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Abstract— In electrical distribution networks an adequate
management is key for supporting the deployment of renewable
generation sources and microgrids while extracting their max-
imum potential. Among the existing optimization approaches,
stochastic and probabilistic methods are experiencing a growth
in their use. However, one of the problems when applying
these approaches is the complexity of creating and evaluating
the quality of the required stochastic forecasts compared to
deterministic forecasts. To mitigate this difficulty, this paper pro-
poses a probabilistic forecasting framework that integrates model
creation, their evaluation, and the selection of the best model
for predicting. Additionally, two novel methods are proposed for
creating scenario sets, and a new metric is defined for evaluating
and selecting which model to use. The proposed framework
is applied in a case study over a dataset of ten secondary
distribution substations from a real distribution network located
in Manzanilla (Spain), showing the effect of the selection criteria
over the forecasting quality.

Note to Practitioners—This article was motivated by the
challenge of probabilistic forecasting inclusion in automatic
management systems applied to power distribution networks
and microgrids. Modern stochastic management optimization
methods are fed with probabilistic forecasts, which offer richer
information than classic deterministic forecasting. Therefore, the
management systems should be able to automatically train a
certain number of forecasting models (e.g., machine learning
models), evaluate and compare them, and apply the best ones
for obtaining the forecasts to feed the management optimization
system. Considering the variety of models, techniques, probabilis-
tic forecast types, and evaluation metrics, it can be unclear how
to perform this process. For these reasons, this article proposes
a probabilistic forecasting framework that integrates methods
for the construction of diverse types of predictions (quantiles,
intervals, and scenario sets), their evaluation, and the selection
of the best model for performing each required prediction for
feeding optimization systems. This framework could help to
facilitate the implantation of modern stochastic optimization
management systems for distribution networks and microgrids,
as it simplifies the forecasting process.
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I. INTRODUCTION

THE recent generalized deployment of renewable gener-
ation in the power system over the world is supposing

a huge challenge for distribution network management [1].
Specifically, distribution system operators (DSOs) are look-
ing for increasing what they call the “observability” and
“controllability” of their networks following the smart grid
paradigm [2], obtaining a deeper knowledge about their state.
This is required due to the high variability of distributed
generation (DG) and the requirements of the upcoming growth
of electric vehicles (EVs), which may cause congestion in the
network during generation and consumption peaks [3].

In this sense, microgrids are becoming one of the key
elements for the power system. A microgrid can be defined
as a small electric network that is designed for a reliable and
massive integration of distributed generation at the primary
and secondary distribution level, especially the renewables
(solar, wind, and other low carbon technologies) [4], [5].

For taking full advantage from the control capabilities of
distribution networks (and microgrids), it is key to perform an
optimized scheduling for their operation. This means, to decide
which generation units and loads should be connected and
disconnected, when it is convenient to charge a storage sys-
tem, or when a microgrid should be swapped to zero-energy
consumption. It can be used for managing demand response
resources [6] and for facilitating the integration of EVs in the
grid [7], among other applications.

Two main general types of microgrid optimization
approaches can be found in the literature. These can be
deterministic (as for example in [6]) or stochastic (as in [8]).
The latter is sometimes also called “probabilistic” when the
associated probabilities are explicitly considered [9].

Depending on the approach to be followed, the requirements
of input data, i.e., the variables of interest that must be fore-
casted or estimated to perform the optimization (e.g., expected
load consumption, expected generation, etc.) will vary. Deter-
ministic methods require a deterministic forecasting, while
stochastic methods need more enriched information, such
as quantiles, intervals, scenarios, etc. Therefore, forecasting
systems need to automatically choose which prediction models
are better to apply.
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The evaluation of each form of probabilistic forecasting
can be done using appropriate metrics (e.g., the pinball loss
function and the Winkler score [10]). However, in a forecasting
system some types of probabilistic forecasts may be obtained
from others (e.g., a prediction interval with a certain associated
probability can be obtained from a quantile set simply by
choosing the upper and lower limits). For this reason, in some
cases it could not be totally clear for practitioners of the
industry how the evaluation, comparison, and selection of
forecasting models could be handled, especially when different
types of interrelated probabilistic forecasts are involved.

Therefore, to help mitigating these problems, this paper
proposes a forecasting framework that defines how to perform
the construction of diverse probabilistic forecasts for serving
as inputs for optimization systems when several forecasting
models are available. Inside the framework, prediction inter-
vals and scenario sets are constructed using quantile sets. The
generation of scenario sets is done by two methods proposed
in this paper, and their evaluation is performed using a new
proposed metric.

Furthermore, for performing the evaluation and selection of
models, two different approaches are presented: i) choose the
model that creates the best-quality quantile set for constructing
all the required intervals and scenario sets; ii) evaluate indi-
vidually the quality of all the available models for creating
each type of interval and scenario set that is required, and
then use the best-quality model for constructing each of
the required intervals and scenario sets. To the best of the
authors’ knowledge, the effects of these criteria have not been
previously treated in the literature.

The original contributions of this article can be summarized
as follows:

1) Framework for obtaining probabilistic forecasts that
automatically perform the evaluation and selection of
forecasting models. It can provide quantiles, intervals,
and scenario sets for the forecasted variables. Two
possible approaches are presented for performing the
model selection.

2) Two methods for creating scenario sets using quantile
sets are proposed (called MiAs and ExAs). In this regard,
an evaluation metric (called WePin) has been designed
to make up for the shortcomings of the current metrics
in scenario sets assessment.

3) As a case study, the proposed probabilistic framework
has been applied to forecast the demand (obtaining
quantiles, intervals, and scenario sets) of ten sec-
ondary distribution substations in the town of Manzanilla
(Spain). The effects of the two approaches for model
selection are compared and discussed for this case,
showing how it could affect to the quality of the demand
forecasting in a real distribution network.

