

 Depósito de investigación de la Universidad de Sevilla

 https://idus.us.es/

This is an Accepted Manuscript of an article published by IEEE in IEEE

TRANSACTIONS ON CIRCUITS AND SYSTEMS II - EXPRESS BRIEFS on

2024, available at: https://doi.org/10.1109/TCSII.2023.3323886

“© 2024 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or

lists, or reuse of any copyrighted component of this work in other Works”

https://idus.us.es/
https://doi.org/10.1109/TCSII.2023.3323886

1

Design Automation of Analog and Mixed-Signal
Circuits Using Neural Networks – A Tutorial Brief

Gustavo Liñán-Cembrano, Nuno Lourenço, Member, IEEE, Nuno Horta, Senior Member, IEEE, and
José M. de la Rosa, Fellow, IEEE

Abstract—This tutorial brief shows how Artificial Neural
Networks (ANNs) can be used for the optimization and automated
design of analog and mixed-signal circuits. A survey of conven-
tional and computational-intelligence design methods is given as
a motivation towards using ANNs as optimization engines. A
step-by-step procedure is described explaining the key aspects
to consider in our approach, such as dataset preparation, ANNs
modeling, training, and optimization of network hyperparame-
ters. As an application, two case studies at different hierarchy
levels are presented. The first one is the system-level sizing of
Sigma-Delta Modulators (Σ∆Ms), where ANNs are combined
with behavioral simulations to generate valid circuit-level design
variables for a given set of specifications. The second example
combines ANNs with electrical simulators to optimize the circuit-
level design of operational transconductance amplifiers. The
results validate the presented approach and show its benefits
with respect to prior art on synthesis methods of analog and
mixed-signal circuits and systems.

Index Terms—Design Automation, Optimization, Neural Net-
works, Analog and Mixed-Signal Circuit Design.

I. INTRODUCTION

PROMPTED by technology downscaling, modern elec-
tronic devices are predominantly constructed using digital

circuits. These circuits are, a priori, more programmable,
energy-efficient, and cost-effective and also offer greater ro-
bustness against device imperfections compared to analog
circuits. The increasing prevalence of digital signal processing
goes hand in hand with the advancement of synthesis methods
and Electronic Design Automation (EDA) tools which assist
designers in automating and optimizing circuit development
all the way from initial specifications to the final silicon
implementation. In contrast, the design of analog circuits
still relies heavily on empirical rules and practical knowledge
derived from prior experiences and expertise.

While analog design automation still lags far behind its dig-
ital counterpart, numerous EDA tools and design methodolo-
gies have been reported. The prevailing strategies often adopt

Manuscript received September 1, 2023; revised September 25, 2023.
This work was supported in part by Grant PID2019-103876RB-I00, funded

by MCIN/AEI/10.13039/501100011033, by the European Union ”ESF Invest-
ing in your future”, and by ”Junta de Andalucı́a” in Spain under grant P20-
00599, by Fundação para a Ciência e a Tecnologia–Ministério da Ciência,
Tecnologia e Ensino Superior (FCT/MCTES), in Portugal, through national
funds and, when applicable, co-funded by European Union (EU) funds under
the project UIDB/50008/2020.

Gustavo Liñán-Cembrano and José M. de la Rosa are with the Institute
of Microelectronics of Seville, IMSE-CNM (CSIC/University of Seville), C/
Américo Vespuccio 28, 41092 Sevilla, Spain, e-mail: [linan,jrosa]@imse-
cnm.csic.es. Nuno Lourenço and Nuno Horta are with the Instituto de
Telecomunicações, Instituto Superior Técnico, Univ. de Lisboa, Portugal, e-
mail: [nlourenco,nuno.horta]@lx.it.pt.

an optimization-based design methodology, which involves
employing a simulator as a performance evaluator, coupled
with an optimization engine, to discern the optimal solution
within the design space. In pursuit of this goal, a variety
of optimization techniques, such as genetic algorithms and
simulated annealing, among others, have been employed to
guide behavioral simulators at the system level and electrical
simulators at the circuit level [1].

Recent uses of Artificial Intelligence (AI) algorithms for
automating analog circuit design have been reported [2]–[8].
In some works, the ANNs replace the simulator while in others
they play the role of the optimization engine. In the latter,
ANNs are trained to size systems according to specifications,
automating the sizing process and generating optimal designs
for previously uncharted specifications. This approach suc-
ceeded in designing analog circuits, e.g., operational amplifiers
[2], and mixed-signal systems like Sigma-Delta Modulators
(Σ∆Ms) [9], [10].

