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Abstract In this paper, a detailed and comprehensive
linear stability analysis of a rolling toroidal wheel is
performed. The wheel is modeled as a rigid toroid-
shaped body rolling without slipping on a horizontal
surface. The nonlinear equations of motion constitute
a Differential-Algebraic Equations system, given by
the dynamic equilibrium equations augmented with the
nonholonomic constraints, which arise from the no-slip
condition.The circular steadymotion and the linearized
equations of motion along this relative equilibrium are
obtained, for both the solid and hollow tori. The expres-
sions of the linearized equations and the correspond-
ing eigenvalues are derived analytically as a function
of the torus aspect ratio. The variation of the stability
boundary with the torus aspect ratio is shown. A com-
parison of the results obtained in the solid and hollow
scenarios is included, and all the results are validated
with the rolling hoop, which corresponds to a degener-
ate torus with zero aspect ratio. In the particular case
of the steady straight-line rolling and spinning about
a vertical diameter, which constitute limit motions of
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the circular steady motion, the critical rotational and
angular speeds required for stabilization are obtained.
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1 Introduction

Nonholonomic systems are physical systems subject
to constraints that involve both positions and veloc-
ities and are non-integrable. In contrast to classical
Lagrangian or Hamiltonian systems, nonholonomic
systems are nonvariational [1]. A classical example of
nonholonomic system is a body with rolling contact, as
a wheel rolling without slipping.

The interest in nonholonomic systems dates back to
the late nineteenth century. After the incorrect appli-
cation of the Lagrange equations in the presence of
nonintegrable constraints, the equations of motion of
a nonholonomic system were derived by Ferrers [2] in
1872. These equations were given in the form of Euler-
Lagrange equations, including some additional terms
arising from the constraints (butwithout Lagrangemul-
tipliers). Next, Voronetz performed, in 1901, the formal
derivation of these equations [3]. Chaplygin obtained,
for the case of cyclic configuration variables, the so-
called Chaplygin equations [4,5], which engendered
the technique of nonholonomic reduction. In his fun-
damental work Principles of Mechanics [6], Hertz first
coined the term ‘nonholonomic’ and showed the inap-
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plicability of variational principles and Lagrange equa-
tions to nonholonomic systems. The works of Borisov
et al. [7], Bloch et al. [1] and Manuel de León [8] can
be followed to find details about the development of
nonholonomic mechanics.

The research on rolling bodies went hand in hand
with the development of nonholonomicmechanics. The
first known work devoted to the dynamics of a rolling
rigid body is attributed to Euler [9], in which small
oscillations of a body rolling without slipping were
studied. The work of Poisson [10], which addresses the
integrability of a heavy topmovingona smooth surface,
gave rise tomultiple papers investigating the integrabil-
ity of the equations of motion of a disk rolling without
slipping. Slesser [11] studied for the first time, in 1861,
themotion of a rolling symmetrical disk on a horizontal
rough plane. Vierkandt [12], in 1892, revealed that, on
an appropriate symmetry-reduced space, all motions
of the rolling disk are periodic. Chaplygin [13] showed
the integrability of the rolling motion of an axisym-
metric body on a horizontal plane. In the particular
case of the rolling disk, the reduction of the problem
to the analysis of hypergeometric quadratures was pre-
sented. Independently from Chaplygin, in 1900, Appel
[14] and Korteweg [15] carried out the integration of
the equations of motion of a disk with hyperelliptic
functions, and Gallop [16] obtained the same results
by resorting to Legendre functions. Furthermore, Car-
vallo [17] and Routh [18] studied the stability of the
rolling disk, although these works did not include any
information on the bifurcations of the system.