The rest of the paper is organized as follows. Section II
makes a review of the state of the art. Section III introduces
some methods and metrics from the literature that serve to
construct and evaluate probabilistic forecasts, as some of these
have been integrated in the framework. Section IV presents
the proposed probabilistic forecasting framework. Section V
corresponds to the case study. Then, a discussion on the

results and next research steps is made in Section VI. Finally,
Section VII summarizes the conclusions of the paper.

II. STATE OF THE ART

As previously said, there are diverse approaches for opti-
mizing the management of microgrids (and, in general,
distribution networks).

According to [11], some Energy Management Sys-
tem (EMS) optimization approaches are: Model Predictive
Control (MPC), Open Loop Feedback Control (OLFC, some-
times referred to as stochastic MPC) and stochastic dynamic
programming (SDP). The mentioned stochastic methods can
solve the optimization problem considering multiple scenarios
with their inherent probabilities of occurrence.

Theoretically, it would be possible to generate as many
forecasted scenarios as it is desired for a certain variable. How-
ever, the inclusion of a high number of scenarios in stochastic
optimization methods would drastically increase the computa-
tional cost, as it has been pointed out by other authors [12].
Therefore, it is a common solution to perform a limited
selection of scenarios. For example, [13] uses 50 scenarios
which have the highest probability of occurrence, including
wind speed, solar radiation, thermal, and electrical loads as
uncertain parameters (i.e., variables to forecast). In [9], the
uncertainties are modeled using the Probability Distribution
Function (PDF), which is discretized. Then, several scenarios
are created using Monte Carlo, and finally a scenario reduction
is done.

Other optimization approaches consider prediction inter-
vals for uncertain parameters instead of using scenario sets.
An example can be seen in [8], where the authors propose a
robust optimization the management of microgrids. In [14] the
scheduling of distribution systems is done considering that the
generations and load demands vary between their forecasted
lower and upper bounds (i.e., within the intervals).

These optimization methods, that can be applied in dis-
tribution networks and microgrids, require the prediction
of one or more variables to obtain the optimal manage-
ment operations, as for example solar generation [15], wind
generation [16], etc.

In this sense, the literature usually classifies the forecasting
methods in two main branches. A deterministic forecasting
(or point forecasting) method provides a single point for
each interval of time. A probabilistic forecasting method
gives the results in the form of quantiles, intervals, density
functions, or scenarios [10]. Thus, a deterministic forecasting
model provide less information, while the probabilistic models
give much more detail about the expected values and their
characteristics.

According to [17], in some areas of power system the
use of probabilistic methods is still an underdeveloped topic,
with both academics and practitioners not using the correct
evaluation or testing procedures.

For the formulation of a probabilistic forecasting problem,
four approaches are distinguished in [17], which are histori-
cal simulation (or empirical/sample Prediction Intervals, PIs),
distribution-based probabilistic forecast, bootstrapped PIs, and
Quantile Regression Averaging (QRA). Other methods that are
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commonly found in the literature are Quantile Regression [1],
bootstrapped quantiles [18], Bayesian bootstrap quantiles [19],
and scenario sets [13]. The scenarios can be created using
diverse approaches such as Monte Carlo [9], Quasi-Monte
Carlo methods [20], or other approaches [21]. Regarding
the forecasting techniques, these are usually classified in
statistical, machine learning, etc. Nowadays, some of the
most popular ones (both for deterministic and probabilistic
forecasting) are machine learning methods, which include
for example random forests, neural networks [22], and many
others.

Forecasting techniques are applied not only for performing
energy management in networks, but also for predicting faults
and outages during extreme events. For example, [23] present
a method for fault prediction under heatwaves, in which the
prediction problem is formulated as a binary classification
task. In [24], the authors predict storm outages by means
of deterministic forecasting techniques, and they indicate that
future steps would include the exploration of probabilistic
forecasting for this application.

Considering the diversity of optimization methods that
admit probabilistic information as input, their integration in
a real automatic system would require a supply of diverse
forecast data. Additionally, the forecasting system should
automatically perform the evaluation of the best models that
will provide each forecast to the optimization system. For this
reason, some authors have made proposals of frameworks and
system architectures for performing these tasks.

In [25], a forecasting framework is proposed. It can handle
the training, comparison, and selection of models, but it only
included deterministic methods, not stochastic.

The concept of forecast reconciliation is described in [26],
which aims to stablish how interrelated forecasts should be
used to generate indirect forecasts. However, probabilistic
methods are not covered. In [27], reconciliation is applied for
obtaining PIs for solar forecast.

In [28], a probabilistic framework based on PIs is proposed
and tested in the IEEE 104-bus tests system to predict groups
of generators. It internally applies PIs and quantile regression;
however, it does not integrate the generation of scenario sets.

A comparison of models for probabilistic forecast applied to
overhead lines dynamic line rating is done in [29]. The authors
use diverse metrics for evaluating the ability of the models to
provide a good density forecast and the ability to provide a
good quantile forecast. Regarding PIs, a single comparison
is done using the interval with a probability of 94% (which
is evaluated using the mean interval size). Other PIs are not
considered in the paper, nor the creation of scenario sets.

The different methods included in the mentioned papers are
summarized in Table I.

As it can be seen, some of these papers include prob-
abilistic methods, but none of them integrates the creation
of quantiles, intervals, and scenario sets together. Therefore,
it is a clear advantage of the proposed forecasting framework
that it includes all these methods, to completely cover the
requirements for a stochastic forecasting system essential for
the optimization of microgrids and distribution networks. Also,
it will be defined how to perform the model selection.