This brief builds upon the authors’ previous work in [2],
[10], and provides an overview on using ANN-driven methods
for automated analog and mixed-signal circuit design. Two
case studies demonstrate its application at different abstraction
levels. At system level, ANNs combined with SIMSIDES
[11] –a behavioral simulator– are employed for the high-level
synthesis of Σ∆Ms. At circuit level, ANNs and SPICE-like
simulators are used to automate transistor sizing and biasing
of Operational Transconductance Amplifiers (OTAs).

The article is organized as follows. Section II overviews
prior art on analog design methods and describes the proposed
ANN-based synthesis methodology. The high-level synthesis
of Σ∆Ms is presented in Section III. The use of ANNs to
automate the design of basic analog circuits is covered in
Section IV. Finally, conclusions are drawn in Section V.

II. OPTIMIZATION-BASED DESIGN METHODOLOGY USING
ANNS AND COMPUTATIONAL INTELLIGENCE TECHNIQUES

Figure 1 illustrates the widely employed top-down/bottom-
up hierarchical design methodology for analog and mixed-
signal circuits and systems. In this approach, a given system is
partitioned into a number of hierarchical or abstraction levels
that depend on the system complexity, but which typically
comprises, at least, the four levels depicted in Fig. 1; system,
circuit, device, and physical. This way, the design process is di-
vided into several sizing steps, so that the system specifications
are transmitted (or mapped) in a hierarchical way, from top
(system) level to bottom (physical) level, and the performance
is verified in the reverse path – from bottom to top [12], [13].

2

System Level

High-level sizing

Specifications

Architecture Selection

Circuit Level

Electrical-level sizing

Device Level

Schematic & layout

Physical Level

Optimizer
Behavioral
Simulator

D
e
s
ig

n

V
e
ri
fi
c
a
ti
o

n

Optimizer
Electrical
Simulator

D
e
s
ig

n

V
e
ri
fi
c
a
ti
o

n

Fig. 1. Optimization-based top-down/bottom-up design process.

A. Conventional Optimization-based Design Method

At each abstraction level, a selection of the best topology (or
architecture) is done. For instance, in the case of Analog-to-
Digital Converters (ADCs), the system-level design involves
selecting the best conversion technique, i.e. pipeline, SAR,
Σ∆M, etc., as well as the more suitable topology within
this family of converters for a given set of specifications.
Something similar happens at circuit level, e.g. amplifiers,
where the best suited topology, for instance, telescopic, folded-
cascode, multi-stage, etc. needs to be chosen. Once a system
or building-block topology has been defined, the next step
consists of getting the design variables that satisfy the speci-
fications at each abstraction level and propagate them through
the hierarchy.

Two different sizing processes are shown in Fig. 1: system-
level sizing and circuit-level sizing. The role of specifications
and design variables changes as we move through the design
flow. Thus, the design variables at a given level constitute the
specifications for the level underneath. Let us illustrate this
using one of the case studies in this tutorial, i.e. a Σ∆M. Here,
the typical system-level specifications are the Effective Num-
ber of Bits (ENOB) and the signal bandwidth (BW). These
specifications are mapped onto circuit-level requirements: i.e.
amplifier DC gain, Gain-Bandwidth (GBW), Slew-Rate (SR),
output swing, etc. These parameters, which play the role of de-
sign variables in the high-level sizing, turn into specifications
at the electrical-design level. At this level, the design problem
consists of obtaining the cell or circuit sizing and biasing i.e.
the width, length and biasing of transistors and devices, which
are the design variables at this step [14]. Both system- and
circuit-level design processes are tasks that require multitude
of design/verification iterations to meet the specifications [15].

To this purpose, different simulation approaches are needed to
evaluate the performance of either the entire system or just
a subsystem or building block. The latter can be analyzed
using an electrical (SPICE-like) simulator offering high degree
of accuracy. Conversely, the evaluation of the system-level
performance requires an accurate but also CPU-time affordable
solution. Here is where behavioral simulation comes into play
by emulating the operation of the main building blocks using
behavioral models that capture the most relevant circuit-level
non-idealities, allowing a fast yet precise way to evaluate
the performance of complex systems [11], [16]–[21]. One of
these behavioral simulators is SIMSIDES [20], a time-domain
simulator for Σ∆Ms developed in the MATLAB/SIMULINK
environment, which will be used in this brief.

Typically, the sizing process is carried out by using an
optimization engine, which guides the simulator through the
exploration of the design space to find the optimum design
solution. Different optimization algorithms have been pro-
posed to this end, including genetic, simulated annealing, or
multi-objective evolutionary Pareto fronts, to cite a few [11],
[16], [19], [22], [23]. Regardless of the abstraction level, the
optimization method involves defining a design-oriented cost
function or a Figure of Merit (FOM) and minimizing it [24].

B. ANN-driven Optimization-based Design Method

Despite the advantages offered by the optimization-based
approach, its primary obstacles lie in the large number of
iteration cycles necessary for convergence and the significant
CPU time needed to evaluate each potential solution.