Other works devoted to analyse the stability of
the steady motions of the rolling disk, taking advan-
tage of the classical integrability results, are those of
Mindlin [19,20], Duvakin [21] and Karapetyan [22].
Kolesnikov [23] and Fedorov [24] discussed qualita-
tive properties of the disk motion, and Kozlov et al.
[25] studied the nonintegrable problem of a disk mov-
ing on an inclined plane. O’Reilly [26] analysed the
bifurcations and stability of the steady motions for
both rolling and sliding disks, obtaining two-parameter
families of integrable second-order differential equa-
tions. The results showed that the bifurcations of the
steady motions of the disks are either of the pitch-
fork or saddle-node type. The study of bifurcations
and stability of the disk’s stationary motions was also
performed by Cushman et al. [27] and Kuleshov [28].
Borisov et al. [29] showed different trajectories drawn
by the contact point in the body-fixed and relative

frames of references, and presented a complete three-
dimensional bifurcation diagram in the space of the
first integrals. Zenkov et al. [30] analysed, by using
an energy-momentum analysis for nonholonomic sys-
tems, the stability of the relative equilibria of the rolling
disk. Paris et al. [31] studied the circular rolling steady
motion of the disk and derived the expression for the
frequency of small oscillations about this reference
motion. The book of Cushman et al. [32] provides
a modern differential geometric treatment of linearly
nonholonomically constrained systems and, in particu-
lar, analyzes the stability and the corresponding bifur-
cation diagram of the rolling disk. Moreover, a detailed
linear stability analysis of the straight-line rolling, spin-
ning about a vertical diameter and tumbling solutions
of the rolling disk was presented by Przybylska [33].
The dynamics of an unbalanced disk with a single non-
holonomic constraint was studied in a recent work by
Kilin et al. [34]. In addition, there exist several works
devoted to other nonholonomic rolling bodies. Borisov
et al. [35] consider cases of existence of invariant mea-
sure, additional first integrals and Poisson structure in
the problem of rigid body’s rolling without sliding on
a plane and a sphere. The particular examples of non-
holonomic systems addressed in this work, in addition
to the rolling disk, are: a dynamically symmetric ball
with the displaced center of mass rolling on a plane;
the rolling of balanced, dynamically nonsymmetric ball
(Chaplygin ball); the rolling of an unbalanced, dynam-
ically nonsymmetric ball on a plane and the rolling
of an ellipsoid on a plane. Moreover, different exam-
ples of bodies rolling on a sphere are included in [35]:
the problem of rolling of round disk; a ball with dis-
placed center; a balanced, dynamically nonsymmetric
ball on sphere; the unbalanced, dynamically nonsym-
metric ball on sphere; and the rolling of body with
partially flat surface on sphere. Other important works
devoted to the rolling of a ball on different surfaces are
those of Hennans [36] and Borisov et al. [37–40]. A
recent work of Antali et al. [41] addresses the kinemat-
ics and dynamics of a rigid body in contact with two
rigid surfaces in the presence of dry friction.

The nonholonomic rolling torus is a particular case
of axisymmetric body of revolution rolling without
slipping on a horizontal plane. The complete integra-
bility, the corresponding reduction of order and the
stability analysis of these bodies can be found in sev-
eral works [13,35]. Nevertheless, the authors have not
found a singlework in the literature including a detailed

123



Analytical and numerical stability analysis 2455

stability analysis of the relative equilibria of the rolling
toroidal wheel in terms of the geometric parameters of
the torus. Hauser and Saccon [42] presented the equa-
tions of motion of a torus with a general contact pro-
file, which rolls without slipping and is actuated by
drive and steer torques. A stability analysis, consider-
ing similar geometric and inertial parameters to those
of a motorcycle tire, was performed. García-Agúndez
et al. [43] studied the linear stability of the steady for-
ward motion of a solid rolling torus. Moreover, some
examples of nonholonomic multibody models of vehi-
cles with toroidal wheels can be found [44–48].

The novelty of the present paper is the performance
of a detailed and comprehensive stability analysis of
the rolling toroidal wheel. The linear stability of the
relative equilibria of the rolling torus is studied, which,
to the best knowledge of the authors, has not been done
in any previous work of the literature. The linearized
equations of motion along the circular steady motion,
the straight-line rolling and the spinning about a ver-
tical diameter, and the corresponding eigenvalues, are
obtained as a function of the torus geometric param-
eters. The results are entirely developed analytically
and numerically supported. Furthermore, a compari-
son between the linear stability results of the solid
and hollow rolling tori is presented. The results of the
rolling toroidal wheel are validated and compared with
those of the rolling hoop, which constitutes a degen-
erate torus. The nonlinear equations of motion are lin-
earized along the circular steady motion by following a
linearization procedure suitable for nonholonomic sys-
tems, which can be found in [49]. This methodology,
despite not obtaining a minimal-sized Jacobian matrix
and not fully exploiting the symmetry of the problem,
allows for obtaining the stability results of the rolling
torus in terms of its geometric parameters in a clear and
straightforward way, being natural and recognizable
for the mechanical engineering community. This pro-
posed methodology has already been successfully used
in complex multibody dynamics problems, to study the
linear stability of the waveboard [48] or the bicycle
[49].