TABLE I
PROBABILISTIC FORECASTING METHODS IN SOME

PAPERS FROM THE LITERATURE

The next section will analyze some of the methods that are
applied in stochastic forecasting and their evaluation. Some of
these will be included in the proposed framework.

III. METHODS

This section will describe some of the procedures that are
usually applied in stochastic forecasting and their evaluation.

A. Parametric Construction of Quantile Sets

Some authors apply parametric models to obtain the error
distribution in the forecasting [30]. In this sense, parametric
quantile sets perform the estimation of quantiles considering
a certain type of distribution and known parameters. A com-
mon method is based on assuming a normal distribution
and taking a value for the mean value (µ) and for the
standard deviation (σ). The mean value could correspond to
a deterministic forecasting, while the standard deviation can
be estimated from the historical data, or directly assumed to
be a known value. The assumption of a distribution could be
later used to construct “distribution-based” interval forecasts,
as in [30].

For example, in [13], the uncertain parameters are assumed
to have a continuous probability distribution function with
30% standard deviation.

If the 99 quantiles from 0.01 to 0.99 are calculated, the
forecasted quantile set for a variable y for an instant t will be:

Q f orect = {ŷt,q},∀q ∈ {0.01, 0.02, . . . , 0.99} (1)

where:

P(ŷt,q > yt,q) = q (2)

B. Non-Parametric Construction of Quantile Sets

It is possible to directly construct quantile sets without
assuming a known type of distribution, but by means of a
method that directly provides a quantile set for the variable to
be predicted.

One of the methods that can be found in the bibliography
is Quantile Regression Forest, which is used in [1]. It is
a non-parametric method in which each tree of the forest
provides a point, and the quantiles are obtained from the group
of points provided by all the trees of the forest.
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The mathematical expression of the forecasting in this case
will be as seen in (1) and (2), although the method for
obtaining the values is different.

C. Construction of Prediction Intervals

As said in [31], a prediction interval is composed of an
upper and lower bound. The probability that a variable is
between these bounds can be described as (1–α).

In the literature, diverse authors have proposed methods for
directly constructing PIs without the need of a quantile set.
According to [31], some methods for their obtention using
neural networks are Bayesian, delta, bootstrap, mean–variance
estimation, and upper lower bound estimation. Other authors
apply Kalman filter, extreme learning, and bootstrapping.

When estimated quantile sets are available, it is possible to
directly construct PIs using these. If two quantiles were used
for constructing the PI, the probability of such interval would
be the difference between the two respective probabilities of
the quantiles.

Let Ut be the quantile that is chosen to be the upper bound
and L t the quantile that will be the lower bound. Then, the
resulting forecasted interval with a probability (1–α) is:

{Ut , L t , (1− α)} (3)

where:

(1− α) = P(Ut > yt )− P(L t > yt ) (4)
P(Ut < yt < L t ) = 1− α (5)

For example, the interval defined by the quantiles 0.05
and 0.95 will have an associated probability of 90%.

D. Evaluation Metrics for Probabilistic Methods

Regarding the evaluation of probabilistic methods, the typ-
ical metrics used for deterministic methods are not valid [10].
Therefore, other metrics have been proposed, such as the
pinball loss function or the Winkler score [10], [32].

The most common existing metrics for the evaluation of
probabilistic forecasts are the pinball loss function (for quan-
tiles) and the Winkler score (for intervals). Their expressions
are defined in (1) and (2) [10] respectively:

Pinball(ŷt,q, yt , q) =

{
(1− q)(ŷt,q − yt ), yt < ŷt,q

q(yt − ŷt,q), yt ≥ ŷt,q
(6)

Winkler =


δ, Lt ≤ yt ≤ Ut

δ + 2(Lt − yt )/α, yt < Lt

δ + 2(yt − Ut )/α, yt > Ut ,

(7)

in which ŷt,q corresponds to the forecasted value for a specific
quantile, yt is the real value to be forecasted, q is the quantile,
L t is the lower bound, Ut the upper bound, δ is the difference
between the two bounds of the PI (δ = Ut − L t ), and (1− α)

is the nominal probability of the prediction interval.
The pinball loss function evaluates a forecast considering

its associated quantiles. As it is said in [10], the pinball losses
can be summed across all targeted quantiles (for example,

summing the pinballs for q=0.01, 0.02, 0.03, . . . , 0.99) to
obtain the pinball loss of the probabilistic forecast. In the
present paper, the average value will be calculated instead:

Pinball
(
ŷt, yt

)
=

1
99
·

∑0.99

q=0.01
Pinball(ŷt,q, yt , q) (8)

In [29], the Pinball loss function receives the name of
Quantile Score (QS) when it is used for evaluating the quality
of an individual quantile forecast (instead of summing together
the values for multiple different quantiles).

The Winkler score evaluates an interval considering the
upper and lower limit and its associated probability.

The main metrics for both types of forecasting are reviewed
in [33]. Various metrics for probabilistic forecasting are
included, such as pinball loss function, Winkler score, and
others.

There are other metrics that are oriented to the evaluation of
Cumulative Distribution Functions (CDFs) and PDFs instead
of evaluating specific quantiles or intervals. Some examples
of these metrics are the continuous ranked probability score
and the Dawid–Sebastiani score [34]. In [29], the probability
density function is evaluated using Continuous Ranked Prob-
ability Score (CRPS).

Despite there are metrics for evaluating CDFs and PDFs,
it has been appreciated that in most of the cases, these
distributions are later discretized for performing the scenario
generation, as in [9].

