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Abstract

In the forecasting community, forecast combinations have grown dramatically.
Their uses in time series span a multitude of fields, including assisting in recent years
to predict COVID-19 deaths and hospital admissions with excellent accuracy, thus
helping the organization of public health in different countries.

Since the 1960s, a multitude of studies have confirmed the benefits of using a com-
bination of different base predictions. These base predictions involve a given model.
They highlight the improved accuracy of the combination methods, avoiding the need
to identify the "best model".

Combining techniques range from the simplest to the most challenging methods,
including the optimization of different evaluation metrics. There are also many meth-
ods to measure the performance and accuracy of our predictions depending on the
target of interest.

In this thesis the problem of combined point forecasts is addressed, after describing
several methods we discuss their application according to the characteristics of our
time series and our objectives.

Finally, we will conclude with a couple of experiments using different time series
in order to empirically test our assumptions. We will also end with a proposal for
different research lines for the future.
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Resumen

En la comunidad científica, las predicciones por combinación han ganado terreno
de manera considerable entre las técnicas de predicción. Sus usos en series temporales
abarcan multitud de campos, ayudando en los últimos años a predecir muertes e in-
gresos hospitalarios por COVID-19 con excelente precisión. Contribuyendo así en la
organización de la sanidad pública en distintos países.

Desde los años sesenta, multitud de estudios han confirmado las ventajas de utilizar
combinaciones de diferentes predicciones base. Estas predicciones base suponen un
modelaje de la serie temporal. Los estudios destacan la mejora en la precisión en los
métodos de predicción por combinación y el ahorro de recursos a la hora de identificar
el "mejor modelo".

Las técnicas por combinación abarcan desde los métodos más sencillos hasta los
más complejos, pasando por la optimización de distintas métricas de evaluación. Tam-
bién existen diferentes procedimientos a la hora de medir el rendimiento y la precisión
de nuestras predicciones en función del objetivo de interés.

En esta tesis se aborda el problema de combinación de previsiones puntuales, tras
describir varios métodos se discute la aplicación de estos según las características de
nuestra serie temporal y nuestros objetivos.

Finalmente concluiremos con un par de experimentos usando diferentes series tem-
porales con el objetivo de analizar de manera empírica nuestras suposiciones. Además
acabaremos con unas propuesta de distintas líneas de investigación futuras.
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“Mathematics is the gate and key to science.” – Roger Bacon
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Chapter 1

Introduction

Have you ever seen the typical chart of stock market evolution over the last 12
months or a plot with the increase of temperature in a place over the last years?

These are both time series, and the prediction of their future values is one of the
major problems of interest. Time series are used in other disciplines like for exam-
ple economic. The idea is to model the serie and do prediction based on the model
assumptions.

We know many models to predict future values, ones bether than others. However,
the main purpose of this tesis is not to learn how to model the time series, but to present
an idea that gained importance the last century: how to combine these predictions,
yielding a so-called ensemble methods .

Forecast combination starts from a very simple idea that can help us obtain better
results. We aim to present an updated review of history of the methods proposed in
the past five decades, from the simplest and most intuitive to the most mathematically
complex. The main reason for using it is to try to collect the advantages of each and
every model, both those that fit well and those that fit poorly to our target series.

The proportion of publications addressing prediction combinations among all pub-
lished papers on prediction in the Web of Science has shown a general upward trend
over the past 50 years, reaching 13.80% in 2021, as shown in Figure 1.1.

Our objective is to see the advantages of using ensemble methods. We will also
compare which ones should be used according to our series or our base models. To
compare that we also see how to measure methods performance with different types of
errors and tecniques to validate it. We will also see how sometimes the most complex
method do not achive the best results.
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Figure 1.1: The proportion of papers that concern forecast combination among all the
published forecasting papers included in the Web of Science databases from 1969 to
2021.

Source: [Wan+22]

Due to their superiority, prediction combinations have been used in a variety of
fields, including epidemiology. One of the motivations for conducting this research
was the incredible results obtained from ’The COVID-19 Forecast Hub’[For], a public
repository for short-term forecasts of cases, hospitalizations, and deaths in the U.S.
It aggregates and evaluates weekly results from many models and then generates an
ensemble model. The outcome of the study, according to Nicholas Reich (a biostatisti-
cian and infectious-disease researcher at the University of Massachusetts, Amherst) is
that "relying on individual models is not the best approach. Combining or synthesizing
several models provides the most accurate short-term predictions." [Rob]

Despite the existence of point and probabilistic forecast, we will focus in the first
one. The second one gives us not a determined value for the prediction, it allows
the uncertainties of the forecasts to be evaluated. However these techniques require
additional concepts, and the results are less understood than the combination of point
forecasts.

Finally, we will conclude this tesis with a couple of experiments that will show us
whether and how ensemble methods can improve the traditional forecasting models.
These experiments will be performed with the help of a computational tool, the pack-
age Kats. We will try through the source code to extend the functionalities of this tool
in order to contribute to open source.



Chapter 2

Preliminars

2.1 Introduction of time series

In this part we are going to set certaint concepts in order to understand the goal of
this research. The main concept we need to make clear about is the definition of time
series.

To reach this understanding we must first define a more general concept.

Definition 2.1.1 (Stochastic process). A stochastic process is a random variable fam-
ily {Xt, t ∈ T} defined over a common probability space (Ω,A,P) , indexed by the
element of the set T . [BD16]

Definition 2.1.2 (Time series). A time series {Xt}t∈T is a stochastic process where its
dependent variable t is the time. [BD16]

A time series is a discrete-time time series if the set of times, with which we index
the values xt, is a discrete set, e.g., when T = {1, 2, 3, .., 200}. Similarly, a time series
is a continuous time series if the observations are recorded continuosly over some time
interval, e.g., when T = [0, 1] [BD16]. The most important are the discrete ones,
which will be our target.

In the practice, sometimes we see a time series like a realization of this specific type
of stochastic process. In this case we denote by {xt}t∈T the series of values observed.
In addition, there is sometimes an abuse of notation by denoting T and its cardinality
in the same way.
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12 2.1. Introduction of time series

Note: We shall frequently use the term time series to mean both the data and the
process of which it is a realization. [BD16]

Note: Sometime T refers to the set of index, and sometimes the letter T stands for
|T |

Examples of time series abound in such fields as economics, business, engineering,
etc. [Box08] Throughout this study, we will work mainly with "Air Passenger Data for
Time Series Analysis" [Kaga] and "Daily Visitors to the Website Data" [Kagb].

When we have to study a time series we need to perform a time series analysis.

2.1.1 Steps of a time series analysis:

1. Graphical representation: To have a general idea and start to identify the time
series features o characteristic.

2. Modeling data: We will be discussed it in more detail in the section 2.2.

3. Model validation: We need to check the model before making predictions, to
see if they would be valid.

4. Forecasting the future values of the time series. It is based on the current and
past values.

Next we will introduce the ideas of dependence (or autocorrelation), stationarity
and seasonality, the main characteristics of a time series.

As mencioned, the dependence between adjacent observations is an intrinsic fea-
ture of a time series. The nature of this dependence among observations is of consid-
erable practical interest. [Box08]. When we talk about time series analysis we include
the techniques for the analysis of this dependence.

Definition 2.1.3 (Mean and covariance functions). Let {Xt} be a time series with
E(X2

t ) < ∞.

The mean fuction of {Xt} is µt = E(Xt) ∀t ∈ T

The covariance fuction of {Xt} is γr,s = Cov(Xr, Xs) = E((Xr−µr)(Xs−µs))
∀{r, s} ∈ T
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The conditions imposed on the time series to make them stable for prediction are
known as stationarity.

Definition 2.1.4 (Stationarity of time series). A time series {Xt} is stationary if :

• The mean is independent of t : µt = µ ∀t ∈ T

• The covariance is independent of t for each k : γt,t+k = γk ∀t ∈ T

The value k refers to the lag.

Definition 2.1.5 (ACVF). Let {Xt} be a stationary time series.
The autovariance function (ACVF) of {Xt} at a lag k is
γ(k) = γk = Cov(Xt, Xt+k)
seing the autocovariance as a funtion of k.