The paper is structured as follows. Following the
Introduction, Sect. 2 describes the toroidalwheelmodel
and presents the nonlinear equations of motion. Next,
Sect. 3 presents the circular steady motion and the
linearized equations of motion along this reference
solution. Section4 shows all the results of the stabil-
ity analysis. In particular, Sects. 4.1 and 4.2 present

the linear stability analysis of the steady straight-line
rolling motion and the spinning motion about a verti-
cal diameter, respectively, and Sect. 4.3 includes the
stability results of the circular steady motion. Finally,
Sect. 5 summarizes the main conclusions drawn from
the present work.

2 Description of the model and nonlinear
equations of motion

In this section, the toroidal wheel model is described
and the nonlinear equations of motion are presented.

2.1 Description of the model

The wheel is modeled as a rigid torus that rolls without
slipping on a horizontal surface. Themechanicalmodel
consists of five generalized coordinates (n = 5), with
the vector of coordinates x ∈ R

n given by:

x = (
xC yC ψ φ θ

)T
, (1)

where xC and yC locate the contact pointC of thewheel
with the ground, and ψ , φ and θ are the yaw, lean and
roll angles, respectively. The global (inertial) frame is
denoted as body 1 and the wheel is body 2. Figure1
shows the generalized coordinates and the body frame
of the toroidal wheel. To describe the orientation of the
intermediate frames 〈X ′Y ′Z ′〉, 〈X ′′Y ′′Z ′′〉 and the body
frame 2 〈X2Y2Z2〉, depicted in Fig. 1, the matrices R

′
,

R
′′
and R2 are defined. These matrices are computed

by using the elemental rotation matrices Rψ , Rφ and
Rθ as follows:

R
′
(x) = Rψ,

Fig. 1 Mechanical model of the toroidal wheel: generalized
coordinates and body frames
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R
′′
(x) = Rψ Rφ,

R2 (x) = Rψ RφRθ . (2)

In this work, a circular cross-section of the toroidal
wheel is considered. The toroidal geometry is defined
by the torus aspect ratio η, which is computed as the
ratio of the minor to the major radius of the torus,
denoted as a and b, respectively:

η = a

b
. (3)

For a real torus, a < b (η < 1) is required. In any case,
the subsequent analysis is also valid for the limit cases
a > b (degenerate torus), a = 0 (hoop) and b = 0
(sphere).

The plane of symmetry πm is the middle plane of
the toroidal wheel and contains the hoop of equivalent
radius R. The minor and major radii verify the follow-
ing relation:

a + b = R. (4)

Figure2 shows a front view of the toroidal wheel, with
the plane of symmetryπm , theminor andmajor radii. In
addition to the contact point C , other points of interest
of the system are also depicted in Fig. 2. The centre of
mass of the wheel is G, the centre of the torus tube is
P and I is the lowest point of the hoop of equivalent
radius. The position vectors of C and G, expressed in
the global frame, are given by:

rC = (
xC yC 0

)T
, rG = rC + rCP + r PG , (5)

Fig. 2 Front view of the toroidal wheel

with

rCP = (
0 0 a

)T
, r PG = R

′′
r̄ PG, (6)

and r̄ PG = (
0 0 b

)T
.

