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Abstract 24 

Walnut fruit (Juglans regia L.) is an internationally well-known product with an important 25 

tradition of consumption. Its health benefits and economic importance in the food industry make 26 

this nut an interesting research topic. 27 

In this feasibility study, 200 walnut samples of 5 different varieties were collected and their NIR 28 

spectra were recorded with 3 different devices: a benchtop FT-NIR spectrograph, a 29 

hyperspectral imaging camera and a portable NIR device. Discriminant analyses were applied 30 

and different methods for the varietal discrimination of walnuts were obtained and compared. 31 

Up to 96 and 84% of correct identification in internal and external validation were obtained. 32 

Better results were obtained covering the entire shell surface than collecting a unique random 33 

spectrum per sample. Moreover, FT-NIR and hyperspectral produce better models than the 34 

portable NIR one. 35 

 36 

 37 

 38 
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1. Introduction 41 

The consumption of walnut fruit (Juglans regia L.) has a relevant importance in both health and 42 

economic fields. Health benefits of walnuts are due to their chemical composition. These nuts 43 

are rich in polyunsaturated fatty acids and tocopherols, being linoleic acid the most abundant 44 

fatty acid (Amaral, Casal, Pereira, Seabra, & Oliveira, 2003; Amaral, Cunha, Alves, Pereira, 45 

Seabra, & Oliveira, 2004; Pereira, Oliveira, Sousa, Ferreira, Bento, & Estevinho, 2008). 46 

Moreover, bioactive compounds with potential health benefits, such as dietary fibre, folic acid, 47 

polyphenolic compounds and other antioxidants, are present in walnuts (Kris-Etherton, Yu-48 

Poth, Sabaté, Ratcliffe, Zhao, & Etherton, 1999; Larrosa, García-Conesa, Espín, & Tomás-49 

Barberán, 2010). Therefore, it has been demonstrated that the regular consumption of walnuts is 50 

linked with a decrease of the risk of coronary heart disease, metabolic syndrome and other 51 

chronic diseases (Davis, Stonehouse, Loots, Mukuddem-Petersen, van der Westhuizen, 52 

Hanekom, et al., 2007; Kris-Etherton, Yu-Poth, Sabaté, Ratcliffe, Zhao, & Etherton, 1999). 53 

The demonstrated health benefits together with the wide tradition of this nut in the human diet 54 

(since the pre-agricultural times) and their tasty sensory attributes (Sinesio & Moneta, 1997), 55 

have created and consolidated an important international walnut market. In 2017/2018, global 56 

walnut production was estimated at 870000 metric tons (kernel basis), consolidating the 57 

growing trend observed over the last 10 years (International Nut and Dried Fruit Council (INC), 58 

2018). This positive trend has also been observed in Portugal, where walnut production reached 59 

4600 metric tons in 2017. It is in Alentejo, the south-central region of Portugal, where is located 60 

the most important production area of walnuts in Portugal, yielding approximately 2000 metric 61 

tons. However, this production region is characterized by young orchards which did not reach 62 

yet the full production potential. According to the Instituto Nacional de Estatística (INE), in 63 

2017, walnut production ranks fourth among other fruit nuts being an important agricultural 64 

commodity from Alentejo (Instituto Nacional de Estatística, 2017) In this region, the 65 

commercial walnut production occupies an area of about 4000 acres and the trend is still 66 

upwards. Most orchards are family owned with an average dimension between 7,5-50 acres 67 
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distributed over different soil types. This orchard fragmentation leads to a heterogeneous quality 68 

of fruit production.  69 

Contrary to other regions in the world where approximately two-thirds of walnut production is 70 

traded shelled, in Europe most of the walnuts production are traded in-shell and, particularly,  71 

Portuguese market for walnuts is half divided into walnuts with and without shell (Instituto 72 

Nacional de Estatística, 2017). Europeans value in-shell walnuts for considering them more 73 

natural and less processed. Moreover, in-shell walnuts can be better preserved than walnut 74 

kernels. 75 

Walnuts can also be destined to the production of other products that can be consumed directly 76 

or used by food industry to improve food characteristics. As an example, the high lipid content 77 

of walnut kernel, between 50 to 75% (w/w) depending on the cultivar, encourages the use of 78 

walnuts for oil production (Amaral, Casal, Pereira, Seabra, & Oliveira, 2003; Rabadán, Pardo, 79 