As can be seen, while there are diverse methods in the liter-
ature for creating quantiles, intervals, and scenarios. However,
it has not been found in the literature a defined methodology
on how the best forecasting model should be chosen when
a certain type of forecast (e.g., a quantile set) is applied to
obtain others (e.g., intervals and scenarios). In this sense, the
models could be chosen according to their best performance
forecasting quantiles, or to the quality of the interval or
scenario set that is required, but it is unclear which approach
is better.

Therefore, a probabilistic framework that englobes different
probabilistic models will be proposed. It will define the
two different approaches that can be followed in the model
selection process. This framework will be applied in a case
study to compare these approaches.

IV. PROPOSED PROBABILISTIC FRAMEWORK

This section will describe the procedure of probabilistic
forecasting modelling, the selection of the best models using
a new proposed metric, and the generation of scenarios.

A. Framework Architecture

In this architecture, the input data are used to prepare diverse
datasets (with different groups of inputs), which are later used
to train forecasting models. These models are compared using
their corresponding metric, and then stored in a “ranking of
models” (i.e., an ordered list from better to worse according to
their quality evaluation metric). When it is required to perform
a forecasting, the best possible model will be executed. The
reason to save more than a single model for each variable to
predict is that, in case the best model could not be executed
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Fig. 1. Proposed procedure for generation and evaluation of quantile sets, intervals, and scenario sets.

(because some of the input data were missing), there would
be other models that could be used.

For performing deterministic forecasting, the models could
be evaluated using the Root Mean Square Error (RMSE).
However, in the case of probabilistic forecasting, it is more
complex. The procedures that have been designed for the
inclusion of probabilistic forecasting in the framework are
depicted in Figure 1. The steps are:

• Step A: Choose the variables to forecast and their related
data that could serve as input for the models.

• Step B: Train the probabilistic forecasting models of the
variables to be predicted. This can be done by stochas-
tic/probabilistic models that directly provide the quantiles,
or by applying a known distribution (e.g., normal distribu-
tion) with a certain standard deviation over the predictions
of a deterministic forecasting.

• Step C: Select the group of quantiles that will be used
for creating each of the intervals and scenario sets.

• Step D: Create prediction intervals. This is done using
pairs of quantiles and their probabilities. For construct-
ing each interval, both quantiles will be symmetrical
(e.g., quantiles 0.1 and 0.9 for the interval with a proba-
bility of 80%).

• Step E: Generate scenario sets from the selected quantiles.
The proposed procedure will be later explained.

• Step F: Evaluate the probabilistic forecasts. The pinball
loss function is used for evaluating quantile sets, the
Winkler score is used for intervals, and the weighted
pinball score (WePin, a metric that is proposed in this
paper) is used for scenario sets generated by the proposed
method.

The methodology for creating scenario sets and evaluating
these will be exposed next.

B. Quantile Selection and Scenario Generation

For generating scenarios, some authors produce all scenarios
and their probability, and then select only those most probable
scenarios. This approach, while causes a trivial error, reduces
the simulation time [13].

In the present paper, an alternative way to perform this
process is proposed. Instead of producing all possible sce-
narios and keeping the most probable ones, a selection of the
quantiles to be used will be done, and their corresponding
probabilities will be assigned.

The method exposed in [13], and other Monte-Carlo-based
methods from the literature, despite being able to generate a
massive number of different scenarios, do not usually include a
way to evaluate which forecasting model produces the scenario
sets of a better quality. On the contrary, the proposed method
includes an evaluation metric to do so. It provides a methodol-
ogy to evaluate and choose the probabilistic forecasting model
among all those that have been trained and generate the desired
number of scenarios and their associated probabilities.

For starting the proposed scenario generation, it is necessary
to obtain a group of quantiles of the variable to be predicted.
Two possible methods are described. The first one, that has
been described in [13], obtain the scenarios from a single
deterministic forecast by supposing a fixed standard deviation.
The second one is to use some probabilistic forecasting
technique that provides quantile information.

Under the proposed method, the uncertainty values for a
scenario S at the time t for a certain quantile q will be equal to
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the probabilistic forecast during a period of time for a certain
quantile q. Therefore, it can be said that:

St (q) = ŷt,q (9)

However, the probability of the scenario is not equal to
that of the quantile. This decision is made considering that
the sum of the probabilities of all considered scenarios for
an uncertainty must be equal to 1 (to reach the 100% of
probability). This will depend on the number of scenarios,
and which are the quantiles that are chosen.

For distributing the probability to the scenarios, the pro-
posed method is as follows.

Being Q f orect = {ŷt,q},∀ q∈ {0.01, 0.02, . . . , 0.99} the array
of 99 forecasted quantiles (from quantile 0.01 to 0.99) of a
variable at a certain instant t .

Being Qindex={0, 1, . . . , 98} the array that contains the
position indexes of the elements of the array Q f orect .

Being Cindex={c0, c1, . . . , cK−1} the ordered array of K
quantile indexes that will compose the scenario set (i.e., chosen
quantiles), in which the position k=0 is the lowest quantile of
them and k=K-1 is the highest quantile. Note that in this array,
a value qk=0 means “the quantile 0.01 is used as one of the
scenarios of the set,” a value qk=1 means “the quantile 0.02
is used as one of the scenarios of the set,” etc. The reason for
this behavior is that the elements qk express the indexes inside
the array of 99 quantiles.

Being St={st,0, st,1, . . . , st,K−1}={Q f orect | i∈ Cindex } the
ordered array of K scenarios corresponding to the K quantile
values chosen, in which the position k=0 is the scenario with
the lowest quantile of them and k=K-1 is the scenario with
the highest associated quantile.

Being G t={g0, g1, . . . , gK−1}={P(st,0), P(st,1), . . . ,
P(st,K−1)} the array of probabilities of each scenario belonging
to the scenario set St , given that

∑K−1
k=0 P

(
st,k

)
= 1.