ANNs can play a pivotal role in addressing these limitations
by diminishing the necessity for resource-intensive simula-
tions through: (1) selecting just the most promising candidate
solutions for evaluation; (2) estimating some critical circuit
performance targets, e.g. the performance in corners; or (3)
replacing the circuit simulator entirely; alternatively, ANNs
can also be employed to implement effective Reinforcement
Learning (RL) agents that can size analog circuits or entirely
replace the optimizer loop by inferring the values for the
design variables directly from the specifications.

Figure 2 depicts the above mentioned approaches exempli-
fied for a circuit-level design procedure. Figure 2(a) illustrates
a general Computational Intelligence (CI) algorithm that uses
the circuit simulator to evaluate the quality of the candidate
designs. These automatic sizing methods aim to find a suitable
set of device sizes by iterating over tentative guesses, by
evaluating their performance using the circuit simulator, and
incorporate the new data to select the next guesses. This
method is widely used in academia and industry and produces
valid designs, but it is very costly in terms of CPU time, and
its reuse involves new optimization runs [1].

Several approaches leveraging ANNs which train models
to predict the performance and replace the simulator [25]–
[27] have been proposed, as illustrated by ANN-S model in
Fig. 2(b). Although an ANN can be over 1000× faster than
the simulator, errors of more than 50% in some regions of
the design space have been reported and many simulations
are still needed to train the model. In a similar way, but

3

OPTIMIZER

SIMULATORDesign
Variables

Circuit
Performance

Tentative
Designs

(a)

RL-AGENT

SIMULATORDesign
Variables

Circuit
Perform.

Action

(b)

Reward
State

ANN-S
Design
Variables

Circuit
Perform.

Tentative
Designs

(c)

Extended
Perform.

OPTIMIZER

ANN-P ANN-X

Perform.
Metrics

Design
Variables

(d)

ANN

Fig. 2. Circuit design methods. (a) Simulation-based approach. (b) ANN-
driven simulation-based approach. (c) RL approach. (d) Approach in this work.

without completely replacing the simulator, some approaches
used an ANN to predict additional performances using at the
input the design variables and a partial set of circuit measures
obtained from the simulator, as illustrated by model ANN-X
in Fig. 2(c). This method was used in [28] to bolster nominal
simulations results predicting the performance figures over
PVT corners. An alternative approach – denoted as ANN-P
in Fig. 2(c) – keeps the simulator as performance evaluator
but it trains some models to prune tentative solution guesses
before being simulated [29], [30].

Figure 2(b) depicts an application of ANNs for circuit sizing
under the umbrella of RL. Several works have shown that
ANNs can be used to effectively learn good policies for analog
circuit sizing, even considering robustness [6], [31]–[36].
While a trained agent can perform the sizing very accurately
and effectively, defining an agent and reward functions suitable
to be generally reusable over diverse circuit topologies and
specifications is still an open topic. Figure 2(d) illustrates the
approach of this tutorial, which consists of directly using the
ANN in a supervised learning manner to produce the circuit
sizing from the specifications. In this case, the ANN is trained
to infer optimum designs as described below.

III. ANN-DRIVEN SYSTEM-LEVEL DESIGN:
APPLICATION TO Σ∆MS

As stated in Section II.A, the high-level design involves
solving two types of problems. First, for a given vector of
specifications, Γ̄, a suitable architecture has to be selected from
a family of alternatives {Aj}, where j represents available
topologies. In the case of Σ∆Ms, specifications typically
involve ENOB, BW, Signal-to-Noise Ratio (SNR), Signal-
to-Noise and Distortion Ratio (SNDR), Total Harmonic Dis-
tortion (THD), a FOM1, etc., but they might also include
constraints imposed by the system where the Σ∆M is to
be embedded, by application-related scenarios, i.e. military,
industrial, space, automotive, mass market, etc. Based on the
selected topology, a vector of architecture-dependent design

1The Schreier’s Figure of Merit – denoted as FOMS [37] and widely
adopted by Σ∆M community – will be used in this work.

variables ϵ̄(Aj) needs to be found so that specifications Γ̄ are
not only met but also optimized according to some predefined
metrics.

A. Problem Formulation and Definition of the Dataset

For the first problem, finding a suitable architecture from
the information in the dataset, we propose to obtain infer-
ences from a trained classifier [38], C, which maps system-
performance metrics (Γ̄i) onto a categorical variable Aj (the
selected architecture). For the second problem, a constrained
optimization [39] problem which must yield optimal design
variables for the given specifications and the chosen Σ∆M
architecture, we propose to use Regression-type Neural Net-
works (RNNs), trained on comprehensive datasets, to infer the
design variables.

