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Miguel Hernández-Hierro b,*, Berta Baca-Bocanegra a 

a Department of Analytical Chemistry, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain 
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A B S T R A C T   

Hyperspectral imaging is a well-known technique for quality control of food and agricultural products. This 
technique is often applied to the measurement of large and heterogeneous samples, where chemical imaging is 
extremely useful. In addition, when the amount of sample is limited by different factors (price, other analyses, 
sample production, etc.) hyperspectral imaging is an alternative to traditional spectroscopes for acquiring its 
spectral information. 

In this study, a new and specific methodology to acquire hyperspectral information from small amounts of 
granular samples has been developed. For this purpose, two different hyperspectral devices (400–1100 nm, 
900–1700 nm) have been used. A statistical procedure has been followed to test the proposed method. In grape 
seed protein concentrates, NIR radiation (900–1700 nm) penetrates deeper into the sample than VisNIR radiation 
(400–1100 nm). Therefore, the minimum amount of sample needed to measure in the NIR range is larger than 
that needed to measure in the VisNIR range. Finally, different calibration models have been developed for the 
control of protein content in the tested samples. Standard errors of prediction obtained in external validation are 
similar to those reported in the literature when sample amount is not an issue (9–10 %).   

1. Introduction 

Hyperspectral imaging adds vision techniques to classic spectroscopy 
and integrates spectroscopic and spatial information which otherwise 
cannot be achieved with either conventional imaging or spectroscopic 
techniques. Thus, hyperspectral imaging provides spatial and spectral 
information of samples and it allows to obtain multi-constituent infor-
mation (Sun, 2010). Nowadays, hyperspectral imaging is a well-known 
technique for quality control of food and agricultural products. A large 
number of applications have already been developed, not only on a 
laboratory scale, but also at field or in the industrial sector (El-Mesery, 
Mao, & Abomohra, 2019; Su & Sun, 2018; Zhu et al., 2020). Hyper-
spectral imaging combines spectral and spatial information and allows 
combining advantages of traditional spectroscopy and image analysis 
(Sun, 2010). Therefore, this technique is particularly suitable for the 
measurement of large and heterogeneous samples, where the spatial 
dimension is of clear importance and hyperspectral images can be pro-
cessed to develop chemical imaging. For example, good results have 

been obtained with apples, kiwis or walnuts, among others (Guo, Zhao, 
& Dong, 2016; Nogales-Bueno et al., 2021; Tian, Li, Wang, Fan, & 
Huang, 2018; Wang & He, 2019). 

Quality control of samples of intermediate size (e.g., 0.5–2 cm), such 
as berries, cereals or seeds, has also been successfully measured using 
hyperspectral imaging (Chakraborty et al., 2021; Chen et al., 2015; 
Fernandes et al., 2011). In these studies, spatial dimension has not been 
always taken into account due to the reduced size of the samples and 
hyperspectral devices have been usually applied as traditional spectro-
scopes. Even when the samples are topochemically homogeneous and 
the spatial dimension is not as useful as for other samples, hyperspectral 
imaging can yield really good results. In fact, hyperspectral imaging is 
also really useful for the identification and elimination of background, 
shadows or foreign bodies. Furthermore, these intermediate sample 
sizes are often not measurable on some traditional spectroscopes. 
Traditional spectroscopes usually have problems when the sample is 
similar in size to the measurement window (Baca-Bocanegra, Hernán-
dez-Hierro, Nogales-Bueno, & Heredia, 2019; Nogales-Bueno et al., 
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2020). 
Finally, hyperspectral imaging can be used in applications where the 

amount of sample is limited by different factors (price, other analyses, 
sample production, etc.) or for the measurement of small samples (less 
than 0.5 cm), such as small seeds or granular products and flours 
(Caporaso, Whitworth, & Fisk, 2018; Rodríguez-Pulido et al., 2014; 
Zhao et al., 2018). However, in most cases, it may be preferable to 
measure these samples with traditional spectroscopes, which are 
cheaper and have similar or better spectral performance than hyper-
spectral devices. These products can usually be packaged and easily 
presented in the measurement window of traditional spectroscopes. For 
this, a prerequisite is to have sufficient sample to cover the entire 
measurement window with a complete and thick layer of sample. In 
contrast, when the amount of sample available is small, measuring it on 
some dispersive spectroscopes may not be possible (Durig, Zunic, 
Costner, & Guirgis, 1993). 

