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Abstract: One of the main problems associated with advanced control strategies is their
implementation on embedded and industrial platforms, especially when the target application
requires real-time operation. Frequently, the dynamics of the system are totally or partially
unknown, and data-driven methods are needed to learn an approximate model of the plant to
control. On many occasions, these learning techniques use non-differentiable functions that
cannot be handled by most traditional low-level gradient-based optimization methods. In
addition, many data-driven techniques require the online processing of a vast amount of data,
which may be exceedingly time-consuming for most real-time applications. To solve these two
problems at once, we propose a low-cost solution based on a system on a chip (SoC) platform
featuring an embedded microprocessor (MP) and a field programmable gate array (FPGA)
to implement nonlinear model predictive control strategies. The model employed to make
predictions about the future evolution of the system is learnt by means of a data-driven learning
method know as parallel Lipschitz interpolation (LI) and implemented in the FPGA part. On
the other hand, the optimization problem associated with the model predictive control strategy
is solved by software in the MP using an adapted version of the particle swarm optimization
method.
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1. INTRODUCTION

Despite its ever-growing popularity among the research
community, many people are still reluctant to apply ad-
vanced control laws in industry, as in the case of nonlin-
ear model predictive control (NMPC) laws (see Goodwin
et al. (2012)). In this sense, there are two hurdles to
overcome. The first one is the difficulty of implementing
these advanced control laws on embedded and industrial
platforms and the associated costs. The second one is to
make the controller robust to model uncertainties, external
disturbances, and measurement noise.

The first problem can be tackled by two different per-
spectives. The first one is to develop new and efficient
algorithms adapted to the requirements of the target sys-
tem where the control law will be implemented. See, for
instance, the work developed in Krupa et al. (2020), where
a tool for the automated code generation of standardized
IEC 61131-3 PLC programming languages is employed to
solve the MPC optimization problem. The alternative is to
design new system architectures that respond to the needs

⋆ This work was supported by the Agencia Estatal de
Investigación (AEI)- Spain under Grant PID2019-106212RB-
C41/AEI/10.13039/501100011033, by Ministerio de Ciencia e
Innovación under Proyect PDC2021-121120-C21, and by Fondo
Europeo de Desarrollo Regional FEDER under Programa Interreg
V-A España-Portugal (POCTEP) 2014-2020.

of the algorithm to be implemented, as it is done in Knagge
et al. (2009), where a novel application specific integrated
circuit (ASIC) is proposed for the implementation of online
MPC control laws.

The second problem is that the controller must respond
to occurrences such as changes in the model of the sys-
tem to control, and has traditionally been addressed by
developing adaptive control laws, as it is done in Valluru
and Patwardhan (2019), where an MPC scheme based
on Bayesian and a frequent real time optimizer (RTO) is
proposed.

To solve all these problems associated with the implemen-
tation of NMPC control strategies, in this work the follow-
ing approach is proposed. The —in principle unknown—
dynamics of the system to control are learnt by means of
a data-driven learning technique known as Lipschitz inter-
polation (LI) (see Beliakov (2006)). Lipschitz interpolation
is a learning methodology that allows the regression of un-
known functions given they are Lipschitz continuous using
data obtained through performing tests on the system. As
detailed in Nadales et al. (2022), some of the reasons why
LI is employed among all available learning methodologies
are the following:

• The algorithm is simple, it only requires basic op-
erations, and it can be parallelized, reasons why it
can easily be implemented in field programmable
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known functions given they are Lipschitz continuous using
data obtained through performing tests on the system. As
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LI is employed among all available learning methodologies
are the following:

• The algorithm is simple, it only requires basic op-
erations, and it can be parallelized, reasons why it
can easily be implemented in field programmable

gate array (FPGA) platforms using low-level design
methodologies.

• Bounds on the error committed from data represen-
tation can be found by design, something interesting
for robustness purposes.

The main problem associated with LI is that this family of
learning methodologies usually returns non-differentiable
outputs, and because of that, conventional optimization
techniques based on gradient methods cannot be em-
ployed. To overcome this difficulty and solve the NMPC
problem, in this work we propose the implementation of
a solver based on an adapted version of the algorithm
known as particle swarm optimization (PSO) (see Poli
et al. (2007)). These kinds of genetic algorithms are usually
used to solve non-convex or non-differentiable problems
and have also been addressed in the field of MPC-like
schemes (see Carnerero et al. (2021)).