This methodology can be formulated as follows: Aj =
C(Γ̄i); ϵ̄k = RNN(Γ̄i, Aj), where C(·) is a call to the
classifier to obtain an architecture, and RNN(·) is a call to
the RNN to infer the design variables. This way, every input
in the dataset should be formatted as a triplet of the form
{Ci, Γ̄i, ϵ̄i}, where Ci is a categorical variable which defines
the architecture of the modulator, Γ̄i is a vector of Σ∆M
performance metrics, and ϵ̄i is a vector which contains the
design variables that produced such metrics in a behavioral
simulation of this Σ∆M using SIMSIDES [11], [14].

B. Network Architecture and Model Optimization

Different classifier types were considered including
Quadratic and Linear Discriminant Analysis (QDA, and LDA)
[40], Support Vector Machines (SVM) [41] with linear, poly-
nomial, and radial-basis function kernels, Gaussian and Multi-
nomial Naive-Bayes (GNB, MNB) [42], Decission Trees (DT)
[43], Random Forest (RF) [44], Gradient Boosting (GB) [45],
and neural network-based classifiers [46].

A regression neural network [47] was used to infer the
design variables for each modulator architecture. In order to
optimize the computational performance of each RNN, Neural
Architecture Search (NAS) techniques [48] were integrated
in the design framework to automatically explore the hyper-
parameters space and optimize the network architecture for
each modulator using the Keras tuner [49]. The following
hyper-parameters were considered for exploration: number of
neurons (units) per layer; number of layers; use of dropout
layers [50], activation function; and optimizer.

Due to the non-linear nature of Σ∆Ms, it was crucial to
determine how accurately the performance metrics Γ̄

′

k obtained
for each inferred set of design variables ϵ̄

′

k compared to
the requested ones Γ̄k. To address this concern, a two-step
approach was followed. First, we considered the network
output as a coarse solution for the design variables, i.e. as a
starting point. In a second step, we created 10 slightly varied
versions of this point by randomly varying within ±5% each
of the initially found design variables. Finally, the combination
producing the best FOM [37] was selected.

4

C. Σ∆M Design Examples

Without loss of generality, we considered the following four
Σ∆M architectures [10]: (I) a 2nd-order Switched-Capacitor
(SC) Σ∆M; (II) a 3rd-order cascade 2-1 SC-Σ∆M; (III) a
4th-order cascade 2-1-1 SC-Σ∆M with 3-bit quantization;
and (IV) a 2nd-order 3-level Continuous-Time (CT) Σ∆M
based on Gm-C integrators. The specifications vector Γ̄ was
comprised of the required resolution (SNR), the bandwidth
(expressed in terms of the OSR), and the power consump-
tion Γ̄k ≡ {SNRk,OSRk,Powk}. The considered behavioral
models included the main circuit nonidealities such as limited
input/output swings, amplifier’s input referred noise, finite DC
gain, GBW, maximum output current and nonlinear transcon-
ductance. Effects like devices mismatch or switches KT/C
noise were not included. In the case of SC-Σ∆Ms in this
case study, the design variables to be inferred were the finite
DC gain, the finite transconductance, and the maximum output
current of each amplifier. Simmilarly, for the Gm-C CT-Σ∆M
we considered each amplifier’s finite DC gain, GBW and third-
order intermodulation product.

The dataset generation involved evaluating more than
200,000 random designs. The combined use of behavioral
simulation (SIMSIDES), GPU acceleration and the MATLAB
Parallel Computing ToolboxTM allowed us to obtain about
10,000 simulation results per hour of CPU time2. Needless to
mention, we could not expect every randomly generated design
to produce valid data for classifier and network training as they
featured poor SNR. Therefore, all designs having SNR<50dB
were removed from the dataset prior to the training. The
final number of samples in the dataset amounted to nearly
120,000 {Ck, Γ̄k, ϵ̄k} elements that were minmax normalized
to help training convergence. The dataset was partitioned into
Training Set (TS) and Validation Set (VS) using the common
80%− 20% division. Moreover, 1000 dataset points (250 per
modulator architecture) were reserved as Test Set and for com-
parison with other optimization approaches. After evaluating
the performance of the different classifiers, we found that the
Gradient Boosting classifier obtained the best classification
score on the VS (93.7%), followed by the Random Forest
(91.7%). Taking this into account, the GB classifier was chosen
as the best suited for this case study. Regarding the neural
network, the NAS algorithm was applied for each modulator
(CPU times between [1.9, 6]h). Afterwards, each modulator’
network template was fine-tuned for either 2000 epochs or
until an early-stopping condition was met (CPU times between
[60, 397]s). The MSE over the TS and the VS differed in less
than 0.3% in all cases, showing no evidences of overfitting.