In these applications, hyperspectral imaging can be suitable alter-
native to traditional spectroscopes for the acquisition of its spectral in-
formation. The spatial dimension will allow the acquisition of their 
spectra, discarding regions without sample or even regions with a 
reduced amount of sample. Avoiding sample destruction and without 
any sample pretreatment, hyperspectral imaging is probably the spectral 
technique that requires the least amount of surface area to acquire a 
correct spectrum of a sample. Theoretically, hyperspectral imaging can 
acquire spectral information of a sample covering only a pixel. In 
practice, a larger number of pixels is necessary to reduce noise and 
obtain a representative spectrum. However, considering the spatial 
resolution of typical hyperspectral devices, this requirement is easily 
reachable. As for the sample quantity, another consideration must be 
taken into account: the penetration of electromagnetic radiation into the 
sample. This penetration depends on the nature of the sample and the 
spectral region measured (Siesler, Ozaky, Kawata, & Heise, 2002). In 
addition, for granular samples, scattering is the dominant contribution 
to the extinction of light in the NIR region. Scattering reduces the 
penetration depth of diffuse reflection-based measurements, as photons 
are ejected back out of the sample before they have a chance to be 
absorbed. Consequently, the light intensity drops exponentially within 
the sample (Scheibelhofer, Wahl, Larchevêque, Chauchard, & Khinast, 
2018). In any case, the deeper the penetration, the larger the amount of 
sample necessary. Therefore, these aspects must be considered, and a 
specific and meticulous analysis methodology must be developed to 
acquire the spectra of these samples. 

In these cases, the acquisition of the sample spectrum is not always 
trivial: the sample must properly cover a sufficient area and the thick-
ness of the sample must be greater than the penetration of the electro-
magnetic radiation. Whereas other dispersive spectroscopes need to 
completely cover a measurement window, hyperspectral imaging only 
needs a small amount of sample to cover a few pixels. Regarding the 
thickness of the sample, the minimum thickness depends on the pene-
tration of the applied electromagnetic radiation. Moreover, this pene-
tration depends on the energy of the radiation, the chemical and 
physical the nature of the sample (Siesler et al., 2002). Typical depths 
cover a wide range, from fractions of a millimeter to 10 mm (Qin & Lu, 
2008). However, in powdered organic samples, radiation penetration 
has been found to typically range from 1 to 5 mm for both the visible and 
NIR regions (Huang et al., 2016). This is most likely due to the scattering 
processes that granular samples undergo. This scattering reduces the 
penetration depth of measurements based on diffuse reflection, as the 
photons are ejected from the sample again, before they have a chance to 
be absorbed (Scheibelhofer et al., 2018). 

An important and current example of this type of samples is protein 
extracts from food and agricultural products. Today, the food industry is 
looking for plant-based proteins that can supply and complement soci-
ety’s broad protein demand (Pojić, Mǐsan, & Tiwari, 2018). In addition 
to the best-known protein sources (soybean, pea, etc.), other 
lesser-known vegetables are being studied as protein sources. In the 

early stages of the research process, the available amount of protein 
concentrates can be really small, which creates the need for methods for 
the control of small samples. For example, the potential of grape seed 
proteins is being studied (Baca-Bocanegra, Nogales-Bueno, Hernán-
dez-Hierro, & Heredia, 2021; Gazzola, Vincenzi, Marangon, Pasini, & 
Curioni, 2017; Zhou, Zhang, Liu, & Zhao, 2011). Grape seeds are an 
important by-product of the wine industry, with an annual production of 
thousands of tons (Ruggieri et al., 2009). In addition, grape seed proteins 
have a large number of technological and biological functionalities, 
which increases the interest in their exploitation. For example, they can 
be revalorized by the own wine industry for modulating quality features 
such as the appearance, color and stability of red wines (Gazzola et al., 
2017; Zhou et al., 2011). 