To implement the controller, in this paper we make use
of a system on chip (SoC) embedded platform composed
of an embedded microprocessor (MP) and FPGA-based
programmable logic. Using this type of platform, the
NMPC problem is implemented and solved on the soft
part of the SoC (the MP) using the PSO algorithm and
the model of the system is implemented as an external
hard peripheral on the FPGA using the parallel version
of the LI algorithm proposed in Nadales et al. (2022).
By doing this, we accelerate the time it takes to make
predictions required by the PSO solver. This allows real-
time implementation of the Algorithm.

The rest of the paper is structured as follows. In Section 2,
the mathematical fundamentals of parallel LI (PLI) are
briefly described. In Section 3, the modified version of
the PSO algorithm for solving NMPC control problems
is presented. In Section 4 the HW/SW partition for the
proposed implementation of the PSO solver using PLI is
detailed. In Section 5, the proposed methodology is em-
ployed to control a self-balancing helix-bar system. Finally,
the main conclusions of the this work are summarized in
Section 6.

2. LIPSCHITZ INTERPOLATION

In this work we suppose that the dynamics of the system
to be controlled are unknown a priori. It is assumed that
the only available information about system is a set of
historical data containing a collection of measured input-
output pairs. It is also assumed that this set of data can be
employed to describe a model of the system by means of a
nonlinear autoregressive exogenous (NARX) model of the
plant (see Leontaritis and Billings (1985)). Let y(k) ∈ Rny

be the measured output of the system, and u(k) ∈ Rnu

the control input. Both inputs and outputs are subject to
hard constraints, y(k) ∈ Y, u(k) ∈ U . The objective is to
find a predictor of the future system evolution of the form

y(k + 1) = f(x(k), u(k), e(k)), (1)

where x(k) = (y(k), y(k − 1), ..., y(k − na), u(k), u(k −
1), ..., u(k− nb)) ∈ X := Yna+1 ×Unb+1 for some memory
horizon lengths, na and nb, whose value can be estimated
through some cross-validation method. The term e(k)
accounts for the process noise and is assumed to be
confined in a compact set E ∈ Rny . For notation simplicity

Fig. 1. Lipschitz interpolation over f(w) = −w2

2 + 3w
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.

and compactness, the inputs of f are aggregated into a
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regressor.
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f , qiven a new input q ∈ W is calculated as

fj(q;Lj ,D) =
1

2
min

i=1,...,ND
(f̂i,j + Lj∥q − wi∥) (4)
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2
max

i=1,...,ND
(f̂i,j − Lj∥q − wi∥) (5)
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min

i=1,...,ND
ui +
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max

i=1,...,ND
li (6)

=
1

2
(u+ l), (7)

where fj is the j-th component of the prediction, f̂i,j the
j-th component of the value of the observed map for the i-
th data point in D and wi is its corresponding input. The
terms u and l are called the ceiling and floor functions,
respectively. Note that any norm defined in the input space
can be employed in the previous expressions (see Calliess
(2014)). As detailed in Nadales et al. (2022), given a new
input q, and the set of stored data D, all ceiling and floor
terms, ui and li can be calculated at the same time, and
then a tree of compactors can be employed to find the
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gate array (FPGA) platforms using low-level design
methodologies.

• Bounds on the error committed from data represen-
tation can be found by design, something interesting
for robustness purposes.

The main problem associated with LI is that this family of
learning methodologies usually returns non-differentiable
outputs, and because of that, conventional optimization
techniques based on gradient methods cannot be em-
ployed. To overcome this difficulty and solve the NMPC
problem, in this work we propose the implementation of
a solver based on an adapted version of the algorithm
known as particle swarm optimization (PSO) (see Poli
et al. (2007)). These kinds of genetic algorithms are usually
used to solve non-convex or non-differentiable problems
and have also been addressed in the field of MPC-like
schemes (see Carnerero et al. (2021)).

To implement the controller, in this paper we make use
of a system on chip (SoC) embedded platform composed
of an embedded microprocessor (MP) and FPGA-based
programmable logic. Using this type of platform, the
NMPC problem is implemented and solved on the soft
part of the SoC (the MP) using the PSO algorithm and
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hard peripheral on the FPGA using the parallel version
of the LI algorithm proposed in Nadales et al. (2022).
By doing this, we accelerate the time it takes to make
predictions required by the PSO solver. This allows real-
time implementation of the Algorithm.

