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In this work, we present a general framework for vertical discretizations of Euler equations. 
It generalizes the usual moment and multilayer models and allows to obtain a family 
of multilayer-moment models. It considers a multilayer-type discretization where the 
layerwise velocity is a polynomial of arbitrary degree N on the vertical variable. The 
contribution of this work is twofold. First, we compare the multilayer and moment models 
in their usual formulation, pointing out some advantages/disadvantages of each approach. 
Second, a family of multilayer-moment models is proposed. As particular interesting case 
we shall consider a multilayer-moment model with layerwise linear horizontal velocity. 
Several numerical tests are presented, devoted to the comparison of multilayer and 
moment methods, and also showing that the proposed method with layerwise linear 
velocity allows us to obtain second order accuracy in the vertical direction. We show as 
well that the proposed approach allows to correctly represent the vertical structure of the 
solutions of the hydrostatic Euler equations. Moreover, the measured efficiency shows that 
in many situations, the proposed multilayer-moment model needs just a few layers to 
improve the results of the usual multilayer model with a high number of vertical layers.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open 
access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The modeling and numerical simulation of geophysical flows is currently a very active topic of research. In particular, the 
study, analysis and numerical simulation of the well-known Navier-Stokes system [19] is of interest. It describes the motion 
of fluids and also can be employed for other complex geophysical flows as granular or debris flows.

Nevertheless, its complexity and specially the high computational cost associated to the resolution of this system makes 
that some other simpler approaches are usually proposed. One of the most widely used is the shallow-water (or Saint–
Venant) system [21]. In the shallow water approach the characteristic length of the domain is assumed to be much longer 
than the vertical one, and then the vertical effects are assumed to be small when compared to the horizontal ones. There-
fore, a vertical integration is done and the averaged horizontal velocity is considered. In [34] a rigorous derivation of 
this system, based on a asymptotic analysis, is introduced. This approach has been used in many recent works (see e.g. 
[9,35,4,49]).

* Corresponding author.
E-mail address: escalante@uma.es (C. Escalante).
https://doi.org/10.1016/j.apnum.2022.09.004
0168-9274/© 2022 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apnum.2022.09.004&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:escalante@uma.es
https://doi.org/10.1016/j.apnum.2022.09.004
http://creativecommons.org/licenses/by-nc-nd/4.0/


J. Garres-Díaz, C. Escalante, T. Morales de Luna et al. Applied Numerical Mathematics 183 (2023) 236–262
Although shallow water type systems are quite popular, mainly due to the low computational cost required for their 
simulation, they present a main drawback: the vertical information is neglected. Indeed, considering the averaged horizontal 
velocity and neglecting the vertical deviations from this average leads us to lose important information for many practical 
applications. Several ways to overcome this limitation have been proposed in the literature. In next paragraphs we describe 
those that are relevant for our work.

A possible approach to capture vertical effects is to use the so-called σ -coordinate framework (see [50,17]). The idea is 
first to do a change of variables so that the vertical coordinates vary between 0, the bottom, and 1, the free surface. Then, 
the free surface is defined as a function of the horizontal coordinates which is derived from the standard kinematic free 
surface condition. The interval [0, 1] is then discretized, giving a vertical approximation of the solution of the model. This 
approach has been used in [38,16,18,47] among others.

Another way to recover vertical effects in shallow flows is to use the so-called multilayer approach [3,6,30]. Multilayer 
systems consider a vertical division of the fluid into M given layers, where this division is not physical, but it may be 
considered as a virtual vertical discretization. Within each layer, a depth-averaged process is performed leading to a lay-
erwise constant solution for the horizontal velocity. In [3] the vertical layers are immiscible, while [6,30] consider a mass 
and momentum transfer exchange between the internal layers. In recent years several works have been proposed based on 
this procedure to model fluids or complex geophysical flows such as bedload and suspension sediment transport, variable 
density flows or granular and debris flows (see [29,27,48,11,8,36,32,31] among others).

The last approach we describe here corresponds to the shallow water moment models [52,40]. In the moment approach, 
rather than dividing the vertical direction into layers, one single layer is considered, but now the variables are supposed 
to follow a polynomial profile, with an arbitrary degree of approximation, in the vertical direction. Again, this allows us 
to obtain vertical effects as now the horizontal velocity is not just a constant for the whole column of the fluid, but a 
polynomial on the vertical variable. We refer the reader to [45,41,43,12,33] among others for a better description and 
applications of this technique. An advantage of this approach with respect to the multilayer one is its lower computational 
cost. Typically, the vertical structure of solution could be capture more accurately with moment models with a low degree 
polynomial, while the number of layers required to obtain a similar solution with the multilayer approach demands more 
computational effort as it will be shown later on.

The contribution of this work is twofold. The first goal is to propose a common framework for vertical discretization of 
Euler equations, as well as a family of improved multilayer-moment methods. The idea is to avoid the usual difficulties and 
computational cost when solving the full 3D system, while keeping the information on the vertical direction with a low 
or moderate complexity and computational cost. The ideas proposed here not only can be seen as a generalization of the 
multilayer, σ -coordinate or moment approaches, but it will also allow us to generalize and propose new enriched models. 
In particular, we propose here a family of multilayer-moment method, based on this framework, to improve the accuracy of 
both methods, taking advantage of the strengths of each one.

The second objective will be to analyze the efficiency and accuracy of the different techniques. For instance, one may 
conjecture that the computational cost of moment method is lower than the multilayer one, specially when the number 
of layers M is large, since it increases in a quasi-linear way with M . However, moment method may not be enough to 
reproduce complex vertical profiles for the velocity. We aim to give answer to this conjecture and to do a thorough study 
of the efficiency, advantages and disadvantages of the different proposed approximations.

This paper is organized as follows: Section 2 is devoted to present the more general system considered here and its 
representation in σ -coordinates, which will be vertically discretized. In Section 3 we focus on the case of Euler system 
and we develop a vertical discretization to obtain the family of multilayer-moment models, and also analyze interesting 
particular cases. Section 4 is devoted to numerical test cases, and some conclusions are presented in Section 5. Finally, in 
appendixes Appendix A and Appendix B we give detail of how viscosity effects are included, as well as the particular cases 
of the classical multilayer and moment models.

2. Governing system

Let us start by establishing the system we are going to deal with. For the sake of simplicity, we consider here a 
two-dimensional flow, although everything might be generalized to the 3D case. Let (x, z) be the horizontal and normal 
directions, respectively, and u = (u, w) the velocity vector. Let us remark that, in this section, we do not necessarily fix a 
Cartesian reference system, but rather proceed in a general way. Therefore, the coordinates may be considered in a general 
reference system, for instance performing a rotation of Cartesian reference and using tilted coordinates, which may be useful 
in some applications such as gravity driven flows. The incompressible Navier-Stokes system for a fluid with constant density 
ρ ∈R is given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂xu + ∂z w = 0,

ρ
(
∂t u + u ∂xu + w ∂zu

)+ ∂x p = ρ fx + ∂xτxx + ∂zτxz,

ρ
(
∂ w + u ∂ w + w ∂ w

)+ ∂ p = ρ f + ∂ τ + ∂ τ ,

(1)
t x z z z x zx z zz
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where τ is the deviatoric stress tensor, p the pressure, and f = ( fx, f z) is the external force, usually representing the 
gravity force. For instance, if (x, z) are the usual Cartesian coordinates then f = (0, −g). Other option is to consider a tilted 
reference system over a fixed inclined plane with slope θ > 0, then f = (g sin θ, −g cos θ).

We shall consider for now the decomposition of the pressure into hydrostatic and non-hydrostatic components:

p = ρ (pH + pN H ) , with ∂z pH = f z.

We denote by h(t, x) the fluid depth and we define b(x) the bottom topography. We shall denote by η(t, x) = h(t, x) +b(x)
the free surface. As boundary conditions, we take the usual kinematic conditions at the bottom (z = b) and free surface 
(z = η):

u|z=b ∂xb = w |z=b , ∂tη + u|z=η ∂xη = w |z=η .

In addition, we assume the usual normal stress balance at the free surface and a Darcy friction law at the bottom (see 
e.g. [33]):

τxz|z=b+h = 0 and τxz|z=b = ρε
∣∣u|z=b

∣∣u|z=b ,

where ε is a dimensionless constant friction coefficient.
Now, we write system (1) in the so-called σ -coordinates. To this end, we consider the change of variable given by

ξ = z − b

h
, where ξ ∈ [0,1] for z ∈ [b, η].

Notice that ξ = 0 (respectively ξ = 1) corresponds to the bottom z = b (respectively free surface z = η) level. Then, denoting 
by ψ̃(t, x, ξ) = ψ(t, x, ξh + b), the differential operators read

∂ξ ψ̃ = h∂zψ

and

h∂sψ = ∂s
(
hψ̃
)− ∂ξ

(
∂s (ξh + b) ψ̃

)
, for s ∈ {t, x}.

Taking into account the new variables, the pressure is written as

p̃ = ρ (̃pH + p̃N H ) , with ∂ξ p̃H = hfz,

where it is clear that, assuming that the pressure is null at the surface, we obtain the expression for the hydrostatic pressure

p̃H = hfz (ξ − 1) .

Thus, the Navier-Stokes system in σ -coordinates reads⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂x (hũ) + ∂ξ (w̃ − ũ∂x (ξh + b)) = 0,

∂t (hũ) + ∂x
(
hũ2 + hp̃N H

) − hfz∂x (zb + h)

−∂ξ (ωũ − p̃N H∂x(hξ + zb)) = ∂x(hτ̃xx) + ∂ξ (τ̃xz − τ̃xx∂x(hξ + b))

∂t (hw̃) + ∂x (hũw̃) − ∂ξ (ωw̃ + p̃N H ) = ∂x(hτ̃zx) + ∂ξ (τ̃zz − τ̃zx∂x(hξ + b)) ,

(2a)

where by simplicity we consider here τ = ν
(∇u + ∇u′), with ν = μ/ρ a constant kinematic viscosity. In addition, zb =

b + x fx/ f z include all gravitational contributions, and ω corresponds to the vertical transference term written as

ω(ξ) = ∂t (hξ + b) + ũ(ξ)∂x (hξ + b) − w̃(ξ). (2b)

Notice that we have used here ũ2 = ũ2 and ũw = ũ w̃ , and in the third equation of (2a) the hydrostatic pressure has been 
canceled with the external force.

As a simple case, we shall consider τxz = ν∂zu, ant then the boundary conditions are rewritten as

ω(0) = ũ|ξ=0∂xb − w̃ |ξ=0 = 0,

ω(1) = ∂tη + ũ|ξ=1∂xη − w̃ |ξ=1 = 0,
and

ν

h

(
∂ξ ũ
)
|ξ=0

= ε
∣∣̃u|ξ=0

∣∣ ũ|ξ=0 ,

ν

h

(
∂ξ ũ
)
|ξ=1

= 0.