The condition of rolling without slipping leads to
two nonholonomic constraints (l = 2):

Cnh (x, ẋ) = B (x) ẋ =
(

vCx

vCy

)
=

(
0
0

)
, (7)

where Cnh
(
x, ẋ

)
is the l × 1 vector of nonholo-

nomic constraints, linearly dependent on the general-
ized velocities; vCx and vCy are the X1 and Y1- com-
ponents of the velocity of the contact point vC ; and
B (x) is a l × n matrix. Since the nonholonomic con-
straints are linear with respect to the system velocities,
the matrix B (x) can be computed as:

B (x) = ∂Cnh
(
x, ẋ

)

∂ ẋ
. (8)

The velocity of the contact point vC is given by:

vC = vG + ω21 × rGC , (9)

where vG is the velocity of the centre of mass, ω21

is the angular velocity of the wheel and rGC =
− (rCP + r PG). The use of Eq. (9) leads to:

vC =
⎛

⎝
vCx

vCy

vCz

⎞

⎠

=
⎛

⎝
ẋC−(b+a cos (φ)) θ̇ cos (ψ)−aφ̇ sin (ψ)

ẏC−(b+a cos (φ)) θ̇ sin (ψ)+aφ̇ cos (ψ)

0

⎞

⎠ .

(10)

Note that, in Eq. (10), the Z -component of vC is null
and is therefore not included in the nonholonomic con-
straints (7). Since the wheel is described by using five
coordinates (n = 5), the number of degrees of freedom
of the system is three (ng = n − l = 3).

2.2 Equations of motion

The equations of motion of the rolling toroidal wheel
are given by the dynamic equilibrium equations, which
are derived as explained in Schiehlen [50], augmented
with the nonholonomic constraints (7), leading to the
following index-2 Differential Algebraic Equations
(DAE) system:

M (x) ẍ + BT (x)Λ = Q
(
x, ẋ

)
, (11)
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Cnh
(
x, ẋ

) = B (x) ẋ = 0, (12)

where M (x) is the n × n mass matrix; Q
(
x, ẋ

)
is

the n × 1 vector of generalized forces, and Λ is the
l × 1 vector of Lagrange multipliers. All the vectors
and matrices in Eqs. (11) and (12) are smooth func-
tions. The vector of generalized forces Q

(
x, ẋ

)
can be

expressed as:

Q (x, ẋ) = Qg (x) + Qv (x, ẋ) , (13)

where Qg (x) is the generalized gravity forces vector
and Qv

(
x, ẋ

)
is the quadratic-velocity inertia term,

associatedwith the inertia forces that are quadraticwith
respect to the system velocities (centrifugal and Cori-
olis forces). The expressions of the matrices M (x),
B (x), and the vectors Qg (x), Qv

(
x, ẋ

)
are given by:

M (x)

=

⎛

⎜⎜⎜⎜
⎜
⎝

m 0 mb cos(ψ) sin(φ)

0 m mb sin(ψ) sin(φ)

mb cos(ψ) sin(φ) mb sin(ψ) sin(φ) I id +
(
I ip − I id + mb2

)
sin2(φ)

mb sin(ψ) cos(φ) −mb cos(ψ) cos(φ) 0
0 0 I ip sin (φ)

mb sin(ψ) cos(φ) 0
−mb cos(ψ) cos(φ) 0

0 I ip sin(φ)

I id + mb2 0
0 I ip

⎞

⎟⎟⎟
⎟
⎠

, (14)

B (x) =
(
1 0 0 −a sin (ψ) − (b + a cos (φ)) cos (ψ)

0 1 0 a cos (ψ) − (b + a cos (φ)) sin (ψ)

)
, (15)

Qg (x) =

⎛

⎜⎜⎜⎜
⎝

0
0
0

mgb sin (φ)

0

⎞

⎟⎟⎟⎟
⎠

, Qv (x, ẋ) =

⎛

⎜⎜⎜⎜⎜⎜
⎝

mb
(
ψ̇2 + φ̇2

)
sin (ψ) sin (φ) − 2mbψ̇φ̇ cos (ψ) cos (φ)

−mb
(
ψ̇2 + φ̇2

)
cos (ψ) sin (φ) − 2mbψ̇φ̇ sin (ψ) cos (φ)

−I ipφ̇θ̇ cos (φ) −
(
I ip − I id + mb2

)
ψ̇φ̇ sin (2φ)

I ipψ̇ θ̇ cos (φ) +
(
I ip − I id + mb2

)
ψ̇2 sin (φ) cos (φ)