The rest of the paper is structured as follows. In Section 2,
the mathematical fundamentals of parallel LI (PLI) are
briefly described. In Section 3, the modified version of
the PSO algorithm for solving NMPC control problems
is presented. In Section 4 the HW/SW partition for the
proposed implementation of the PSO solver using PLI is
detailed. In Section 5, the proposed methodology is em-
ployed to control a self-balancing helix-bar system. Finally,
the main conclusions of the this work are summarized in
Section 6.

2. LIPSCHITZ INTERPOLATION

In this work we suppose that the dynamics of the system
to be controlled are unknown a priori. It is assumed that
the only available information about system is a set of
historical data containing a collection of measured input-
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employed to describe a model of the system by means of a
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1), ..., u(k− nb)) ∈ X := Yna+1 ×Unb+1 for some memory
horizon lengths, na and nb, whose value can be estimated
through some cross-validation method. The term e(k)
accounts for the process noise and is assumed to be
confined in a compact set E ∈ Rny . For notation simplicity

Fig. 1. Lipschitz interpolation over f(w) = −w2

2 + 3w
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ND = 6 and L = 1.5
.
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As detailed in Calliess (2014), the resulting prediction of
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where fj is the j-th component of the prediction, f̂i,j the
j-th component of the value of the observed map for the i-
th data point in D and wi is its corresponding input. The
terms u and l are called the ceiling and floor functions,
respectively. Note that any norm defined in the input space
can be employed in the previous expressions (see Calliess
(2014)). As detailed in Nadales et al. (2022), given a new
input q, and the set of stored data D, all ceiling and floor
terms, ui and li can be calculated at the same time, and
then a tree of compactors can be employed to find the
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minimum and maximum values among them, respectively.
Finally, these values u and l can be added together and
divided by two to obtain the final predicted output. The
Algorithm is represented in Figure 1.

Remark 1. The true value of the Lipschitz constant em-
ployed in the previous expressions is unknown a priori.
Detailed information about how this value can be esti-
mated using data can be found in Calliess et al. (2020).

Note that, in the previously described algorithm, every
time a new input q is received all data points in the
training data set D are processed to obtain the desired
prediction. It could easily happen that the amount of area
resources of the FPGA platform where the algorithm is
intended to be implemented are not sufficient to process
all data in parallel. A possible solution is to establish a
sequential procedure, but computational times could be
exceedingly high. Because of this, in this work we adapt
the projected version of the LI algorithm as proposed in
Manzano et al. (2019). In this version of the LI algorithm,
the input space W is divided into several subspaces Wk,

such that W = ∪K

k=1
Wk and their intersection is null, i.e.,

Wi ∩Wj = ⊘ ∀i ̸= j. To make this partition, the function
ψ : W → Wk is defined. Then, every time a new input
q ∈ W is received, only the data points belonging to the
corresponding space division are employed to make the
prediction, i.e.,

f∗j (q;L,D) = fj(q;L,Dk), (8)

where
Dk = {(f̂i,j , wi) | wi ∈ Wk} (9)

is the subset of data to be processed for some particular
query point q.

3. PSO FOR NMPC PROBLEMS

In this section, we present an adapted version of the PSO
algorithm to solve NMPC control problems where the LI
algorithm is employed to model the system to control.

3.1 Basic PSO algorithm

The PSO algorithm was first introduced in Kennedy and
Eberhart (1995). In this paper, the version of the algorithm
detailed in Poli et al. (2007) will be used.

Consider the optimization problem

min
v

J(v) s.t. v ≤ v ≤ v, (10)

where v ∈ Rn is the vector of decision variables, v and v
are vectors defining the lower and upper bounds on v and
J : Rn → R is the objective function. Note that we do not
assume convexity or differentiability on this function.

In this kind of algorithms, a set of possible candidate
solutions (called particles) are evaluated at each iteration
and, depending on the performance of each particle, new
candidate solutions are proposed. This new set of particles
might be closer to the global optimum of the optimization
problem. This process continues until some stopping cri-
teria is satisfied. For simplicity reasons, we consider here
a fixed number of iterations.