If it is considered that the probability between two scenarios
is equally divided between them, then the probabilities of the
array G should be distributed between the scenarios according
to the next expression:

gk =



qk +
qk+1 − qk

2
, if k = 0

qk+1 − qk

2
+

qk − qk−1

2
=

qk+1 − qk−1

2
,

if 0 < k < K− 1

1− qk +
qk − qk−1

2
, if k = K− 1

(10)

Therefore, (4) establishes how the probabilities should be
distributed to the scenarios once the set of quantiles has been
chosen. However, it is necessary to choose these quantiles first.
Two novel procedures have been defined in this paper:
• MiAs (middle assignation): choose the rest of the scenar-

ios equally distributed among the available quantiles.
• ExAs (extreme assignation): forces that the two extremes

of the quantile array (the lowest one and the highest one)
are chosen to create scenarios and the rest of them are
equally distributed between these two extremes.

The procedure that is proposed for the automatic selection of
quantiles for creating scenarios, and the assignation of proba-
bilities for such scenarios is expressed in Algorithm 1. To exe-

Algorithm 1 Create a set of scenarios applying the chosen
method.
The algorithm gives the percentile indexes that correspond to a set of scenarios and the
probability that should be assigned to each of these scenarios.
The total number of scenarios is equal to the input Nscen . The two available methods
are “MiAs” and “ExAs”. This is selected according to the input methodscen .
The output Cindex contains the indexes of the quantile array that are chosen to serve as
scenarios (therefore, it has a length of Nscen elements).
The output G contains the probabilities of each scenario.

Input Nscen , methodscen
Output Cindex , G
Ensure: Nscen is an integer number
Ensure: Nscen ≥ 1
Ensure: Nscen ≤ 99
Ensure: (methodscen = "MiAs") or (methodscen = "ExAs")
Declare Cindex array of Nscen integers
Declare G array of Nscen floats
if methodscen is “MiAs” then

n← 1
posi tion← 0
while n < 2 · Nscen do

indexn ←
100·n

2·Nscen
indexn ← round(indexn)

indexn ← indexn − 1 ▷ Position 0 is percentile 1% in the array of quantiles.
Cindex

[
posi tion

]
← indexn

n← n + 2
posi tion← posi tion + 1

end while
n← 0
while n < Nscen do ▷ The probabilities are considered equal for all the scenarios

in the MiAs set.
probabn ←

1
Nscen

G[n]← probabn
n← n + 1

end while
else if methodscen is “ExAs” then

n← 0
if Nscen = 1 then

Cindex [n]← 49 ▷ Save the percentile 50% in array.
G[n]← 1.0 ▷ Assign a probability of 1 (i.e., 100%) to the scenario.

else
Cindex [n]← 0 ▷ Save the lowest percentile (1%) in array.
n← 1
while n < Nscen − 1 do

indexn ←
100·n

Nscen−1

indexn ← round(indexn)

indexn ← indexn − 1
Cindex [n]← indexn
n← n + 1

end while
Cindex [n]← 98 ▷ Save the highest percentile (99%) in array.
n← 0
while n < Nscen do

if n = 0 then ▷ Store probability for lower extreme scenario.

probabn ←
Cindex [n]+1

100 +
Cindex [n+1]−Cindex [n]

2·100
else if n = Nscen − 1 then ▷ Store probability for upper extreme scenario.

probabn ←
100−1−Cindex [n]

100 +
Cindex [n]−Cindex [n−1]

2·100
else

probabn ←
Cindex [n]−Cindex [n−1]

2·100 +
Cindex [n+1]−Cindex [n]

2·100
end if
G[n]← probabn
n← n + 1

end while
end if

end if
Note 1: This algorithm considers that the forecasting for each point is composed by
a sorted array of 99 float numbers, where the number in position 0 corresponds to
the prediction for percentile 1% and the position 98 corresponds to the prediction for
percentile 99%. Otherwise, the algorithm should be adapted appropriately.
Note 2: For the calculation of scenarios under the method “ExAs”, the lower extreme
corresponds with the percentile 1% (whose index is 0) and the upper extreme corresponds
with the percentile 99% (whose index is 98). Under the method “MiAs”, the extremes
are automatically chosen depending on the number of scenarios.

cute the algorithm, it is only required to select the desired
number of scenarios and choose if the extreme quantiles
should be included in the pool (ExAs method) or not (MiAs
method). For simplifying the proposed algorithm, it has been
considered that the vector Q has 99 elements, the value for
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quantile 0.01 (i.e., percentile 1%) is stored in position 0, and
the value for quantile 0.99 (i.e., percentile 99%) is stored in
position 98. However, the same idea could be adapted to other
cases adapting the values and indexes in the given algorithm.

The proposed algorithm for the creation of scenario sets is
as follows. It considers that the number of available quantiles
for the variable whose scenarios will be obtained is equal to 99
(from quantile 1 to quantile 99). The algorithm will create a
number Nscen of scenarios composed by the array Cindex (the
indexes of the quantiles that corresponds with the scenarios)
and the array of probabilities G (the probabilities for the
respective scenarios). The symbol “▷” indicates a comment.

C. Weighted Pinball (WePin) Evaluation Metric

The weighted pinball (WePin) is a metric proposed in this
paper for performing the evaluation of the scenario sets created
by the aforesaid method. This metric is based on the pinball
loss function, but it assigns weights to each scenario according
to its occurrence probability.

