco g0

Let @ be defined as in (6.58), then we have the following result.
LEMMA 6.20. The set {a°,0<e <eg} is tight in D([0,T]; D(A™")).

Proof. Notice that, {A\’e;};jen is a complete orthonormal system of D(A™") (see,
for example, [46]). Since

(o)

hm limsupE sup 7% (a°(t)) = hm limsupE sup A (1), \ie) b qmr

Lo, s o] L L, s tG[OT]JZL;r1< j€i/D(A-T)

_ o0 . o0 ~c t ,

= lim limsupE sup Z (A7"a (), ej)H— lim limsupE sup (a( )zrej)H

L—oco ¢—0 te[O,T]j:L_H L—oco  ¢—0 te(o, T]] 11 )\j

lim su E[su as(t)]?

< lim PeyoEf 2pt€[0,T]| ®)I%] —0

L—o0 5"

L+1
Therefore, (6.68) holds with H= D(A™") by using the Markov inequality.

Choose B = D(A"). We claim that {a}.¢cjo,1) is D(A")-weakly tight by using
the same method as [55, Lemma 4.4]. That is, for every I € D(A"), let (B.,d:) be a
stopping time with respect to the natural -field taking finitely many values and an
interval on [0, T}, respectively, satisfying d. — 0 as ¢ — 0. By Lemma 6.18, it is easy
to check {(@*,1) p(ar),0 <e <eg} is tight on the real line for all ¢ € [0,7]. Hence, we
end this proof by showing (u°(8: + d.) — @*(B:),!) p(ary — 0 in probability as ¢ — 0
(see the appendix for the details). d

_ We proceed likewise as in [39, Proposition 3.1], there exists a unique solution
Ye(t) (t>0) to the following equation with initial value 0,

dYe(t) = — ((_A)vf/s(t) + 5178(15)) dt + /2g(t, 7 (1))dW (t)
+s/ h(t, @ (t—),E)N°  #=(dtdg),
E

and Y € D([0,T];H) N L?(0,T; V), P-a.s.

LEMMA 6.21. There exist some constants C>0 and o=

(6.69)

1

4(CyT+2C4 , H4CFCyT+8CECY )
such that for any 0 < e <&y, the solution of (6.69) with initial value Y(0) =0 satisfies
E| sup |[V°(t)]

T
+E/ 175 (8)|Pdt < Ce.
t€[0,7] 0

Proof. By It’s formula, similar to (3.5), we derive
0P 20 [ 176
<2/t< “(5), v/Eg (5,5 (5)) AW (s) +s/ lg(s, @ (5))]1 20 ds
(6.70) +2€/ / (V2(s=), h(s, @ (s—),))N= "% (dsd)

+5//|hsu JEPNE “"E(dsdf)
7l 72, 73 74
=1, + 1+ 1+ 1,
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By assumption (g2) and Lemma 6.7, we obtain

(6.71)
— — T —
E| sup 12| <<E / gt @) 2, adt <eC,T |1+ sup [a=(0)2 ) |,
te[0,7) 0 i te[0,T]
and
_ B T
E| sup I'| <E / / (€2 (L + @ () et €)M dt
te[0,7] o JE
(6.72)

< 2508{2

1+E< sup |ﬁ5(t)|2>] ,
t€[0,T]

respectively. As for I, and IS, by the similar estimates as for (3.8)—(3.9), we have

_ [ 1 1- ~ 1 [ _ 1
(6.73) E| sup I, < E| swp [YE(t)|?| +4CEC,Te 1+IE< sup |ff(t)2> ,
| te(0,7) | te(0,7] | i t€[0,T]
and
_ i 1 1- I ~ 1 [ _ 1
(6.74) E| sup I} ZE sup [YE(t)]?| +8C3CY e 1+IE< sup |ﬁ8(t)|2> ,
| t€[0,T] | t€[0,T] ] i t€[0,T ]

separately. By means of Lemma 6.18, taking supremum with respect to ¢ and
expectation on both sides of (6.70), collecting (6.71)—(6.74), and picking up &, =
1 such that, for all 0 < e < &g, one has

4(CyT+20f,+4CZC,T+8CECY ;)
e (CyT +2C4 4 +4CEC,T +8CFCY,) <1/4.

Therefore, there exists a constant C’l, such that for any 0 < e < &,

T
E| sup [P50)2] + 2n1E/ V= (0)|2dt < Cre.
t€[0,T] 0
We finish the proof of this lemma. 0

THEOREM 6.22 (verifying Condition 6.1(b)). Fiz T € N, and let ¢. = (Ye, ),
é=(¢,0) €U be such that ¢. converges in distribution to ¢ as e — 0. Then

o <\/§W + / wg(s)ds,5N51%> = g° (/ w(s)ds,xgi) .