A certain number of particles pi, i = 1, ...,K, are randomly
placed in the feasible search space of the function to be

optimized. This search space, denoted as Ω, is defined by
the box constraints in v. The candidate solution of the
optimization problem for a certain particle pi is denoted
as pc

i ∈ Rn. This candidate solution has an associated

cost, denoted as pJ
i ∈ R. Also, each particle saves its

previous best candidate solution, pb
i ∈ Rn, and the best

objective value reached so far by the particle, pJb

i ∈ R.
Moreover, each particle pi is aware of the best global
candidate solution reached by any particle in the search
space. This is denoted as pg ∈ Rn whereas the best global
cost is denoted as pJg ∈ R. Finally, each particle has an
associated inertia associated, usually called velocity. This
is denoted as pv

i ∈ Rn.

After the initialization step, the objective function is
evaluated for every particle. Once this is done, the best
previous candidate solutions and costs of each particle are
replaced if better solutions were attained. In case that a
new solution is better than the previous global solution,
the best global particle is updated. Let Un(a, b) be a
n−dimensional uniform random distribution where each
component can take values between a and b. Then, the
velocity of each particle is updated as

pv
i ← ξ(pv

i + P1 ⊙ (pb
i − pc

i ) + P2 ⊙ (pg − pc
i )), (11)

where P1 ∼ Un(0, ϕ1) and P2 ∼ Un(0, ϕ2), and ϕ1, ϕ2 and
ξ are constants whose values are

ϕ1 = ϕ2 = 1.496, ϕ = ϕ1 + ϕ2, ξ =
2

ϕ− 2 +
√

ϕ2 − 4ϕ
,

and where ⊙ stands for component-wise multiplication.
P1 and P2 are random variables employed to prevent the
algorithm from getting stuck in a local minima. Finally,
the new set of candidates is computed as

pc
i ← pc

i + pv
i . (12)

After the new set of candidates is computed, we need to
verify that they do not violate the box constraints imposed
by equation (10). In case a certain new candidate fall
outside the imposed limits, it will be projected to the
nearest feasible value satisfying the constraints.

3.2 PSO for NMPC using LI

In this subsection, we adapt the PSO algorithm to imple-
ment NMPC controllers (see Grüne and Pannek (2017))
employing the LI algorithm to make predictiona about the
evolution of the system. The stage cost l : Rnx ×Rnu → R
and the terminal cost VT : Rnx → R are defined as

l(x, u) :=
1

2

(
∥x∥2Q + ∥u∥2R

)
, VT (x) := λ∥x∥2P , (13)

where Q ∈ Rnx×nx , R ∈ Rnu×nu , P ∈ Rnx×nx and λ ∈ R
are design parameters employed to tune the controller and
ensure stability. Thus, the performance index to optimize
is

VNp(x,u) =

Np−1∑
j=0

l(x̂(j | k), u(k + j)) + VT (x̂(Np | k)),

where u ∈ RNp×nu is the set of control actions, x ∈
RNp×nx is the set of predicted states, x̂(j | k) ∈ Rnx is
the state x(k + j) predicted at time k, u(k + j) ∈ Rnu is
the control action to be applied at time instant k+j, xk is
the initial state at time k and Np is the prediction horizon.

Algorithm 1 PSO Algorithm for NMPC using LI

1: Initialize pi, ∀i = 1, ...,K
2: while the stopping criteria is not satisfied do
3: for i = 1 : K do
4: Compute the trajectory ti(xk,p

c
i ) using LI.

5: Evaluate VNp(ti,p
c
i ).

6: Update pJb

i and pb
i if necessary.

7: end for
8: Find the particle with the best cost.
9: Update pJg and pg if necessary.

10: for i = 1 : K do
11: Compute the velocity as in equation (11).
12: Compute the new candidate as in equation (12).
13: Project the candidate solution onto Ω.
14: end for
15: end while
16: Choose u as the candidate solution of the particle that

obtained the best cost, that is pg
i .

Then, the problem to solve at each sampling time k can
be written as

min
x,u

VNp
(x,u) (14a)

s.t x̂(0 | k) = x(k) (14b)

x̂(j + 1 | k) = fLI(x̂(j | k), u(k + j),D), (14c)

u ≤ u(k + j) ≤ u, (14d)

where the function fLI : Rnx ×Rnu → Rnu is the predictor
of the system using LI and u and u are lower and upper
bounds on the input respectively. Note that constraint
(14b) sets the initial state, constraint (14c) defines the
predictor of the state evolution using the LI algorithm
and constraint (14d) defines box constraints on the control
action, respectively. Also, note that it is assumed that the
origin is an equilibrium point of the system.