(2c)

In the following, for the sake of simplicity, we focus on the hydrostatic Euler system, and therefore the vertical momen-
tum equation is replaced by the hydrostatic assumption and viscous effects are neglected. However, in the numerical test we 
will be interested on showing flows with vertical structure, which is produced by friction forces and vertical viscosity effects 
mainly. To do so, we eventually consider the vertical term ∂zτxz in the model in usual multilayer and moment discretization, 
which has been already introduced in previous works and we detail it in Appendixes A and B.
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3. A general vertical decomposition of Euler equations

In this section, we perform a vertical discretization for system (2). As we said in Section 1, the first main goal is to 
propose a general framework that generalizes the moment [45] and multilayer [30] approaches for shallow flows. Moreover, 
a family of models enhancing the vertical structure of the fluid is proposed.

For the sake of simplicity, let us assume for now that (x, z) are the Cartesian coordinates and therefore f = (0,−g)t . 
Recall that η = h + b denotes the free surface and we assume the pressure to be hydrostatic, p̃ = gh(1 − ξ). This means 
in practice that the equation for w̃ is no longer considered, as w̃ may be computed from the divergence free condition. 
Moreover, we shall neglect viscous terms for now, ν = 0:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂x (hũ) + ∂ξ (w̃ − ũ∂x (ξh + b)) = 0,

∂t(hũ) + ∂x(hũ2) + gh∂xη − ∂ξ (̃uω) = 0,

ω = ∂t(hξ + b) + ũ∂x(hξ + b) − w̃,

(3)

together with the kinematic conditions

ω|ξ=0 = ω|ξ=1 = 0.

In what follows we shall omit the notation (̃·) and assume directly the dependence on (t, x, ξ). Moreover, using the 
definition of ω, the first equation in (3) is rewritten as

∂th + ∂x(hu) = ∂ξω, (4)

which is integrated for ξ ∈ [0, 1] to get

∂th + ∂x
(
hu
)= 0, where u =

1∫
0

udξ. (5)

In addition, using previous equations (4) and (5), we find an explicit expression, in terms of the spatial derivative, for the 
vertical transference term ω as

ω|ξ =
ξ∫

0

(∂th + ∂x(hu))ds = −ξ∂x
(
hu
)+ ∂x

⎛⎝h

⎛⎝ ξ∫
0

u(s)ds

⎞⎠⎞⎠= ∂x

⎛⎝h

⎛⎝ ξ∫
0

u|ξ=s ds − ξu

⎞⎠⎞⎠ .

Notice that ω is continuous as long as u is an integrable function.
Thus, the σ -coordinate Euler equations (3) may be equivalently written as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂th + ∂x(hu) − ∂ξω = 0,

∂t(hu) + ∂x(hu2) + gh∂xη − ∂ξ (uω) = 0,

ω = ∂x

⎛⎝h

⎛⎝ ξ∫
0

u|ξ=s ds − ξu

⎞⎠⎞⎠ .

(6)

We consider now a vertical partition of the interval [0, 1] into M layers, that is, we consider

0 = L1/2 < · · · < Lα+1/2 < · · · < LM+1/2 = 1,

and define lα = Lα+1/2 − Lα−1/2 ∈ [0, 1], α = 1, . . . , M . Note that it holds then that

Lα+1/2 =
α∑

β=0

lβ, α = 1,2, . . . , M, and LM+1/2 =
M∑

α=1

lα = 1.

We shall define the layer �α as

�α = {(x, ξ) ∈R× [0,1] : Lα−1/2 < ξ < Lα+1/2}, for α = 1, . . . , M.

Let U be a given general variable and consider its polynomial approximation within each layer:

U (t, x, ξ) =
M∑

Uα(t, x, ξ)1�α (ξ), with Uα(t, x, ·) ∈ PN [ξ ],

α=1
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where 1�α (ξ) is the characteristic function in the subdomain �α . Consider now an orthogonal basis of PN [ξ ] in the interval 
[0, 1], consisting of the polynomials

φ j : [0,1] → R, j = 0,1, . . . , N,

and rescale them in the interval [Lα−1/2, Lα+1/2], defining

φ̂α, j(ξ) = φ j

(
ξ − Lα−1/2

lα

)
, ξ ∈ [Lα−1/2, Lα+1/2].

We shall consider here the particular case of the Legendre polynomial basis, although any other choice could be made. 
In particular, the first polynomials of the basis are

φ0(ξ) = 1, φ1(ξ) = 1 − 2ξ, φ2(ξ) = 1 − 6ξ + 6ξ2, φ3(ξ) = 1 − 12ξ + 30ξ2 − 20ξ3.

Notice that these polynomials satisfy

φi(0) = 1, and

1∫
0

φi(ξ)φ j(ξ)dξ = μiδi j,

where δi j is the Kronecker symbol and μi is the square norm of φi in PN [ξ ], which is not necessarily 1 as the basis is 
assumed only to be orthogonal.

For the sake of generality, let us rewrite the system (6) as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂th + ∂x(hu) − ∂ξω = 0, (a)
∂t U + ∂x F (h, U ) + ∂ξ H(h, U ) = S(h, U )∂xη, (b)

ω = ∂x

⎛⎝h

⎛⎝ ξ∫
0

u|ξ=s ds − ξu

⎞⎠⎞⎠ , (c)
(7)

with

U = hu, F (h, U ) = u U , H(h, U ,ω) = −1

h
ω U , S(h, U ) = −gh.

Remark 1. Although in our case it is quite simple, since U = hu, writing the system in the form (7) allows us to consider any 
other generic variable. For instance, in the case of non-hydrostatic pressure it would be interesting to consider U = (hu, hw)t

or in the presence of a passive scalar c(t, x, ξ) transported by the fluid, we would use U = (hu, hc). Therefore, the derivation 
performed in what follows will be as general as possible.

Let us denote by Ûα, j the coordinates of Uα(t, x, ·) in the basis {φ̂α, j} j=0,...,N :

Uα(t, x, ξ) =
N∑

j=0

Ûα, j(t, x)φ̂α, j(ξ), for ξ ∈ [Lα−1/2, Lα+1/2].

More explicitly, in our case we are considering Ûα, j = hûα, j .
We recall that, since the basis is orthogonal, we have

Lα+1/2∫
Lα−1/2

Uαφ̂α, j dξ = lαμ j Ûα, j . (8)

Let us introduce the following definitions, as they will be useful afterwards

Aijk =
1∫

0

φiφ jφkdξ, Bijk =
1∫

0

φ′
i(ξ)

⎛⎝ ξ∫
0

φ j(s)ds

⎞⎠φk(ξ)dξ, Cijk =
1∫

0

φ′
iφ jφkdξ, μ j = A0 j j

Remark 2.

Aij0 = μ jδi j, B0 jk = 0, Bij0 = φi(1)μ0δ j0 − μ jδi j, Cijk = Cikj, C0 jk = 0.
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Moreover, it is easy to show that

Lα+1/2∫
Lα−1/2

φ̂iφ̂ jφ̂kdξ =
Lα+1/2∫

Lα−1/2

(φiφ jφk)

(
ξ − Lα−1/2

lα

)
dξ =

1∫
0

(φiφ jφk)(s) lαds = lα Aijk,

Lα+1/2∫
Lα−1/2

φ̂′
i(ξ)

⎛⎜⎝ ξ∫
Lα−1/2

φ̂ j(s)ds

⎞⎟⎠ φ̂k(ξ)dξ

=
Lα+1/2∫

Lα−1/2

1

lα
φ′

i

(
ξ − Lα−1/2

lα

)⎛⎜⎜⎜⎝lα

ξ−Lα−1/2
lα∫

0

φ j(s)ds

⎞⎟⎟⎟⎠φk

(
ξ − Lα−1/2

lα

)
dξ

= lα

1∫
0

φ′
i(s)

⎛⎝ s∫
0

φ j (z)dz

⎞⎠φk(s)ds = lα Bijk,

and

Lα+1/2∫
Lα−1/2

φ̂′
i φ̂ jφ̂kdξ =

Lα+1/2∫
Lα−1/2

φ′
i

(
ξ − Lα−1/2

lα

)
1

lα
(φ jφk)

(
ξ − Lα−1/2

lα

)
dξ =

1∫
0

(φ′
iφ jφk)(s)ds = Cijk.

In the case of Legendre polynomials, we also have

φ̂ j(Lα−1/2) = φ j(0) = 1, φ̂ j(Lα+1/2) = φ j(1) = (−1) j .

Let us remark that any other polynomial orthogonal basis could be used in principle. In case of changing the basis, then 
the coefficient μi, Aijk, Bijk, Cijk must be accordingly modified.

In order to derive the final model, we first compute the mass conservation equation by integrating (7a). Afterwards we 
shall multiply the momentum equation (7b) by the basis functions φ̂α,i and perform a vertical integration in the layer. The 
integrated mass equation reads

lα∂th + lα∂x
(
hûα,0

)= ωα+1/2 − ωα−1/2, for α = 1, . . . , M, (9)

where we have used that 
∫ 1

0 φ jdξ = δ j0. Summing the previous equations for α = 1, . . . , M , or equivalently integrating the 
mass equation along the vertical domain ξ ∈ [0, 1], we recover equation (5)

∂th + ∂x
(
hu
)= 0, where u =

1∫
0

u dξ =
M∑

β=1

lγ ûβ,0. (10)

Moreover, using the expansion of U , the vertical transference term ω (7c), for ξ ∈ [Lα−1/2, Lα+1/2], can be expressed as

ω =
α−1∑
β=1

∂x

⎛⎜⎝h

Lβ+1/2∫
Lβ−1/2

udξ

⎞⎟⎠+ ∂x

⎛⎜⎝h

ξ∫
Lα−1/2

udξ

⎞⎟⎠− ξ∂x
(
hu
)

= ωα−1/2 + (Lα−1/2 − ξ
)
∂x
(
hu
)+ ∂x

⎛⎜⎝h

ξ∫
Lα−1/2

udξ

⎞⎟⎠
(11)

with

ωα−1/2 =
α−1∑
β=1

lβ ∂x
(
h
(̂
uβ,0 − u

))
.

