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Abstract

In 1994, Pageau, Joseph and Biggers Jr. evaluated “The order of stress sin-
gularities for bonded and disbonded three-material junctions”. Their work
represented an important finding on multimaterial corners, since their formu-
lation can be used to study the stress state on these junctions. Despite the
relevance, the graphs of some results presented in their paper might lead to
an improper interpretation, and consequently to a wrong asymptotic stress
representation. This is evidenced and discussed in the present work, in which
an analytical algorithm was implemented, allowing to reproduce, to complete
and to clarify the original results. The physical interpretation of the diver-
gences indicates, among other observations, that the failure mode associated
with the highest stress singularity order in a multimaterial junction may
change by only varying the Young’s modulus of one of the materials.

Keywords: multimaterial junctions, order of stress singularity, Generalized
Stress Intensity Factors, Fracture Mechanics

1. Background

Stress singularities are an analytical prediction from the theory of linear
elasticity and their study finds applicability in several engineering problems,
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as in the analysis of crack propagation through the Stress Intensity Factors
(SIFs). Williams (1952) was one of the pioneers in the stress singularities
study. Using Airy functions, he investigated angular corners of plates accord-
ing to the linear elasticity theory. For three boundary conditions (free-free,
clamped-free and clamped-clamped), Williams obtained the characteristic
equations governing the stresses and displacements in the vicinity of the an-
gular corners. He also extracted the eigenvalues λ for the problem, which
would be later called characteristic exponents. These exponents would find
direct application in their ability to describe the potential of a given geome-
try in generating a stress singularity. This potential can be measured by the
so-called order of stress singularity δ of the problem, sometimes associated
with the very concept of the characteristic exponents λ, commonly defined
as δ = (1 − λ) [1] with 0 < λ < 1 (singularity condition).

The work of Williams (1952) included the solution for λ to the classical
problem of Fracture Mechanics, i.e., the case of a wedge varying the opening
angle between its faces. In a later paper, Williams (1957) used this concept
to characterize the stress field in the front of the crack tip (in which λ = 0.5).
In the following decades, several authors devoted efforts to the study of the
stress singularity order for different problems, among which are included the
multimaterial junctions (also called multimaterial corners).

The evaluation of the eigenvalues λk (for k varying from 1 up to n, being n
the number of eigenvalues) reached a new level of application when Vasilopou-
los (1988) correlated its calculation (from Williams’ work, in 1952) with the
Stress Intensity Factors (SIFs) from the classical Fracture Mechanics, formal-
izing the concept of the Generalized Stress Intensity Factors (GSIFs). Thus,
as a generalization of the SIFs, the stress field in the vicinity of a point of
singularity, under the Linear Elastic Fracture Mechanics (LEFM), could be
now generalized by:

σi,j(r, θ) =
n∑
k=1

(
Kk

r1−λk

)
fkij (θ) (1)

where Kk are the GSIFs, r and θ are the polar coordinates of the point
at which the stresses are evaluated and fkij(θ) are the characteristic angular
functions. The sub index k varies from 1 to n, depending on the problem,
generating n terms in the sum (Eq. 1). It is also important to emphasize

1See, e.g.,Barroso et al. (2012a)
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that Eq. (1) is a stress representation with variable separation, with the role
of the radial distance r and the angular position θ being clearly identified.
Few exceptional cases do not accept this variable separation, some of those
being identified in Sinclair (1999).

The stress field around the crack tip in the SIFs formulation is given by a
sum of three terms, each one corresponding physically to a deformation mode.
Following this approach, the stress field for other geometries could also be
given by a sum of terms, according to Eq. (1), being each mode associated
to an eigenvalue λk. Related with the studies of the order of stress singu-
larity, the definition of the GSIFs would allow foreseeing a fracture failure
criterion for several situations aligned with the practice for crack problems,
in which the SIF can be compared to a critical value KIc, denominated frac-
ture toughness. The GSIFs can be calculated numerically by a method as
the one described in Barroso et al. (2012a). For an example of GSIFs being
used more recently in a failure criterion, the reader may consult the works
of Barroso et al. (2012b) and Vicentini et al. (2012).

For multimaterial corners, studies such as the one of Dempsey and Sin-
clair (1979) have succeeded in establishing general formulations to obtain the
eigenvalues for junctions with an unlimited number of materials converging
to one point and several boundary conditions on the faces (or interfaces)
between the materials.