−I ipψ̇φ̇ cos (φ)

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (16)

In Eqs. (14) and (16), I id and I ip are the moments of
inertia about a diameter and a vertical axis perpendic-
ular to the wheel centre, respectively. The superscript i
in I id and I ip is henceforth used to distinguish between
the solid and hollow scenarios, with i = {s, h}. Tatum
[51] provides the expressions of the moments of inertia
of a solid and hollow torus with circular cross-section:

I sd = 1

8
m

(
5a2 + 4b2

)
, I sp = 1

4
m

(
3a2 + 4b2

)
,

I hd = 1

4
m

(
5a2 + 2b2

)
, I hp = 1

2
m

(
3a2 + 2b2

)
.

(17)

For the limit case a → 0, Eq. (17) give back the
moments of inertia of the well-known hoop case.

3 Methodology

The objective of this section is to describe the circular
steady motion of the rolling toroidal wheel and obtain
the linearized equations along this relative equilibrium,
as a function of the torus geometric parameters. To this
end, the linearization approach proposed in [49], which
has been successfully used to perform the linear stabil-

ity analysis of complex nonholonomic multibody sys-
tems as the bicycle or the waveboard [48], is employed.
Thismethodology, despite not fully exploiting the sym-
metry of the problem and not obtaining a minimal-
sized Jacobian matrix, allows for obtaining the stabil-
ity results of the rolling torus in terms of its geometric
parameters in a clear and straightforward way, being
recognizable for the mechanical engineering commu-
nity.
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Nevertheless, in the context of nonholonomic
mechanics, the use of reduction methods that allow
for reducing the order of nonholonomic equations of
motion, with the help of symmetries and first integrals,
is widely extended. The works of Chaplygin [13] or
Voronetz [52] already addressed the reduction of the
equations of nonholonomic examples, and the term
nonholonomic reduction was proposed in the work of
Koiller [53]. A review of the problem of the construc-
tive reduction of nonholonomic systems with symme-
tries was performed by Borisov and Mamaev [54]. The
reduced equations ofmotion of an arbitrary bodyof rev-
olution rolling on a plane were presented by Borisov
andMamaev [35] and applied to several nonholonomic
examples [29,35]. Therefore, due to the importance in
nonholonomic mechanics, the methodology followed
in [35] is first summarized, outlining its main steps.
The use of this reduction method exploits the symme-
tries of nonholonomic systems and allows for obtaining
a minimal-sized Jacobian matrix.

3.1 Reduction method

The nonholonomic rolling torus is a particular case of
axisymmetric body of revolution rolling without slip-
ping on a horizontal plane. The complete integrability,
the corresponding reduction of order and the stability
analysis of these bodies can be found in the literature
[13,29,35]. The main steps of the methodology fol-
lowed in Borisov and Mamaev [35] are summarized
below:

– Identify the symmetry group of the system. The
symmetry group of the rolling torus is G =
SE(2) × SO(2), where the first multiplier repre-
sents arbitrariness in the choice of a fixed coordi-
nate system, and the second corresponds to the axial
symmetry of the rolling body.

– Compute the reduced equations of motion. This
symmetry group can be used to reduce the equa-
tions of motion of an arbitrary body of revolution,
with tensor of inertia I = diag(I1, I1, I3), to an
autonomous fourth-order system [35]. The reduced
equations can be expressed in terms of the vari-
able z = sin (φ), with z ∈ (−1, 1), and a set
of variables K1, K2, K3 ∈ R, which are linearly
expressed in terms of the angular velocity of the
body. The detailed expressions of K1, K2 and K3

can be found in Borisov and Mamaev [35], and the
system of equations is given by:

ż = kK3,

K̇1 = −kρi I3

(
1 −

(
f2
f1

)′)
K2K3,

K̇2 = −kρim f1
(
f1 − f ′

2

)
K1K3,

K̇3 = k
(
A (z) K 2

1 + B (z) K1K2

)

+C (z) K 2
2 − ∂U (z)

∂z
.