Definition 2.1.6 (ACF). Let {Xt} be a stationary time series.
The autocorrelation function(ACF) of {Xt} at a lag k is
ρ(k) = γk

γ0
= Cor(Xt, Xt+k)

Example 2.1.7 (White Noise). Let {ϵt} be a stationary stochastic process, it is denoted
as white noise if:
E(ϵt) = 0 ∀t
V (ϵt) = σ2 ∀t
Cov(ϵt, ϵs) = 0 ∀t ̸= s
This is indicated by the notation {ϵt} ∼ WN(0, σ2)

The seasonality of a time series is refered to the periodic behavior of the series.
The series is similar after s instants of time, where s is the period.

2.2 Time series models

Definition 2.2.1 (Time series model). A time series model for the observed data is a
specification of the joint distributions of a sequence of random variables {Xt} of which
the values {xt} are postulated to be a realization. [BD16]

Remarking the diferences between {Xt} and {xt} is important. We denote with
capital letters the random variable of a stochastic process, while we denote with lower
case letters the observed value of this variable.
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As we have already mentioned the idea is to try to model Xt for the purpose of
forecasting .

Let us a look at the different models implemented in the kats library, wich will be
explained in more detail in the Chapter 4. For each of them we will give an idea of the
logic behind it and how we can put it into practice using this library. [Faca].

2.2.1 Models without seasonality

2.2.1.1 Linear and Quadratic

The simplest model is the linear one. We forecast the time series assuming that it
has a linear relationship with other variable (or other variables).
Xt = β0 + β1Y1,t + . . . + βkYk,t + ϵt for t = 1 . . . T being T the number of
observations.

In this case X is the forecast variable (or regressand) and Y the predictor vari-
ables (or regressors).

ϵ refers to the random error about which we also make certain assumptions:

• normality with mean zero and same variance.

• they are not autocorrelated.

• they are unrelated to the predictor variables.

In this way, we can define a confidence interval for future predictions given a confi-
dence level, 1− α.

IC(α) = X̂ ∓ Z(1−α/2)σ̂e

√
1 +

1

T
+

(Y − Y )2

(T − 1)s2Y

We will now look at a couple of specific models that take the variable time t as a
predictor variable, Yk,t = tk :

In the function kats.models.quadratic_model.LinearModel of library,
they take the variable time t as a predictor variable taking values from t = 0 to
t = T − 1, then apply an Ordinary Least Squares (OLS) to fit the value of our time
series: Xt = β0 + β1t+ ϵt. That is, taking k = 1.
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On the other hand, the function kats.models.quadratic_model.QuadraticModel
works likewise but taking t and t2 as predictor variables: Xt = β0 + β1t + β2t

2 + ϵt.
That is, taking k = 2

In both cases the input is the time series and the α value for the confidence level
we want to obtain. [HA21]

2.2.1.2 ARIMA

ARIMA model provides another approach to time series forecasting in this case
with the objective of describing the autocorrelations in the time series. Before we are
going to introduce some notation:

Definition 2.2.2 (Lag operator). LXt = Xt−1

Definition 2.2.3 (Differencing operator). ∇Xt = (1− L)Xt = Xt −Xt−1

Definition 2.2.4 (sth-order Differencing operator). ∇sXt = Xt −Xt−s

Note: It is not equal ∇sXt and ∇sXt.

For example ∇2Xt = (1− L)2Xt = (1− L)(Xt −Xt−1) = Xt − 2Xt−1 +Xt−2

while ∇2Xt = Xt −Xt−2

AR(p) model or autoregressive model (Auto-Regression, AR, indicates that the
variable is regressed against itself) of order p can be writen as:

Xt = c+ ϕ1Xt−1 + ϕ2Xt−2 + . . .+ ϕpXt−p + ϵt {ϵt} ∼ WN(0, σ2)

MA(q) model or moving average model of order q can be griten as:

Xt = c+ ϵt + θ1ϵt−1 + θ2ϵt−2 + . . .+ θqϵt−q {ϵt} ∼ WN(0, σ2)

ARIMA(p,d,q) model is the result of combining autoregression and moving aver-
age models, where I refers to "integration", because we have to apply d- differences
(∇dXt) to the original times series to make it stationary.

∇dXt = c+ϕ1∇dXt−1+. . .+ϕp∇dXt−p+θ1ϵt−1+. . .+θqϵt−q+ϵt {ϵt} ∼ WN(0, σ2)

[HA21]
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We can use this model with the kats.models.arima.ARIMAModel function.
It takes as inputs:
p: order of the autoregressive part.
d: degree of the differencing.
q: order of the moving average part.

2.2.2 Models with seasonality

This is the classical decomposition model:

Xt = f(Tt, St, It)

Tt : A slowly changing function known as a trend component.
St : A function (with period s) referred to a seasonal component.
It : A random noise component.

This model can be:

• Additive: Xt = Tt+St+It , when the seasonal variations are constant through
the series. The seasonal component is expressed in absolute terms.

• Multiplicative: Xt = Tt×St×It, when the seasonal variations are proportional
to the level of the series. In this case, the seasonal component is expressed in
relative terms. [HA21]

2.2.2.1 STLF

“Seasonal and Trend decomposition using Loess, Forecast”. This method is based
in the STL decomposition using LOESS (local regression) to model trend and seasonal
component.

In the forecast with STL we use this decomposition. Once we obtain the de-
seasonalized time series component, we apply a standard forecasting (such as ARIMA,
linear, quadratic) to T (t) and generate an h-step ahead forecast T (t + h). Finally, we
sum the seasonal component to T (t+ h) to obtain a the forecast.

It can be used with the function kats.models.stlf.STLFModel. You must
give it as input the standar forecasting model to fit the de-seasonalized component, and
the period of the seasonal component.[Faca]
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2.2.2.2 Holt-Winter

Originally, there was a simple exponential smoothing to model data without trend
and seasonality. Holt (1957) extended simple exponential smoothing to allow data
with a trend, and later Winter (1960) extended Holt’s method in order to capture the
seasonal part of the time series.

In the final model, we have three smoothing equations: one for the level ℓt, one
for the trend bt (both together, ℓt + hbt, take the role of the Tt component) and one for
the seasonal component st (it takes the role of St) , each one with the corresponding
smoothing parameters α, β, γ. Emphasize that this model ignores the random noise
component It. In this case, we denote the period as m.

Holt-Winters’ additive method:

Xt+h|t = (ℓt + hbt) + st+h−m(k+1) (2.2.1)
with ℓt = α(Xt − st−m) + (1− α)(ℓt−1 + bt−1) (2.2.2)

bt = β(ℓt − ℓt−1) + (1− β)bt−1 (2.2.3)
st = γ(Xt − ℓt−1 − bt−1) + (1− γ)st−m, (2.2.4)

with k being the interger part of (h−1)/m, thus the estimations of the seasonal indices
come from the last s periods of the sample. For instance, if m = 12 and h = 26 we
obtain k = 2. Therefore, our seasonal component will be st+h−3m = st−10, least than
a year ago since the current time.

The level equation (2.2.2) is a weigthed average between the deseasonally adjusted
observation (Xt − st−m) and the non-seasonal forecast (ℓt−1 + bt−1).

The trend equation (2.2.3) is a weigthed average between the estimated slope (ℓt−
ℓt−1) and last estimated slope bt−1.

The seasonal equation (2.2.4) in t, is a weigthed average between the estimated
seasonal component (Xt − ℓt−1 − bt−1) and estimation in the last same period st−m.

Holt-Winters’ multiplicative method:

Xt+h|t = (ℓt + hbt)st+h−m(k+1)

ℓt = α
Xt

st−m

+ (1− α)(ℓt−1 + bt−1)

bt = β∗(ℓt − ℓt−1) + (1− β∗)bt−1

st = γ
Xt

(ℓt−1 + bt−1)
+ (1− γ)st−m.
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It has the same idea as the additive but considering that the seasonal component is
multiplied, not added. [HA21]

The model can be applied by the function kats.models.holtwinters
.HoltWintersModel with no mandatory inputs. One can give it as an input if the
trend is ’additive’ or ’multiplicative’.[Faca]

2.2.2.3 Prophet

“Prophet is a procedure for forecasting time series data based on an additive model
where non-linear trends are fit with yearly, weekly, and daily seasonality, plus holiday
effects. It works best with time series that have strong seasonal effects and several
seasons of historical data. Prophet is robust to missing data and shifts in the trend, and
typically handles outliers well. Prophet is open source software released by Facebook’s
Core Data Science team. It is available for download on CRAN and PyPI.”[DG]

It works similarly to Holt-Winter, it combines seasonality, trend, and holidays.