Nevertheless, as this kind of analytical general solution may not be prac-
tical for some design purposes, particular solutions to simpler problems, such
as two or three-material closed corners, are quite useful for engineering prob-
lems. Dempsey and Sinclair (1981) have particularized their general solution
for bimaterial junctions, directly offering the characteristic equations of the
problem under different boundary conditions, making the solution implemen-
tation in a straightforward computational code.

For three-material junctions, a particular solution was presented in the
paper by Pageau et al. (1994). They used a general solution proposed by
Theocaris (1974), who developed a formulation for the problem expressed in
complex potentials, in a different way from that in Williams (1952). The
authors particularized a solution for four situations: two and three-material
corners, considering perfectly bonded interfaces and considering unbonded
interfaces. All solutions considered isotropic materials.

This paper concentrates on the formulation for multimaterial closed cor-
ners. When implementing a program containing Pageau et al.’s formulation,
and trying, first of all, to reproduce their results, some slight differences at
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some graphs in the original work led to important physical considerations
for the stress representation. Thus, Section 2 briefly reviews the formulation
and describes its implementation. Results are presented in Section 3 and
discussed in Section 4.

2. Implementation of Pageau et al.’s Formulation

As the solutions employing the method of Williams (1952, 1957), as well
as in Dempsey and Sinclair (1979), the solution in complex powers from
Theocaris (1974) leads to a system of 4N equations (being N the number
of materials), which express the stresses and displacements of the problem.
For a closed three-material corner with perfectly bonded interfaces, Pageau
et al. (1994) presented a system of equations in the form:

µ2[κ1a11e
2iλθ1 − λa21e

2iθ1 − b21] = µ1[κ2a12e
2iλθ1 − λa22e

2iθ1 − b22]

[a11e
2iλθ1 + λa21e

2iθ1 + b21] = [a12e
2iλθ1 + λa22e

2iθ1 + b22]

µ2[κ1a21e
−2iλθ1 − λa11e

−2iθ1 − b11] = µ1[κ2a22e
−2iλθ1 − λa12e

−2iθ1 − b12]

[a21e
−2iλθ1 + λa11e

−2iθ1 + b11] = [a22e
−2iλθ1 + λa12e

−2iθ1 + b12]

µ3[κ2a12e
2iλθ2 − λa22e

2iθ2 − b22] = µ2[κ3a13e
2iλθ2 − λa23e

2iθ2 − b23]

[a12e
2iλθ2 + λa22e

2iθ2 + b22] = [a13e
2iλθ2 + λa23e

2iθ2 + b23]

µ3[κ2a22e
−2iλθ2 − λa12e

−2iθ2 − b12] = µ2[κ3a23e
−2iλθ2 − λa13e

−2iθ2 − b13]

[a22e
−2iλθ2 + λa12e

−2iθ2 + b12] = [a23e
−2iλθ2 + λa13e

−2iθ2 + b13]

µ3[κ1a11 − λa21 − b21] = µ1[κ3a13e
iλθ3 − λa23e

i(2−λ)θ3 − b23e
−iλθ3 ]

[a11 + λa21 + b21] = [a13e
iλθ3 + λa23e

i(2−λ)θ3 + b23e
−iλθ3 ]

µ3[κ1a21 − λa11 − b11] = µ1[κ3a23e
−iλθ3 − λa13e

−i(2−λ)θ3 − b13e
iλθ3 ]

[a21 + λa11 + b11] = [a23e
−iλθ3 + λa13e

−i(2−λ)θ3 + b13e
iλθ3 ]

(2)

in which µj is the shear modulus of the material j, and κ is the Kolosov
constant, given as a function of the Poisson coefficient ν, i.e., κ = (3 − 4ν)
for plane strain state, or κ = (3−ν)/(1+ν) for plane stress state. The angles
θj define the interfaces between the materials, according to Fig. 1.

For a non-trivial solution to exist (to the unknown constants a1j, a2j, b1j
and b2j), the determinant of the coefficients matrix must be equal to zero, in
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Figure 1: Closed three-material corner.

order to determine λk. Thus, the characteristic equation can be implemented
in the program and the solution for λk can be obtained.

The method of Muller (1956) was chosen to evaluate the eigenvalues of
the equation, following Barroso et al. (2003). The solution can be finally
obtained by the implementation of the algorithm in a program, here de-
veloped in Python 2.7 language (Python Software Foundation). The pro-
gram’s structure and details about its development are presented in Fornazari
(2019)’work.