In the adapted version of the PSO algorithm for soling
NMPC problems, the dimension of the particles will be
given by the number of control actions and the predic-
tion horizon of the optimization problem problem, i.e.,
pc
i ,p

b
i ,p

g
i ,p

v
i ∈ RNp×nu . Thus, in order to be able to

compute the velocities as in equation (11), we assume
that P1 ∼ UNp×nu

(0, ϕ1) and P2 ∼ UNp×nu
(0, ϕ2), where

Un1×n2
(a, b) corresponds to a (n1 × n2)-dimensional uni-

form random distribution where each component takes
values between a and b. Also, denote ti(x(k),p

c
i ) ∈ RNp×nx

as the trajectory obtained by calling the LI predictor
iteratively with an initial state x(k), that is, ti(xk,p

c
i ) =

[x̂(0 | k) x̂(1 | k) . . . x̂(Np | k)]. Then, it is easy to see that
the total cost VNp

(·) for each particle can be computed as
long as we have ti and pc

i . Besides that, the algorithm does
not need further modifications. The adapted PSO proce-
dure for solving NMPC problems using LI is summarized
in Algorithm 1.

4. HW/SW PARTITION

In this work we propose to employ SoC platforms (see
Hübner and Becker (2010)). These systems can typically
be divided into two different parts: a processing system
(PS), such as an embedded MP, and a programmable
logic device (PL), such as a FPGA platform. The PS is
the place where the operative system, the main code of
the application, and the different software interfaces are

Fig. 2. HW/SW partition of Algorithm 1.

implemented. On the other hand, the PL, also known as
the hard part, is ideal for implementing high speed logic,
arithmetic and data flow circuits, and algorithms prone
to be implemented in a parallel manner, thus reducing
computational times.

To implement the proposed control strategy, the HW/SW
co-design methodology has been adopted (see Schaumont
(2012)). This design methodology proposes to simultane-
ously design the different parts of the main application to
be implemented in both the PS and the PL part. The first
step is to partition the main application and decide what
is going to be implemented using software on the PS and
what is going to be implemented using hardware on the
PL. A common approach is to build the main application
on the PS and employ the PL to implement different
modules to accelerate code execution, for example, by
parallelizing parts of the application that would otherwise
have to be implemented sequentially on the PS part. These
modules are called peripherals and serve as co-processors
to the main processing unit.

The proposed HW/SW partition for implementing Algo-
rithm 1 is represented in Figure 2. The boxes shaded
in blue represent those tasks that will be implemented
using software on the PS while the boxes shaded in or-
ange represent those tasks that will be implemented using
hardware on the PL. As it can be appreciated, everything
is implemented using software on the PS except for the
model of the system. For each particle i = 1, ...,K, its cor-
responding future trajectory is recursively forecast calling
the LI algorithm implemented in the PL. Before that, the
associated subspace in the data set is calculated for each
particle. This information, together with the new input
data q, is sent as input to the LI algorithm, which returns
the predicted next state of the system.



 J.M. Nadales  et al. / IFAC PapersOnLine 56-2 (2023) 6298–6303 6301

Algorithm 1 PSO Algorithm for NMPC using LI

1: Initialize pi, ∀i = 1, ...,K
2: while the stopping criteria is not satisfied do
3: for i = 1 : K do
4: Compute the trajectory ti(xk,p

c
i ) using LI.

5: Evaluate VNp(ti,p
c
i ).

6: Update pJb

i and pb
i if necessary.

7: end for
8: Find the particle with the best cost.
9: Update pJg and pg if necessary.

10: for i = 1 : K do
11: Compute the velocity as in equation (11).
12: Compute the new candidate as in equation (12).
13: Project the candidate solution onto Ω.
14: end for
15: end while
16: Choose u as the candidate solution of the particle that

obtained the best cost, that is pg
i .

Then, the problem to solve at each sampling time k can
be written as

min
x,u

VNp
(x,u) (14a)

s.t x̂(0 | k) = x(k) (14b)

x̂(j + 1 | k) = fLI(x̂(j | k), u(k + j),D), (14c)

u ≤ u(k + j) ≤ u, (14d)

where the function fLI : Rnx ×Rnu → Rnu is the predictor
of the system using LI and u and u are lower and upper
bounds on the input respectively. Note that constraint
(14b) sets the initial state, constraint (14c) defines the
predictor of the state evolution using the LI algorithm
and constraint (14d) defines box constraints on the control
action, respectively. Also, note that it is assumed that the
origin is an equilibrium point of the system.