Therefore, the main aim of this study is to develop a suitable meth-
odology to acquire spectral information from small amounts of granular 
samples using hyperspectral imaging. For this purpose, two different 
hyperspectral devices will be used, different spectral regions and spatial 
and spectral resolutions will be considered, and a statistical procedure 
will be rigorously followed to ensure the feasibility of the proposed 
method. In addition, using this novel methodology, different calibration 
models will be developed for monitoring the protein content in grape 
seed protein concentrates. 

2. Materials and methods 

2.1. Hyperspectral imaging 

Two different hyperspectral imaging devices have been used in this 
study. The first device operates mainly in the visible region, although its 
spectral range also includes a small part of the near infrared region 
(VisNIR). This device is described in detail at Rodríguez-Pulido, 
Mora-Garrido, González-Miret, and Heredia (2022). The second one is a 
near infrared system (NIR-HSI) described in detail at Nogales-Bueno, 
Hernández-Hierro, Rodríguez-Pulido, and Heredia (2014). Briefly.  

• VisNIR-HSI device is a Specim IQ hyperspectral camera (Spectral 
Imaging Ltd., Oulu, Finland). It is a compact camera including all 
necessary parts (sensor, spectrograph, and optics). Its sensor (CMOS 
technology) and optical system allow the acquisition of 512 × 512 
pixel images and record 204 spectral bands, from 400 to 1000 nm, 
with a spectral resolution of 3 nm. The image is built up in a scanning 
process thanks to an internal scanner with a motor for moving the 
optics. The camera includes a certified plate for image calibration. 
When a measurement session is started, an image must be acquired 
from this plate and the system automatically corrects the next ac-
quired hyperspectral images. As a result, the camera stores on a 
replaceable memory card not only the raw data, but also the cor-
rected image in reflectance units.  

• NIR-HSI device was provided by Infaimon S.L. (Barcelona, Spain) 
and comprises the optics (mirror scanner and lens), spectrograph, 
camera and computer. The camera (Xenics® XEVA-USB) uses a 
matrix InGaAs sensor with 320 × 256 pixels (Xenics Infrared Solu-
tions, Inc., Leuven, Belgium). The spectrograph (Specim ImSpector 
N17E Enhanced; Spectral Imaging Ltd., Oulu, Finland) has a spectral 
resolution of 3.25 nm and covers the spectral range between 900 and 
1700 nm (949–1648 nm after removal of noisy bands). This device is 
a push-broom system mounting a mirror scanner (Spectral Imaging 
Ltd., Oulu, Finland) that allows scanning the whole region under the 
camera. In this case, image correction was performed manually: two 
reference images were acquired, one acquisition of a reference white 
ceramic tile (Labsphere Inc., North Sutton, NH, USA) and one 
covering the camera lens. The raw images were then corrected using 
these two reference images and the reflectance data were obtained. 

Both cameras are part of a single setup and use the same illumina-
tion: two 70 W tungsten-iodine halogen lamps (Prilux®, Barcelona, 
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Spain). In fact, the camera lenses are placed side by side. The samples 
were placed on a polyethylene plastic tray, where both devices could 
simultaneously record the hyperspectral image. 

2.2. Background and description of the samples 

Eighty one grape seed protein concentrates (GSPC) were obtained as 
part of a process to maximize the protein content of the concentrate 
under practical operating conditions of pH, temperature, flour/water 
ratio and extraction time (Baca-Bocanegra et al., 2021). To do that, 
grape seed meals were subjected to alkaline extraction and isoelectric 
precipitation, applying different operating conditions of pH, tempera-
ture, flour/water ratio and extraction time ranged respectively from 8.5, 
25 ◦C, 1:6 and 1 h to 10.5, 45 ◦C, 1:12 and 3 h. After the isoelectric 
precipitation, proteins were recovered by centrifugation and 
freeze-drying and GSPC were stored in airtight containers until hyper-
spectral image acquisition. Sample weights ranged from 0.02 to 1.28 g, 
with an average value of 0.32 g and a standard deviation of 0.30 g. 