D. Verification and Comparison with Other Optimizers

In order to validate the method, we computed the relative
deviation between the obtained specifications Γ̄

′

k, and the
requested values Γ̄k for the test set containing 1000 {Γ̄k, ϵ̄k}
points. The RNN inference produced centered designs, i.e.
designs that met specifications. Besides, the probability of
producing designs surpassing the required specifications were

2All simulations were carried out in a PC with a i9-12900F@5GHz CPU,
64-GB RAM and NVIDIA® GeForce RTX™3060TI GPU.

TABLE I
COMPARISON WITH OTHER OPTIMIZATION ALGORITHMS

Architecture: 2nd-ord SC
Algorithm CPU Time (min) SNR (dB) P (mW) FOM(dB)
This work 0.05 86.01 10.16 149.0
Gradient 9 85.8 10.80 148.5
Genetic 18 88.1 18.41 148.5
Np1 5 86.6 20.00 146.6
Architecture: 2nd-ord GmC
This work 0.05 75.19 0.07 182.6
Gradient 3 88.6 0.8 185.5
Genetic 129 90.2 0.8 187.0
Np1 10 88.0 0.4 187.9
Architecture: 3rd-ord Cascade 2-1 SC
This work 0.05 115.8 2.7 181.5
Gradient 11 115.7 8.0 176.7
Genetic 145 116.2 4.1 180.1
Np1 12 115.9 8.0 176.9
Architecture: 4th-ord Cascade 2-1-1 SC
This work 0.05 143.44 0.6 241.5
Gradient 4 144.32 1.8 237.9
Genetic 90 144.32 13.6 229.0
Np1 10 143.9 1.5 238.55

of at least 68.5% in the worst case (2nd-ord Gm-C) and peaked
to 78.5% for the cascade 2-1 SC. The solutions provided
by the ANN were compared with established optimization
algorithms for Σ∆Ms [23] available in MATLAB®, namely
Genetic, Gradient Descent, and Positive Basis Np1.

Table I3 summarizes the results obtained by these optimizers
when addressing the high-level sizing of the four Σ∆Ms
in our case study, considering an OSR = 128 and SNR
of {88.1, 90.15, 116.2, 144.3}dB for the 2nd-ord SC, 2nd-ord
Gm-C, Cascade 2-1 SC and the Cascade 2-1-1 architectures,
respectively. The ANN-based methodology demonstrated a
CPU time improvement of at least 60× across the various
modulators when compared to the considered optimizers,
producing 20 specifications-design variables pairs per minute.
Additionally, the presented methodology produced, in all
cases, designs with a smaller power consumption and very
similar SNR, yielding to better FOMs in most cases except in
the 2nd-ord Gm-C Σ∆M.

IV. ANN-DRIVEN CIRCUIT-LEVEL DESIGN:
APPLICATION TO OTAS

The system-level design in the previous section can be the
starting point for a electrical, circuit-level design. Thus, for
instance, the design variables obtained for the amplifiers can
now play the role of specifications here, where the problem
consists of obtaining transistor sizes and biasing for a set of
requirements of a subcircuit or building block – an OTA in
this case.

A. Preparing the Circuit-Design Dataset

The information used to train the ANN is again comprised
of the set of data pairs denoted as {Γ̄i, ϵ̄i}, but in this case Γ̄i

is a vector of the (OTA) circuit performance metrics (e.g., DC

3The high FOM in the 2-1-1 SC architecture is a consequence of the
behavioral model not including switches KT/C noise nor device mismatches.
However, since all the algorithms used the same behavioral model, the
comparison is valid.

5

gain, GBW, noise figure, supply rejection ratio, etc.)4, and,
as before, ϵ̄i, stands for the design variables, which at the
circuit-level are typically, the transistors’ multiplicity, biasing
and sizing (channels length and width).

The ANNs are trained to predict the design variables ϵ̄,
given a target vector of specifications, Ψ̄, and only well-
designed circuit sizings should be present in the dataset so
that the ANN will predict near-optimal designs. Note that,
while Γ̄ can be used as the target specification, Ψ̄, for a given
point, it is not the most suited approach for analog IC sizing
as specifications are usually defined as inequalities. Therefore,
a suitable design is not only the one with the performance
Γ̄ exactly equal to Ψ̄, but any solution with performance Γ̄′

better than Ψ̄. Moreover, if the models are trained only to
map Γ̄ −→ ϵ̄, they cannot predict solutions for specifications
outside the training set, even when the training set contains
designs capable of meeting those specifications. However,
since each sizing solution ϵ̄i corresponds to a circuit whose
performance is Γ̄i, such a sizing is also a valid design for any
performance target Ψ̄ that is worse than Γ̄i. Therefore, the
training data should be augmented with additional data pairs
{Ψ̄k

i , ϵ̄i}, where, each Ψ̄k
i is the kth randomized vector of

performance values that are strictly worse (or covered by) than
the real performance Γ̄i of the solution point. As in the case
of the Σ∆Ms, the dataset is normalized to improve training
efficiency [2].