Xt = T (t) + S(t) +H(t) + ϵt (2.2.5)

where:
T (t) : piecewise linear or logistic growth curve that models non-periodic changes (trend).
S(t) : models the seasonality.
H(t) : models the effects of holidays with irregular schedules.
ϵt : error that takes into account for any other change that is not modeled. It take the
role of It.
[DG]

The novelty of this model is the incorporation of a component H(t) that models
the "irregularities" inherent to the periods of a calendar year.

We can use this model through the kats.models.prophet.ProphetModel
function with several inputs where we can choose the T function (and its parameters),
and seasonalities parameters. As mentioned, T (t) can be a piecewise function. Apart
from choosing if the trend must be linear o logistic, we can help the model to determine
the changepoints.[Faca]

By default, Prophet specifies 25 potential changepoints which are uniformly placed
in the first 80% of the time series. The number of potential changepoints can be set us-
ing the argument n_changepoints and the range where they are uniformly placed
can be set with changepoint_range e.g.,changepoint_range=0.9 placed
the changepoints in the first 90% of the time series. If one wishes, rather than using
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automatic changepoint detection you can use changepoints argument specifying
manually the locations of potential changepoints, e.g.,changepoints=[’2014-01-01’]
[Facb]

Next we will see more complex models that do not follow the decomposition de-
fined at the beginning of the section.

2.2.2.4 SARIMA

SARIMA (Seasonal ARIMA) is formed by including additional seasonal elements
in the ARIMA models we have seen up to now.

In a SARIMA(p, d, q) × (P,D,Q)s model the seasonal component has a period
of s, thus we modeled the time series with lag s using another ARIMA model with
parameters P,D and Q. [HA21]

This model can be used with the kats.models.sarima.SARIMAModel func-
tion. It takes as inputs:
p: order of the autoregressive part.
d: degree of the differencing.
q: order of the moving average part.
(P,D,Q, s): order of the autoregressive, differencing and moving average of the sea-
sonal part, and its period. [Faca]

2.2.2.5 LSTM

The LSTM (Long short-term memory) model is a recurrent neural network (RNN)
model that may be used for sequential data, capable of learning long-term dependen-
cies. The RNN were introduced by Hochreiter & Schmidhuber (1997). [Lstb]

Each line in Figure 2.1 carries a full vector from one node’s output to another’s
input. The yellow boxes are learnt neural network layers, whereas the pink circles are
pointwise operations like vector addition. Concatenation is indicated by lines merging,
whereas lines forking indicate that their content has been replicated and is being sent
to other destinations.[Lstb]

To discuss in more detail, each layer of the RNN calculates the following function:
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Figure 2.1: The Long Short-Term Memory (LSTM)
Source: [Lstb]

it = σ(Wiixt + bii +Whiht−1 + bhi);

gt = tanh(Wigxt + big +Whght−1 + bhg);

ct = ft ⊙ ct−1 + it ⊙ gt

ft = σ(Wifxt + bif +Whfht−1 + bhf )

ot = σ(Wioxt + bio +Whoht−1 + bho)

ht = ot ⊙ tanh(ct)

where ht is the hidden state at time t, its dimension is an input. ct is the cell state at
time t, xt is the input at time t.

The horizontal line that runs through the top of the diagram and represents the
cell state, it is the key of LSTMs. It is like a conveyor belt. With only a few tiny
linear interactions, it runs directly down the entire chain. Information can very easily
continue to travel along it unmodified.

The LSTM can modify the cell state by removing or adding information, which is
carefully controlled via gates. They are composed out of a sigmoid neural net layer.
This neural net takes values between zero and one describing how much of each com-
ponent should be allowed through. A value of zero means “let nothing through,” while
a value of one means “let everything through!”. [Lstb]

• gt ∈ (0, 1) : cell gate, it remembers values. The information remembered de-
pends on the three following gates. It protects and controls the cell state.

• it ∈ (0, 1) : input gate, it decides what new information to store in the current
state.

• ft ∈ (0, 1) : forget gate, it decides what information to discard from a previous
state.

• ot ∈ (0, 1) : output gate, it decides what actual information to output.
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• W∗∗, b∗∗ ∈ R : weights and bias vector of each gates, that must be learned during
the training.

σ is the sigmoid function which is used as activation function, and ⊙ is the Hadamard
product. [Lsta]

In the kats library we could apply this model with the function kats.models
.lstm.LSTMModel that takes the size of the hidden unit, the time series sequence
length that feeds into the model and the number of epochs for the training process.
[Faca]

2.2.2.6 Theta

The first and original description of the method was given by Assimakopoulos and
Nikolopoulos (2000). It involves several algebraic concepts. We will make a general
presentation of the original method, but we will focus on the method expressed much
more simply. The forecast obtained are equivalent to simple exponential smoothing
with drift.

First, if the period is significantly different from zero, then the data is de-seasonalized.

Let {xt} denoted the observed time series. Then we construct a new series {yt,θ}
such that: ∇2yt,θ = θ∇2xt. It is a second-order difference equation whose solution
is:

∇2yt,θ = aθ + bθ(t− 1) + θxt

For a fixed θ we minimize
∑t

i=1[xt − yt,θ]
2 with respect to aθ and bθ, obtaining the

solutions âθ and b̂θ being the mean value of the time series the same as the original one
yθ = x

Forecast from the Theta model is obtained by a weighted average of forecast of yt,θ
for different values of θ. This is the main idea of the original model, and the reason for
its name.

As mentioned above, there is another solution which is defined in the library, un-
derlying stochastic models: we initialize the model by setting X1 = ℓ1 and then for
t = 2 . . . T

Xt = ℓt−1 + b+ ϵt

ℓt = ℓt−1 + b+ αϵt

{ϵt} ∼ WN(0, σ2)
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Then Xt follows forecasts equivalent to SES (Simple Exponentias Smoothing):
note that Xt = Xt−1 + b+ (α− 1)ϵt−1 + ϵt is an ARIMA(0,0,1).

As a result we notice that:

Xt+h = ℓt + hb

Xt+1 = Xt + b+ (α− 1)ϵt

and ϵt = Xt −Xt−1 − b+ (α− 1)ϵt−1

by repeatedly substituting these equations we obtain:

Xt+1 = X̃t+1 +
b

α
[1− (α− 1)n]

Xt+h = X̃t+1 + b[h− 1 +
1

α
− (α− 1)n

α
]

where X̃t+h refers to the SES forecast since ϵ1 = 0

Finally, the forecasts are reseasonalized if it is needed.[HB03]

To apply this model implemented in the library, one needs to use the function
kats.models.theta.ThetaModel which takes the period m as input.[Faca]

2.2.2.7 Harmonic Regression

For long seasonal periods we can use Fourier terms in order to model the seasonal
part of the time series. Jean-Baptiste Fourier was a French mathematician, born in
1768, who demonstrated that a series of sine and cosine terms of the appropriate fre-
quencies can approximate any periodic function. We can use them for seasonal curves.

If s is the seasonal period, the first few Fourier terms are:
x1,t = sin

(
2πt
s

)
, x2,t = cos

(
2πt
s

)
, x3,t = sin

(
4πt
s

)
,

x4,t = cos
(
4πt
s

)
, x5,t = sin

(
6πt
s

)
, x6,t = cos

(
6πt
s

)
,

A regression model containing Fourier terms is often called a harmonic regression.
This makes them useful for weekly data, for example, because s ≈ 52. [HA21]

In kats library we can apply this model with the kats.models.harmonic_
regression.HarmonicRegressionModel function, giving to it the period s
and the max order of the Fourier terms to be used.[Faca]
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2.3 How to measure error

We can select as loss function mean squared error (MSE = mean(et)) but we can
also take other types of metrics such as:

• Mean absolute percentage error : MAPE = mean(|pt|)

• Symmetric mean absolute percentage error: sMAPE = mean(200 · |et|/(xt +
x̂t)).