(18)

In Eq. (18), f1 and f2 are functions of z that define
the surface of the body; U is the potential energy;
the expressions of k, A (z), B (z) and C (z) can be
found in Borisov and Mamaev [35]; and ρi is the
density of invariant measure, computed as:

ρi = 1
√
I1 I3 + mI1 f 21

(
1 − z2

) + mI3 f 22

. (19)

– Computation of the relative equilibria. The rela-
tive equilibria correspond to the fixed points of the
system of equations (18), which are given by the
following pair of equations:

K3 = 0,

A(z)K 2
1 +B (z) K1K2+C (z) K 2

2 − ∂U (z)

∂z
=0.

(20)

FromEq. (18), given z = z0, then K1 and K2 satisfy
a quadratic equation.

– Linearization of the reduced equations. Let z = z0,
with |z0| < 1, K1 = K 0

1 , K2 = K 0
2 and K3 = 0

define a relative equilibrium of the system (18).
The linearization of Eq. (18) along this reference
solution yields a 4 × 4 time-independent Jacobian
matrix.

– Stability analysis of the reference solutions. The
orbital stability of the reference solutions investi-
gated in this work is defined by the stability of the
fixed points of the system (18). Since the 4 × 4
Jacobian matrix does not depend explicitly on time
and presents constant coefficients, the linear sta-
bility can be assessed directly by analyzing the set
of eigenvalues of the time-independent matrix. The
conservation lawsof the systemcanbeused to study
the nonlinear stability of these solutions.

This methodology can be applied to the rolling
toroidal wheel in the same manner as in previous
works devoted to the rolling disk [29] or other rolling
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bodies on a plane [35]. Despite the low dimension
and high symmetry of the system being leveraged by
this reduction method, the present work conducts the
linear stability analysis of the rolling toroidal wheel
using the linearization approach presented in Ref. [49].
This approach constitutes a powerful general-purpose
methodology that, while not resulting in a minimal-
sized Jacobianmatrix, enables the derivation of explicit
results regarding the system’s stability.

3.2 Description of the circular steady motion

The nonlinear equations of motion (11)–(12) are lin-
earized with respect to the circular steadymotion of the
toroidal wheel. The steady straight-line rolling motion
and spinning about a vertical diameter, whose stability
will also be studied in thiswork, are limitmotions of the
circular steady solution. A circular trajectory of radius
ρ, described by the contact point C with a constant
angular speed ω, can be expressed as:

x0 (t) = (
x0C (t) y0C (t) ψ0 (t) φ0 (t) θ0 (t)

)T
, (21)

with

x0C (t) = ρ cos (ωt) , y0C (t) = ρ sin (ωt) ,

ψ0 (t) = π

2
+ ωt, φ0 (t) = φ0,

θ0 (t) = Ωt, (22)

whereΩ is the rotational speed of the wheel. Note that,
in Eq. (22), x0C (t) and y0C (t) vary sinusoidally with
time; the yaw angle ψ0 (t) and the roll angle θ0 (t)
grow linearly with time, and the lean angle φ0 (t) is
constant throughout the circular steady motion and is
denoted as φ0.

The angular velocity ω and the rotational speed Ω

are related by means of the nonholonomic constraints.
Combining the nonholonomic constraints (7), the fol-
lowing expression is obtained for θ̇ :

θ̇ = ẋC cos (ψ) + ẏC sin (ψ)

R cos (φ)
. (23)

Particularizing Eq. (23) for the reference solution (22),
the following relation is obtained:

ω =
(
b + a cos (φ0)

ρ

)
Ω. (24)

A characteristic time of the torus system τ0, related
to free fall, and the angular frequency ω0 are defined

as follows:

τ0 =
√
a + b

g
, ω0 = 1

τ0
=

√
g

a + b
. (25)

The following nondimensional angular and rotational
velocities are introduced:

ω̄ = ω

ω0
, Ω̄ = Ω

ω0
. (26)

To satisfy the equilibrium equations (11), the lean
angle φ0 of Eq. (22) verifies:

ω̄2 sin (φ0)
((

η2 + 12
)
cos (φ0) + 8η

)

+ 8 (1 + η) sin (φ0) + Ω̄ω̄
((

14η2+16
)
cos (φ0)

)