For each GSPC, nitrogen content was determined using a manual 
Kjeldahl distiller (J.P. Selecta, Barcelona, Spain). Then, protein content 
was calculated using the nitrogen-to-protein conversion factor of 5.75 
(Cejudo-Bastante, Oliva-Sobrado, González-Miret, & Heredia, 2022). 
Protein content was reported as the ratio of protein weight to GSPC 
weight, expressed as a percentage. In the present study, protein content 
data will be used as the reference parameter for the calibration of the 
spectral methods. 

2.3. Sample capsule 

A sample holder capsule was designed and fabricated to meet the 
requirements for acquiring spectral information from small granular 
samples. These requirements are to contain granular samples, maximize 
sample depth, have a characteristic spectrum, easily discriminable from 
the sample, and be easily cleaned. Therefore, to fulfill all these re-
quirements, the sample capsule was fabricated from a polypropylene 
centrifuge tube (Nerbe plus GmbH & Co., Winsen, Germany). This tube 
had a capacity of 50 ml and a skirted conical bottom. Using a knife and a 
rasp, the bottom of this tube was cut, and it was used as a sample holder 
capsule (Fig. 1a). The internal dimensions of the fabricated capsule are 
shown in Fig. 1b. This geometry allows maximizing the sample depth 
even when the amount of sample available is reduced. 

In order to determine the penetration depth of the electromagnetic 
radiation in GSPC, samples were measured in this sample holder 
capsule. The geometry of this capsule and the spatial resolution of the 
cameras make it possible to determine the minimum depth under each 
pixel in the hyperspectral images (Fig. 2). Hyperspectral images of three 
samples were acquired with both HSI devices. The surface of these 
samples was flattened. These images were used to determine the pene-
tration depth of electromagnetic radiation. They were selected because 
they had a sufficient amount of sample to cover a considerable region of 
the capsule. Thus, it can be assumed that, in the central region of the 
capsule, the sample depth is much greater than the radiation penetration 
depth. Consequently, there is certainty that the spectra of the central 
pixels belong entirely to GSPC or, in other words, that the capsule ma-
terial does not affect the spectra of the central pixels. 

2.4. Statistical tools 

Different statistical tools were applied to discriminate between GSPC 
and non-GSPC pixels of hyperspectral images, to assess the reliability of 
the spectral information contained in the different GSPC pixels and to 
develop calibration methods to control the protein contents in GSPC. 

• The discrimination between GSPC and non-GSPC pixels of hyper-
spectral images, or segmentation procedure, was carried out by a 
linear discriminant analysis (LDA). Using Matlab R2018a 

(TheMathWorks, Inc., MA, USA), 70 GSPC spectra, 70 capsule 
spectra and 70 background spectra were manually extracted from the 
hypercubes. These spectral data were used as dependent variables for 
the development of the LDA and the sample or non-sample mem-
bership of the spectra was used as a factor. LDA was carried out using 
SPSS 27.0 (SPSS, Inc., Chicago, IL, USA). The obtained discriminant 
models were input on a Matlab R2018a script that evaluates each 
pixel of the hyperspectral images and identifies them as sample or 
non-sample. As a result, a segmentation mask was created for each 
image. 