Gómez, & Álvarez-Ortí, 2018). Producers have to decide how they are selling their walnuts. 80 

This decision is depending on a number of factors. Among them, walnut variety is one of the 81 

most important. Different walnut varieties have different organoleptic attributes and ratios of 82 

shell-kernel weight (Guerrero, Romero, Gou, Aleta, & Arnau, 2000; Sinesio & Moneta, 1997). 83 

For instance, varieties with a low shell-kernel ratio are usually destined to kernel sale and vice 84 

versa. Besides the difference among varieties in lipid content, the frequency of the apparition of 85 

defects, such as abnormal coloration of the skin and/or kernel, insect damage, detrimental 86 

disorders and fungal growth, is usually linked to walnut variety. Therefore, in the future the 87 

price of the walnut may be dependent largely on its variety. As a consequence, the processing 88 

and packing industries need reliable and accurate methods for identification and classification of 89 

walnut varieties. 90 

Traditionally, discrimination of walnut varieties is carried out by the sensorial analysis of the 91 

kernel (Guerrero, Romero, Gou, Aleta, & Arnau, 2000; Sinesio & Moneta, 1997). This 92 

organoleptic evaluation is subjective, laborious, and time-consuming. In order to achieve 93 

accurate and automatic discrimination methods, other technologies have been gradually tested. 94 

Varietal discrimination has been tested by using some physical and chemical parameters, such 95 
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as walnut oil viscosity, colour data, fatty acids profile, etc. (Bou Abdallah, Baatour, Mechrgui, 96 

Herchi, Albouchi, Chalghoum, et al., 2016; Martínez, Mattea, & Maestri, 2006; Rabadán, 97 

Pardo, Gómez, & Álvarez-Ortí, 2018). Moreover, in other studies, genetic analysis has been 98 

also applied to the classification of walnuts according to their varieties (Ciarmiello, Piccirillo, 99 

Pontecorvo, De Luca, Kafantaris, & Woodrow, 2011; Ma, Zhang, & Pei, 2011; Pop, Vicol, 100 

Botu, Raica, Vahdati, & Pamfil, 2013). All the aforementioned studies used destructive methods 101 

which also need polluting chemical reagents. Conversely, Ercisli, Sayinci, Kara, Yildiz, and 102 

Ozturk (2012) and Peng, Liu, Kong, Zhang, Yu, and He (2017) used visible image analysis and 103 

laser-induced breakdown spectroscopy (LIBS), respectively in walnut variety discrimination, 104 

achieving good results. Near infrared spectroscopy (NIRS) has been applied for the varietal 105 

discrimination of some nuts, such as almonds, although no studies has been developed so far  106 

for varietal classification of walnuts (Teixeira & Sousa, 2019). However, NIRS has been 107 

applied to walnuts for regional identification (Gu, Zhang, Li, Ma, Tu, Song, et al., 2018) or for 108 

the control of different quantitative parameters such as moisture, protein and fats (Yi, Sun, Zhu, 109 

Liu, & Lu, 2017). In addition, it is well known the possibilities of NIRS for the varietal 110 

classification of agricultural products by the use of imaging, benchtop and/or portable devices 111 

(Lacar, Lewis, & Grierson, 2001; Nogales-Bueno, Rodríguez-Pulido, Heredia, & Hernández-112 

Hierro, 2015; Perez, Sanchez, Cano, & Garrido, 2001). 113 

Nevertheless, most of the aforementioned studies are carried out in walnut kernels, the final 114 

product whose properties make the walnut a really interesting nut. Considering the 115 

characteristics of the southern Europe walnut market and its quality requirements, it might be 116 

interesting to develop non-destructive methods to varietal discrimination of in-shell walnuts. 117 

Moreover, these methods could be also developed and applied in other parts of the world. 118 

Varietal discrimination of in-shell walnuts would be interesting for producers, regardless of the 119 

final destination of their product. The aim of this study is to develop and optimize 120 

methodologies for the discrimination of five of the main walnuts varieties present in the 121 