Let us focus now on the momentum equation (7b), which is multiplied by the basis function φ̂α,i and then integrated 
within each layer. We shall compute each term separately.
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For the time derivative, from (8) we have

Lα+1/2∫
Lα−1/2

∂t U φ̂α,i dξ = lα μi ∂t Ûα,i . (12)

The derivative of the convective flux yields

Lα+1/2∫
Lα−1/2

∂x F (h, U )φ̂α,i dξ =
Lα+1/2∫

Lα−1/2

∂x(u U )φ̂α,i dξ

= ∂x

⎛⎜⎝ Lα+1/2∫
Lα−1/2

N∑
j,k=0

ûα, j Ûα,kφ̂α, jφ̂α,kφ̂α,i dξ

⎞⎟⎠= lα

N∑
j,k=0

Aijk∂x
(̂
uα, j Ûα,k

)
. (13)

The source term gives

Lα+1/2∫
Lα−1/2

S(h, U )∂xη φ̂α,i dξ = −gh δi0 ∂xη. (14)

Finally, the vertical transference term gives:

Lα+1/2∫
Lα−1/2

∂ξ H(h, U ,ω)φ̂α,i dξ = φα,i(1)H |
ξ=L−

α+1/2
− φα,i(0) H |

ξ=L+
α−1/2

−
Lα+1/2∫

Lα−1/2

H(h, U ,ω)φ̂′
α,i dξ. (15)

In the particular case of the Legendre basis, we have φα,i(1) = (−1)i and φα,i(0) = 1. Let us further develop the last integral 
in (15) taking into account (11). Then,

Lα+1/2∫
Lα−1/2

H(h, U ,ω)φ̂′
α,i dξ = −

Lα+1/2∫
Lα−1/2

1

h
ωU φ̂′

α,i dξ

= −ωα−1/2

N∑
j=0

1

h
Ûα, j

Lα+1/2∫
Lα−1/2

φ̂′
α,iφ̂α, j dξ − ∂x

(
hu
) N∑

j=0

1

h
Ûα, j

Lα+1/2∫
Lα−1/2

(
Lα−1/2 − ξ

)
φ̂′

α,iφ̂α, j dξ

−
N∑

j,k=0

1

h
Ûα,k∂x(hûα, j)

Lα+1/2∫
Lα−1/2

φ̂′
α,i

⎛⎜⎝ ξ∫
Lα−1/2

φ̂α, j(s)ds

⎞⎟⎠ φ̂α,k dξ.

Now, taking into account that

Lα+1/2∫
Lα−1/2

(
Lα−1/2 − ξ

)
φ̂′

α,iφ̂α, j dξ = −lα

1∫
0

s φ′
i(s)φ j(s)ds = −lα Bi0 j,

we have

Lα+1/2∫
Lα−1/2

H(h, U ,ω)φ̂′
α,idξ = −ωα−1/2

N∑
j=0

1

h
Ûα, jCi j0 + lα∂x

(
hu
) N∑

j=0

1

h
Ûα, j Bi0 j − lα

N∑
j,k=0

1

h
Ûα,k∂x(hûα, j)Bijk. (16)

Combining (12), (13), (14), (15), and (16), for α = 1, 2, . . . , M and i = 0, 1, . . . , N , together with the mass equation (9), 
we get the final multilayer-moment system
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lα∂th + lα∂x
(
hûα,0

)= ωα+1/2 − ωα−1/2

lαμi∂t Ûα,i + lα

N∑
j,k=0

Aijk∂x
(̂
uα, j Ûα,k

)+ gh δi0 e1 ∂xη

= (−1)i 1

h
(ωU )|

ξ=L−
α+1/2

− 1

h
(ωU )|

ξ=L+
α−1/2

−ωα−1/2

N∑
j=0

1

h
Ûα, jCi j0 + lα∂x

(
hu
) N∑

j=0

1

h
Ûα, j Bi0 j − lα

N∑
j,k=0

1

h
Ûα,k∂x(hûα, j)Bijk,

(17)

for α = 1, . . . , M , where we recall that ω1/2 = ωM+1/2 = 0 and

ω = ωα−1/2 + (Lα−1/2 − ξ
)
∂x
(
hu
)+ ∂x

⎛⎜⎝h

ξ∫
Lα−1/2

udξ

⎞⎟⎠ with ωα−1/2 =
α−1∑
β=1

lβ ∂x
(
h
(̂
uβ,0 − u

))
.

Notice that the mass equation in previous system can be immediately replaced by (10).
Finally, a definition of (ωU )|

ξ=L±
α+1/2

is needed to close the system. Thanks to the continuity of ω we have

(ωU )|
ξ=L±

α+1/2

= ωα+1/2 U |
ξ=L±

α+1/2
= ωα+1/2U±

α+1/2

where here we must understand the limit values at the interfaces as

U−
α+1/2 = lim

ξ→Lα+1/2
ξ<Lα+1/2

U |�α
=

N∑
j=0

Ûα, jφ̂α, j(Lα+1/2) =
N∑

j=0

(−1) j Ûα, j,

U+
α+1/2 = lim

ξ→Lα+1/2
ξ>Lα+1/2

U |�α+1
=

N∑
j=0

Ûα+1, jφ̂α+1, j(Lα+1/2) =
N∑

j=0

Ûα+1, j.

Let us focus now on the particular case U = hu. We may now use a continuity argument at the interface for some 
particular combinations of the variable. This can be seen as an analogous procedure to what is done in [30], where jump 
conditions associated to the weak formulation of the original system are used. The detailed procedures are given in Ap-
pendix A. Then, after some straightforward computations, the term

u−
α+1/2 ωα+1/2 − u+

α−1/2 ωα−1/2

in (15) is replaced by

ũα+1/2 ωα+1/2 − ũα−1/2 ωα−1/2 (18)

where here ũα+1/2 =
(

u+
α+1/2 + u−

α+1/2

)
/2 is a centered approximation unless otherwise is specified (see Appendix A for 

details and in particular equation (A.4)).
Therefore, the final multilayer-moment system reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lα∂th + lα∂x
(
hûα,0

)= ωα+1/2 − ωα−1/2

lαμi∂t
(
hûα,i

)+ lα

N∑
j,k=0

Aijk∂x
(
hûα, j ûα,k

)+ gh δi0 e1 ∂xη

= (−1)i ũα+1/2ωα+1/2 − ũα−1/2ωα−1/2

−ωα−1/2

N∑
j=0

ûα, jCi j0 + lα∂x
(
hu
) N∑

j=0

ûα, j Bi0 j − lα

N∑
j,k=0

ûα,k∂x(hûα, j)Bijk,

for α = 1, . . . , M .
In the most general case presented previously, we do not deal with viscous terms since they involve some essential 

and technical difficulties. Namely, derivatives in the stress tensor component when accounting for the discontinuities of the 
velocity profile at the internal interfaces have to be correctly defined. Moreover, when considering the case M > 1, N > 0
in the multilayer system with viscous terms, a usual discretization of such viscous terms does not ensure the convergence 
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of the system to the correct solution, and some techniques must be applied to overcome this problem (see e.g. [20,2]). 
All these difficulties are out of the scope of this paper, and it is currently a work in progress that will be studied in a 
forthcoming article. Nevertheless, this task is easier in some particular cases already introduced in the literature: see for 
instance the case of the usual multilayer (zero-moment case) and moment (one-layer case) models, which will be presented 
later.

Note that the previous system allows us to obtain a method that is expected to be (N +1)th order accurate in the vertical 
direction. Then, combining it with a high-order (horizontal) spatial reconstruction scheme (e.g. based on WENO operators) 
and a high order time integrator (e.g. Runge-Kutta), the resulting method is expected to be globally high-order.

Remark 3. Written in compact form, system (17) is equivalent to

Lα+1/2∫
Lα−1/2

∂t U φ̂α,idξ +
Lα+1/2∫

Lα−1/2

∂x F (h, U )φ̂α,idξ −
Lα+1/2∫

Lα−1/2

S(h, U )∂xη φ̂α,idξ

+ φα,i(1)H |
ξ=L−

α+1/2
− φα,i(0) H |

ξ=L+
α−1/2

−
Lα+1/2∫

Lα−1/2

H(h, U ,ω)φ̂′
α,idξ = 0.

This may be seen as a semi-discrete vertical discretization of (7) in the framework of the Discontinuous Galerkin (DG) 
methods. Note that the Legendre polynomials basis has largely been used in similar contexts, although one can find other 
different choices (see [52,40,22,23,44,53,43,41,12,7,33,42]). It is worth mentioning that, while the regular integrals are nu-
merically approximated in other works (see for instance [24,37,26]), here we are computing those integrals exactly.

3.1. Particular cases

Let us consider now some particular cases of interest for (17). Concretely, we shall see that the proposed discretization 
gives the multilayer [30] and moment [45] models for particular choices of M and N , including the classical shallow water 
system. Finally, a new model is proposed, where the horizontal velocity is assumed to be linear within each vertical layer.

Shallow water system
The easiest case is when we only have a single layer (M = 1) and we use as polynomial approximation the constants 

(N = 0). Then, from system (17) we get

∂th + ∂x
(
hû1,0

)= ω|ξ=1 − ω|ξ=0 ,

and

∂t Û1,0 + ∂x
(̂
u1,0Û1,0

)+ gh∂xη = 1

h
(ωU )|ξ=1

− 1

h
(ωU )|ξ=0

− ω|ξ=0

1

h
Û1,0C000 + ∂x

(
hu
) 1

h
Û1,0 B000 − 1

h
Û1,0∂x(hû1,0)B000.

Now using the fact that B0 jk = 0, C0 jk = 0, ω|ξ=1 = ω|ξ=0 = 0 and

Û1,0 =
1∫

0

Udξ = U = hu,

then (17) gives us the classical shallow water system

⎧⎨⎩
∂th + ∂x

(
hu
)= 0,

∂t
(
hu
)+ ∂x

(
hu2
)

+ gh∂xη = 0.
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Multilayer zero-moment case: multilayer constant system
We may consider now the case of M layers and constant polynomial approximation N = 0. In this case:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

lα∂th + lα∂x
(
hûα,0

)= ωα+1/2 − ωα−1/2

lα∂t Ûα,0 + lα∂x
(̂
uα,0Ûα,0

)+ gh ∂xη = 1

h
(ωU )|

ξ=L−
α+1/2

− 1

h
(ωU )|

ξ=L+
α−1/2

−ωα−1/2
1

h
Ûα,0C000 + lα∂x

(
hu
) 1

h
Ûα,0 B000 − lα

1

h
Ûα,0∂x(hûα,0)B000.

Taking into account now that B0 jk = C0 jk = 0, denoting the average within the layer by

Ûα,0 = hûα,0 = huα,

and noticing that the definition of ωα±1/2 coincides with the transference term through the layer interfaces in [30], i.e.,

ωα+1/2 =
α∑

β=1

∂x
(
h
(
uβ − u

))
, with u =

M∑
γ =1

lγ uγ ,

with ω1/2 = ωM+1/2 = 0, system (17) reduces to the multilayer system in [6,30]⎧⎨⎩
lα (∂th + ∂x (huα)) = ωα+1/2 − ωα−1/2,

lα
(
∂t (huα) + ∂x

(
hu2

α

) + gh∂x (b + h)
)= ũα+1/2ωα+1/2 − ũα−1/2ωα−1/2,

(19)

for α = 1, . . . , M , where we consider here

ũα+1/2 = u−
α+1/2 + u+

α+1/2

2
= uα + uα+1

2
unless otherwise stated (see Appendix A).