Proof. Note that 4 =G (\/eW + [ b (s)ds, eN= '?¢), e € (0,0). Lemmas 6.18,
6.20, and 6.21 imply

(i) {u®,e€(0,g9)} is tight in Lq(O T ]HI) ND([0,T); D(A™"));

(i) lime o B[sup,ejo,r [V ()2 +E fy [[V=(0)]2dt =0,
where Y is the solution of (6.69).

Set ¥ = (L4(0,T;H) n D([0,T]; D(A~"));UY; L*(0,T;V) N D([0,T];H)). Let
(@, (¢,%),0) be any limit point of the tight family {(@8, (e, 0:),Y5),e € (0,60)}.
We must show that @ has the same law as G%( fo s)ds, \%), and actually a° = @ in
the smaller space D([0,T]; H).

By the Skorokhod representation theorem, there exists a probability space
(Q, F, {ﬁt}tzo,ﬁ") with expectation E, S-valued random variables (t1, (1,¢1),0) and
(a5, (wg,gaa) Y?), € € (0,60), such that on this basis, (a5, (1L, L), Ys) (respectively,
(i1, (Y1, ¢%),0)) has the same law as (11 (e, ©e), Y":) (respectively, (@, (¥,¥),0)).
Moreover, (@5, (¥}, @), YE) = (ir, (W', ¢"),0) in ¥, P-a.s.
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From the equation satisfied by (@, (¢e,p.),Y?), we see that (@S, (), @l),Y)
satisfies the integral equation,

as (t) — Yy (t)
t _ t _ t
== [ (AP () = T (e)ds =5 [ (@(s) = ¥ (s = [ Fi(s)as
t
+ [ ot enutds+ [ [ hsa 500466 - DA
0
and
P (ai —YE e ([0, T);H) N L2(0,T; V) N LPHL(0, T LP+1(Rd)))
=P (aE — Y= e C((0,T);H) N L2(0,T; V) N LPH(0, T LP+1(Rd))) =1.
Let Q2 be the subset of { such that (a5, (vl oh) le — (@1, (¥, ¢1),0) in ¥; then
I@(Q) = 1. Now, we will prove that, for any fixed @ € (,

(6.75) sup |5 (@,t) — a1 (@, 1) =0 as € —0.
te[0,T]

Let R° = a5 — Y§, then R°(@) € C([0, T);H) N L2(0,T; V)N LPT1(0, T; LP+1(R?)), and
satisfies

Rf(t)zuo—/o (—A)‘*Rs(s)ds—é/ Rs(s)ds—/ F(RE(s) + VE(s))ds

[k sontons [ i

+ Y1 (5),6)(92(5,6) = DA(

Since lim.o[sup;e(o,7) |VE(@,b)]? + fOT |YE(@,t)||2dt] = 0, by similar arguments as in
the proof of Proposition 6.15, we infer that

(6.76) lim | sup |a5(@,t) —a(@,t)*| =0,
€20 1 ¢e[0,17]

where

a(t)zuo—/( V(s ds—é/ ds—/ F(a(s))ds
“f gl i) (s)ds + / [ hs (). (5.6) = DA

Hence, 1 = @ = GO( [, ' (s)ds, )\“” ) and @ has the same law as G°( [, ¥ (s)ds, A7).
Since 4 = @f in law, (6. 76) further implies that @ = GO(f; ¥ (s)ds, 7). Thus we
complete the proof of this theorem. 0

Continuation of the proof of Theorem 6.14. We need to check that Condition 6.1
is fulfilled. The verification of Condition 6.1(a) is given by Proposition 6.15 and the
verification of Condition 6.1(b) is proved in Theorem 6.22. The proof of the main
theorem of this section is finished. ]
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7. Example: Fractional stochastic Chafee—Infante equations. Consider
the following fractional stochastic Chafee-Infante equations driven by Lévy noise and
Brownian motion,

du(t) + (—A) u(t)dt + v(u®(t) — u(t))dt = g(u(t))dW (t)

. in O x (0700)7
+ [ h(u(t=), )N (dt, d€) on 9O x (0, 00)
u(t,z) =0 in O o

u(0,z) = up(x)

where O is an open, bounded subset of R? (d < 3) with smooth boundary 9O. To
put the above equation in the form of the abstract way, we only take the nonlinear
term F(u) = vu® — u, where p+ 1 = 3 and the conjugate number is ¢ = % In order
to use the result that D(A’“) is continuously embedded into L3(0) [46, Lemma 2.1],
we need to take r > 12 , where v is the index of the fractional Laplacian operator.
Under the same assumptlons as the previous sections for the stochastic terms, we can
straightforwardly apply our theory to this interesting example.