In the adapted version of the PSO algorithm for soling
NMPC problems, the dimension of the particles will be
given by the number of control actions and the predic-
tion horizon of the optimization problem problem, i.e.,
pc
i ,p

b
i ,p

g
i ,p

v
i ∈ RNp×nu . Thus, in order to be able to

compute the velocities as in equation (11), we assume
that P1 ∼ UNp×nu

(0, ϕ1) and P2 ∼ UNp×nu
(0, ϕ2), where

Un1×n2
(a, b) corresponds to a (n1 × n2)-dimensional uni-

form random distribution where each component takes
values between a and b. Also, denote ti(x(k),p

c
i ) ∈ RNp×nx

as the trajectory obtained by calling the LI predictor
iteratively with an initial state x(k), that is, ti(xk,p

c
i ) =

[x̂(0 | k) x̂(1 | k) . . . x̂(Np | k)]. Then, it is easy to see that
the total cost VNp

(·) for each particle can be computed as
long as we have ti and pc

i . Besides that, the algorithm does
not need further modifications. The adapted PSO proce-
dure for solving NMPC problems using LI is summarized
in Algorithm 1.

4. HW/SW PARTITION

In this work we propose to employ SoC platforms (see
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responding future trajectory is recursively forecast calling
the LI algorithm implemented in the PL. Before that, the
associated subspace in the data set is calculated for each
particle. This information, together with the new input
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6302 J.M. Nadales  et al. / IFAC PapersOnLine 56-2 (2023) 6298–6303

Once the HW/SW partition has been decided, each of the
different parts of the main application are concurrently
implemented and tested. For more details about the im-
plementation of the parallel version of the LI algorithm
on the PL part, the reader is referred to Nadales et al.
(2022) where an extensive and detailed description of how
to efficiently implement parallel LI algorithms on FPGA
platforms is provided.

5. CASE STUDY

To illustrate the performance of the proposed methodol-
ogy, this has been applied to a real-time control problem:
the real-time implementation of a constrained nonlinear
model predictive control law for a helix-bar system.

5.1 Hardware architecture

The proposed design has been experimentally imple-
mented and tested on a Xilinx Zynq-7000 SoC platform
embedded on a Zybo z7 board which integrates a dual-core
ARM Cortex-A9 processor with a Xilinx 7-series FPGA.
For details about the hardware implementation of the
proposed architecture the reader is referred Crockett et al.
(2014) where a complete guide for the implementation
of HW/SW systems on the Zynq platform is provided.
The LI algorithm for modeling the system’s behavior is
implemented in the PL as an AXI peripheral connected
to the PS through an AMBA AXI on-chip communication
protocol (see Gaikwad and Patil (2018)). The rest of the
tasks detailed in Algorithm 1 are implemented in C code
on one of the two ARM cores of the ARM processor. The
other ARM core is employed to implement the model of the
system to perform processor in the loop (PIL) simulations.

5.2 Model of the plant

The proposed control design methodology is applied to the
self-balancing helix-bar system. The objective is to control
the angle that the bar forms with the vertical using the
force provided by the air current generated by the helix
located at the extreme of the bar. Note that a spring is
placed connecting the bar to the wall to provide rigidity
to the system. The state of the system is defined by the
angle that the bar forms with the vertical, θ[rad], and its

angular velocity, θ̇[rad/s]. The state varies with respect to
the control input, which is the force F [N ] generated by
the helix located at the extreme of the bar, according to
the following set of ordinary differential equations (ODEs),
which will be employed to simulate the behavior of the
system but are supposed to be unknown:

ẋ1(t) = x2(t),

ẋ2(t) = −1

I

[(
g ·M · L

2
+X1 · g ·M1

)
sx1(t)

+ (X2
2 ·K)s2x1(t) +Bx2(t)−X1u(t)

]
,

(15)

where s denotes the sine function, θ(t) is represented by

state x1(t), θ̇(t) by state x2(t), and the control action
F (t) by u(t). In the model, g[m/s2] represents the force
of gravity , M [kg] the mass of the bar, M1[kg] the mass
of the helix and its engine, L[m] the length of the bar,

Table 1. Parameters of the helix-bar system.

g 9.8 m/s2 X2 0.5 m

L 1 m K 2.82 N/m

M 0.05 kg B 0.1 kg ·m/s

M1 0.1 kg I 0.08 kg ·m2

X1 1 m

X1[m] the distance between the helix and the point of
the supporting spring connecting the bar and to the wall,
X2[m] the distance between this same point and the wall
along the length of the bar, K[N/m] is the characteristic
constant of the spring, B[kg ·m/s] is the friction constant
of the air, and I[kg ·m2] the moment of inertia of the whole
system. The values these parameters take are detailed in
Table 1.