It is remarkable the fact that the derivation of multilayer models in this framework is simpler than the usual one, since 
the intermediate interfaces Lα+1/2 depend no more on x, which simplifies the integration procedure.

Although the focus here is on Euler equations, it will be of interest including viscous or friction effects for some simula-
tions. Therefore, for the sake of completeness, Appendix A.2 gives the main ideas on how these terms are included for the 
multilayer system.

Remark 4. In view of what has been said in Remark 3, the multilayer system [6,30] corresponds to a semi-discrete vertical 
discretization in the DG framework, where the polynomial space corresponds to constant functions, u|�α

∈P0[ξ ].

Shallow water moment model
We now consider the case of one layer (M = 1) and arbitrary N , we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂th + ∂x
(
hû1,0

)= ω|ξ=1 − ω|ξ=0 ,

μi∂t Û1,i +
N∑

j,k=0

Aijk∂x
(̂
u1, j Û1,k

)+ gh δi0 ∂xη

= (−1)i 1

h
(ωU )|ξ=1 − 1

h
(ωU )|ξ=0

−ω|ξ=0

N∑
j=0

1

h
Û1, jCi j0 + ∂x

(
hu
) N∑

j=0

1

h
Û1, j Bi0 j −

N∑
j,k=0

1

h
Û1,k∂x(hû1, j)Bijk.

Now we use again that B0 jk = 0, C0 jk = 0, ω|ξ=0 = ω|ξ=1 = 0, the identity A0 jk = μ jδ jk = δ jk

2 j + 1
, and

Û1,0 =
1∫

0

Udξ = hû1,0 = hu.

Let us slightly simplify the notation by removing the subscript of the single layer, setting then

Û1,i = hû1,i = hûi,
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the mass equation and the momentum for i = 0 takes the form

∂th + ∂x
(
hu
)= 0

∂t (hû0) +
N∑

j=0

∂x

(
û2

j

2 j + 1

)
+ gh ∂xη = 0.

For i > 0, we get

μi∂t (hûi) + μi∂x (2hû0ûi) +
N∑

j,k=1

Aijk∂x
(
hû j ûk

)= ∂x (hû0)

N∑
j=0

û j Bi0 j −
N∑

j,k=0

ûk∂x(hû j)Bijk.

We look now the term on the right hand side,

∂x (hû0)

N∑
j=0

û j Bi0 j −
N∑

j,k=0

ûk∂x(hû j)Bijk

= ∂x (hû0)

N∑
j=0

û j Bi0 j −
N∑

k=0

ûk∂x(hû0)Bi0k −
N∑

j=1

û0∂x(hû j)Bij0 −
N∑

j,k=1

ûk∂x(hû j)Bijk

= −
N∑

j=1

û0∂x(hû j)Bij0 −
N∑

j,k=1

ûk∂x(hû j)Bijk = μi û0∂x(hûi) −
N∑

j,k=1

ûk∂x(hû j)Bijk,

where the identity Bij0 = φi(1)μ0δ j0 − μ jδi j for i > 0 has been used. Thus, we obtain the usual writing of the inviscid 
shallow water moment model [45] with i = 1, . . . , N:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂th + ∂x (hû0) = 0,

∂t (hû0) + ∂x

⎛⎝hû2
0 + h

N∑
j=1

û2
j

2 j + 1

⎞⎠+ gh ∂xη = 0,

∂t (hûi) + ∂x

⎛⎝2hû0ûi + h
1

μi

N∑
j,k=1

Aijkû j ûk

⎞⎠= û0∂x(hûi) − 1

μi

N∑
j,k=1

Bijkûk∂x(hû j).

(20)

Remark 5. In view of what has been said in Remark 3, the moment model [45] corresponds to a semi-discrete vertical 
discretization with a single element on the vertical direction, and the polynomial space corresponds to the Legendre poly-
nomial basis of degree N , u ∈PN [ξ ].

As in the multilayer case, we are going to perform some numerical tests involving viscous effects. Therefore, we give the 
details on how these terms are included in the moment model in Appendix B.

Multilayer first-moment case: multilayer linear system
From a practical point of view, and due to the complexity of the general system (17) from the numerical and implemen-

tation points of view, we will limit ourselves to the case M layers and N = 1, that is, a first order expansion of Uα(t, x, ·)
inside of each vertical layer. The resulting model is a multilayer model where the velocity is linear on ξ at each layer:

U (t, x, ξ) =
N∑

α=1

Uα(t, x, ξ)1�α (ξ), and Uα(t, x, ξ) = Ûα,0(t, x) + Ûα,1(t, x)φ̂α,1 (ξ) .

In this case, the coefficients appearing in the system are

A0 jk = μ jδ jk, A100 = A111 = 0, A110 = A101 = μ1 = 1

3
,

C0i j = B0i j = 0, C100 = −2, C110 = 0,

B100 = −1, B101 = μ1, B110 = −μ1, B111 = 0,

and the moment equation for i = 1 is
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lαμ1∂t Ûα,1 + lαμ1∂x
(̂
uα,0Ûα,1 + ûα,1Ûα,0

)= −1

h
(ωU )|

ξ=L−
α+1/2

− 1

h
(ωU )|

ξ=L+
α−1/2

−ωα−1/2
1

h
Ûα,0(−2) + lα∂x

(
hu
) 1

h

(
Ûα,0(−1) + Ûα,1μ1

)
−lα

1

h

(
Ûα,0(−1) + Ûα,1μ1

)
∂x(hûα,0) − lα

1

h
Ûα,0 (−μ1) ∂x(hûα,1).

Let us rewrite the term involving coefficient B1i j, C1i j as

lαμ1
1

h
Ûα,0∂x(hûα,1) + 2ωα−1/2

1

h
Ûα,0 + 1

h

(
Ûα,0 − μ1Ûα,1

) (
ωα+1/2 − ωα−1/2

)
= lαμ1

1

h
Ûα,0∂x(hûα,1) + 1

h

(
Ûα,0 − μ1Ûα,1

)
ωα+1/2 + 1

h

(
Ûα,0 + μ1Ûα,1

)
ωα−1/2.

Then, the final system, for α = 1, . . . , M , reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lα∂th + lα∂x
(
hûα,0

)= ωα+1/2 − ωα−1/2,

lα∂t Ûα,0 + lα∂x
(̂
uα,0Ûα,0 + μ1ûα,1Ûα,1

)+ gh∂xη = 1

h
(ωU )|

ξ=L−
α+1/2

− 1

h
(ωU )|

ξ=L+
α−1/2

,

lαμ1∂t Ûα,1 + lαμ1∂x
(̂
uα,0Ûα,1 + ûα,1Ûα,0

)= −1

h
(ωU )|

ξ=L−
α+1/2

− 1

h
(ωU )|

ξ=L+
α−1/2

+lαμ1
1

h
Ûα,0∂x(hûα,1) + 1

h

(
Ûα,0 − μ1Ûα,1

)
ωα+1/2 + 1

h

(
Ûα,0 + μ1Ûα,1

)
ωα−1/2.

Finally, let us set the system involving just the horizontal velocity, and the mass equation obtained when summing all 
the layers⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂th + lα∂x

(
h

M∑
α=1

ûα,0

)
= 0,

lα∂t
(
hûα,0

)+ lα∂x

(
hû2

α,0 + hû2
α,1

3

)
+ gh∂xη = ωα+1/2ũα+1/2 − ωα−1/2ũα−1/2,

lαμ1∂t
(
hûα,1

)+ lαμ1∂x
(
2hûα,0ûα,1

)= −ωα+1/2ũα+1/2 − ωα−1/2ũα−1/2

+lαμ1ûα,0∂x(hûα,1) + (̂uα,0 − μ1ûα,1
)
ωα+1/2 + (̂uα,0 + μ1ûα,1

)
ωα−1/2,

(21)

for α = 1, . . . , M , where

ũα+1/2 = u−
α+1/2 + u+

α+1/2

2
= ûα,0 + ûα+1,0

2
+ ûα+1,1 − ûα,1

2
unless otherwise stated (see Appendix A).

Remark 6. One should note that a loss of hyperbolicity could arise in certain situations, although we have not found dif-
ficulties in this sense for the practical applications shown here. Indeed, it is a known fact that the shallow water (one 
layer M = 1) moment system is hyperbolic for the first-order case (N = 1), but the same does not hold for the case N > 1. 
This fact is studied in [42], where authors introduced two alternative families of hyperbolic shallow water moment models, 
denoted there as Hyperbolic Shallow Water Moment and β-Hyperbolic Shallow Water Moment. They correspond to small 
modifications of the non-conservative terms in the original Shallow Water Moment system.

Moreover, in the case of multilayer system (N = 0), the hyperbolicity of multilayer systems is only proven for the two-
layer case (see [6]). In contrast, a linearization process was performed in [31] which concluded that hyperbolicity may be 
lost when there is a big difference between layer velocities and the global average velocity.

Therefore one expects that hyperbolicity may be lost in the general case of multilayer moment model system.

4. Numerical results

We present in this section some numerical tests showing an interesting comparison between multilayer and moment 
models. Firstly we perform a simple test including viscosity and friction force to have diversity in the velocity profiles. Next, 
some more tests in the inviscid case are performed to include also the results of the first order multilayer-moment model 
derived in Subsection 3.1.
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In the next subsections, we perform two families of tests. First, subsections 4.1 and 4.2 aim to give a comparison between 
usual multilayer (A.5) and moment models (B.1) commonly used, in particular in the viscous case to obtain a natural 
vertical structure. Concerning the numerical scheme, we have carried out the simulation using a standard first order path-
conservative HLL finite volume scheme as described in [15]. Let us remark that when viscous terms are included in the 
standard multilayer and moment models, a semi-implicit discretization is used (see, e.g. [28] and [33] for the multilayer 
and moment systems, respectively) in order to avoid any restrictive time-step condition.

Second, subsections 4.3 and 4.4 show the convergence of the multilayer models with constant (zero-moment) (19) and 
linear (first-moment) (21) horizontal velocity to stationary solutions of hydrostatic Euler equations, as well as an accuracy 
test. For those tests, we consider a second order path-conservative HLL scheme based on a MUSCL reconstruction [14].

In order to construct the HLL scheme, we follow [15] with the following minimum (λ1) and maximum (λ2) wave speeds:

• Shallow water moment model:

λ1 = û0 −
√

gh + û2
1, λ2 = û0 +

√
gh + û2

1.

• Multilayer constant system:

λ1 = u −√gh, λ2 = u +√gh.