Fig. 1. Description of the sample holder capsule. (a) Initial polypropylene 
centrifuge tube and sample holder capsule made from it. (b) Dimensions of the 
sample holder capsule. 
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• Pearson’s similarity index was applied to determine the minimum 
sample depth that produces reliable GSPC spectra, i.e., to assess the 
reliability of the spectra. That index was used to measure the simi-
larity between different spectral signals in the same hyperspectral 
image. An adaptation of the methodology described elsewhere in 
(Baca-Bocanegra et al., 2019) has been applied. First, a region 
belonging to the GSPC was identified and a representative spectrum 
of this region was obtained. Second, different regions of uncertain 
origin or ‘problem’ regions were selected and their spectral signals 
were obtained. Third, a Pearson linear regression was performed 
between each ‘problem’ spectrum and the representative spectrum of 
the sample captured in the hyperspectral image. Lastly, Pearson’s 
similarity indexes (SI) were calculated as SI = 1/ (1 − R2). The 
identification of the different spectral regions and the extraction of 
the corresponding spectra were performed using Matlab R2018a. 
Pearson’s similarity indexes were calculated using Win ISI® (v1.50) 
(Infrasoft International, LLC, Port. Matilda, PA, USA).  

• Protein content calibrations at GSPC spectra were performed using 
the reliable spectral data obtained from VisNIR-HSI and NIR-HSI 

devices and using fusion of these data for each sample. For each 
data set, the following procedure were carried out: GSPC samples 
were randomly divided into calibration and validation sets (75% and 
25 % of the samples, respectively). A principal component analysis 
(PCA) was applied to spectra allocated into the calibration set. This 
PCA allows to identify the spectral outliers, to distribute samples in 
the created space and to detect their possible separations in different 
spectral groups. Next, different spectral pretreatments were applied 
to the spectra allocated into calibration set: multiplicative scatter 
correction (MSC), standard normal variate (SNV) and detrending 
were applied to reduce scattering effects that granulated samples 
produce (Dhanoa, Lister, & Barnes, 1995; Geladi, MacDougall, & 
Martens, 1985). Moreover, the effect of differentiation and variations 
in spectral ranges were tested in the development of the calibrations. 
Then, modified partial least square regression (MPLS) was applied 
(Shenk & Westerhaus, 1995). This chemometric method divides the 
calibration set into a number of subsets to perform a cross-validation 
to establish the number of PLS factors. In that way, the possibility of 
overfitting is reduced and chemical outliers are identified (T ≥ 2.5 
criterion) and removed. Finally, the most promising calibration 
(according to its standard error in cross-validation, SECV) was 
selected and the validation set was used to assess the reliability of the 
selected method by obtaining the standard error of prediction (SEP) 
in external validation. This entire process was carried out with Win 
ISI® (v1.50). 

3. Results and discussion 

3.1. Acquisition of spectral information from small quantities of granular 
samples 

For each one of the three images selected for the determination of the 
penetration depth of the electromagnetic radiation in GSPC sample, a 3 
× 3-pixel square was selected in the central region of the sample, using 
Matlab R2018a software, and the average reflectance spectrum of this 
region (CR) was extracted. In addition, the sample-capsule interface was 
identified and 8 consecutive pixels were selected from this interface 
towards the center of the sample (P1 to P8). In this way, the thickness of 
the sample represented in each pixel increases from pixel P1 to pixel P8. 
This procedure was performed four times, on the right, left, top and 
bottom of the sample (Fig. 2). The reflectance spectra of all these pixels 
were extracted and the average and the standard deviation spectra of the 
4 pixels P1, the 4 pixels P2, the 4 pixels P3 and so on were obtained. 
Then, for each standard deviation spectrum, the average standard de-
viation was obtained as the average of each spectrum. 

Fig. 3a shows a comparative of the average standard deviation for 
each group of pixels from P1 to P8 for the hyperspectral images acquired 
with the NIR-HSI device. It can be seen that, for all three samples 
considered, the average standard deviations of the outer pixels are larger 
than those of the inner pixels. However, for samples T04A and T26C, 
initial standard deviation (P1) is quite reduced. This can be explained by 
an important influence of the capsule spectrum on these pixels, as the 
composition of the capsule and consequently its spectrum is homoge-
neous. The standard deviations of pixels P2 and P3 are high for all 
samples, indicating that these pixels probably represent a heterogeneous 
mixture of sample and capsule spectra. Then, the standard deviation 
decreases for pixels P4 and P5, which may indicate a drop in the influ-
ence of the capsule spectra on these pixels. Finally, the behavior of the 
average standard deviation of the inner pixels is rather chaotic. This may 
be due to the intrinsic spectral variability of the samples. 