Consider a probabilistic forecast of a time series variable yt

that provides a group of K scenarios from st,0 to st,K−1,
each of them corresponding to a certain quantile q (that goes
from q0 to qK−1). Moreover, each scenario has a probability
of occurrence g from g0 to gK−1. The WePin score for a
certain day d (i.e., WePindailyd) that goes from t=0 to t=T-1
is defined as:

W ePindailyd =

∑K−1

k=0

[
gk ·

∑T−1

t=0

[
Pinball

(
st,k, yt , qk

)
T

]]
,

(11)

where T is the number of steps considered within a day (in the
case of hourly data, T is equal to 24). qk will be the quantile
value associated to the scenario st,k . Therefore:

qk =
Qindex · (Cindex (k))+ 1

100
, (12)

Similarly, the mean daily WePin score for a group of D
days will be equal to:

W ePinD_days =
∑D

d=1

W ePindailyd

D
, (13)

With these proposed metrics, the generated scenario sets can
be evaluated.

D. Execution of the Framework

Next, it will be defined how the forecasting system decide
which of the trained model instances to use for performing the
required prediction.

Let Mi (X i,t ) be a trained model instance that receives the
inputs X i,t and return a forecasting in the shape a quantile set.

Let {Mi }:i∈{1,. . . ,n} be a group of n trained model instances
that are available in the forecasting system.

Let IF ( ) be a function that receives a set of quantiles and
a decimal number between 0 and 1 (the probability) as inputs
and return an interval with its associated probability.

Let AF ( ) be a function that receives a set of quantiles and
an integer number (the number of scenarios) as inputs and

return a scenario set with the associated probabilities of the
scenarios.

The forecasting system needs to choose which of the model
instances to use among those that are available for each
required prediction (i.e., to obtain quantiles, and to feed the
functions IF and AF for creating intervals and scenario sets).
This will be decided according to the evaluation metric that
the model instances obtain during the validation process.

For the evaluation, Pinballvalidat ( ) is a function that returns
the average value of the Pinball of the quantiles during
the period of time used for the validation of models (of
course, this will be calculated by comparing the forecasting
with the real data in that period). Similarly, Winklervalidat ( )
returns the average value of the Winkler during the validation
period for a certain forecasted interval with an associated
probability (1–α), and WePinvalidat ( ) returns the average value
of the WePin during the validation period for a scenario set.

Two approaches are proposed for choosing the model
instances:

i) General approach. Choose the model that creates the
best-quality quantile set for constructing all the required
intervals and scenario sets (therefore, the same model instance
will be used for all the predictions). The model instances that
will be chosen are, for creating quantiles:

Mquantilesgen = arg min
Mi

{ Pinballvalidat (Mi (X i ))}
n
i=1 (14)

for creating an interval with probability (1− α):

Mintervalgen = Mquantilesgen (15)

for creating a scenario set with N scenarios:

Mscenarioset gen = Mquantilesgen (16)

ii) Specific approach. Evaluate individually the quality of
all the available models for creating each type of interval and
scenario set that is required, and then use the best-quality
model for constructing each of the required intervals and
scenario sets. The model instances that will be chosen are,
for creating quantiles:

Mquantilesspe = arg min
Mi

{ Pinballvalidat (Mi (X i ))}
n
i=1 (17)

for creating an interval with probability (1− α):

Mintervalspe=arg min
Mi

{Winklervalidat (IF (Mi (X i ),1−α))}ni=1

(18)

for creating a scenario set with N scenarios:

Mintervalspe = arg min
Mi

{W ePinvalidat (AF (Mi (X i ), N ))} ni=1

(19)

Therefore, the forecasting system can operate with any of
the two approaches. The model instance that is chosen will be
used for performing the required forecasting.
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E. Integration of the Forecasting With Other Applications

The framework will provide forecasting of one or several
variables of interest by giving the configured quantiles (usu-
ally, 0.01, 0.02, . . . 0.99), the configured interval probabilities,
and the configured scenario sets.

The forecasting outputs, that will be then sent to feed
other applications (e.g., optimization management systems),
corresponding to the expected values for a predicted variable
during an instant (or time period) t , are as follows:

The forecasted quantile set is:

Q f orect = {ŷt,q},∀q ∈ {0.01, 0.02, . . . , 0.99} (20)

The forecasted interval with a probability (1− α) is:

{Ut , L t , (1− α)} (21)

The scenario set of scenarios S with their probabilities G
is:

{St , G t } =
{{

st,0, st,1, . . . , st,K−1
}
, {g0, g1, . . . , gK−1}

}
(22)

The quantile set can be used to represent the expected
behavior of variables, or to perform other actions based on
that information.

The later use of the intervals in an optimization system can
be done as in [14], where the uncertainty variables are modeled
using their lower/upper bounds (in that paper, P R

i,t is the lower
bound and P

L
i,t is the upper bound for load demands at a node i

during the instant t).
The use of scenarios can be done as shown in [9], where

Ns scenarios s and their associated probabilities πs are applied
to represent forecasted values, and [11], where σ scenarios
wσ and their probabilities πσ are used in the stochastic
optimization for microgrid management.

V. CASE STUDY

This section will expose a case study of application of
the proposed framework to forecast the consumption in a
distribution network. Specifically, the objective will be the
day-ahead hourly prediction of the consumption of each of the
secondary distribution substations in the town of Manzanilla
(Spain). It will be possible to obtain different types of fore-
casts, deterministic, probabilistic distribution, intervals, and
scenario sets.

A. Dataset Description

The available datasets correspond to the power demand
data of 10 secondary substations from the year 2017 to the
year 2020. Their location and their average demand can be
seen in Figure 2.

These data include the hourly power demand of each of the
secondary substations (expressed in W). Additionally, hourly
weather data (temperature in ◦C, humidity in %, and rain in
mm), and calendar-related information (the day of the week,
the month, if the day is a holiday or not, etc.) has been
included too.