5.3 Learning-based model

The first step before implementing the model of the
plant using the parallel LI algorithm is to obtain the
training data set. To do that, several simulations on
the real model of the system have been carried out in
which the system is excited with different chirp signals
ranging from 0.03 Hz to 0.3 Hz for a random initial state.
From these simulations, and after a filtering process, a
data set consisting of 16384 uniformly distributed input-
output pairs is obtained. These input-output pairs will be
employed to build the training data set.

Using this set of data, and after a cross-validation proce-
dure, different estimations of fLI for different values of na

and nb are obtained. Following the methodology proposed
in Calliess et al. (2020), the values of the Lipschitz constant
L and the memory horizons na and nb have been calculated
and set to L = 1.935, na = 2, nb = 1 for a sampling period
Tm = 0.0342 s. The predictor of the system for these values
of na and nb takes the form

y(k+1) = fLI(y(k), y(k−1), y(k−2), u(k), u(k−1)), (16)

where y(k) is the real state of the plant, which is assumed
to be accessible, and the control action u(k) is the force
generated by the helix. Using this information, and the set
of input-output pairs, the training data set D is obtained.
Because not enough area resources are available to process
all data at once, a partition of the training data set is
carried out as detailed in Manzano et al. (2019). Doing
this, the training data set is partitioned into 64 subsets
each of them containing a total of 256 data points, and
the sequential procedure detailed in Nadales et al. (2022)
is followed to process all partitions of the data set. To
represent data, fixed-point representation format has been
employed following the procedure detailed in Nadales et al.
(2022) to find the optimal representation format. After
implementing the system and performing a time analysis,
a clock signal of 10 ns has been selected, which provides
a positive worst negative slack (WNS) (see Chadha and
Bhasker (2009)).

5.4 NMPC using PSO

To solve the optimization problem, Algorithm 1 is imple-
mented in C code in one of the ARM cores part of the ARM
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Fig. 3. Simulation results of the system controlled by the
proposed HW/SW controller using PSO and parallel
LI.

processor. The total number of particles has been set to 90.
Instead of a stopping criteria, a total of 50 iterations has
been fixed for each iteration of the optimization algorithm.
The prediction horizon is set to Np = 5, and the values of
the weighting matrices that ponder the performance index
are set to Q = diag[100, 10], R = 50. Since the model of
the plant is unknown, the value of the terminal cost matrix
P has been obtained using the set of input-ouput pairs
following the guidelines detailed in Berberich et al. (2021)
and has been set to P = [14.7782, 0.1344; 0.1344, 5.011].
The sampling time is set to Tm = 0.0342.

5.5 Simulation results

Using the model of the system implemented in the second
ARM core part of the MP, closed-loop processor in the
loop simulations of the system controlled by the proposed
HW/SW controller have been carried out. The results of
the closed-loop system for random initial conditions and
under the presence of bounded sensor noise are shown in
Figure 3. As it can be seen, the implemented control law
stabilizes the system toward the desired set point.

6. CONCLUSIONS

A novel HW/SW design methodology for the implementa-
tion of nonlinear model predictive controllers on SoC plat-
forms was presented. The optimization problem is solved
using an adapted version of the particle swarm optimiza-
tion algorithm implemented in software on the processing
system. The model of the system is implemented in the
FPGA using a parallel version of the algorithm known as
Lipschitz interpolation. This allows real-time implementa-
tion given the time needed to make prediction when the
standard sequential version of the algorithm is employed.
Simulation results show how the proposed controller is able
to stabilize the system toward the desired set point.
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under the presence of bounded sensor noise are shown in
Figure 3. As it can be seen, the implemented control law
stabilizes the system toward the desired set point.
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forms was presented. The optimization problem is solved
using an adapted version of the particle swarm optimiza-
tion algorithm implemented in software on the processing
system. The model of the system is implemented in the
FPGA using a parallel version of the algorithm known as
Lipschitz interpolation. This allows real-time implementa-
tion given the time needed to make prediction when the
standard sequential version of the algorithm is employed.
Simulation results show how the proposed controller is able
to stabilize the system toward the desired set point.
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