+ 4η (3 + cos (2φ0)) = 0, (27)

ω̄2 sin (φ0)
((

2η2 + 12
)
cos (φ0) + 8η

)

+ 8 (1 + η) sin (φ0) + Ω̄ω̄
((

20η2+16
)
cos (φ0)

)

+ 4η (3 + cos (2φ0)) = 0, (28)

with −π/2 < φ0 < 0. Equations (27) and (28) corre-
spond to the solid and hollow case, respectively. Note
that Eqs. (27) and (28) also hold for the steady straight-
line rolling and the spinning motion around a verti-
cal diameter. In the case of the steady straight-line
rolling, which corresponds to ω̄ → 0, Eqs. (27) and
(28) yield φ0 → 0. The same result is obtained when
Eqs. (27) and (28) are particularized for the steady
spinning around a vertical diameter, corresponding to
Ω̄ → 0. In addition, Eqs. (27) and (28) can be partic-
ularized for the limit case η → 0, to obtain the same
equilibrium equation of the rolling hoop:
(
3ω̄2 cos (φ0) + 2

)
tan (φ0) + 4ω̄Ω̄ = 0,

with − π/2 < φ0 < 0. (29)

Figures 3 and 4 show an arbitrary position of the
rolling toroidal wheel and the rolling hoop, respec-
tively, during the circular steady motion.

3.3 Linearization of the equations of motion

Consider the circular steady motion x0(t) defined in
Eqs. (21) and (22) and its time derivatives ẋ0(t), ẍ0(t).
This motion represents a known reference solution of

123



2460 A. G. Agúndez et al.

Fig. 3 Circular steady
motion of the rolling
toroidal wheel

Fig. 4 Circular steady
motion of the rolling hoop

the Differential-Algebraic Equations system given by
Eqs. (11) and (12), and therefore verifies:

M
(
x0

)
ẍ0 + BT

(
x0

)
Λ0 = Q

(
x0, ẋ0

)
, (30)

Cnh

(
x0, ẋ0

)
= B

(
x0

)
ẋ0 = 0, (31)

where Λ0 is the vector of Lagrange multipliers in the
circular steadymotion. The setΛ0 can be obtained from

Eq. (30), which leads to:

Λ0 (t) = (
Λ0

1 (t) Λ0
2 (t)

)T
, (32)

withΛ0
1 (t) = mω2 (ρ + b sin (φ0)) cos (ωt) andΛ0

2 (t)
= mω2 (ρ + b sin (φ0)) sin (ωt). Note that Λ0

1 (t) and
Λ0

2 (t) vary sinusoidally with time.

The variations x̃, ˙̃x, ¨̃x and Λ̃ with respect to the
reference solution are introduced:

x̃ = x − x0, ˙̃x = ẋ − ẋ0,
¨̃x = ẍ − ẍ0 and Λ̃ = Λ − Λ0. (33)
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A coordinate partition, based on n − l independent
and l dependent velocities, denoted as ˙̃xai and ˙̃xad ,
respectively, is used: ˙̃x =

( ˙̃xai ˙̃xad
)T

. Similarly, the

same partition at position level is considered: x̃ =(
x̃ai x̃ad

)T
. In the case of the rolling toroidal wheel,

n = 5 and l = 2. Choosing as independent coordinates
the yaw, lean and roll angles ψ , φ and θ , the vectors
of independent and dependent coordinates x̃ai and x̃ad
are given by:

x̃ai = (
ψ̃ φ̃ θ̃

)T
, x̃ad = (

x̃C ỹC
)T

. (34)

Following the linearization procedure presented in
[49], which allows the computation of the reduced lin-
earized equations of motion of a mechanical system
with holonomic and nonholonomic constraints, the fol-
lowing linear ODE system is obtained:

¨̃xai = J21 x̃ai + J22 ˙̃xai + J23 x̃ad , (35)

˙̃xad = J31 x̃ai + J32 ˙̃xai + J33 x̃ad . (36)

The computation of the matrices J21, J22, J23, J31,
J32 and J33 in Eqs. (35) and (36) is developed in detail
in [49]. Note that Eq. (35) represents the reduced lin-
earized dynamic equations, and Eq. (36) corresponds
to the linearized nonholonomic constraints.