Pageau et al. (1994) used their formulation to plot some graphs, at-
tempted to demonstrate the effect of parameter variation (especially Young’s
modulus) in the order of stress singularity of the problem (i.e., to study the
effect of the stiffness of the materials related on the roots λk). They focused
on the eigenvalues that would generate singularities, presenting only those
with Re λ < 1.

In this paper, the program implemented was used in order to not only
reproduce, but also to complete some of those graphs, plotting one additional
root (the first non-singular one). During this preliminary stage, some impor-
tant remarks concerning some particular results of the original paper were
observed. These will be detailed in Section 3.

3. Results

In this section, the graphs obtained by Pageau et al. (1994) were re-
evaluated and reinterpreted, in comparison to the original ones. These graphs
considered the relationship between Young’s moduli of two of the materials,
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varying the ratio between the moduli of another pair of the corner’s materials.
In the first case presented here, the authors set E1/E2 = 2.0, while E3/E2

varied. Fig. 2a shows the original graph, while Fig. 2b shows the result
obtained by using the algorithm developed in this research. Numbers and
other marks in red, over the original graphs, were added for the purposes of
this paper. In this example, all roots are real, except for the segment 6 in the
original graph (Fig. 2a). The imaginary segment 6 was not depicted in Fig.
2b, in order to allow amplifying the zones of interest. In order to remember
that λk = 1 is always a root of this kind of problem, this result was included
in all graphs here presented, although in most cases this value is related to
rigid rotations—for exceptions, see Vasilopoulos (1988)—and, therefore, this
term is not normally considered in the form of Eq. (1).

Figure 2: Study of the graph (Fig. 9, in the original source) of Pageau et al. (1994).

One can notice the exact correspondence for the singular results in this
case, while, in addition, the curve F in Fig. 2b represents the λk associated
to the first non-singular term (with values λk > 1).

Note, however, what occurs in the second simulated case, where E1/E2 =
10.0 is set and E3/E2 varies. The roots are all real and the results are shown
in Fig. 3.

Since the graph in Fig. 3b (obtained from the algorithm described in
Section 2) was generated with a huge number of points, the roots’ curves with
Re λ < 1 clearly show differences between the connections from the original
graph (Fig. 3a). Now it is possible to appreciate that the curves AD and
BC in Fig. 3b intersect each other, when compared to their correspondent
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Figure 3: Study of the graph (Fig. 10, in the original source) of Pageau et al. (1994).

in Fig. 3a, where no intersection is visible. This observation can yield to a
very important interpretation because, at the intersection point from curves
AD and BC (Fig. 3b), singularities change their order of importance in the
problem. It is also important the fact that the final representation of stresses
(Eq. 1) needs not only the order of stress singularity values but also to
properly identify the associated characteristic angular functions. The correct
identification of each term in Eq. (1) for each order of stress singularity
is of major importance to correctly obtain the asymptotic stress field in
the neighborhood of the corner tip. The obtained result clearly shows that
the singular terms change their position when crossing E3/E2

∼= 1, when
compared with Pageau et al.’s results. Thus, not identifying this fact, would
lead to a wrong stress representation. From this point onwards, i.e., for
materials in which Young modulus relationship is E3 > E2, the previous most
singular term becomes less dominant and the reverse occurs when analyzing
the other term, which becomes prominent in Eq. (1). Conversely, in the
results of Pageau et al. (1994) (Fig. 3a) the singular terms keep their status
independently of the materials combination.

In a third problem, Pageau et al. (1994) set E3/E1 = 10.0 and varied
E2/E1. The expanded graph, next to the original, is shown in Fig. 4b,
where the imaginary parts of the roots (i.e., results with Re λ > 1) were
colored, in order to identify to which real parts they are referring to. Their
curves were also identified with the same letters E and H of the real parts,
but in a blue tone. By expanding the original graph with a third value of λk
in Eq. (1), it became clear that the three curves (AC, BG and FD) intersect
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themselves at E2/E1 = 1.0. Thus, in this case, the original results were only
complemented.

Figure 4: Study of the graph (Fig. 11, in the original source) of Pageau et al. (1994).

Considering that the formulation allows to solve problems of bimaterial
corners inclusively (for that, the same parameters are used for materials 2
and 3, and for the angles which define the interfaces), the bimaterial corner
graph presented by Pageau et al. (1994) was also re-studied. It is shown in
Fig. 5 and, as in Fig. 3, the results show that, unlike the original graph,
the segments CF and DE intersect each other for E2/E1

∼= 10.0. Also, the
curves ACF, BH and GDE intersect each other at E2/E1 = 1.0. The same
comments made for results in Fig. 3 can be applied for this case. Although
the values of the orders of stress singularities remain almost the same at both
sides of the intersection, it is mandatory to correctly relate each term of Eq.
(1) to the correspondent value of the order of stress singularity.