These data fields will be combined to create several datasets
for training machine learning forecasting models, as it will be
described next.

Fig. 2. Secondary substations of the town of Manzanilla. a) Location;
b) Average demand in kW.

B. Models and Input Data

Each of the substations will be modeled individually. There-
fore, the model instances will have 24 outputs that correspond
to those hourly demands for a single substation for the
next day.

Regarding the inputs, it can include calendar information,
weather information, and in some of them the demand of
previous days is included (as it can be helpful to forecast the
future demand), other include the average hourly demand of
the previous week (or weeks), and others can include some
different processed information about the previous demand.
From the combination of diverse subgroups of these fields,
a total of 48 datasets (with different subgroups of input fields)
were obtained for the period under study. The reason for doing
so is to obtain diverse model instances with different input
requirements.

C. Modeling Techniques

The two probabilistic modeling techniques that will be
applied for obtaining quantile sets are:
• Random Forest Regressor (RFR) and normal distribution

(whose standard deviation is proportional to the fore-
casted values) for obtaining a probabilistic forecasting.
This is a parametric technique (see Section III-A). The
standard deviation, which is an hyperparameter, will have
three possible values:
◦ 10% of standard deviation, labeled “RFR_prob

SIGMAFIX10”.
◦ 20%, labeled “RFR_probSIGMAFIX20”.
◦ 30%, labeled “RFR_probSIGMAFIX30”.

• Quantile Regression Forest. This is a non-parametric tech-
nique (see Section III-B). It will be labeled “RFR_prob”.

In this study, the hyperparameter value for the number of
trees will be 101 for both techniques. Therefore, four technique
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Fig. 3. Train, validation, and test splits in the case study.

variants (considering the three different values of standard
deviation) are included.

Once obtained the quantiles by mean of these techniques,
the required prediction intervals could be obtained (as seen
in Section III-C). For obtaining the required scenario sets, the
quantiles will be processed by following the proposed methods
MiAs and ExAs (as seen in Section IV-C).

Additionally, the proposed forecasting system is also able
to provide deterministic forecasting applying Multi-Layer Per-
ceptron Regressor (MLPR), and RFR. However, the objective
of the present case study is to compare the ways of performing
the selection of probabilistic models (i.e., the two proposed
approaches for the framework). Therefore, the deterministic
forecasting techniques will not be considered (as these would
simply be chosen according to their RMSE).

D. Train/Validation/Test Splits

The application of the proposed forecasting system is done
by training the model instances using a part of the input
dataset, then using another part to perform the validation (the
evaluation metrics that each model instance obtains during
the validation period are used to order the instances from
better to worse) and then using the rest of the data for testing
(which corresponds to the period in which the forecasting
system is operating to provide the required predictions using
the available models).

In this case study, this process has been done 16 times, per-
forming a time-series split with train/validation/test. In total,
the test period has been 16 months. Figure 3 indicates how
the splits were done.

The models are trained (using data of train period) and
evaluated (with data of validation period) to create model
rankings (models ordered according to their evaluation metric
during the validation for each type of probabilistic forecast-
ing). Then, these will be used to perform the forecasting tasks
for one month (during the test period). For each day, the best
possible model according to the corresponding ranking will
be executed. After that time, a new cycle starts, and all the
models are retrained, and evaluated (to obtain the new ranking
of models).

E. Description of the Experiments

The objective of the experiments is applying the probabilis-
tic forecasting framework in a case study, and checking which

of the two proposed approaches for choosing models performs
better.

In this case study, 16 train/validation/test cycles will be
done in total. After each training process there will be
192 trained model instances (48 datasets of inputs and 4 tech-
nique variants) for obtaining probabilistic forecasts of each
secondary substation. The decision of which of the available
model instances is better is done according to the evaluation
metrics obtained in the validation phase, but this can be
evaluated by following the general approach or by the specific
approach. The model that is chosen as better (for each type of
forecast), will be applied during the test period.

In this case study, the global performance of the applied
framework under the two possible approaches will be
compared, as each of them has its own advantages and
disadvantages:
• General approach. The procedure is simpler.
• Specific approach. This procedure requires that each

available model is used to construct each type of interval
and scenario to evaluate their performance.

In this sense, as the framework is able to provide different
types of probabilistic forecasting (quantile sets, intervals, and
sets of scenarios), it will be analyzed what is the effect of
choosing the best models only by the pinball loss function
(which is a simpler method) or using the specific metric for
each type of model (Pinball, Winkler score, or WePin, which
is a more complex method).

This will show the consequence of taking into consideration
the specific type of uncertainty that is going to be created when
performing the model selection (i.e., the comparison of models
in the validation period to choose the best one).

Given than the value of the evaluation metric during the
test period applying the general approach is Egen and under
the specific approach is Espe, the comparison between them
will be done by calculating the Improvement (expressed as a
percentage):

I mprovement (%) =
Egen − Espe

Egen
· 100, (23)

This way of comparing changes in error metrics (in which a
lower metric value express a lower error) is similarly followed
in [24], where it is called “percent improvement”.

If the value of Improvement is a positive value, it means that
the specific approach achieves better quality forecasts than the
general approach.

The type of probabilistic uncertainty representation for
which the comparison has been made (by calculating the
Improvement) are:
• Intervals: 6 types of intervals (whose probabilities are

98%, 94%, 90%, 80%, 70%, and 60%)
• Sets of scenarios created using the MiAs method: 48 dif-

ferent scenario sets.
• Sets of scenarios created using the ExAs method: 48 dif-

ferent scenario sets.
Therefore, considering that there are 10 secondary distribu-

tion substations, there will be 60 intervals, 480 sets of MiAs
scenarios, and 480 sets of ExAs scenarios to be forecasted.
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TABLE II
COMPARISON OF PERFORMANCE FOR INTERVALS

OF PROBABILITY OF 98%

Fig. 4. Improvement on the quality of intervals. In blue, improvement for
an interval. In red, average improvement for a sec. substation. a) Grouped by
sec. substations (the average value is represented in red); b) Grouped by type
of interval.