To clarify these hypotheses, Pearson linear regressions were per-
formed between the average spectra of each pixel (P1 to P8) and the CR 
spectrum. Coefficients of determination were obtained and the corre-
sponding similarity indices (SI) were calculated. Fig. 3b and c shows the 
evolution of these variables in the considered pixels. It can be appreci-
ated that average spectra of the selected pixels show a better correlation 

Fig. 2. Schematic representation of the arrangement of the GSPC in the sample 
capsule. (a) Top view. (b) Cross section. 
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with the central region spectrum for inner pixels than for outer pixels. 
Indeed, pixels P5 to P8 present a SI higher than 100 units (or a coeffi-
cient of determination higher than 0.99). When these indexes exceed the 
above-mentioned thresholds, the evaluated spectra can be considered 
similar spectra (i.e., the acquired spectra can be considered entirely as 
sample and not as capsule). Therefore, it has been obtained that for pixel 
P5 the thickness of the sample is greater than the penetration of the 
electromagnetic radiation. Taking into account the geometry of the 
sample holder capsule and the spatial resolution for the NIR camera at 
the fixed measurement distance (0.61 mm pixel− 1), it was stablished 
that the penetration of the NIR radiation (900–1700 nm) in the GSPC is 
of 4.35 mm. 

A similar procedure was carried out for the VisNIR-HSI device. 
Hyperspectral images of the same GSPC were used for stablishing the 
penetration of the VisNIR radiation (400–1100 nm) in the GSPC. The 
evolution of the average standard deviations is shown at Fig. 3d. Again, 
for all three samples considered, the average standard deviations of the 
outer pixels are larger than those of the inner pixels. Fig. 3e and f shows 
the evolution of the coefficients of determination and the similarity in-
dexes in the considered pixels. The trends of these parameters are similar 
than those explained for the NIR-HSI device: the inner pixels show a 
better correlation with the central region spectrum than the outer pixels. 
However, in that case, pixel P3 is the first that present a SI higher than 
100. Therefore, the penetration of the electromagnetic radiation for the 
VisNIR-HSI device is lower than for the NIR-HSI device. Concretely, it 
was stablished that the penetration of the VisNIR radiation (400–1100 
nm) in the GSPC is of 1.45 mm (the spatial resolution for VisNIR camera 
is 0.41 mm pixel− 1). 

In summary, the experimental procedure described using a conical 
sample holder capsule has made it possible to determine the penetration 
of electromagnetic radiation for the spectral range measured by two 
hyperspectral devices. It has been found that, for GSPC, the penetration 
of electromagnetic radiation is deeper for the spectral range measured 
by the NIR-HSI device than for that measured by the VisNIR-HSI device. 
In other words, NIR radiation penetrates deeper than visible radiation 
into these samples. The literature describes that high spectral absorption 
intensities lead to lower penetration of radiation and that this is even 

more evident in the case of diffuse reflection measurements of powders 
or granular samples, where the actual pathlengths of radiation are much 
greater than the penetration depth (Siesler et al., 2002). It corresponds 
with the findings described elsewhere in Qin and Lu (2008) and in 
Laborde et al. (2020) where the lowest radiation penetration correspond 
to spectral regions of high spectral absorption intensities. Fig. 4 shows 
the GSPC average absorbance spectra (log[1 /R]) of the GSPC for the both 
HSI devices. It can be appreciated that the absorbance for the VisNIR 
spectrum is on average higher than for the NIR spectrum, which corre-
sponds to the radiation penetrations obtained for these spectral ranges. 