Portuguese market by the use of three different NIR devices: a benchtop FT-NIR spectrograph, 122 

a hyperspectral imaging camera and a portable NIR device. Moreover, different orientations in 123 
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spectra acquisition, spectral pre-treatments and chemometric analyses will be tested in order to 124 

obtain a robust and reliable methodology for the varietal discrimination of walnut samples. For 125 

the best of our knowledge, this is the first time that the aforementioned objectives have been 126 

jointly carried out. 127 

2. Materials and methods 128 

2.1. Walnut samples 129 

Walnut samples of ‘Chandler’, ‘Franquette’, ‘Howard’, ‘Lara’ and ‘Tulare’ varieties were 130 

collected in 2018-2019 season, from Fruteco, a fruit producer’s association with a walnut 131 

production area of around 1500 acres in Alentejo.  After sample collection, faulty samples were 132 

identified and removed by mechanical methods. Then, a total of 200 in-shell walnuts were 133 

collected, 40 samples for each variety. Samples were individually identified and stored until the 134 

different spectroscopic analyses were carried out. 135 

2.2. Spectroscopic data acquisition 136 

Three different near infrared (NIR) spectral matrixes were obtained from 3 different devices: a 137 

benchtop FT-NIR spectrograph, a hyperspectral imaging camera and a portable NIR device. As 138 

Figure 1 describes, 6 different geometrical replicates were acquired for each walnut and device. 139 

Each individual spectrum was acquired following a longitudinal or transversal axe of the nut: 140 

two spectra were acquired in the longitudinal axe (at the top and the bottom of the walnut), 141 

whereas 4 spectra were acquired in transversal axes of the nut, by rotating it 90 degrees between 142 

each acquisition. The different spectra acquired were labelled as Top (T), Bottom (B), Lateral 1 143 

(L1), Lateral 2 (L2), Face 1 (F1) and Face 2 (F2). Therefore, a total of 1200 walnut spectra were 144 

acquired in each device (40 walnuts/variety × 5 varieties × 6 spectra/walnut). 145 

For each device, spectral matrixes were presented in three different formats: 146 

(1) All-spectra format: one matrix with 6 spectra for each walnut, i.e., all the spectra acquired 147 

in each device. A total of 1200 spectral samples per device. 148 
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(2) Average format: one matrix with the average spectrum of each walnut. A total of 200 149 

spectral samples per device. 150 

(3) Random format: one matrix with a randomly selected spectrum of each walnut. This format 151 

tries to imitate the random spectra acquisition in a separation line, where the orientation of 152 

the walnut can not be easily controlled. A total of 200 spectral samples per device. 153 

2.2.1. Benchtop FT-NIR device. 154 

An FT-NIR spectrometer (MPA, Opus Bruker, Germany) was used for the acquisition of the 155 

FT-NIR spectra of the walnuts in the range of 10499.34-3594.93 cm-1 (952.44-2781.70 nm). 156 

Absorbance spectra were obtained after a total of 32 scans with an average resolution of 16 cm-1 157 

following a modification of the method described in Milinovic, Garcia, Rato, and Cabrita 158 

(2019). The background signal was corrected before each walnut spectra collection. The Opus 159 

v.7.5 software (Bruker Optik GmbH, Germany) was employed for spectral data collection. 160 

2.2.2. Hyperspectral imaging. 161 

Hyperspectral images were acquired following a modification of the method described in 162 

Nogales-Bueno, Hernández-Hierro, Rodríguez-Pulido, and Heredia (2014). Briefly, walnuts 163 

were disposed in groups of 5 samples under the hyperspectral camera. This device consists of a 164 

Xenics® XEVA-USB InGaAs camera (320 × 256 pixels; Xenics Infrared Solutions, Inc., 165 

Leuven, Belgium), a spectrograph (Specim ImSpector N17E Enhanced; Spectral Imaging Ltd., 166 

Oulu, Finland) covering the spectral range between 900 and 1700 nm (spectral resolution of 167 

3.25 nm), two 70W tungsten iodine halogen lamps (Prilux®, Barcelona, Spain), a mirror scanner 168 

(Spectral Imaging Ltd., Oulu, Finland) and a computer system. Hyperspectral images were 169 

recorded using a 50 Hz frame rate and an exposure time of 9 ms using the instrument 170 

acquisition software SpectralDAQ v. 3.62 (Spectral Imaging Ltd., Oulu, Finland). 171 