8. Appendix.

8.1. Proof of (6.60).
Proof. Applying Itd’s formula to |%€|?, by (6.58), we obtain

(8.1)
|ff(t)|2=|u0\2—2/0 < (=A)Ta5(s) + du(s) + F(a(s)),u(s) > ds
12 / (g(s, T (5))e(s), @ (s))ds
2 / / (h(s, 8 (5—),€),8°(5)) (e (5,€) — DA(dE)ds
#2VF [0 05,0 () = [ 906,37 6D
= / (h(s. 5% (s-),€),5°(s)) (N*" 9+ (dsd€) — & pe(5, )M dE)ds )
+e//|hsu O)2e(5,E)A(dE)ds

=lugl?+Jy + Jo+ T3+ Jy + Js + Js + Jr.

Similar to estimates (3.5)—(3.6), we have

7 :—2/ < (=AY (s) + 6i (s) + F(i5(s)), #5(s) > ds
(8.2)

<2 / 18 (5)]2ds + 2Hs] Ot — 2k / @ ()17 Fhds.
By assumption (g2) and the Young inequality, we derive

(8.3)
Tyt Js =2 / (905, 3 () e (s), 3 (5))ds + ¢ / 95,7 ()12, 0 s

t t
<2 / 1905, 8 (5)) L a ot 166 ()l |5 () dis + € / g5, 7 ()12, 0z s
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<3 [ oo, I e s .2 [ 1)
+e / (s, 5 (D2 7 s

c/ (1 + i ()[2) [ (s ||Uds—|—2/| |ds+50/ (14 [ (s)[2)ds

l\J\H m\»—l

t
& [ Iwcas +<Ctt [ (FCI0lE +27+0 ) a5

By Lemma 6.7, we infer that

Jyim2 / [E (W37 (5),€), 5 () (92 (5,€) — IA(d€)ds
<2 / / (s, (5—),€)[13(5) e (5, €) — 1IN (dE)ds
(8.4) <2 / / 15, ) o (1 + [ (5)) 2 (5)][0e (5,€) — 1A(d€)ds
/0(1+2| (/ (s, ) ol (5, «s>—u<d5>) s
<20, +4 / 2(s) ( [ Ih(s. )l 5)—1|A<df)) ds.

Again making use of Lemma 6.7, J7 can be bounded by

J7—a/ / (s, (5, ) oo (5, €) M) ds
(8.5) <c / / 1A, ) 3. (1+ 3 () 0= (5, ) M (dE)ds
<207, + 2 / /E (s, €)1l (5) Pipe (5, E)A(d€) s

For Jy, it follows from assumption (g2) and the Burkholder-Davis—-Gundy and Young
inequalities that

(8.6)

T 3

E( sup J4<t>|> <20, EE ( / ||g<t,ff<t>>%ﬂU;H)af(wﬁdt)

te[0,T] 0

1 X N

< JVEE | sup [@(OF | +4CEVER | glt,a ()] e
te[0,T] 0
1 _
—(4\£+4C§Cg\/ET>E sup |@°(t)|? | +4CZC,/eT.
te[0,T]

For Jg, by Lemma 6.7 and the Burkholder-Davis—Gundy and Young inequalities, we
also obtain
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(8.7)

E( sup Ja(t)l>
t€[0,T)

<2C,E (/0 /E€2|h(t,ﬂ€(t—)>€)2Iﬂ5(t)|26_1s05(t7£)>\(d§)dt>

N

1 _ _ T N
<3| sup (@(OF | +4CEE [ [ clhtat (). Ploc(t. O
| t€[0,T] 0o JE
1 i 1 T
<3E| sup (@(OF | +4CEE [ [ [t Ot + 15 O] le(t. )\ de)de
| te[0, 7] | 0o JE
1_[ | _
<ZE| sup |af(t)]?| +8cC2CHL,E |1+ sup |a(t)|*] .
4 |ten.m ] ’ t€[0,7]

Combining (8.1)—(8.5), for all ¢ € [0, 7], we arrive at

tr
| (8)]* < |uo|? +2H2|0\t+CgT+€Cgt+/ (2Cg||¢s(8)ll?f +2+€Cg> @ (s)|*ds
0

r2cf 4 [ 1w ([ 19

t
2O, 42 / / (s, )2l () Pioe (5, A (dE)ds + sup [ (0)]
0 JE te[0,T]

o2 (5,6) 1A<ds>) ds+ sup |Ja(0)

t€[0,T)

< <|u0|2 + 262|O|T + Cy Y +eCyT +2C0  +2eCoy + sup |Ja(t)|+ sup Jg(t)|>
te[0,T] te[0,T]

- [;cgu%(smg L24eC,+ ( [ .0l slecs.9 -1
+2€||h(8,§)”3,]}41<,05(37§)) A(dﬁ))} |a5(5)|2ds, P-a.s.