4. Discussion

In a practical interpretation from a LEFM point of view, each λk is related
to a deformation mode of the problem, i.e., a term of the finite sum expressed
in Eq. (1). Thus, the λk which generally defines the first mode is the smaller
one, indicating more potential to generate stress singularities than the other
modes.

In the classical crack problem, mode I is called the opening mode and it
is associated with normal stresses. Mode II is called the sliding mode and
it is associated with in-plane shear stresses. Finally, mode III is called the
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Figure 5: Study of the graph (Fig. 8, in the original source) of Pageau et al. (1994).

tearing mode and it is associated with shear stresses out of the plane of the
junction (i.e., torsion). Since that, in this classical problem the eigenvalues
are equal (i.e., λI = λII = λIII), although generating different eigenvectors,
the modes’ potential on generating singularity, based on material properties,
is the same.

When computing GSIFs for multimaterial corners, the terms in Eq. (1)
need to be properly sorted: the first, second and third terms related to
Mode 1, 2 and 3 of deformation, respectively (most terms, if they exist, are
generally neglected in the vicinity of the corner tip). This also implies that,
if the corner is in pure mode 2, the singularity order of the problem must be
given as a function of λ2, even though the λ1 of the geometry is smaller (i.e.,
λ1 = 0 in this example).

Considering this assumption, the results in the first case (Fig. 2b) show
that the eigenvalues of mode 3 (curve F) do not generate a stress singularity
(λ3 > 1), so that the order of singularity of this corner is, for any E3/E2,
higher in the first two modes, which tends to be dominant in the stress field.

Nevertheless, in the second case (Fig. 3b), two curves (AD and BC) in-
tersect each other, differently from the original graph (Fig. 3a), where curves
apparently do not touch each other. This means that curve AD corresponds
to λ2 domination before the crossing point and λ1 domination beyond that
point. So, if the physical meaning of the modes is being considered, the
smallest λk of the problem, for a case with E3/E2 < 1.0, should not be
automatically assigned to mode 1.
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This is even clearer in the third case. Even though the results for non-
singular terms in Fig. 4b are not presented in Fig. 4a, the mode that begins
with the greater order of singularity on this corner loses the capacity to even
generate a stress singularity for values of E2/E1 = 1.0 (curve BG, in the
graph, Fig. 4b). Likewise, the weaker mode for E2/E1 < 1.0 (curve FD,
in the graph) becomes dominant after the crossing point. By imagining an
engineering problem in which one intends to design a three-material junction
submitted to a specific stress state (with two materials already defined),
these results would indicate that the choice of the third material may imply
whether or not a stress singularity in the corner will occur.

Finally, the results for the bimaterial corner (Fig. 5b) show two inter-
sections (for E2/E1 = 1.0 and for E2/E1

∼= 10.0). Thus, in this case, the
initially λ2 (from curve ACF) changes significantly the dominance along the
proper E2/E1 combination.

5. Conclusion

Engineering problems have, historically, found significant applicability to
the study of stress singularities, despite these are only theoretical predictions
from linear elasticity. If the SIFs, for the study of crack propagation, are the
most widespread parameter on this topic, the GSIFs can also be quite useful
in defining failure criteria for various problems.

The order of stress singularity of a multi-material corner indicates the
potential that the geometry has in generating a singularity, with greater
or lesser intensity. Several studies have been conducted over the years to
calculate this parameter.

In the present work, the formulation of Pageau et al. (1994) was chosen to
evaluate the orders of stress singularity for the multimaterial corners. Some
results were re-evaluated by expanding the original graphs of Pageau et al.
(1994). In the re-evaluation of these plots, it was found that two of the
original graphs might lead to an improper definition of the singular terms in
the stress field representation, since the curves of the eigenvalues λk should
actually intersect each other, a result which is not visible in the original cited
paper.

The intersection of the curves means that the failure mode guided by the
highest order of singularity in a corner may vary for different material com-
binations. By analogy with the classical LEFM, the opening mode may have
greater potential to produce singularity in a given junction, while the sliding
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mode may have a greater order of singularity in another similar junction,
in which only one of the materials is modified. And it is even possible that
the most important failure mode in a material combination does not even
generate a stress singularity in another material combination, to the same
geometry.
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