• Multilayer linear system:

λ1 = u −
√

gh + u2
1, λ2 = u +

√
gh + u2

1,

with

u =
M∑

α=1

lα ûα,0 and u1 =
M∑

α=1

lα ûα,1.

Remark that, although the hyperbolicity of the systems is not proven as explained in Remark 6, we do not find any practical 
problem related to this aspect in the presented numerical tests. Remark also that there are no wet/dry areas in the consid-
ered tests. In such a case, any of the standard techniques dealing with this problem (see [13,46,25,51] among many others) 
could be applied.

Let us mention that one could make this method more efficient by using some strategies as the ones developed for 
multilayer and DG discretizations. In particular, a locally variable (in the spacial direction) number of vertical layers (see e.g. 
[31]) and/or polynomial degree for the moment description (see e.g. [1]) could be used. Moreover, both strategies could be 
employed at the same time to construct efficient and flexible methods, especially for realistic applications. However, this is 
out of the scope of this paper.

4.1. Multilayer and moment model in subcritical viscous flow

Here we compare the results of the standard multilayer and moment models in a viscous subcritical flow. The viscous 
and friction forces generate complex and different velocity profiles along the domain, from almost constant to parabolic 
profiles and recirculations in the flow. This test aims to show how multilayer and moment models reproduce these profiles 
and explore each approach’s limitations and advantages/disadvantages. To this aim, we consider as a reference solution the 
one obtained with a very fine discretization computed by the multilayer model with 640 vertical layers.

We consider a classical subcritical test in a domain x ∈ [−25, 25], where the initial free surface and discharge are η(x) =
5 m and q(x) = 4.42 m2/s respectively, and the bottom is

b(x) =
{

0.05 − 0.001x + 2 cos2
(πx

10

)
m if |x| < 5,

0.05 − 0.001x m otherwise.

We use 200 point in the horizontal discretization, with CFL = 0.8, and subcritical boundary conditions (inlet discharge qin =
4.42 m2/s and outlet free surface ηout = 5 m). The final time is t f = 1000 s. We show the results for a low (ν = 0.001 m2/s) 
and high kinematic viscosity (ν = 1 m2/s) case, with strong friction ε = 100ν . For each case we show the approximation of 
the free surface and the errors made by the moment and the multilayer approaches. To this aim, we shall measure relative 
errors as follows:

Consider an horizontal discretization of the domain I = [a, b] by means of Nx volumes of constant size �x = b − a

Nx
,

Ii = [xi−1/2, xi+1/2], for i = 1,2, . . . , Nx,

where x1/2 = a, and xi+1/2 = xi−1/2 + �x for i = 1, 2, . . . , Nx . We will denote as well xi = xi−1/2 + xi+1/2

2
the center of the 

cell Ii .
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Fig. 1. Steady state solution for low (ν = 0.001 m2/s, upper figure) and high (ν = 1 m2/s, lower figure) viscosity cases. Blue lines correspond to the vertical 
profiles of velocity at locations x = −22.5, −15, −5, −2.5, 0, 2.5, 5, 15, 22.5 m. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

Consider as well a vertical partition of the interval [0, 1] into M layers

0 = L1/2 < · · · < Lα+1/2 < · · · < LM+1/2 = 1.

For any generic variable v denote by vα,i the approximation obtained for v in the cell i and layer α. Then we shall 
denote by

‖v‖2 =
√√√√�x

Nx∑
i=1

hi

M

M∑
α=1

v2
α,i, and ‖v‖∞ = max

α=1,...,M
i=1,...,Nx

∣∣vα,i
∣∣ .

Remark that in the particular case that v does not depend on the vertical variable ξ , then we simply consider vα,i ≡ vi

for α = 1, . . . , M . We then compute the relative errors by

Errp[v] = ‖v − ṽref ‖p

‖̃vref ‖p
, for p = 2,∞,

where ṽref is a given reference solution.
We will be interested as well in computing the errors in the vertical direction for a given cell Ii , so that we denote by

‖v‖Ii ,2 =
√√√√ hi

M

M∑
α=1

v2
α,i, and ‖v‖Ii ,∞ = max

α=1,...,M

∣∣vα,i
∣∣ ,

and we compute the relative errors

Errz
p[v, xi] = ‖v − ṽref ‖Ii ,p

‖̃vref ‖Ii ,p
, for p = 2,∞.

Here, the solution of the multilayer model, obtained with 700 nodes and 640 vertical layers, will be considered as the 
reference solution. Then, when computing the errors, ṽref should be understood as the projection of the reference solution 
onto the space of the local solution v . For the case of moment models, the vertical velocity profile is computed, and its 
value at the center of the corresponding layer is obtained for the errors.

In Fig. 1 we see the steady state solution reached by both approaches for the free surface at the final time for both 
considered values of the viscosity, together with vertical profiles of the velocity at some particular locations. On the one 
249



J. Garres-Díaz, C. Escalante, T. Morales de Luna et al. Applied Numerical Mathematics 183 (2023) 236–262
Fig. 2. Free surface approximation with moment and multilayer models for the low viscosity case.

Fig. 3. Free surface approximation with moment and multilayer models for the high viscosity case.

hand, in the low viscosity case (upper figure) and for the first half of the domain, the velocity profile is almost a straight 
profile except near the bottom, where the velocity is smaller due to the friction force. However, the velocity profile is more 
complex after the bump, and we find recirculation areas (change on the sign of the velocity along the vertical direction) 
near the bottom. On the other hand, for the high viscosity case (lower figure), the velocity follows a parabolic profile along 
the whole domain.

Figs. 2 and 3 show the free surface computed with both the multilayer and moment approach, and Tables 1 and 2
show the relative errors made on the free surface, averaged velocity and the full velocity field, measured with respect to 
the reference solution. In Fig. 2 we see the convergence to the reference solution in the multilayer case. In the case of 
moment models, although the convergence towards the reference solution is not fully obtained for N = 5, especially in the 
left region. That is due to the fact that the vertical profiles of velocity are straight lines almost everywhere in the vertical 
direction, and moment models do not properly reproduce these profiles, as we discuss later. Nevertheless, we see that the 
errors made by the moment models are of the same order of magnitude as the multilayer models. Actually, we see that the 
errors made by the multilayer model with 20 layers and the 2nd order moment model are similar, while the computational 
cost for the former is much bigger than for the latter. Moreover, to improve the 5th order moment model results, we need 
to use 80 layers in the multilayer system. The computational effort for both approaches is shown in Fig. 4, where we see 
that moment models are cheaper than multilayer models from the computational point of view.

Fig. 3 and Table 2 show the results for the high viscosity case, where the vertical profile of velocity is approximately a 
parabolic profile along the whole domain. Looking at Fig. 3, we observe that there is convergence to the reference solution 
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Table 1
Relative errors in the low viscosity case made on the free surface (η), averaged velocity (u) and the velocity field 
(u = u(x, z)) by the multilayer models (M layers) and the moment models (order N).

Err2 [η] Err2 [u] Err2 [u] Err∞ [η] Err∞ [u] Err∞ [u]

M Multilayer (M layers)

5 8.57 ×10−3 1.04 ×10−2 2.63 ×10−1 1.39 ×10−2 1.94 ×10−2 5.24 ×10−1

10 4.58 ×10−3 5.65 ×10−3 1.81 ×10−1 7.61 ×10−3 1.04 ×10−2 4.40 ×10−1

20 2.44 ×10−3 3.05 ×10−3 1.07 ×10−1 4.01 ×10−3 5.51 ×10−3 3.42 ×10−1

40 1.13 ×10−3 1.46 ×10−3 5.27 ×10−2 1.86 ×10−3 2.58 ×10−3 2.03 ×10−1

80 5.17 ×10−4 6.89 ×10−4 2.45 ×10−2 8.47 ×10−4 1.20 ×10−3 1.08 ×10−1

160 2.22 ×10−4 3.07 ×10−4 1.06 ×10−2 3.63 ×10−4 5.34 ×10−4 5.60 ×10−2

320 7.44 ×10−5 1.06 ×10−4 3.54 ×10−3 1.21 ×10−4 1.83 ×10−4 2.27 ×10−2

N Moment (order N)

1 2.65 ×10−3 2.93 ×10−3 2.09 ×10−1 5.88 ×10−3 3.63 ×10−3 4.38 ×10−1

2 2.10 ×10−3 2.86 ×10−3 1.62 ×10−1 6.90 ×10−3 7.33 ×10−3 4.14 ×10−1

3 1.04 ×10−3 1.66 ×10−3 1.18 ×10−1 3.66 ×10−3 4.84 ×10−3 3.64 ×10−1

4 1.15 ×10−3 1.45 ×10−3 8.11 ×10−2 2.09 ×10−3 2.60 ×10−3 2.77 ×10−1

5 9.63 ×10−4 1.23 ×10−3 5.42 ×10−2 1.61 ×10−3 2.19 ×10−3 1.94 ×10−1

Table 2
Relative errors in the high viscosity case made on the free surface (η), averaged velocity (u) and the velocity field 
(u = u(x, z)) by the multilayer models (M layers) and the moment models (order N).

Err2 [η] Err2 [u] Err2 [u] Err∞ [η] Err∞ [u] Err∞ [u]

M Multilayer (M layers)

5 1.83 ×10−2 3.79 ×10−2 1.23 ×10−1 3.19 ×10−2 4.63 ×10−2 1.85 ×10−1

10 8.13 ×10−3 1.81 ×10−2 5.62 ×10−2 1.42 ×10−2 2.19 ×10−2 1.30 ×10−1

20 3.82 ×10−3 8.50 ×10−3 2.65 ×10−2 6.63 ×10−3 1.04 ×10−2 8.79 ×10−2

40 1.81 ×10−3 3.95 ×10−3 1.25 ×10−2 3.14 ×10−3 4.83 ×10−3 5.16 ×10−2

80 8.40 ×10−4 1.79 ×10−3 5.79 ×10−3 1.45 ×10−3 2.20 ×10−3 2.68 ×10−2

160 3.58 ×10−4 7.56 ×10−4 2.47 ×10−3 6.18 ×10−4 9.32 ×10−4 1.22 ×10−2

320 1.19 ×10−4 2.50 ×10−4 8.21 ×10−4 2.06 ×10−4 3.08 ×10−4 4.18 ×10−3

N Moment (order N)

1 1.49 ×10−2 3.98 ×10−2 1.49 ×10−1 2.76 ×10−2 4.72 ×10−2 2.81 ×10−1

2 1.05 ×10−3 9.67 ×10−3 2.30 ×10−2 2.57 ×10−3 1.31 ×10−2 1.14 ×10−1

3 4.27 ×10−4 4.26 ×10−3 8.28 ×10−3 1.16 ×10−3 5.62 ×10−3 7.77 ×10−2

4 2.54 ×10−4 1.79 ×10−3 3.98 ×10−3 6.24 ×10−4 2.34 ×10−3 4.87 ×10−2

5 1.79 ×10−4 6.65 ×10−4 2.12 ×10−3 3.74 ×10−4 8.60 ×10−4 2.83 ×10−2

Fig. 4. Wall-clock time compared to L2 errors on the velocity field, in log scale, for multilayer and moment models.

for free surface. It can be stated that the errors for the moment models appearing in Table 2 are smaller than in the 
previous case, in particular for the velocity field. That is due to the better approximation of the velocity profile along the 
domain since they are close to a parabolic profile, which is well approximated by polynomials and, therefore, by the moment 
approach. Note that in this case, the 3rd order moment model improves the results of the multilayer model with 40 layers, 
and the 5th order moment model produces smaller errors than the multilayer model with 160 layers.