Reflectance spectra were corrected by means of a two point calibration. For that, a white 172 

reference spectrum (Labsphere Inc., North Sutton, USA) and a dark current spectrum were 173 

acquired in each collection session. Then, a segmentation procedure was applied to the images 174 

in order to extract the spectral information of the samples and remove the information of the 175 
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background. This procedure allowed extracting the average spectrum of each walnut in the 176 

image. Finally, a number of noisy wavelengths at both extremes of the spectral range were 177 

identified and only the subrange 950-1650 nm was transformed to absorbance values and saved. 178 

Segmentation was carried out in the software Matlab (R2018a; TheMathWorks, Inc., MA, 179 

USA) and SPSS 25.0 (SPSS,Inc.,Chicago,IL,USA). 180 

2.2.3. Portable MicroNIR device 181 

The third spectral matrix was obtained by means of the use of a portable MicroNIR device 182 

(VIAVI, Santa Rosa, CA, USA). This device allows the acquisition of spectral samples in situ. 183 

It can be controlled with a laptop or a tablet, which is also the energy source for the MicroNIR. 184 

Six spectra were acquired for each sample following a modification of the method described in 185 

Baca-Bocanegra, Nogales-Bueno, García-Estévez, Escribano-Bailón, Hernández-Hierro, and 186 

Heredia (2019). Spectra were recorded using 9.3 ms as integration time and 100 as scan count. 187 

Background and reference spectra were acquired for each walnut and sample spectra were 188 

automatically corrected by the instrument acquisition software, Micro-NIRTM Pro v.2.2 (VIAVI, 189 

Santa Rosa, CA, USA). Finally, spectral matrix were constructed and saved in absorbance 190 

values. 191 

2.3. Chemometrics 192 

2.3.1. Spectral pre-treatments 193 

Several spectral treatments were tested in each spectral matrix: multiplicative scattering 194 

correction (MSC), standard normal variate (SNV), detrend and different derivatives. These pre-195 

treatments were carried out by means of the statistical software The Unscrambler® X (CAMO 196 

Software AS., Oslo, Norway) with the aim of removing the undesirable effects that light 197 

scattering, sample texture or geometry have in the spectral data. 198 

2.3.2. Principal component analysis (PCA) 199 

The existence of patterns in the different NIR matrixes was tested with the application of PCA. 200 

This qualitative analysis allows obtaining information about the latent structure of the spectral 201 
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matrix and it is an important source of knowledge to evaluate the suitability of posterior 202 

discriminant methods. PCA was carried out in The Unscrambler® X software. 203 

Previously to the application of PCA to any spectral matrix, Mahalanobis distance (H) was 204 

evaluated for each spectra with the software Win ISI (v1.50) (Infrasoft International, LLC, Port. 205 

Matilda, PA, USA). Samples were ranked in order of their H distance from the mean spectrum 206 

of the entire sample set, and the H > 3 criterion was applied for spectral outliers detection and 207 

they were removed from the spectral matrix. 208 

2.3.3. Linear discriminant analysis (LDA) 209 

Linear discriminant analysis was applied in several occasions with two different purposes: (1) to 210 

discriminate between walnut and background in the segmentation of hyperspectral images and 211 

(2) to discriminate spectral samples between the different walnut varieties. 212 

(1) For hyperspectral image segmentation 60 walnut and 60 background spectra were manually 213 

extracted from the hypercubes with ENVI 4.7 (ITT Corporation, White Plains, N.Y., USA) 214 

and saved in a spectral matrix. These 120 spectra were exported to SPSS 25.0 and a LDA 215 

was carried out. NIR hyperspectral wavelengths were used as dependent variables and a 216 

categorical variable with the membership of the spectra to walnut or background was used 217 

as factor. In order to select the minimum number of wavelengths for the development of 218 

the discriminant method, LDA was constructed with the stepwise feature and setting the 219 

probability of entrance of a new variable in 0.001. 220 

(2) The discriminations of walnut varieties were carried out with the spectral matrixes obtained 221 

from the three NIR devices. These analyses were developed in The Unscrambler® X. This 222 

software allows developing a PCA from the spectral data and then using the PCA scores as 223 

dependent variables of the LDA. In that way, a low number of variables are introduced in 224 

the LDA algorithm without a high loss of spectral information. Walnut variety was used as 225 

categoric variable. In order to obtain a quantitative measure of the predictive capability of 226 

the developed methods, the spectral matrixes were randomly divided into calibration and 227 

validation sets. For each variety, 75% of the samples were used for the development of 228 
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discrimination methods and internal validation, while the remaining 25% were allocated to 229 

external validation. 230 

3. Results and discussion 231 

3.1. Segmentation of hyperspectral images 232 

From the 215 wavelengths introduced in the stepwise LDA, only 3 wavelengths were retained 233 

and used in the discrimination model generated (1007.91, 1213.17 and 1363.41 nm). Following 234 

a modification of the method described in Rodríguez-Pulido, Hernández-Hierro, Nogales-235 