• Mean absolute error: MAE = mean(|et|)

• Mean absolute scaled error: MASE = mean(|qt|)

• Root mean squared error: RMSE =
√
mean(e2t )

Indicating the error as et = xt − x̂t , the percentage error as pt = 100 · et/xt and the
scaling error as qt = et

1
T−1

∑T
i=2 |xi−xi−1|

.

But before choosing a loss function to minimize, we have to define how to measure
the error et. What data do we take to predict the value xt?

The first idea that comes to mind if we have x1, . . . xT values is: to set R < T
and take the values x1, . . . , xR to model the time series, then, predict xR+1, . . . xT and
calculate the error. We can see the idea in Figure 2.2, with the blue dots being the
values used to model the predictions, and the orange dots being the known values we
predict to calculate the errors.

Figure 2.2: Basic scheme
Source: [HA21]

First of all, let us take a look at the general notation of the other methods. Then we
will look at them one by one in more detail.

Let τ ≥ 1 be the prediction horizon of interest, and we know T + τ values of the
time series. There are P predictions in all. The methods use some data from period R
or earlier to predict R + τ , some from R + 1 or earlier to predict R + τ + 1 event, ...,
the some from R + P − 1 ≡ T or earlier to predict T + τ .
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We can apply three types of structures taking into account that the series values
have a fixed order.

Figure 2.3: Recursive or expansive scheme
Source: [HA21]

The first one, which we call recursive, uses the data from 1 to R to calculate the
first error, then uses from 1 to R+ 1 for the second,..., and finally with the data from 1
to T calculates the last error. This structure is represented in Figure 2.3.

Figure 2.4: Rolling scheme
Source: Own creation based on [HA21]

The second scheme, which we call rolling, uses the data from 1 to R to calculate
the first error, then uses from 2 to R + 1 for the second,..., and finally with the data
from T − R + 1 ≡ P to T calculates the last error. Its representation is in Figure 2.4.
Its name comes from the fact that the origin at which the forecast is based rolls forward
in time.

And the last structure, which we call fixed, uses the data from 1 to R to compute all
P predictions with their corresponding errors. Its representation can be seen in Figure
2.5.[WM98]
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Figure 2.5: Fixed scheme
Source: Own creation based on [HA21]

Aditionally, if we apply those ideas with τ > 1, instead of with τ = 1, we can
focus on the long-range forecasting capability of the model.
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Chapter 3

Point forecast combinations

Forecast combinations of multiple individual forecasts dates back at least to Francis
Galton, who in 1907 asked 787 villagers to guess the weight of an ox. None of them
got the correct answer. Sir Galton averaged their guesses estimations and he arrived at
a near perfect estimate. That was one of the motivations of "wisdom of the crowds"
book. [Yon13]

About sixty years later, in 1969, the work of Bates and Granger [BG69] popular-
ized the idea of forecast combination. The proportion of papers that concern forecast
combinations among all published forecasting papers has been increased from near to
0% to almost 15% in the last fifty years, a symbol of the importance and usefulness of
this techniques.[Wan+22]

We take the individual forecasts to be combined as given, we do not study how
it has been generated. We focus our attention to combinations of multiple forecasts
derived from separate modeling for the time series.

When several forecast are available, it is natural to try and find a linear combination
of these forecasts that is the "best" in certain term.

3.1 Bates & Granger

As mentioned, Bates and Granger began with the discussion of combining predic-
tions. In their article, they are in the case in which two forecasts have been made. The
first reaction is to attempt to discover which is the best forecast. They noticed that
we should not discard any forecast, since it always contains some useful independent

27
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information. This information may be:

• A forecast is based on variables that are not taken into account in other forecasts,
although this does not always help us to achieve a better solution.

• The assumptions about the relationship between variables in the discarded fore-
cast are different.

They had an important assumption: the individual forecasts should be unbiased.

The equal-weights combined forecast is a good option in some cases, as we will see
in section 3.5. They proposed to achive weight to forecasts that give us the smallest
errors (mean squared). The problem is what is the best way to do this, as there are
many ways to determine this.

The objective was to choose the combination that would produce the least forecast-
ing errors, their first idea was derived in the following way. They assumed that the
individual forecast are consistent, that is, the variance of error are independent of time,
it could be denoted by σ2

1 and σ2
2 for all values of t.

First we will lay the foundations of the different methods proposed by Bates and
Granger.

The combined forecast would be obtained by a linear combination, giving a weight
k to the first forecast and (1 − k) to the second one. They denoted as σ2

c the variance
of errors in the combined forecast:

σ2
c = k2σ2

1 + (1− k)2σ2
2 + 2k(1− k)σ12

= k2σ2
1 + (1− k)2σ2

2 + 2ρkσ2
1(1− k)σ2

2

ρ being the correlation coefficient between the errors in the first forecast and those in
the second one.

We take σ2
c as a function of k. Differentiating with respect to k and equating to

zero, we obtain:

(σ2
c )

′ = 2kσ2
1 − 2(1− k)σ2

2 + 2(1− 2k)σ12

= 2k(σ2
1 + σ2

2 − 2σ12)− 2(σ2
2 − σ12) = 0

k =
σ2
2 − σ12

σ2
1 + σ2

2 − 2σ12

=
σ2
2 − ρσ2

1σ
2
2

σ2
1 + σ2

2 − 2ρσ2
1σ

2
2

(3.1.1)
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Note: In the scenario where ρ = 0, the equation (3.1.1) reduces to: k = σ2
2/(σ

2
1+σ2

2)

If k is determined by equation (3.1.1), one can show that the value σ2
c is not greater

than the smaller of the two individual variances, i.e, σ2
c ≤ min{σ2

1, σ
2
2}

As mentioned above, the equation (3.1.1) is used as basis for some methods that
follow shortly.

At the begining we do not know the optimal value for k, it would change as em-
pirical evidence on the relative effectiveness of the two original forecasts accumulates.
Therefore the weights must be dynamic. Thus the combined forecast for the period
T,CT is defined as follow.

CT = kTF1,T + (1− kT )F2,T

F1,T and F2,T being the forecast at time T from the first and second model, respectively.

We will discuss the desirable properties that methods for determining k values
should have.

• The average weight of k should be around the optimal value defined in 3.1.1
when the number of forecast increased.

• The dispersion should be small. Weights should vary only slightly above the
optimal value.

• The weights must be addapted rapidly to the new values if there is a durable
change in the performance of one of the forecasts.

Apart from these properties, moderately simple methods are desirable. Bates and
Granger examined five methods in their paper. The weights kT have all cases been de-
termined from past errors of the two series denoted as e1,1, e1,2 . . . e1,T−1 and e2,1, e2,2 . . .
e2,T−1. Except for k1, since it has no past values, we can take a random value, for ex-
ample 0.5.

The methods are:

(i) Taking E2 =
∑T−1

t=T−v(e2,t)
2, similarly E1, v being the largest lag used to mea-

sure the error
kT =

E2

E1 + E2

(ii)

kT = αkT−1 + (1− α)
E2

E1 + E2
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where α ∈ [0, 1] is a constant that measures the importance given to the last
value against the last v− values.

(iii) Let us take S2
2 =

∑T−1
t=1 wt(e2,t)

2 where: w is the weight given to the first squared
error, w2 to the second squared error and so on. Usually w ≥ 1 because it gives
more weight to recent error variances.

kT =
S2
2

S2
1 + S2

2

(iv) Following the same logic as (iii) Bates and Granger take C =
∑T−1

t=1 e1,te2,t as
the weighted covariance

kT =
S2
2 − C

S2
1 + S2

2 − 2C

(v) This is similar to (ii) but in this method we only take information from the last
absolute value of error

kT = αkT−1 + (1− α)
|e2,T−1|

|e1,T−1|+ |e2,T−1|

Not all methods have all the desirable properties, for example the method (v) fails to
satisfy that the average weight should be around the optimal value.

One of the techniques to achieve the third property is to give more importance to
recent values. For this reason, methods (iii), (iv) and (v) give us very good results for
time series with sudden changes.