That is an interesting result since the computational time increases fast with the number of layers. This can be seen in 
Table 3, where we show the ratios between the elapsed times for the multilayer models and the 3rd, 4th and 5th order 
moment models, obtained when simulating up to the final time t f = 1000 s. We see for instance that the 5th order moment 
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Table 3
Ratio between the wall-clock time needed by the multilayer models with M layers (tmulti(M)) and the 3rd, 4th 
and 5th order moment models (tmoment(3rd), tmoment(4th), tmoment(5th)).

M = 5 M = 10 M = 20 M = 40 M = 80 M = 160 M = 320

tmulti(M)/tmoment(5th) 3.5 6.0 11.6 25.1 62.1 177.2 562.9
tmulti(M)/tmoment(4th) 4.5 7.8 15.1 32.8 81.2 231.5 735.3
tmulti(M)/tmoment(3rd) 5.7 9.8 19.1 41.3 102.2 291.3 925.4

Fig. 5. Vertical profiles of velocity computed with the multilayer (upper figures) and moment (lower figures) models. Left hand side and center figures 
correspond to the low viscosity case whereas right hand side figures correspond to the high viscosity case.

model is 6 times faster when compared to the multilayer model with 10 layers and 25 times faster when using 40 vertical 
layers. This ratio increases to up to 62 if we double to 80 the number of layers.

In Fig. 4 we see the comparison of the wall-clock time with the L2 relative errors on the velocity. We choose the error 
on the velocity field because it is the variable for which the errors are the largest. In the low viscosity case, we see that the 
5th order moment model is comparable to the multilayer with 40 layers and better than the multilayer with 160 layers, in 
the sense that these errors are lower.

Let us now focus on the different profiles of velocity that we observe in these cases and how multilayer and moment 
models approximate them. We obtain three kinds of profiles depending on the magnitude of vertical effects. First, in the 
low viscosity case, we obtain a straight profile for a wide zone of the vertical domain (left-hand side plots in Fig. 5), and 
the velocity decreases close to the bottom because of the friction force. The low order moment models badly approximate 
this kind of profiles as it is difficult to fit them with a first or second order polynomial, due to the lack of sufficient vertical 
resolution. If we increase the order of the moment model, then we observe the oscillating intrinsic nature of polynomials. 
This fact is in particular observed for the fifth order moment model in the left bottom picture in Fig. 5. By increasing 
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Table 4
Relative errors made on the vertical profile of velocity for three different profiles: quasi-straight (x = −5, ν =
10−3 m2/s), profile with recirculation (x = 5, ν = 10−3 m2/s) and parabolic (x = 0, ν = 1 m2/s) profile. Results 
are shown for the multilayer (M layers) and the moment models (order N).

Errz
2 [u,−5] Errz

2 [u,5] Errz
2 [u,0] Errz∞ [u,−5] Errz∞[u,5] Errz∞ [u,0]

(ν = 10−3) (ν = 10−3) (ν = 1) (ν = 10−3) (ν = 10−3) (ν = 1)

M Multilayer (M layers)

5 2.22 ×10−1 3.51 ×10−1 1.25 ×10−1 4.40 ×10−1 3.80 ×10−1 1.83 ×10−1

10 1.33 ×10−1 2.25 ×10−1 5.66 ×10−2 3.83 ×10−1 2.67 ×10−1 9.40 ×10−2

20 6.70 ×10−2 1.29 ×10−1 2.67 ×10−2 2.61 ×10−1 1.56 ×10−1 4.72 ×10−2

40 3.24 ×10−2 6.33 ×10−2 1.26 ×10−2 1.60 ×10−1 7.81 ×10−2 2.31 ×10−2

80 1.49 ×10−2 2.94 ×10−2 5.84 ×10−3 8.69 ×10−2 3.66 ×10−2 1.08 ×10−2

160 6.26 ×10−3 1.27 ×10−2 2.49 ×10−3 4.02 ×10−2 1.59 ×10−2 4.65 ×10−3

320 2.06 ×10−3 4.28 ×10−3 8.28 ×10−4 1.39 ×10−2 5.37 ×10−3 1.55 ×10−3

N Moment (order N)

1 2.51 ×10−1 2.31 ×10−1 1.57 ×10−1 4.39 ×10−1 3.84 ×10−1 2.77 ×10−1

2 1.89 ×10−1 1.48 ×10−1 1.03 ×10−2 4.06 ×10−1 2.97 ×10−1 1.34 ×10−2

3 1.22 ×10−1 9.66 ×10−2 5.00 ×10−3 3.15 ×10−1 1.42 ×10−1 5.98 ×10−3

4 7.49 ×10−2 6.95 ×10−2 2.28 ×10−3 2.14 ×10−1 1.04 ×10−1 2.69 ×10−3

5 4.34 ×10−2 4.79 ×10−2 1.25 ×10−3 1.27 ×10−1 7.26 ×10−2 1.50 ×10−3

the order of the moment model N , the profiles are nearer to the reference solution. Nevertheless, the oscillations are still 
present. Secondly, we see a profile of velocity corresponding to recirculation of the flow (central plots in Fig. 5). These 
profiles are well reproduced by high order moment models (N = 4, 5), whereas low order models (N < 4) fail. Remark that 
the multilayer model needs more than 10 layers to reproduce this effect. Finally, we observe parabolic profiles (right hand 
side plots in Fig. 5). As expected, these profiles are efficiently and properly reproduced by moment models for order N > 1. 
We also see the convergence to the reference solution in all these profiles.

Table 4 shows the errors with respect the reference solution for these three profiles. We see that for the parabolic profile 
(x = 0), the moment model with N > 1 gives better results than multilayer models. The errors are larger for the other 
profiles (x = −5 or x = 5), but higher moments give good results, only comparable to using many layers in the multilayer 
case.

In conclusion, if the vertical profile of velocity is close to a polynomial, the moment approach allows us to obtain 
good results with less computational effort than the multilayer model, which needs many layers. However, if one needs to 
reproduce cases with large areas where a straight profile is found, the moment approach will oscillate due to its polynomial 
nature. That is eventually a limitation of the usual formulation of moment models. In this case, the multilayer model may 
be more appropriate, although a sufficiently large number of layers would still be needed.

4.2. Comparison of multilayer and moment models with Navier-Stokes

Let us now consider a numerical test included in [30] (Section 5.2) where a qualitative comparison with a Navier-
Stokes solver in a simplified configuration is performed. Concretely, the test is described in [30] as follows. They carried 
out a simulation with the multilayer model, and the obtained stationary free surface is imposed as the fluid domain in 
the FreeFem++ solver [39] to solve the pressure and velocity fields. The authors checked that the simulation was in the 
hydrostatic framework, and they compared the obtained velocity profiles with both the multilayer method and FreeFem++. 
A reasonable agreement between the obtained profiles was found, where the differences are most undoubtedly due to how 
boundary conditions are imposed in the finite element solver and the multilayer model with a finite volume method.

To compare with the multilayer and moment models, we consider a fluid domain [0, 3] discretized with 200 nodes and 
C F L = 0.8. In these simulations, a non-slip condition was used in the FreeFem++ code, so we consider here a large enough 
friction coefficient to reproduce this boundary condition. In practice, after a convergence analysis in ε , we use ε = 106. For 
the viscosity, two values are considered, ν = 5 × 10−4 and ν = 10−3 m2/s.

We write here the initial and boundary conditions: the flow is initially at rest, and the initial bottom and free surface 
are given by

b0(x) =
⎧⎨⎩ 0 if x ≤ 1,

0.5 (x − 1) if 1 ≤ x ≤ 2,

0.5 if x ≥ 2,

b0(x) + h0(x) = 1 m at t = 0 s,

and subcritical boundary conditions are imposed:

q(0, t) = 2z

h
m2/s at x = 0 m; h(3, t) + b(3) = 1.2 m at x = 3 m.

Fig. 6 shows the fluid domain with the stationary free surface, once it has been reached, where we focus on the velocity 
profiles at locations x = 1.26 and 1.74 m. We obtain the velocity profiles in these two points and compare them with the 
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Fig. 6. Fluid domain with velocity profiles at x = 1.26, 1.74 m for the case ν = 10−3 m2/s.

Fig. 7. Convergence of vertical profiles of velocity computed with the multilayer (left figures) and moment (right figures) models at locations x = 1.26, 1.74
m.

Fig. 8. Vertical profiles of velocity computed with the multilayer (M = 80) and moment (N = 5) models (lines) and the FreeFem++ solution (symbols) at 
locations x = 1.26, 1.74, for two values of the viscosity ν = 10−3 (left figures) and ν = 5 × 10−4 m2/s (right figures).

corresponding finite element solution. First, we show the convergence of the velocity profiles for both the multilayer and 
moment approach to a reference solution computed with a large number of layers (see Fig. 7), in the case ν = 10−3. We 
see that the velocity profiles in these points exhibit a parabolic shape near the bottom due to the friction force, and then 
they become a linear profile. As expected, both approaches reproduce well these profiles, although we see the oscillatory 
character of the moment approach, especially in the straight part of the vertical profile. The same behavior is observed 
when comparing with the FreeFem++ solutions for ν = 10−3, 5 × 10−4 m2/s (see Fig. 8). We see that the obtained profiles 
are in good agreement with the finite volume solution, in concordance with [30]. Similarly to what was said in that work, 
we conclude that the observed differences are most surely due to the way of imposing boundary conditions in both solvers, 
and also the rest of the characteristics of both solvers (mainly, non-hydrostatic pressure and stationary with the fixed free 
surface approach of the performed FreeFem++ simulation in [30]).
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4.3. Numerical convergence for stationary analytical solutions of the free-surface hydrostatic Euler equations

We focus now on comparing the usual multilayer model (19) and the one introduced here with a layerwise linear 
velocity (21). We consider two discretizations for the velocity at the vertical interfaces (see Appendix A), a centered (C) 
definition

ũα+1/2 = u+
α+1/2 + u−

α+1/2

2
,

and an upwind (U) definition

ũα+1/2 = u+
α+1/2 + u−

α+1/2

2
− sign

(−ωα+1/2
)

2

(
u+

α+1/2 − u−
α+1/2

)
.