Let My = 2r2|O|T + CyY +eCyT + 206{1 + 250({2. Using the Gronwall lemma, we
have

@ (t)]* < (Ittol2 + My + sup |Ju(t)[+ sup |J6(t)>
te[0,T te[0,T]
x exp (CyY + 2T +eCyT +4Cy | +2Cy ) .

Denote by M, =exp (CyY + 2T 4+ C,T + 40[}?1 + 2508{2) which does not depend on
w. It follows from (8.6)—(8.7) that

El sup |115(t)|2] < M; (Eluo|?® + My + 4CECyV/ET + 8eC3 CY )
te[0,T)

1 1 _
+ My <4¢E+4c§cgﬁT +I+ 850,303{2) E

sup |ac(t)*] .
t€[0,T]
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We choose ¢ < Czcgz}+32050§2)2 such that i\@—&—éleCg\/ET—i—i—i—&CgC’a{Q < %

(1+16C2
Therefore,

E

sup |ﬁ€(t)2] < 2M; (Eluo|?® + My + 4CECy\/ET + 8eCECY,) .
t€[0,T]

The proof is complete. ad

8.2. Proof of Lemma 6.20. (@°(f: 4 d.) — a°(53:),l)p(ary — 0 in probability
as € = 0 for every l € D(A"), where (fc,d.) are a stopping tzme with respect to the
natural -field taking only finitely many values and an interval on [0,T), respectively,
satisfying d. — 0 as € — 0.

Proof. With a slight abuse of notation, we will use the inner product (-,-) instead
of (-,-) p(ary. For simplicity, denote d:=d. and §:= f.. By (6.58), we have

d+p d+p d+pB
uc d) — uf =— —A)"af(s)ds + o ut(s)ds | — F(ut(s))ds
(6+d)— () (/ﬁ<><>+/ <>>/ﬂ (@(s))
d+B a+p
+/ o, (5)) e (s ds+f/ (5))dW (s)
d+B
/ / 6)(ie(5,6) — DA(dE)ds

d+p
+€/ / h(s, @ )(Ns ve (dsde) —e_lwg(s,@)\(dg)ds)
=TS IS+ I+ IS+ IE + IE.
For I5, since Au® € L*(0,T;V*) and | € D(A"), by the Hélder inequality and (6.60),

we have
d+8
/ (A (s), 1)ds
B

For I, since F € L9(0,T;L%(0O)), combining with (6.60) and the Hoélder inequality,

we obtain
_pd+B
gnmE/ /|F ))[[i|dads
e—0

L d+p8 ~
< lim EJ|d7 /6 |F @ (s))llyds | =o.

For I§, by condition (gz), the Holder inequality, and (6.60), we infer

lim E

e—0

s _
< lim]E/ 1A (5)].|Ji]|ds < lim C|Ji]|V/d = 0.
e—0 8 e—0

lim E

e—0

d+p
/ F((s)),1)ds
B

Q=

lim E

e—0

. = d+5 ~c 2 % o 2
g;;nézauwcj(/ﬂ (1+ | (s)] )ds> (/ﬂ |ws<s>||Uds>
<hm|z|\/ff\flE\/1+ sup [a(1)[2 = 0.

te[0,T]

d+p d+p
[ 7)), s < BB oo, 5 D e ) s

2
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For If, by Lemma 6.7(ii), together with (6.60), we derive

lim E

e—0

d+B
/ / (h(s, 5 (5—),6),1) (e (5,€) — DA(dE)ds
8 E

o deB
< im B /ﬁ [ s, €001+ [ (Do) = 1A (@) s

B d+p3
<HmBji | {1+ sup [a() / / (s, ) ozl (5.€) — 1IAdE)ds | | =0,
e— 8 E

t€[0,T]

Moreover, for If and I§, by the Burkholder-Davis-Gundy and Young inequalities,

Lemma 6.7, condition (g2) and (6.60), we arrive at lim._oE[(If,])] = 0 and
lim. o E|(I§,1)| = 0, respectively. Therefore, collecting all the estimates above, we
conclude the proof. 0
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