F. Results
After performing the experiments, as an example, the results

for prediction intervals 98% for each of the secondary substa-
tions can be seen in Table II.

The column “Models chosen by Pinball” corresponds to the
Winkler score of the intervals created choosing the models
according to their Pinball. The column “Models chosen by
Winkler” is the Winkler score of the intervals constructed
choosing the models with the best Winkler score (i.e., choosing
models by the specific metric). For the intervals 98%, the
10 cases achieved an improvement when the specific metric
was used for selecting the models that should be applied.

The same analysis has been done for the rest of the intervals,
as seen in Figure 4 (evaluated using Winkler score), and for
the sets of scenarios as seen in Figure 5 (evaluated using

Fig. 5. Improvement on the quality of scenario sets. In blue, improvement for
each scenario set. In red, average value of the improvement for each secondary
substation. a) General graph; b) Detail of the average values.

TABLE III
SUMMARY OF FORECASTING QUALITY IMPROVEMENT IF THE MODELS

ARE CHOSEN FOLLOWING THE SPECIFIC APPROACH
(CONSIDERING THEIR SPECIFIC METRICS)

WePin metric). The summary of the global results (for the
whole test period) can be seen in Table III.

As it can be seen, in most of the cases the application of
specific metrics for choosing the models improves the quality
of the forecasting. Globally, in 38.0% of the cases it improved,
in 18.9% got worse, and in 43.0% remained equal.

Next, Figure 6 shows the representation of some predic-
tions performed by the system using probabilistic methods
for each type of uncertainty modelling from those included
in the system. These aims to serve as illustrative examples
of the forecasts for each type of uncertainty for a few
days. The predicted variable is the hourly power demand
of the secondary substation number 0 (whose real values
are represented in black color) in a day-ahead horizon.
Figure 6a shows a deterministic forecast. Figure 6b shows the
prediction in the shape of 99 quantiles. Figure 6c presents the
forecast of an interval with a 90% of probability, and it can
be appreciated that most real consumption points fit into the
predicted interval. Finally, Figure 6d shows a scenario set of
10 scenarios created using the ExAs method; the probabilities
associated to each scenario are indicated in the legend.
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Fig. 6. Prediction examples of the consumption of secondary substation number 0 for five consecutive days using the proposed framework. a) Deterministic
forecasting; b) Quantile set; c) Prediction interval 90%; d) Set of 10 scenarios using ExAs method.

VI. DISCUSSION AND FUTURE RESEARCH STEPS

As seen in Figure 4a and Figure 5b, in average, an improve-
ment on the quality of the prediction was achieved when
the specific metrics for the evaluation were applied. In all

the intervals, the improvement was positive. In the case of
scenario sets, for nine of the ten sec. substations, the prediction
improved. Regarding the number of cases that improves,
remains equal, or gets worse, as seen in Table III, there was
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more cases that improved that those that got worse thanks to
the criterion of choosing by the specific metrics.

The results obtained in the case study show that
the selection of probabilistic models by specific metrics
(the specific approach) achieves better results than using only
the Pinball (the general approach). Therefore, according to
these results, the specific approach should be preferred for the
evaluation and selection of models when using the proposed
forecasting framework.

This case study has served for evaluating the quality of
the forecasting of the framework under different approaches,
which contributed to choose how the framework could be
configured (especially regarding the method for the evaluation
of models) and applied.

Future research will focus on applying the defined frame-
work and evaluation metrics while using a wider variety
of probabilistic forecasting techniques and applying different
time horizons (not only day-ahead) for comparing their results.
This comparison would provide more information about which
techniques provide better forecasted quantiles, intervals, and
scenario sets in each situation.

Additionally, next research steps would include the appli-
cation of the forecasting framework in a management
optimization problem in which the impact of the forecasting
quality on the management process could be evaluated.

VII. CONCLUSION

The management optimization of distribution networks and
microgrids plays an important role for the increasing of energy
efficiency and achieving a better integration of renewable
power generators in the power system. In this sense, the opti-
mization methods with probabilistic approaches are expected
to be more used, as they allow the inclusion of probabilities
associated to the expected behavior of the elements in the
network.

The problem of these kind of methods is that they require
forecasts that include probabilistic information, as for exam-
ple sets of scenarios and probabilities, prediction intervals,
or quantile distributions, instead of deterministic forecasts.
It increases the difficulties from the point of view of model
evaluation and selection when diverse forecasting models are
available.

To fulfill all the possible requirements for probabilistic
management systems applied to distribution networks, it would
be convenient that the forecasting system were able to provide
quantiles, intervals, and scenario sets. However, it has not been
found a paper that integrates all these methods together.

For these reasons, this paper proposes a probabilistic
forecasting framework oriented to distribution networks and
microgrids. It can generate quantile distributions, intervals,
and scenario sets and automatically perform their evaluation to
choose the best model that should be applied for forecasting.
The generation of scenario sets is done following two proposed
methods (MiAs and ExAs), and these are evaluated by means
of a new defined metric (WePin).

The framework is applied over a case study based on
a dataset from the distribution network of the town of
Manzanilla. The results show that better-quality forecasts are

obtained when the framework applies the evaluation using the
specific approach (using the evaluation metrics for each type
of probabilistic model), instead of using the general approach
(always using the quantile distribution with the best Pinball).
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