From now on, we shall denote by MCC and MCU the Multilayer Constant Central and the Multilayer Constant Upwind 
models, that is, the usual multilayer models with either a central or upwind definition of the velocity at the interface. 
Similarly, MLC and MLU will stand for Multilayer Linear Central and Multilayer Linear Upwind models with layerwise linear 
velocities.

We consider a set of continuous stationary solutions for the hydrostatic Euler system (6) derived in [10]. More precisely, 
we consider the general continuous stationary solution given by⎧⎪⎪⎨⎪⎪⎩

zb(x) = z̄b − h(x) − α2β2

2g sin2(βh(x))
,

ũ(x, ξ) = αβ

sin(βh(x))
cos(ξβh(x)),

(22)

where α, β and z̄b are three real constants, and h(x) is a non-negative continuous function such that sin(βh(x)) �= 0 for all 
x in the horizontal fluid domain.

This test problem aims to inspect the abilities of the proposed vertical discretizations to preserve stationary solutions of 
the free-surface hydrostatic Euler equations and numerically state the expected order of accuracy.

To do that we consider

x ∈ [−5, 5], α = β = −1, z̄b = 0,

and

h(x) = 1.4 − 0.8e−x2
, (23)

for the total water depth (see Fig. 9). Once the height is fixed, the bottom is given by (22). Then, given a vertical discretiza-
tion into M layers, we consider as initial condition for the horizontal velocity

uα(x, ξ) = ûα,0(x)φ̂α,0(ξ) + ûα,1(x)φ̂α,1(ξ), α ∈ {1, . . . , M},
the piecewise linear projection of the function ̃u in (22) as given in (8), i.e.,

ûα, j(x) = 1

lαμ j

Lα+1/2∫
Lα−1/2

ũ(x, ξ)φ̂α, j(ξ)dξ, for j = 0,1 and α ∈ {1, . . . , M}. (24)

We then compute different numerical approximations for a final time t = 10 s with a set of refined meshes and other 
values of the number of layers M . Dirichlet boundary conditions have been used by imposing the values of the stationary 
solution at both ends of the domain. We consider in this case the L1 absolute errors. Such errors are computed against the 
initial condition, that coincides with the L1 projection of the exact solution into the space of linear polynomials in ξ . More 
precisely, we consider in this case the errors given by

‖h − href ‖1 = �x
Nx∑

i=1

∣∣∣hi − h̃ref
i

∣∣∣, ‖u − uref ‖1 = �x
Nx,M∑
i,α=1

Lα+1/2∫
Lα−1/2

∣∣∣uα,i(ξ) − ũref
α,i (ξ)

∣∣∣ dξ, (25)

where the last integral will be computed by using the Simpson’s rule. As it is said above, in this test the reference solution 
is given by the initial state.

Table 5 shows the L1 errors and the numerical convergence rates. It is essential to make some remarks. First, note that a 
usual formal order analysis has been performed, where �x ≈ �z, and an increasing number of cells has been considered for 
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Fig. 9. Initial free-surface and vertical profiles of velocity u at locations x = −5, −3.5, −2, −0.5, 1, 2.5, and 4 m. for the stationary solution given by 
(23)-(24).

Table 5
Numerical convergence results for the initial condition (23)-(24). The L1 errors refer to the variables h and u at a final time t = 10 s, 
measured for different vertical discretizations of M layers and using uniform Cartesian meshes of Nx elements.

M Nx ‖h − href ‖1 Orderh ‖u − uref ‖1 Orderu ‖h − href ‖1 Orderh ‖u − uref ‖1 Orderu

MCU MCC
10 100 7.24 ×10−3 - 1.76 ×10−1 - 6.51 ×10−3 - 5.19 ×10−2 -
20 200 4.54 ×10−3 0.67 1.07 ×10−1 0.72 1.63 ×10−3 2.00 1.42 ×10−2 1.87
40 400 2.78 ×10−3 0.71 5.90 ×10−2 0.86 3.99 ×10−4 2.03 3.50 ×10−3 2.02
80 800 1.54 ×10−3 0.86 3.10 ×10−2 0.93 9.81 ×10−5 2.02 8.36 ×10−4 2.07

MLU MLC
10 100 6.56 ×10−3 - 5.15 ×10−2 - 6.58 ×10−3 - 5.22 ×10−2 -
20 200 1.64 ×10−3 2.00 1.43 ×10−2 1.85 1.65 ×10−3 2.00 1.45 ×10−2 1.85
40 400 4.00 ×10−4 2.03 3.42 ×10−3 2.06 3.98 ×10−4 2.05 3.42 ×10−3 2.08
80 800 9.77 ×10−5 2.03 8.31 ×10−4 2.04 9.80 ×10−5 2.02 8.32 ×10−4 2.04

computing the expected order of accuracy of the vertical and horizontal numerical approximation methods of free-surface 
Euler equations. Note that the desired order of accuracy is achieved for the MLU and MLC methods since they provide 
second order of accuracy in the vertical direction. Concerning the MC methods, note that MCC provides a second order 
of accuracy on the vertical, whereas the MCU is expected to provide first order of accuracy. Finally, note the efficiency of 
ML methods over MC. To get a L1 error equal or less to 1 × 10−2 for the velocity u, the MCU and MCC need more than 
M = 80 and M = 20 layers, respectively, whereas the MLU and MLC approximation reach errors less than 1 × 10−2 with less 
than M = 30 and M = 20 layers. A deeper analysis of the efficiency, including elapsed times, will be done in the following 
subsection.

4.4. Perturbed stationary analytical solutions for the free-surface hydrostatic Euler equations

We consider now a perturbation of the stationary solution (22)-(23). We take the same initial conditions except for the 
velocity, for which we assume

ũ(x, ξ) = αβ

sin(β (h(x) − 0.1))
cos(ξβ (h(x) − 0.1)). (26)

The computational domain is now [−10, 10], and the parameters are set to α = β = −1, and z̄b = 0, as previously. In this 
case, periodic boundary conditions are imposed. We then compute different numerical approximations until a final time 
t = 1 s with a set of refined meshes in the vertical direction with different values of the number of layers M .

Table 6 shows the L1 errors and the numerical convergence rates. Errors are computed as in (25), but considering a 
reference solution that has been computed with the Multilayer Constant Central method with Nx = 1600 elements and 
M = 160 layers. As it can be seen, the proposed methods provide an accurate approximation as expected, and similar 
conclusions as in the previous test case may be reached. It is important to emphasize the outstanding performance of ML 
methods compared to MC ones.

Table 7 shows the computational time needed by both models for several layers, as well as its ratio. In terms of the 
computational effort, the model MLU is approximately 1.5 times more expensive than the MCU for a given number of 
layers M . That is natural since M extra equations, corresponding to ûα,1, are solved in the layerwise linear velocity case. 
However, the gain of the accuracy is worth it by far. It can be concluded from the Tables 5 and 6, and also from Fig. 10, 
where we show the computational times against the error made on the velocity field, for the cases M = 5, 10, 20, 40 layers. 
In particular, we see that the MLU model with M = 5 layers improves the results of the MCU model with M = 40 layers, 
with a lower computational effort.
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Table 6
Numerical convergence results for the initial condition (26). The L1 errors refer to the variable u at a final time t = 1 s, 
measured for different vertical discretizations of N layers and using uniform Cartesian meshes of Nx = 1600 elements.

M Nx ‖u − uref ‖1 Orderu ‖u − uref ‖1 Orderu ‖u − uref ‖1 Orderu ‖u − uref ‖1 Orderu

MCU MCC MLU MLC
5 1600 3.42 ×10−2 - 9.03 ×10−3 - 7.91 ×10−4 - 1.47 ×10−3 -
10 1600 1.71 ×10−2 1.00 2.29 ×10−3 1.98 1.44 ×10−4 2.46 3.69 ×10−4 1.99
20 1600 8.63 ×10−3 0.98 5.72 ×10−4 2.00 2.56 ×10−5 2.49 9.38 ×10−5 1.98
40 1600 4.33 ×10−3 0.99 1.41 ×10−4 2.01 5.84 ×10−6 2.13 2.49 ×10−5 1.91

Fig. 10. Computational time and errors on the velocity field, in log scale, for the MCU (black circles) and MLU (blue squares) models at t f = 10 s, with 
M = 5, 10, 20, 40 layers and Nx = 1600 cells.

Table 7
Wall clock times of MCU (tMCU(M)) and MLU (tMLU(M)) models to reach t f =
10 s, and ratios, with M = 5, 10, 20, 40 layers and Nx = 1600 cells.

M = 5 M = 10 M = 20 M = 40

tMCU(M) (s) 49.1 97.1 222.6 623.9
tMLU(M) (s) 81.1 159.3 347.6 878.7

tMLU(M)/tMCU(M) 1.65 1.64 1.56 1.41

5. Conclusions

A general framework for vertical discretizations of Euler equations has been proposed. It is based on considering a 
change to σ -coordinates and a partition on M layers along the vertical direction of the interval [0, 1]. Then a polynomial 
approximation of the variables, with arbitrary degree N , is assumed. The derivation procedure performed is general enough 
to extend it to other cases (e.g. non-hydrostatic pressure regimes, passive scalar transport, among many others). This model 
may be seen as a semi-discrete vertical discretization of the Euler system written in σ -coordinates in the framework of the 
Discontinuous Galerkin methods.

As particular cases of the discretization introduced here, we immediately recover, as simplified configurations, the usual 
multilayer and moment models appearing in the literature. Therefore, both can be seen as particular vertical discretizations 
under the same framework. In addition, an enriched multilayer-moment model has been proposed, particularly a multilayer 
model with a layerwise linear horizontal velocity.