Bates and Granger concluded that the proposed methods for combining forecasts
with dynamic weights can often result in better forecasts than those resulting from ap-
plying a static weighting determined after taking note of all individual forecast errors.

As mentioned, these methods are applicable only when we have two individual
predictions. As a result of this, other techniques have emerged with the intention of
generalizing these ideas. [BG69]

3.2 Newbold & Granger

Newbold and Granger [NG74] extended the method to combinations of more than
two forecasts.
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Suppose we have M forecasts of XT denoted by F′
T = (F1,T , F2,T . . . FM,T ) these

individual forecasts being unbiased. Thus, the following linear combination will also
be unbiased:

CT = k′
TFT k′

T1 = 1, 0 ≤ ki,T ≤ 1 ∀i ∈ {1 . . .M}
where k′

T = (k1,T , k2,T . . . kM,T ) and 1′ = (1, 1 . . . 1)
(3.2.1)

It is straightforward to show that taking

kT = (Σ−11)/(1′Σ−11) where Σ = E(eTe
′
T) and eT = XT1− FT

we obtain the minimum variance of the combined forecast error. Therefore, in general,
we can find a smaller error with the combined forecast CT .

In practice, we do not know the covariance matrix Σ, so we need to estimate it
or to assume it diagonal, something similar to what Bates and Granger did with the
correlation coefficient. Following the ideas that Bates and Granger proposed, the new
suggestions are based on two principles: more importance should be assigned to the
forecast that has performed better in the immediate past, and weight should be adapted
to a possible non-stationary relationship over time.

Five of their suggested choices for one-step-ahead forecast for more that two indi-
vidual forecasts are:

(i)

ki,T =

( T−1∑
t=T−v

e2i,t

)−1
/{

M∑
j=1

( T−1∑
t=T−v

e2j,t

)−1
}

(ii)
kT = (Σ̂−11)/(1′Σ̂−11) s.t 0 ≤ ki,T ≤ 1 ∀i ∈ {1 . . .M}

with (Σ̂)i,j =
1
v

∑T−1
t=T−v ei,tej,t

(iii)

ki,T = αki,T−1+

[
(1−α)

( T−1∑
t=T−v

e2i,t

)−1
/{

M∑
j=1

( T−1∑
t=T−v

e2j,t

)−1
}]

α ∈ [0, 1]

(iv)

ki,T =

(T−1∑
t=1

W te2i,t

)−1
/{

M∑
j=1

(T−1∑
t=1

W te2j,t

)−1
}

W ≥ 1
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(v)
kT = (Σ̂−11)/(1′Σ̂−11) s.t 0 ≤ ki,T ≤ 1 ∀i ∈ {1 . . .M}

with (Σ̂)i,j =

(∑T−1
t=1 W tei,tej,t

)/(∑T−1
t=1 W t

)
W ≥ 1

In their evaluation studies on the combination of forecasts they had considered
in detail only one-step ahead forecasts, although the methods proposed above can be
readily extended to deal with forecasting several steps ahead.

An interesting note Newbold and Granger made is that sometimes optimal forecasts
can be obtained from a single model, but we can never be absolutely sure that particular
model is the right one. In fact, for small samples, the degree of uncertainty can be very
high. It might be a better approach, given M univariate forecasting models, to stipulate
a subjective probability ki as the degree of belief that the i-th model represents the
ground-truth stochastic process.

Suppose now that we wish to predict XT from the past values {XT−j, j > 0}.
Assume that we knew that there exists a correct model being the ith one. We denote
the density function fi(xT ), which measures the probability that, assuming model i, the
time series will take the value xT . Its mean is Fi,T . Given this assumption the optimal
quadratic loss predictor would be x̂T = Fi,T . Now, in subjective terms, our intuition
about the density of XT are represented by the function:

f(XT ) =
M∑
i=1

kifi(XT )

The mean of this density function, which provides the optimal predictor in terms of
quadratic loss, is given by Equation 3.2.1 and, therefore, one is naturally driven to look
for forecasts of this form.

3.3 With L-estimators

One class of used location estimators is the family of L-estimators, which stands
for "linear combinations of order statistics". Mean and median are included in this
family, as well as trimmed means and Winsorized means.

If F(i),T is the ith order statistic for the individual forecasts F1,T , . . . FM,T then,
trimmed and Winsorized means are defined as follows:

• Trimmed Mean: T (i) = 1
M−2i

∑M−i
k=i+1 F(k),T
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• Winsorized Mean: W (i) = 1
M

[
iF(i+1),T +

∑M−i
k=i+1 F(k),T + iF(M−i),T

]

where i is an integer with 0 ≤ i ≤ n/2.

These measures involve taking the i smallest and i largest forecasts and either delet-
ing them or setting them equal to the (i+ 1)th smallest and (i+ 1)th largest forecast.

Victor Richmond R. Jose and Robert L. Winkler studied these methods empirically
and they concluded: performance of the Winsorized mean seems to be a little less
sensitive to the choice of i than the trimmed mean.[JW08]

Another of the simplest methods to cluster M forecasts is to choose the median of
Fi,T , with Fi,T being the prediction of the i-th model. If M is even, we can take the
mean of the two central values.

As we have already mentioned our first idea once we have the different predictions
is to do the simple average. However, here we have presented other methods that
perform better in some cases, for example with outlier forecast values.

3.4 Regression-based weights

We will consider three alternative approaches to obtain linear combinations. It is
shown that the best method is to add a constant term and not force the weights to sum
to unity.

First we will set some general notation:

• x = (x1, x2, . . . , xT )
′ is a T × 1 vector of values of Xt, being the series xt, t =

1, . . . , T .

• F ′
j = (Fj,0, Fj,1, . . . , Fj,T−1) is a 1×T vector of the forecasts from the jth model.

• F = (F1, F2, . . . , FM) is a T ×M matrix of forecasts values.

• 1 is a vector of 1s of appropiate dimension.
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3.4.1 Method A

Let Fα be the unconstraint forecast, where α is a M × 1 vector of weights for the
individuals forecasts. The forecast error is eA = x−Fα. Suppose that α is determined
so as to minimize the sum of squared errors of forecasts. That is,

min
α

(x− Fα)′(x− Fα)

The solution is given by:

F′(x− Fα) = 0 or α̂ = (F′F)−1F′x

Thus, the combined forecast is CA = Fα̂ = F(F′F)−1F′x attaining as min sum of
squared error:

EA = (x− CA)
′(x− CA) = x′x− x′Fα̂

This is nothing more than a regression of x against F1, . . . , FM with no constant term.

A pair of conditions are sufficient for zero combined forecast bias :

a) each forecast has zero error mean : 1′x = 1′Fj

b) the weights add up to 1: 1′α̂ = 1

3.4.2 Method B

Now consider the case in which the weights are constrained to sum to unity.

min
β

(x− Fβ)′(x− Fβ)

s.t. 1′β = 1

Considering minβ(x−Fβ)′(x−Fβ)+2λB(1
′β−1) λB being a Lagrangian multiplier.

The solution is given by:

F′(x− Fβ)− λB1 = 0 or β̂ = α̂− λB(F
′F)−11

with λB = (1′α− 1)/[1′(F′F)−11] due to the constraint 1′β = 1

Thus, the combined forecast is CB = Fβ̂ attaining as min sum of squared error:

EB = EA + λ2
B[1

′(F′F)−11]
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Evidently EB ≥ EA and, therefore, there is a loss in the mean square error due
to the constraint. This method is equivalent to regresing (x − FM) against (F1 −
FM), . . . , (FM−1 − FM) without intercept, taking the weight for FM as 1- (sum of the
remaining forecasts).

From condition a) of method A, the combined forecast is unbiased when each in-
dividual forecast is unbiased.

3.4.3 Method C

In this method of combining without constraint on the weights we add a constant
term. Consider:

min
δ

(x− δ01− Fδ)′(x− δ01−Fδ)

δ0 being the intercept and δ the weights for the M forecasts.

The normal equations are given by:

F′(x− δ01− Fδ) = 0 and 1′(x− δ01− Fδ) = 0

obtainig

δ̂ = α̂− δ̂0(F
′F)−1F′1

δ̂0 = (1′x− 1Fδ̂)/n

Thus, the combined forecast is CC = δ̂01 + Fδ̂ achieving as min sum of squared
error respect method A:

EC = EA − (1êA)
2

n− θ
≤ EA

where θ = 1′F(F′F)−1F′1′ and êA is the vector of errors using method A.