B. Defining and Using the Model

In this case, the network architecture is a dense (fully-
connected) topology with 3-hidden layers. The data is split
with a 80% − 20% ratio, and some additional design
points, obtained independently, are used after training to
verify the performance of the model outside the training
data. To get predictions from the ANN we ask the model
to make P predictions for Ψ̄p

i randomly generated circuit
performance targets, all of which are better than the de-
sired specifications, e.g., given the specifications DC Gain>
45dB, GBW> 25MHz, IDD < 200µA, then sets of in-
puts given to the ANN could be: {{51dB, 33MHz, 190µA},
{75dB, 27MHz, 177µA},. . . {47dB, 25MHz, 200A}}.

Although using the augmented datasets adds additional per-
formance space coverage to the training data, it is also better
to extend the coverage of the performance space during the
sampling. Making the ANN to produce multiple predictions
for each desired specification further attenuates the effect of
the bias introduced during training and has a very small impact
on the execution time due to the high parallel execution.

Once the ANN infers the design variables for all inputs,
the corresponding designs can be simulated to obtain their
true performance. Selecting a solution from this reduced set is
a simple matter of establishing some single-valued metric or
employing Pareto dominance to expose the trade-off between
the relevant metrics.

4Γ̄i is a vector which can be derived from the building-block design
variables categorized as ϵ̄i in Section III.

TABLE II
PERFORMANCE OF SAMPLED DESIGNS

Gain (dB) GBW (MHz) IDD(µA) PM(◦) FOMa

Target 1 50 60 300 65
Best FOM 51 63 325 65 1165
Target 2 40 150 700 55
Best GBW 43 100 509 61 1182
Target 3 50 30 150 65
Best IDD 55 30 217 69 842
Best FOM 54 54 309 56 1050
a (MHz·pF/mA); The presented solutions all meet the constraints on overdrives

and saturation with margins larger than 45mV.

C. OTA Design Example and Results

The OTA from [51] on a 130-nm CMOS node was con-
sidered as a case study. The dataset comprises 16, 600 design
points obtained from several previously available optimization
runs, and the circuit performances that were considered to
train the ANN were DC Gain, IDD, GBW, and Phase Margin
(PM), which are extended with their second-order polynomial
features.

The ANN has an input layer with 14 nodes (due to the
polynomial features), 3 hidden layers with 120, 240, and 60
nodes each, and, an output layer with 12 nodes, corresponding
to the widths and lengths of the 6 matched transistor pairs. It
was trained on the original dataset, for 5000 epochs and a
batch size of 512 in less than 15 minutes. Then, it was trained
on a 40× augmented dataset (nearly 700K samples) for 500
epochs, adding another 40 minutes to the training time [2].5

Table II shows the results of using the ANN to obtain the
sizing for 3 different specifications targets. For each target,
the ANN was asked to infer the transistor sizes for 100
performance vectors with random deviations of up to 15%
from the target specifications. For each target, the ANN was
sampled only once (with a batch size of 100). The election of
the best solution was done by the FOM for target 1, GBW
for target 2, and IDD and FOM for target 3. The model
succeeded in predicting the device sizes for the amplifier
given their intended target performances, and circuits with
FOMs larger than 1000 were obtained in all predictions. For
target 3, two rows are listed to show how the ANN tried to
meet the impossible specifications in different ways, showing
that a properly trained ANN can generate a circuit sizing
that is correct for specification trade-offs, including those not
provided in the training data.

V. CONCLUSIONS

The use of ANNs for the automated design of analog and
mixed-signal circuits and systems has been discussed in this
tutorial brief. The presented methodology has been applied at
the system-level for the synthesis of Σ∆Ms and at the circuit
level for the optimization of OTAs. The obtained results are
competitive with other optimization methods. Although still in
its infancy, the use of ANNs to automate the design of analog
and mixed-signal circuits may contribute to close the existing
gap between digital and analog EDA tools.

5The model was implemented in Python with TensorFlow. Training was
done on four Intel I7 cores@2.6GHz.

6

REFERENCES

[1] N. Lourenço, R. Martins, and N. Horta, Automatic Analog IC Sizing
and Optimization Constrained with PVT Corners and Layout Effects.
Springer, 2017.

[2] N. Lourenco et al., “On the Exploration of Promising Analog IC Designs
via Artificial Neural Networks,” Proc. of the 2018 Intl. Conference on
Synthesis, Modeling, Analysis and Simulation Methods and Applications
to Circuit Design (SMACD), 2018.

[3] Y. Li et al., “An Artificial Neural Network Assisted Optimization System
for Analog Design Space Exploration,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 39, pp. 2640–
2643, October 2020.