In the numerical test cases, we have shown comparisons of usual moment a multilayer approaches, pointing out some 
advantages/limitations of both methods. We have shown that, in general, high order moment models allow us to recover 
the solution of multilayer models with a much smaller computational effort, so then they are much more efficient. It 
is especially relevant when the velocity field exhibits a parabolic profile along the whole domain. However, multilayer 
models may be more appropriate when the velocity profile has straight zones since moment models introduce oscillations 
due to the polynomial approximation. Finally, we have shown that the multilayer model with layerwise linear velocity 
proposed here preserves a fully 2D steady solution of hydrostatic Euler equations, different from water at rest, up to second 
order accuracy. Moreover, when introducing a perturbed initial condition, we recover the desired order of accuracy of both 
approaches: multilayer model with layerwise constant velocity is first order accurate. In contrast, second order is obtained 
with the proposed model considering a layerwise linear velocity. We have also measured the efficiency of the MLU model 
for the MCU model. Despite being 1.5 times more expensive in terms of computational efforts for a fixed number of layers, 
we have shown that it makes sense to use it in terms of accuracy. Actually, with the proposed layerwise linear velocity 
model, we need just a few layers to improve the results of the usual multilayer model with a high number of vertical 
layers. In the future, it would be interesting to extend the proposed model to the non-hydrostatic case, as well as studying 
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local strategies to adapt a variable number of the vertical layers and/or a variable polynomial degree for efficiency purposes, 
following the ideas in [1,31].
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Appendix A. Viscous multilayer-moment systems and continuity conditions at the interfaces

This appendix is devoted to describe, for the sake of completeness, how the viscous terms are included in the derivation 
of the models. Although this work focuses mainly in Euler equation, they are relevant for some of the simulations and they 
allow to properly define the velocities at the interfaces u|

L±
α+1/2

.

We first detail the general procedure and then describe the viscous system in the particular case of layerwise constant 
velocities (Multilayer Constant method).

A.1. Multilayer-moment system

Let us first recall that for any variable f ≡ f (t, x, ξ), we shall denote by f ±
α+1/2 = f |

ξ=L±
α+1/2

the upper or lower limit at 

the interface Lα+1/2. When the variable is continuous at the interface, we simply denote it by fα+1/2. We shall denote by

[ f ]α+1/2 = f +
α+1/2 − f −

α+1/2.

Let us focus on (2a) in the hydrostatic case, but keeping now the viscous terms:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂th + ∂x(hu) − ∂ξω = 0,

∂t (hu) + ∂x
(
hu2
) + gh∂xη = ∂x(hτxx) + ∂ξ (ωu + τxz − τxx∂x(hξ + b)) ,

ω = ∂x

⎛⎝h

⎛⎝ ξ∫
0

u|ξ=s ds − ξu

⎞⎠⎞⎠ .

Recall that, from the definition of ω, we get ω+
α+1/2 = ω−

α+1/2. Then, integrating the second equation for s ∈ [0, ξ ] we have

(uω + τxz − ∂x(hξ + b)τxx)|ξ − ((τxz)|ξ =0 − ∂x(b)(τxx)|ξ
)

= ∂t

⎛⎝h

ξ∫
0

u(s)ds

⎞⎠ + ∂x

⎛⎝h

ξ∫
0

(u2 − τxx)(s)

⎞⎠ds + ghξ∂xη

Notice that in particular this means that (uω + τxz − ∂x(hξ + b)τxx) is continuous at the interfaces Lα+1/2. In particular,

[uω + τxz − ∂x(hξ + b)τxx]α+1/2 = 0,

or equivalently

[−τxz + ∂x(hξ + b)τxx]α+1/2 = [u]α+1/2 ωα+1/2. (A.1)

Remark 7. Using a similar framework as the one introduced in [30], continuity of ω and uω + τxz − ∂x(hξ + b)τxx at the 
interfaces may be interpreted as the jump conditions for the mass and the horizontal momentum conservation equations 
verified by a weak solution of the Navier-Stokes system.

Denote by σ = −τxz + ∂x(hξ + b)τxx and remark that

Lα+1/2∫
Lα−1/2

∂ξ (ωu − σ)dξ = ωα+1/2u−
α+1/2 − σ−

α+1/2 − ωα−1/2u+
α−1/2 + σ+

α−1/2,

where σ− , σ+ should be correctly defined.
α+1/2 α−1/2
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In [30], this is done by means of a centered approximation σ̃α+1/2 at the interface:

σ̃α+1/2 = σ+
α+1/2 + σ−

α+1/2

2
.

Nevertheless, one could do other possible choices as we will see.
In general, a given approximation at the interfaces may be done by considering a vertical numerical flux G depending 

on the upper and lower limit values at the interface. For the sake of generality, let us consider

σ̃α+1/2 = G
(
σ−

α+1/2,σ
+
α+1/2

)
= σ+

α+1/2 + σ−
α+1/2

2
− �α+1/2

2

(
σ+

α+1/2 − σ−
α+1/2

)
, (A.2)

where the term �α+1/2 allows us to include an upwind term on the definition of σ̃α+1/2.
By writing

σ−
α+1/2 =

(
σ+

α+1/2 + σ−
α+1/2

2

)
−
(

σ+
α+1/2 − σ−

α+1/2

2

)
,

then we have

σ−
α+1/2 =

(
σ̃α+1/2 + �α+1/2

2

(
σ+

α+1/2 − σ−
α+1/2

))
−
(

σ+
α+1/2 − σ−

α+1/2

2

)

= σ̃α+1/2 − 1

2
(1 − �α+1/2) [σ ]α+1/2 = σ̃α+1/2 − 1

2
(1 − �α+1/2) [u]α+1/2 ωα+1/2,

where (A.1) has been used. Therefore,

ωα+1/2u−
α+1/2 − σ−

α+1/2− = ωα+1/2u−
α+1/2 − σ̃α+1/2 + 1

2
(1 − �α+1/2)[u]α+1/2ωα+1/2

= ωα+1/2ũα+1/2 − σ̃α+1/2,

where

ũα+1/2 = G
(

u−
α+1/2, u+

α+1/2

)
= u+

α+1/2 + u−
α+1/2

2
− �α+1/2

2

(
u+

α+1/2 − u−
α+1/2

)
. (A.3)

In a similar way one obtains

σ+
α−1/2 =

(
σ̃α−1/2 + �α−1/2

2

(
σ+

α−1/2 − σ−
α−1/2

))
+
(

σ+
α−1/2 − σ−

α−1/2

2

)

= σ̃α−1/2 + 1

2
(1 + �α−1/2) [σ ]α−1/2 = σ̃α−1/2 + 1

2
(1 + �α−1/2) [u]α−1/2 ωα−1/2,

and

ωα−1/2u+
α−1/2 − σ+

α−1/2 = ωα−1/2ũα−1/2 − σ̃α−1/2,

which leads us to

u−
α+1/2ωα+1/2 − u+

α−1/2ωα−1/2 − σ̃−
α+1/2 + σ̃+

α−1/2 = ũα+1/2 ωα+1/2 − ũα−1/2 ωα−1/2 − σ̃α+1/2 + σ̃α−1/2. (A.4)

Finally, (18) is recovered from (A.4) when going to the limit of ν tending to zero to recover Euler equations.

Remark 8. There is a compatibility condition between definitions (A.2) and (A.3) for τ̃ and ̃u, in the sense that the numerical 
flux we consider to define τ̃α+1/2, in view of (A.1), is the flux we recover for the definition of the velocity at the interface 
ũα+1/2.

For instance, in [30,27,32,8] a central flux (� = 0) is considered, whereas an upwind numerical flux (� = sign (−ω)) is 
taken in [6,5,36,31], mainly for stability reasons, where the sign of −ω matches with the sign of the vertical velocity (see 
(2b)).

Nevertheless, (A.2) and (A.3) correspond formally to the consistency with the viscous terms. In the general case this 
could be not sufficient to grant stability and, in particular, for M > 1 and N > 0 appropriate penalization terms would be 
needed to make sure that the discretization converges as shown in [20,2].
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A.2. Viscous multilayer constant method

We consider now the viscous Multilayer Constant (MC) case, where we recall that the velocity is layerwise constant. 
With the goal of keeping the friction force and vertical viscosity effects, we consider the leading order approximation

σ̃ = − τ̃xz = − ν

h
∂̃ξ u,

which is easily justified from an asymptotic analysis. Then, from (A.4) we get

ν

h

(
∂̃ξ u
)
α+1/2 − ν

h

(
∂̃ξ u
)
α−1/2 + ũα+1/2 ωα+1/2 − ũα−1/2 ωα−1/2,

for a constant kinematic viscosity ν . By simplicity, consider here �α+1/2 = 0 in (A.2), and therefore

τ+
xz,α+1/2 = τ−

xz,α+1/2 = τ̃xz,α+1/2.

In particular, we need to approximate 
(
∂̃ξ u
)
α+1/2. Concretely, we choose

τ̃xz,α+1/2 = − ν

h

(
∂̃ξ u
)
α+1/2 = − ν

h

uα+1 − uα

1
2 (lα + lα+1)

.

Therefore, the viscous version of system (19), accounting for boundary conditions (2c), reads⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂th + ∂x

(
hu
)= 0,

lα
(
∂t (huα) + ∂x

(
hu2

α

) + gh∂x (b + h)
)= Kα+1/2 − Kα−1/2

+uα+1 + uα

2
ωα+1/2 − uα + uα+1

2
ωα−1/2, for α = 1, . . . , M

(A.5a)

with

Kα+1/2 = ν

h

uα+1 − uα

1
2 (lα+1 + lα)

, for α = 1, . . . , M − 1, (A.5b)

and the boundary conditions (2c) for the stress tensor K M+1/2 = 0, K1/2 = ε |u1| u1. Finally, we have

ωα+1/2 =
α∑

β=1

lβ∂x
(
h
(
uβ − u

))
, with u =

M∑
β=1

lβuβ. (A.5c)

Appendix B. Viscous shallow water moment model

Including the contribution of the viscous term ∂ξ τxz in moment model (20) is a simple task. Proceeding as in [33], we 
compute the following integral for i = 0, . . . , N (see (2a)) taking into account the boundary conditions (2c):

1∫
0

∂ξ

(ν
h

∂ξ u
)

φi dξ = ν

h

(
∂ξ u
)
|ξ=1

φi(1) − ν

h

(
∂ξ u
)
|ξ=0

−
N∑

j=0

û j

1∫
0

φ′
iφ

′
jdξ

= −ε|u|ξ=0 |u|ξ=0 − ν

h

N∑
j=1

û j Di j,

where Dij =
1∫

0

φ′
iφ

′
jdξ . Note that Dij = D ji , D0 j = 0, and ub := u|ξ=0 =

∑
j=0

û j . Thus, the moment model with vertical vis-

cosity reads
260



J. Garres-Díaz, C. Escalante, T. Morales de Luna et al. Applied Numerical Mathematics 183 (2023) 236–262
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂th + ∂x (hû0) = 0,

∂t (hû0) + ∂x

⎛⎝hû2
0 + h

N∑
j=1

û2
j

2 j + 1

⎞⎠+ gh ∂xη = −ε|ub|ub,

∂t (hûi) + ∂x

⎛⎝2hû0ûi + h
1

μi

N∑
j,k=1

Aijkû j ûk

⎞⎠= û0∂x(hûi) − 1

μi

N∑
j,k=1

Bijkûk∂x(hû j)

− 1

μi

⎛⎝ε|ub|ub + ν

h

N∑
j=1

û j Di j

⎞⎠ , for i = 1, . . . , N.

(B.1)
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