The important idea is: method C is crearly the best because it gives the smallest
mean squared error and has unbiased combined forecast even if individual forecasts
are biased, that because we correct the bias with the constant term.

The usual practice of obtaining a weighted average of alternative forecasts should
be rejected in favor of an unconstrained linear combination that incorporates a constant
term.[GR84]
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3.5 Forecast combination puzzle

Despite the complexity of the above sophisticated combination techniques, there
are some empirical evidence to show that the simple average with equal weight some-
times outperforms complicated schemes. Stock and Watson coined the term "forecast
combination puzzle" for this phenomenon [SW04].

What is the explanation for the robutness of the simple average of forecasts?

For example, Timmermann [Tim06] noted that the success of simple combination
is due to the increased parameter estimation error with weighted combinations. The re-
sults of empirical studies claim that the cost of estimating weighted averages when the
optimal weights are approximately equal is considerably high, which is an empirical
explanation of the puzzle.

Explainig this requires a hypothesis that the potential gains from the "optimal"
are not too large, so the estimator error overwhelms it. There are special cases, like
where the covariance matrix has equal variances on the diagonal and all off-diagonal
value are equal to a constant (so you have to estimate only two values for the matrix)
that are ilustrated by Timmermann [Tim06] and Hsiao and Wan [HW14] to arrive
at equivalence between the simple and the optimal average. Other researchers even
characterized the potential bounds on the size of gains for which this occurs.

These studies give us some rules or markers to identify which combination method
should be chosen in a specific forecasting problem:

• Too small sample size may be unable to provide robust estimates of the weights.
Therefore, if we have access to limited historical data, simple mean or weights
estimated by taking covariances between forecast errors as zero are recommended.

• Structural changes which may cause different weight estimates in the training
and evaluation samples tend to impact sophisticated combination approaches
more than the simple average. This case makes the simple average the best
choice. Forecast combinations using changing or dynamic weights can also be
considered as a means to cope with structural changes. [Wan+22]
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Computational implementation

In this section we will establish the necessary computational information to per-
form experiments in order to reaffirm the results studied.

We will make an introduction to the tool used, and then we will describe both,
the functionalities that were already created and those that have been created for the
research.

4.1 Kats

Kats (Kits to Analyze Time Series) is a user-friendly and flexible framework for
doing time series analysis. It is a toolkit for analyzing time series data. It helps us to
identify the most important statistics and features, spot anomalies or change point, and
predict future. Using Kats, time series analysis can be done all in one place, including
detection, forecasting, feature extraction and embedding, multivariate analysis, etc.
Kats has been published by Facebook’s Infrastructure Data Science team.[Faca]

The part that concerns us is forecasting and embedding. The experiments will be
performed in Python 3.9 with the help of the version 0.2.0 of this tool that can be
downloaded at the following link [Dow].

Kats gives us a set of tools for forecasting that includes the individual forecasting
models showed in Chapter 2. In addition, it provides a set of functions for the emsem-
bling methods studied. However, Bates and Granger method is not implemented in the
framework. For the purpose of comparing methods, we will create a code extension to
define a function that provides us with the ability to apply this ensemble method.

37
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4.1.1 Data preparation

We need a specific type object to apply the functionalities to, kats.consts
.TimeSeriesData is the basic data structure in Kats to define time series. Two
ways to initialize it are available:

1. TimeSeriesData(df): being df a pd.DataFrame with a column named
’time’. If the column with the time values is not called ’time’, one can specify
its name with the param time_col_name.

2. TimeSeriesData(time,value): being time a pd.Series or
pd.DatetimeIndex object and where value is a pd.Series or
pd.DataFrame.

In a TimeSeriesData the time can be expressed as a variety of different types,
including standard datetime, pd.Timestamp, string (in wich case we should
use date_format argument to specify the structure) or even an integer (i.e unix
time).

If we use unix time, we have to use the argument use_unix_time=True and
we can specify the unit with the argument unix_time_units (by default nanosecod,’ns’).

Several of the operations supported by pd.DataFrame are also supported by the
TimeSeriesData object. For example:

• slicing

• math operations: sum, equality, etc.

• extend: with the method ts.extend(ts_2)

• ploting: with the method ts.plot(cols = [’value’]), we must pass
the names of the value columns to plot.

• convert to pd.DataFrame with the method ts.to_dataframe()

• convert to np.array with the method ts.to_array()

• check basis characterictics of the time series: ts.is_empty() or .is_univariante()
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4.1.2 Hyperparameter tuning

Kats offers classes that help one to quickly determine the optimal hyperparameters
to utilize for a particular forecasting model. The method used is a static one called
create_search_method. We have to specify:

• selected_search_method the type of search, usually GRID_SEARCH.

• parameters the search space for the parameters, defining a dictionary for each
parameter and combining them into a list.

• objective_name string with the name o the objective function used for the search,
usually "evaluation_metric".

4.1.3 Backtesting

We are going to do a short overview of the kats.utils.backtesters mod-
ule. It is a module that makes it easy to compare and evaluate different forecasting
models.

This module allows one to include multiple error metrics in a single function call.
It supports the metrics presented in the Section 2.3.

Once we choose the metrics, Kats provides several types of backesters. We have
the class kats.utils.backtesters.BackTesterSimple which executes a
simple train/test backtest as we saw in Figure 2.2.

In addition, we have three different classes to apply the methods defined in above-
mentional Section 2.3:

• BackTesterExpandingWindow the expansive scheme studied.

• BackTesterRollingWindow the rolling scheme.

• BackTesterFixedWindow the fixed scheme.

4.1.4 Ensemble forecasting methods

As it has been mentioned, in addition to the individual forecast studied, this frame-
work provides us with the following class in the kats.models.ensemble .
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We have the base class on which the other classes are defined:

kats.models.ensemble.ensemble.BaseEnsemble(
data:kats.consts.TimeSeriesData,
params:kats.models.ensemble.ensemble.EnsembleParams)

The ensemble method assumes we have M base models whose names and param-
eters are defined in params.

In the following, we will study the different specific ensemble methods that are
already implemented.

Median ensembling method:
kats.models.ensemble.median_ensemble.MedianEnsembleModel(

data: kats.consts.TimeSeriesData,
params: kats.models.ensemble.ensemble.EnsembleParams)

We take as a final prediction the median of the individual predictions. If M is even, we
will take the mean of the center values.

Ensemble models with weighted average individual models:
kats.models.ensemble.weighted_avg_ensemble.WeightedAvgEnsemble(

data: kats.consts.TimeSeriesData,
params: kats.models.ensemble.ensemble.EnsembleParams)

It is based on backtesting results, we determine the weight for each model; a model
with greater performance should have larger weight. We choose the function that mea-
sure the error with the argument error_method. By default it is mape (mean abso-
lute percentage error).

Kats ensemble model:
kats.models.ensemble.kats_ensemble.KatsEnsemble(

data: kats.consts.TimeSeriesData,
params:Dict[str, Any])

This is a specific pipeline implemented to improve the methods above. It begins by
looking for seasonality. If it finds any, it proceeds to STL decomposition, as described
in Section 2.2.2.1. Then it fits forecasting models to de-seasonalized components and
finally it aggregates them. If it does not find sesonality, it just uses individual forecast-
ing models and ensembling. This last part is made using median ensemble method or
weighted average method, depending on the values defined in the dictionary.
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Once the model has been instanced, it works like the models of the well-known
Sklearn [Ped+11]. We fit the model simply by calling model.fit() and we make
predictions with the method model.predict(steps:int) where step is the
length of forecasting horizont. It returns the results as a pd.DataFrame.

4.2 Implementing an extension of Kats

Lastly, to increase the versatility of the package, we took the original repository and
added and altered a few defined classes. Object-oriented programming (OOP) is the
foundation of the Kats framework, which means that it organizes around objects rather
than functions and logical expressions. Because of this, classes and the appropriate
properties or methods are used to define all of these functionalities.

4.2.1 Mean Ensemble implementation

As we saw in Section 3.3, we can combine methods using L-estimators. The me-
dian one is already implemented in Kats.