Bueno, Gordillo, González-Miret, and Heredia (2014), the Fisher discriminant functions were 236 

introduced in a Matlab script. This script evaluates each pixel in the hyperspectral images and 237 

identifies them as walnut or background, i.e., it creates a segmentation mask for each image. 238 

Then, background was discarded, the number of objects (walnuts) in each mask was 239 

automatically counted and numbered by the script and the average spectrum of each walnut was 240 

calculated and saved. Figure 2 shows the whole process, from image acquisition to the 241 

extraction of the average spectra of each walnut in the image. 242 

3.2. Principal component analysis. Spectral structure of NIR matrixes 243 

Different spectral pre-treatments were applied to the FT-NIR, hyperspectral and MicroNIR 244 

matrixes. SNV combined with a second derivative were the most efficient pre-treatments for all 245 

matrixes. In order to check if the different geometrical replicates can be part of a homogeneous 246 

spectral matrix, a PCA was applied. It could be seen that for each device, geometrical replicates 247 

are overlapped in the space defined by the first and second principal components (PCs) (Fig. 248 

S1). Spectral outliers were identified according the H criterion: 52, 38 and 47 outliers were 249 

respectively identified in the FT-NIR, hyperspectral and MicroNIR matrixes. In any case, 250 

spectral outliers represent less than 5% of the corresponding sample set. 251 

In order to look for variety trends among the spectral data, two different approaches were 252 

carried out for the three devices: (1) for each walnut, a single spectrum was calculated by 253 

averaging its six geometrical replicates. (2) For each walnut, a single spectrum was randomly 254 
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selected from its six geometrical replicates. In both cases, a 200-sprectrum matrix was obtained 255 

for each device. 256 

(1) Spectral outliers were identified and removed following the H criterion. Three, 1 and 6 257 

outliers were respectively found in the FT-NIR, hyperspectral and MicroNIR matrixes. 258 

Then PCA were applied and the scores of the PCs were plotted. Figure 3 (a, b, c) shows the 259 

representations where a higher varietal trend can be observed for each device. It can be 260 

observed that there are partial separations between some varieties. Among all NIR 261 

spectroscopes the hyperspectral device allows obtaining a better separation between 262 

varieties. As can be observed in Fig. 3b, ‘Franquette’ and ‘Howard’ varieties are almost 263 

completely separated from other samples.  264 

(2) In the case of random matrixes, 9, 1 and 8 spectra were identified as spectral outliers and 265 

removed from their respective matrixes. New PCA were developed and score plots were 266 

created (Fig. 3 d, e and f). Similar trends were found for the three spectral matrixes, 267 

although the trends were worse defined in this case. 268 

Therefore, PCA can help to find some trends among walnut samples. The PCs represent the 269 

major part of the spectral variability of the original sample set and some of this variability is 270 

linked with the differences among different varieties. However, these trends do not allow 271 

visualizing a complete separation of all the varieties. PCA is an unsupervised dimensionality 272 

reduction method that is able to recognize underlying patterns. In order to look for underlying 273 

class structure how well and what causes this separation, supervised pattern recognition 274 

methods, such as LDA, are more adequate. In addition, it has been checked that spectral 275 

variability is not linked with the different geometrical replicates recorded, i.e., it does not 276 

matter the part of the walnut shell in which the spectra is recorded (Fig. S1). PCA performed on 277 

the data from random replicates produced similar trends than those performed on the data from 278 

the average walnut spectra (Fig. 3). These findings might have important consequences in the 279 

future development of spectral methods to control in-shell walnut in the field or industry. 280 
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Moreover, taking into account the results obtained in the different PCA developed for the 3 281 

devices, it seems that hyperspectral imaging system can produce better results than FT-NIR and 282 