[4] E. Afacan et al., “Review: Machine learning techniques in analog/RF
integrated circuit design, synthesis, layout and test,” Elsevier Integration,
the VLSI Journal, vol. 77, pp. 113–130, November 2021.

[5] M. Fayazi et al., “Applications of Artificial Intelligence on the Modeling
and Optimization for Analog and Mixed-Signal Circuits: A Review,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68,
pp. 2418–2431, June 2021.

[6] A. F. Budak, P. Bhansali, B. Liu, N. Sun, D. Z. Pan, and C. V. Kashyap,
“Dnn-opt: An rl inspired optimization for analog circuit sizing using
deep neural networks,” in 2021 58th ACM/IEEE Design Automation
Conference (DAC), pp. 1219–1224, 2021.

[7] P. Jaraut et al., “Augmented Convolutional Neural Network for Behav-
ioral Modeling and Digital Predistortion of Concurrent Multiband Power
Amplifiers,” IEEE Trans. on Microwave Theory and Techniques, vol. 69,
pp. 4142–4156, September 2021.

[8] W. Lyu, P. Xue, F. Yang, C. Yan, Z. Hong, X. Zeng, and D. Zhou, “An
efficient bayesian optimization approach for automated optimization of
analog circuits,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 65, no. 6, pp. 1954–1967, 2018.

[9] J. M. de la Rosa, “AI-Assisted Sigma-Delta Converters – Application
to Cognitive Radio,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 69, pp. 2557–2563, June 2022.

[10] P. Dı́az-Lobo and J. M. de la Rosa, “High-Level Design of Sigma-Delta
Modulators using Artificial Neural Networks,” Proc. of the IEEE Intl.
Symp. on Circuits and Systems (ISCAS), May 2023.

[11] J. Ruiz-Amaya et al., “High-Level Synthesis of Switched-Capacitor,
Switched-Current and Continuous-Time Σ∆ Modulators Using
SIMULINK-based Time-Domain Behavioral Models,” IEEE Trans. on
Circuits and Systems – I: Regular Papers, pp. 1795–1810, Sep. 2005.

[12] V. F. Dias et al., “Design Tools for Oversampling Data Converters:
Needs and Solutions,” Microelectronics Journal, vol. 23, pp. 641–650,
1992.

[13] G. Gielen and J. Franca, “CAD Tools for Data Converter Design: An
Overview,” IEEE Trans. on Circuits and Systems II: Analog and Digital
Signal Processing, vol. 43, pp. 77–89, February 1996.

[14] J. M. de la Rosa, Sigma-Delta Converters: Practical Design Guide.
Wiley-IEEE Press, 2nd ed., 2018.

[15] F. V. Fernandez et al., “Design Methodologies for Sigma-Delta Con-
verters,” Chapter 15 in CMOS Telecom Data Converters (A. Rodrı́guez-
Vázquez, F. Medeiro and E. Janssens, Editors), Kluwer Academic
Publishers, 2003.

[16] K. Francken et al., “A high-level simulation and synthesis environment
for delta-sigma modulators,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 22, pp. 1049–1061, August 2003.

[17] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Con-
verters. IEEE Press, 2005.

[18] S. Pavan, “Systematic Design Centering of Continuous Time Over-
sampling Converters,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 57, pp. 158–162, March 2010.

[19] T. Bruckner et al., “A GPU-Accelerated Web-based Synthesis Tool
for CT Sigma-Delta Modulators,” IEEE Transactions on Circuits and
Systems - I: Regular Papers, vol. 61, pp. 1429–1441, May 2014.

[20] J. M. de la Rosa, “Design Automation of Σ∆ Converters: A Review
of Modeling, Synthesis and Optimization Techniques,” Proc. of the
IEEE Intl. Conf. on Electron Devices and Solid-State Circuits (EDSSC),
October 2017.

[21] J. Wagner, M. Ortmanss, and J. M. de la Rosa, “Man or Machine –
Design Automation of Delta-Sigma Modulators,” Proc. of the IEEE Intl.
Symp. on Circuits and Systems (ISCAS), pp. 4229–4232, May 2018.

[22] M. Velasco, R. Castro-Lopez, and J. M. de la Rosa, “High-Level
Optimization of Σ∆ Modulators Using Multi-Objetive Evolutionary
Algorithms,” Proc. of the IEEE Intl. Symp. on Circuits and Systems
(ISCAS), pp. 1494–1497, May 2016.

[23] B. Cortes-Delgadillo et al., “Embedding MATLAB Optimisers in SIM-
SIDES for the High-Level Design of Σ∆ Modulators,” IEEE Transac-
tions on Circuits and Systems II: Express Briefs, vol. 65, pp. 547–551,
May 2018.

[24] F. Medeiro et al., “A Vertically Integrated Tool for Automated Design of
Σ∆ Modulators,” IEEE J. of Solid-State Circuits, vol. 30, pp. 762–772,
July 1995.