Taking into account these findings, VisNIR and NIR hyperspectral 
images can be processed in order to identify GSPC in the image and then, 
to erode 2 and 4 external pixels, respectively. In that way, the seg-
mentation masks obtained will only content pixels of GSPC without any 
influence of the capsule polymer. Furthermore, the information gath-
ered can be utilized to estimate the minimum amount of sample 

Fig. 3. Comparison of the main statistics calculated for the determination of the penetration of electromagnetic radiation in the samples. (a), (b) and (c) Respectively, 
comparisons of the average standard deviation, the coefficient of determination and the similarity index for the NIR-HSI camera. (d), (e) and (f) Respectively, 
comparisons of the average standard deviation, the coefficient of determination and the similarity index for the VisNIR-HSI camera. The threshold values of the 
coefficient of determination (0.99) and the similarity index (100) are marked with a dotted line in figures (b), (e), (c) and (f). 

Fig. 4. Average absorbance spectra (log [1/R]) of the GSPC for the VisNIR-HSI 
and NIR-HSI devices. 
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necessary for a correct measure in both devices. Considering their spatial 
resolutions, the obtained penetrations of the radiation for both spectral 
ranges and estimating a minimum number of 12 GSPC pixels in the 
images for obtaining a correct average spectrum, without appreciable 
spectral noise, it can be calculated the minimum amount of sample for 
each device. This amount is the contained in a cylindrical region with a 
section of 4.68 mm2 and with a volume of 20.34 mm3 and a section of 
2.11 mm2 and with a volume of 3.06 mm3 for the NIR and Vis-NIR de-
vices, respectively. Therefore, as a consequence of the better spatial 
resolution and lower radiation penetration for the VisNIR device than 
for the NIR device, the amount of sample required to acquire an 
adequate spectrum with the VisNIR device is considerably less than that 
required for the NIR device. 

3.2. Modified partial least square regressions 

After the erosion of the external pixels (i.e. 2 and 4 pixels for VisNIR- 
HSI and NIR-HSI, respectively), the segmentation masks of 7 of the 81 
hyperspectral images acquired with each device were completely eroded 
due to the small amount of sample available and these images were 
discarded. The remaining 74 images were processed and a representa-
tive average spectrum was extracted for each image. Then 3 spectral 
matrixes were constructed, one NIR matrix, one VisNIR matrix and one 
Fusion matrix as the fusion of the two previous datasets. The Fusion 
matrix was constructed following a level 1 procedure (Castanedo, 2013) 
in which absorbance signals were fused with an alignment consisting of 
a simple interpolation in the shared spectral range (between 949 and 
1000 nm). 

Each spectral matrix was divided into calibration and validation sets 
and calibration sets were subjected to PCA and MPLS analyses. After 
PCA, one NIR spectrum was discarded for being a spectral outlier with a 
Mahalanobis distance above the 3-unit threshold. This was the only 
spectral outlier in the whole process. Analysis of this outlier showed that 
the erosion process had produced a segmentation mask with only 3 
pixels. Thus, it appears that such a small number of pixels produces an 
average spectrum with a signal-to-noise ratio that is too low, resulting in 
an invalid spectrum. Remaining segmentation masks were checked and 
their number of pixels was higher than 10 in all cases. 

SNV and MSC spectral pretreatment produced the best results of 
SECV in the regression processes for NIR and VisNIR datasets, respec-
tively (Table 1). The best MPLS regression for the Fusion dataset was 
also obtained after a MSC pretreatment. However, in this case, it was 
also convenient to apply a second derivative to the dataset. Afterwards, 
the validations sets were used to obtain the SEPs in external validation 
for the three regression models obtained. All these statistical parameters 
are summarized in Table 1. It can be appreciated that both the NIR and 
Fusion datasets produce the best results, with errors in the external 
validation process of less than 10%. However, the low coefficient of 
determination of the VisNIR regression model is holding the result of the 
Fusion model back. 