Taking MedianEnsembleModel class as base, we create the kats.models
.ensemble.mean_ensemble.MeanEnsembleModel class.

This method takes the M different predictions and returns the average value.

4.2.2 Bates & Granger implementation

Finally, we will study how the Bates and Granger method has been implemented.

This procedure, as we learned in Section 3.1 was only intended to aggregate two
invididual forecasts. Due to this restriction, we develop a model based on the R func-
tion comb_BG() approach[Rdo]. The idea is essentially the same that was defined by
Newbold and Granger years later.

We define the class:

kats.models.ensemble.bates_granger_ensemble.BatesGranger
Ensemble based on the class made for weighted average method. The measured
error was changed to mse (mean squared error) instead of mape (mean absolute per-
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centage error). In addition, the expression of the weights was changed to those of the
comb_BG() function, i.e, wi =

σ̂−2
i∑M

j=1 σ̂
−2
j

where σ̂i is the estimated mean squared

prediction error of the i-th model.

By default the simple backtester is used as in the weighted average method. How-
ever we create the attribute back_method to the created class. By changing that
with any of the two values we will mention below, we can control how we evaluate the
error.

We will denote an instance of the defined class as bt.

If we put bt.back_method = ’simple’ the error is measured using the 80%
of the data for training and the 20% for testing, as described in Section 2.3.

If we define bt.back_method = ’fixed’, we use the researched fixed strat-
egy, as discussed in Section 2.3. In this case training uses 75% of the data and testing
uses 15%. We established a 10% data gap between the train and test data sets.

We choose the fixed window method because of its advantages in predicting the
future with a certain time lag.

4.2.3 Other modifications

In order to keep the same structure in all classes, the attribute back_method was
also included in the class kats.models.ensemble.weighted_avg_ensemble
.WeightedAvgEnsemble with the same dynamic.

In addition, the class kats.models.ensemble.kats_ensemble
.KatsEnsemble has also been modified to support Bates & Granger as base method.
By default the class uses mape to measure the error, unless we use Bates & Granger,
in which case the class uses mse.

All this new code can be consulted in the next repository [Cri].



Chapter 5

Experiments

For the purpose of illustrating the concepts presented in this tesis, a series of ex-
periments will be conducted using real data in this chapter.

5.1 Data sets

5.1.1 Air Passenger Data

As mentioned at the begining, we will use Air Passenger Data [Dat] which contains
San Francisco International Airport Report on Monthly Passenger Traffic Statistic by
Airline.

There is a list of passenger data from 1949 to 1960. These data are seasonal in
nature, since the behavior throughout the year is similar. In this case we have monthly
data, so we will expect a period of 12.

This dataset contains 144 records of data. It is a powerful dataset to practice time
series analysis, especially with seasonality. In addition, this data set has no missing
value. [Kaga]

The data has only two columns:

• Month: A variable of type DateTime, ranging from January 1, 1949 to Decem-
ber 1, 1959. Its period is monthly.

• Passenger: Positive integer variable that determines the number of passengers
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of the airline in the corresponding month.

Let us make a brief descriptive analysis of the data in Table 5.1.

count mean std min 25% 50% 75% max

Passenger 144 280.30 119.97 104 180 265 360 622

Table 5.1: Table to describe the Air Passenger Data variable.

Figure 5.1: Air Passenger Data histogram

First we look at the histogram in Figure 5.1 in order to keep in mind the distribution
of the variable. Finally, we plot the time series. As we can see in the Figure 5.2, the
series has a repetitive behavior every year.

5.1.2 Daily Visitors to the Website Data

In order to have a more complete study, we will also examine Daily Visitors to the
Website Data.[Kagb]

This data set includes five years worth of daily time series data returning four (al-
though we only use three) traffic metrics from the statforecasting.com website. The
variables exhibit seasonality that is correlated with both the academic calendar and the
day of the week.

We are going to use four columns of the data:
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Figure 5.2: Air Passenger Data Time Series

• Date: A DateTime variable, ranging from September 14, 2014 to August 19,
2020.

• Page Loads: A variable of type integer, daily number of pages loaded.

• Unique Visits: Daily number of visitors from whose IP addresses there have not
been hits on any page in over 6 hours.

• First Time Visits: Integer, that determines the number of distinct visitors who
are not already identified by a cookie as past customers.

After a small descriptive preliminary study, we obtained the results shown in Table
5.2:

count mean std min 25% 50% 75% max

Page Loads 2167 4116.99 1350.98 1002 3114.5 4106 5020.5 7984

Unique Visits 2167 2943.65 977.89 667 2226 2914 3667.5 5541

First Time Visits 2167 2431.82 828.70 522 1830 2400 3038 4616

Table 5.2: Table to describe the Daily Visitors to the Website Data variables.
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In addition to the descriptive analysis performed, we will plot the histograms of its
three variables. These can be seen in Figure 5.3.

Figure 5.3: Daily Visitors to the Website Data

Now, we will look in Figure 5.4 at the time series plot, in order to identify season-
ality.

We have a large amount of data, so to clarify the series, on the one hand we will rep-
resent daily data of the first year in Figure 5.5 and on the other hand we will represent
in Figure 5.6 the data collected on Mondays throughout the 6 years.
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5.2 Air Passenger Data results

In this section we will use the Air Passenger Dataset. We will study the perfor-
mance of several simple methods versus the performance of the four ensemble methods
studied (using the same hyperparameters in both).

First we will use the simple backtester and all of the error-accounting strategies
listed in Section 2.3 to measure performance. Next, we will use fixed-window back-
tester. As individual method we choose the SARIMA, ARIMA, Prophet, Holt-Winter
and Theta methods.

5.2.1 Individual methods

The hyperparameters were selected by hyperparameter tuning assuming that the
seasonal period are 12. We chose the hyperparameters that reach the minimum mean
absolute error in the test set. First by dividing the training data as follows: 80%-20%
for simple backtester, and 75%-10%-15% being the 10% the gap between sets for
fixed-window backtester.

SARIMA In this case, the best parameters are {’p’: 2, ’d’: 1, ’q’:
1} for both, simple and fixed-window method. Appart of that we selected the trend
both linear or constant and the seasonal order as (P,Q,D,s)=(1,0,1,12).

ARIMA The optimal parameters in this situation are {’p’: 2, ’d’: 1, ’q’:
1} for both too.

Prophet In this case we study the seasonal mode (multiplicative or additive), the
number of change points and the initial range where we take the changepoints. We
detected that the only hyperparameter that influences the mae is the seasonal mode.
We chose the additive mode.

Holt-Winter After the study, we chose multiplicative mode in the trend, and additive
mode for the seasonal part. The study also determinated that the trend should not be
damped or smothed.
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Theta For this model we do not need any hyperparameters, since we knew from the
nature of the data set that the period was 12.

Once we have selected the parameters of the models, we calculate the mae, mape,
mase, mse, rmse, and smape for each one, as we described in Section 2.3. We can see
the results in Table 5.3.

5.2.2 Ensemple methods

As we mentioned, the hyperparameters selected are the same as the individual ones.
In this case we use median, mean, weighted average and Bates & Granger method, as
defined in Chapter 3. We obtain the performance achived by ensemble of the individ-
uals methods, the result can be also see in Table 5.3.

5.2.3 Comparison

In addition, we have a couple of plots that will help us to see the results of Table
5.3 in a more visual way. On the one hand we can see in Figure 5.7 the results with
the simple backtester. On the other hand the results with fixed-window backtester are
shown in Figure 5.8.

For the simple backtester, the best performing single method is Holt-winter, fol-
lowed by SARIMA. On the contrary, the worst method is ARIMA. In this case, only
the first two improve the results obtained with the ensemble methods. We see a more
stable performance with the ensemble methods, obtaining values closer to the best than
to the worst performance.

Comparing the ensemble methods, the median is the best in this case, followed by
the mean. This could be due to the number of parameters to estimate. We ensemble 5
simple models with their own parameters. In cases like this, the forecast combination
puzzle makes sense. One reason why we get better results with the median than with
the mean may be the performance of the ARIMA outliers.