[25] H. Liu, A. Singhee, R. Rutenbar, and L. Carley, “Remembrance of
circuits past: Macromodeling by data mining in large analog design
spaces,” in Proceedings 2002 Design Automation Conference (IEEE Cat.
No.02CH37324), pp. 437–442, 2002.

[26] G. Alpaydin, S. Balkir, and G. Dundar, “An evolutionary approach
to automatic synthesis of high-performance analog integrated circuits,”
IEEE Transactions on Evolutionary Computation, vol. 7, no. 3, pp. 240–
252, 2003.

[27] G. Wolfe and R. Vemuri, “Extraction and use of neural network models
in automated synthesis of operational amplifiers,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 22,
no. 2, pp. 198–212, 2003.

[28] P. Vaz, A. Gusmão, N. Horta, N. Lourenço, and R. Martins, “Speeding-
up complex rf ic sizing optimizations with a process, voltage and
temperature corner performance estimator based on anns,” in 2022 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1570–
1574, 2022.

[29] A. F. Budak, M. Gandara, W. Shi, D. Z. Pan, N. Sun, and B. Liu, “An
efficient analog circuit sizing method based on machine learning assisted
global optimization,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, no. 5, pp. 1209–1221, 2022.

[30] J. Domingues, A. Gusmão, N. Horta, N. Lourenço, and R. Martins,
“Accelerating voltage-controlled oscillator sizing optimizations with
ann-based convergence classifiers and frequency guess predictors,” in
2022 18th International Conference on Synthesis, Modeling, Analysis
and Simulation Methods and Applications to Circuit Design (SMACD),
pp. 1–4, 2022.

[31] K. Settaluri, A. Haj-Ali, Q. Huang, K. Hakhamaneshi, and B. Nikolic,
“Autockt: Deep reinforcement learning of analog circuit designs,” in
2020 Design, Automation and Test in Europe Conference and Exhibition
(DATE), pp. 490–495, 2020.

[32] H. Wang, K. Wang, J. Yang, L. Shen, N. Sun, H.-S. Lee, and S. Han,
“Gcn-rl circuit designer: Transferable transistor sizing with graph neural
networks and reinforcement learning,” in 2020 57th ACM/IEEE Design
Automation Conference (DAC), pp. 1–6, 2020.

[33] Z. Zhao and L. Zhang, “Deep reinforcement learning for analog circuit
sizing,” in 2020 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1–5, 2020.

[34] K.-E. Yang, C.-Y. Tsai, H.-H. Shen, C.-F. Chiang, F.-M. Tsai, C.-A.
Wang, Y. Ting, C.-S. Yeh, and C.-T. Lai, “Trust-region method with
deep reinforcement learning in analog design space exploration,” in 2021
58th ACM/IEEE Design Automation Conference (DAC), pp. 1225–1230,
2021.

[35] Y. Li, Y. Lin, M. Madhusudan, A. Sharma, S. Sapatnekar, R. Harjani, and
J. Hu, “A circuit attention network-based actor-critic learning approach
to robust analog transistor sizing,” in 2021 ACM/IEEE 3rd Workshop on
Machine Learning for CAD (MLCAD), pp. 1–6, 2021.

[36] W. Shi, H. Wang, J. Gu, M. Liu, D. Z. Pan, S. Han, and N. Sun,
“Robustanalog: Fast variation-aware analog circuit design via multi-task
rl,” in 2022 ACM/IEEE 4th Workshop on Machine Learning for CAD
(MLCAD), pp. 35–41, 2022.

[37] S. Pavan, R. Schreier, and G. C. Temes, Understanding Delta-Sigma
Data Converters. Wiley-IEEE Press, 2nd ed., 2017.

[38] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification (2nd
Edition). Wiley-Interscience, 2000.

[39] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[40] B. Ghojogh and M. Crowley, “Linear and quadratic discriminant analy-
sis: Tutorial.” https://arxiv.org/abs/1906.02590, 2019.

[41] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods. Cambridge
University Press, 2000.

[42] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

[43] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,
no. 1, pp. 81–106, 1986.

[44] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–
32, 2001.

[45] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001.

7

[46] J. M. Zurada, Introduction to Artificial Neural Systems. West Publishing
Company, 1992.

[47] K. P. Murphy, Machine learning: a probabilistic perspective. The MIT
Press, 2012.

[48] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” Google Research, 2017.

[49] Keras, Keras API Reference. [Online]. Available: https://keras.io/api/.,
2021.

[50] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from overfit-
ting,” Journal of Machine Learning Research, vol. 15, no. 56, pp. 1929–
1958, 2014.

[51] R. Povoa et al., “Single-stage amplifier biased by voltage combiners
with gain and energy-efficiency enhancement,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 65, no. 3, pp. 266–270,
2018.