MicroNIR. Due to the rounded but irregular shape and hard texture of the walnut shell, it is 283 

difficult to perfectly adapt the measure port of these types of spot spectrometers to the shell. 284 

Therefore, FT-NIR and MicroNIR measures can be partially contaminated with external light. 285 

This problem is avoided in the image system by the segmentation process, which automatically 286 

selects only walnut pixels. 287 

3.3. Linear discriminant analysis. Varietal discrimination 288 

With the aim of confirm the findings of the section 3.2, LDA were applied to the walnut spectral 289 

data to obtain discrimination methods for an easy classification of the different varieties. 290 

Spectral matrixes were randomly divided into calibration and validation sets and the respective 291 

spectral outliers were removed from these sets. Previously to the development of the 292 

discriminant analysis, the statistical software carried out PCAs with the calibration data. Then, it 293 

automatically selected the scores of the principal components obtained and developed the 294 

discriminant analysis from these variables. 295 

Table 1 shows the results obtained: the number and the percentage of samples correctly 296 

classified in internal and external validation of the methods developed from the average walnut 297 

spectra and from the randomly selected spectra. Quite good results were obtained in any case, 298 

although methods developed from average spectra were more accurate than those obtained from 299 

the random samples. Random selection tries to imitate the random spectra acquisition in a 300 

separation line, where the orientation of the walnut can not be easily controlled. Taking that into 301 

account, the results obtained in the case of randomly selected samples are really interesting, i.e., 302 

88 and 70% for FT-NIR and 92 and 74% for hyperspectral imaging of correct classification in 303 

internal and external validation respectively. The MicroNIR device produced somewhat worse 304 

results that could perhaps be improved by using a different measurement port with better 305 

adaptation to the surface of the walnut. It is also necessary to take into account other premises 306 

such as the preliminary nature of this study and the possibility of some minor contaminations of 307 
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each varietal sample set by walnuts of different varieties during the collection process. This last 308 

premise is due to the characteristics of walnut collection methodology. In general, walnuts are 309 

collected from the ground and it is possible that fruits of different varieties, coming from 310 

neighbour trees, are collected by mistake. 311 

Similar deductions can be inferred when LDA results are expressed in form of sensitivity and 312 

specificity of the models (Fig. 4). In the receiver operating characteristic (ROC) curves, it can 313 

be appreciate that the major difference between the models developed from average and random 314 

spectra is a loss of sensitivity. There are sensitivity losses of 5 and 11% in internal and external 315 

validations whereas in the case of specificity, these losses only reach 1 and 3% respectively. 316 

Therefore, in random models the number of false negatives, samples that belong to a specific 317 

variety but that are mistakenly identified as a different variety, is quite bigger than in the 318 

average models. However, in random and average models, the number of false positives, 319 

samples that belong to different varieties but that are mistakenly identified as the variety 320 

studied, is similar. 321 

Conclusions 322 

Near infrared (NIR) spectroscopy is an interesting and suitable technique for the study of in-323 

shell walnuts. Different spectroscopic devices have been tested for NIR spectra acquisition and 324 

it has been developed methods for walnut varietal discrimination. In order to achieve good 325 

results, it is recommendable to obtain most of the spectral information of the sample. However, 326 

based on the preliminary results of this study, it could be possible to obtain suitable methods for 327 

varietal discrimination starting from individual and random walnut spectra. Moreover, FT-NIR 328 

and hyperspectral devices seem to be the more useful tools for varietal discrimination than 329 

MicroNIR portable device. Nevertheless, more comprehensive studies should be developed in 330 

order to obtain more robust and accurate methods. 331 
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Figure captions 428 

Figure 1. Graphical description of the spectroscopic data acquisition. 429 

Figure 2. Hyperspectral image segmentation. Description of the whole procedure and software 430 

used in each step: image acquisition, calibration, linear discriminant analysis, segmentation, 431 

numbering and spectra extraction. 432 

Figure 3. Score plot of the principal components that show varietal differences in a better way. 433 

PCAs were performed from the following spectral data: a) average FT-NIR spectra, b) average 434 

hyperspectral image spectra, c) average MicroNIR spectra, d) random FT-NIR spectra, e) 435 

random hyperspectral image spectra and f) random MicroNIR spectra. 436 

Figure 4. Receiver operating characteristic (ROC) curves of different LDA methods developed 437 

for average and random spectra. 438 