The results obtained for the NIR matrix are in line with those ob-
tained with the same or different HSI devices, for applications where the 
amount of sample or the penetration of the electromagnetic radiation is 
not a problem. For example, in our laboratory, the VisNIR-HSI device 
has been used to calibrate sugar, total phenols and total flavanols con-
tents in grape, producing errors of 9.49%, 14.69% and 15.50% in 
external validation, respectively (Rodríguez-Pulido et al., 2022). The 
NIR-HSI device has also been used with a similar aim, and similar results 
in external validation have been obtained (10.25% and 24.11% for sugar 
and total phenols contents in grape, respectively) (Nogales-Bueno et al., 
2014). Several attempts have been made in our laboratory to calibrate 
the protein content in whole grapes, but the prediction errors have been 
too high. However, other authors have obtained adequate calibrations of 
proteins in different matrices using different hyperspectral or conven-
tional spectrometers. For example, Berzaghi, Cherney, and Casler (2021) 
got errors in external validation comprised between 3.96 and 14.65% 
and between 3.6 and 10.3% for crude protein at grass and alfalfa, 
respectively, using different portable spectrometers. Furthermore, 
similar results have been found in the prediction of the protein content 
of kernel or bulk samples of wheat using hyperspectral imaging 
(Caporaso et al., 2018; Mahesh, Jayas, Paliwal, & White, 2015). 
Consequently, the proposed methodology for the acquisition of spectral 
information from small amounts of granular samples by hyperspectral 
image analysis produces adequate results, and comparable to those 
obtained when the amount of sample available is large enough not to be 
considered a problem. 

4. Conclusions 

In the present study it has been developed and tested a methodology 
for the acquisition of spectral information from small amounts of 
granular samples by hyperspectral image analysis. The proposed meth-
odology has allowed to determine the penetration of the electromag-
netic radiation into the samples. For the same samples, different 
penetrations have been obtained for the different spectral ranges 
considered. These results are in agreement with those described in the 
literature, which indicate that the penetration of radiation into a sample 
depends not only on the energy of the radiation, but also on the ab-
sorption intensity of the sample. In the case of GSPC samples, NIR ra-
diation (900–1700 nm) penetrates deeper into the sample than VisNIR 
radiation (400–1100 nm), which implies that the minimum amount of 
sample needed to measure in the NIR range is larger than that needed to 
measure in the VisNIR range. 

In any case, the methodology presented here allows to correctly 
acquire spectral information from small amounts of sample using HSI. 
Moreover, this spectral information can be easily extracted and used for 
the calibration of spectral methods for the prediction of parameters of 
interest in the sample, such as protein content in GSPC. This method-
ology can be easily extrapolated to other areas where the amount of 
sample available for spectral analysis is small. For example, the 

Table 1 
Main statistical descriptors for the MPLS models developed for protein content prediction at GSPC using three different hyperspectral datasets: NIR, VisNIR and the 
level 1 fusion of these two sets.  

Set Pretreatmenta Nb Mean SDc SECd RSQe SECVf SEPg SEP % 

NIR SNV +0,0,1 51 52.57 5.42 2.46 0.79 4.42 4.75 9.04 
VisNIR MSC +0,0,1 55 51.58 6.35 4.81 0.43 4.97 5.18 10.04 
Fusion MSC +2,10,10 55 51.58 6.35 4.39 0.52 4.74 4.84 9.38  

a Pretreatment: SNV - Standard Normal Variate. MSC - Multiplicative Scattering Correction. First digit - number of the derivative. Second digit - gap over which the 
derivative is calculated. Third digit - number of data points in a smoothing. 

b N: number of samples (calibration set). 
c SD: standard deviation. 
d SEC: standard error of calibration. 
e RSQ: coefficient of determination (calibration set). 
f SECV: standard error of cross-validation. 
g SEP: standard error of prediction in the external validation (also expressed in percentages with respect to the mean value). 
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proposed methodology may be of great interest for forensic drug anal-
ysis or for the analysis of health samples, among others. 
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