Now, we will discuss the results with the fixed window backtester. In this case,
we measure the predictive ability with lag. This justifies that more complex methods
obtain better results in this case. As far as individual methods are concerned, SARIMA
obtains the best results, and as far as ensemble methods are concerned, the weighted
average wins. We must make an important point: the performance of the weighted
average ensemble method beats the SARIMA method in terms of mse and rmse and
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equals it in mape and smape, even with SARIMA being the best in the group of simple
methods.

In summary, in general we see results (although not necessarily better), more stable
with ensemble methods. If we have to ensemble many models, it is better to resort to
simple ensemble methods such as mean or median. Otherwise, if we do not want to
predict the immediate future, then it is better to use more complex ensemble models
that compensate for the efficiencies and shortcomings of the simple methods.

5.3 Daily Visitors to the Website Data results

In this section we will only use the simple backtester. We start with three individual
models: SARIMA, linear and quadratic. We study the results applying these methods
and the ensemble methods on the three variables separately.

5.3.1 Individual methods

As in the previous experiment, we choose the hyperparameters that reach the lowest
mean absolute error in the test set dividing the training data as follows: 80%-20%. We
will use simple backtester for all variables.

SARIMA In this case, the best parameters are: {’p’: 2, ’d’: 1, ’q’:
2} for Page Loads and {’p’: 1, ’d’: 1, ’q’: 1} for both Unique Visits
and First Time Visits. Appart of that we selected the trend both linear or constant and
the seasonal order as (P,Q,D,s)=(0,0,0,7).

Linear and quadratic In these models, all parameters are optional. Therefore, we
do not adjust any hyperparameters.

5.3.2 Ensemple methods

As in section before, the hyperparameters selected for ensemble methods are the
same as the individual ones. We use median, mean, weighted average and Bates &
Granger methods. The results are shown in Table 5.4.
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5.3.3 Comparison

We will now compare the effectiveness of the ensemble strategies with respect to
basic ones. Table 5.4 contains the outcome. Appart from this table, we present plots
to summarize the information for each variable. The results are shown in Figure 5.9,
Figure 5.10 and Figure 5.11 for the variables Page Loads, Unique Visits and First Time
Visits respectively.

In this experiment we use few and simple methods, without many parameters to
estimate, so in this case it would be normal if the best ensemble method was one of the
complex ones.

As for the variable Page Loads, the best single model is SARIMA, and the worst
is quadratic. In this case, the Bates and Granger method obtains better results than
the weighted average, in contradiction with the first experiment. However, the median
beats both, obtaining the best results in the ensemble method group.

As we commented in the last experiment, the ensemble methods obtain similar re-
sults while the results of the individual methods can be more variable and unexpected.
To show this aspect, in Table 5.5 we can see the variance between individual methods
and between ensemble methods. In addition we can see the ratio variance individual models

variance ensemble methods .
In this variable we can observe a performance variance of up to 1546 times higher.

Focusing on Unique Visits variable, the linear model obtains the best results among
the individual models and the Bates and Granger method wins among the ensemble
models. In this case, we obtain variances between 498 (for mape) and 2666 (for rmse)
times greater among the individual models than among the ensemble models.

Finally, for the variable First Time Visits we can see a variance between 62 and
16621 times lower in the ensemble method group. In this case we have a tie between
models: SARIMA and median being in both cases the best in their group.
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Figure 5.4: Daily Visitors to the Website Data
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Figure 5.5: First year Daily Visitors to the Website Data

Figure 5.6: Mondays of Daily Visitors to the Website Data
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Table 5.3: Air Passenger Data results
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Figure 5.7: Models performance with simple backtester
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Figure 5.8: Models performance with fixed-window backtester
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Page Loads

Individual methods Ensemble methods

sarima linear quadratic median mean weighted average bates & granger

mae 958.02 1023.99 1307.68 1038.03 1051.42 1043.58 1040.67

mape 0.28 0.33 0.43 0.33 0.34 0.33 0.33

mase 1.46 1.56 1.99 1.58 1.60 1.59 1.58

mse 1381966.01 1569372.07 2468249.75 1604633.53 1648745.74 1624946.30 1615634.43

rmse 1175.57 1252.75 1571.07 1266.74 1284.03 1274.73 1271.08

smape 0.24 0.26 0.31 0.26 0.26 0.26 0.26

Unique Visits

mae 751.47 736.84 781.25 751.47 753.31 753.51 748.53

mape 0.31 0.30 0.34 0.31 0.32 0.32 0.31

mase 1.54 1.51 1.60 1.54 1.54 1.54 1.53

mse 831969.76 819661.26 891076.12 831969.76 834900.42 835250.07 828059.15

rmse 912.12 905.35 943.97 912.12 913.73 913.92 909.98

smape 0.26 0.25 0.27 0.26 0.26 0.26 0.26

First Time Visits

mae 637.13 641.09 684.48 637.13 643.27 645.36 644.35

mape 0.30 0.29 0.35 0.30 0.31 0.31 0.31

mase 1.52 1.53 1.63 1.52 1.54 1.54 1.54

mse 613696.14 635067.35 673915.13 613696.14 611460.96 612648.98 612268.70

rmse 783.39 796.91 820.92 783.39 781.96 782.72 782.48

smape 0.26 0.26 0.27 0.26 0.26 0.26 0.26

Table 5.4: Daily Visitors to the Website Data results

Page Loads Unique Visits First Time Visits

Var individual Var ensemble Var.ind/Var.ens Var individual Var ensemble Var.ind/Var.ens Var individual Var ensemble Var.ind/Var.ens

mae 5.190956e+04 3.357020e+01 1546 6.902323e+03 5.330800e+00 1295 3.794260e+03 13.6793 277

mape 9.200000e-03 0.000000e+00 1320 2.200000e-03 0.000000e+00 498 2.200000e-03 0.0000 62

mase 1.199000e-01 1.000000e-04 1546 2.880000e-02 0.000000e+00 1295 2.160000e-02 0.0001 277

mse 4.244755e+11 3.524165e+08 1204 2.462797e+10 1.110637e+07 2217 1.244595e+10 861550.1279 14446

rmse 6.496792e+04 5.413020e+01 1200 8.901198e+03 3.338500e+00 2666 5.843978e+03 0.3516 16621

smape 2.400000e-03 0.000000e+00 2078 8.000000e-04 0.000000e+00 1746 5.000000e-04 0.0000 324

Table 5.5: Daily Visitors to the Website Data performance variance results
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Figure 5.9: Performance comparison with the variable Page Loads
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Figure 5.10: Performance comparison with the variable Unique Visits
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Figure 5.11: Performance comparison with the variable First Time Visits
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Chapter 6

Conclusions

As we saw at the beginning of this research, forecasting has great importance today
for making decisions in different fields. The success of these decisions depends on the
accuracy of these predictions.

We have many models that give us different performances in each case: a small
noise or modification in a time series can mean a significant increase or decrease in
the performance of a model prediction. For this reason, ensemble methods have been
studied. They take information from all model bases and use it to create a more robust
and stable prediction. In our experiments we could observe a big difference between
the variance obtained by simple models and the one obtained by ensemble methods,
the last one being considerably lower.

We have also seen which method to use in each case and which is the most ap-
propriate way to evaluate the performance depending on the main objective. If we
have complex base models, it is usually better to use simple methods such as mean or
median. Even if we have outliers in the prediction model we can use Winsorized and
Trimmed mean. This is because with other methods we can suffer overestimates due to
the huge number of parameters; also due to the fact that by making so many estimates
the errors are added, concluding with predictions that are not very reliable.

However in some cases when we have few and simple base models it is more con-
venient to use the weighted mean. It could be with an evaluation metric to minimize,
with or without the constraint of adding the unit, with or without an intercept, or even
using the method proposed by Bates & Granger. We have also seen different tech-
niques to evaluate performance once the evaluation metric has been chosen : if we
want to predict short-term future values it is better to use moving windows without a
gap, but if on the contrary we want to measure performance in predicting long-term

61



62

values we should use fixed windows with a gap.

Finally, we will mention some potential findings for future investigations: focus on
probabilistic forecasting, study non linear combination of the point forecasts, study the
extension of these techniques to multivariate time series and complete the open source
contribution of the kats library to the above topics.
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