The linearized equations of motion (35) and (36)
can be written as a first order system by defining X̃ =(
x̃ai ˙̃xai x̃ad

)T
:

˙̃X = J X̃, (37)

where J is the Jacobian matrix of the system, built as
follows:

J =
⎛

⎝
0(n−l) I (n−l) 0(n−l)×l

J21 J22 J23
J31 J32 J33

⎞

⎠ . (38)

In Eq. (38), 0(n−l) and 0(n−l)×l are (n − l) × (n − l)
and (n − l) × l null matrices, respectively, and I (n−l)

is the identity matrix of size n− l. Note that the size of
J is (2n − l) × (2n − l) = 8 × 8.

With the coordinate partition (34), the Jacobian
matrix of Eq. (38), particularized for the circular steady
motion (22), is obtained:

J (t) =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 αi

1 0 0 0
0 αi

2 0 αi
3 0 αi

4 0 0
0 0 0 0 αi

5 0 0 0
−�Ω cos (ωt) aΩ sin (φ0) sin (ωt) 0 0 a cos (ωt) −� sin (ωt) 0 0
−�Ω sin (ωt) −aΩ sin (φ0) cos (ωt) 0 0 a sin (ωt) � cos (ωt) 0 0

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

, (39)

where � = b+ a cos (φ0) and the coefficients αi
j , with

i = {s, h} and j = 1 . . . 5, are functions of the rota-
tional speed Ω , the angular speed ω, the lean equilib-
rium angle φ0 and the torus aspect ratio η:

αi
1 (Ω,ω, η, φ0) = δi1 (η, φ0) ω + δi2 (η, φ0)Ω,

αi
2 (Ω,ω, η, φ0) = δi3 (η, φ0) ω2 + δi4 (η, φ0)

g

R
+ δi5 (η, φ0) Ωω,

αi
3 (Ω,ω, η, φ0) = δi6 (η, φ0) ω + δi7 (η, φ0) Ω, (40)

αi
4 (Ω,ω, η, φ0) = δi7 (η, φ0) ω,

αi
5 (Ω,ω, η, φ0) = δi8 (η, φ0) ω + δi9 (η, φ0) Ω.

The analytical expressions of the functions δik (η, φ0)

in Eq. (40), with i = {s, h} and k = 1 . . . 9, can be
found in “Appendix A”, for both the solid and hollow
scenarios.

3.4 Computation of the time-independent Jacobian
matrix

Since the Jacobian matrix J(t) of Eq. (39) depends
explicitly on time, the linear stability cannot be assessed
directly by computing the set of eigenvalues of the Jaco-
bian matrix. To eliminate the time-dependence from
the Jacobian matrix, a coordinate transformation is
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used. The transformation is based on the use of a rotat-
ing coordinate system 〈XωYωZω〉 (see Fig. 3), which
rotates with the toroidal wheel. Therefore, the follow-
ing transformation can be defined:

x (t) = A (t) x̄ + C (t) , (41)

where x̄ is the new vector of coordinates, associated
with the rotating frame:

x̄ = (
x̄C ȳC ψ̄ φ̄ θ̄

)T
. (42)

In Eq. (41), the expressions of the transformation
matrix A (t) and vector C (t) are:

A (t) =
(
L (t) 02×3

03×2 I3×3

)
, with

L(t) =
(
cos (ωt) − sin (ωt)
sin (ωt) cos (ωt)

)
, (43)

C (t) = (
0 0 ωt 0 Ωt

)T
. (44)

Due to the symmetry of the circular steady motion
(22), this reference solution can be expressed, in the
rotating frame, as the following constant vector:

x̄0 = (
x̄0C ȳ0C ψ̄0 φ̄0 θ̄0

)T = (
ρ 0 π/2 φ0 0

)T
.

(45)

In the same way, the Lagrange multipliers, expressed
in the rotating frame, are denoted as Γ 0 and verify:

Λ0 = L (t)Γ 0, (46)

where the matrix L(t)was defined in Eq. (43). The use
of Eqs. (32) and (46) yields:

Γ 0 = (
Γ 0
1 Γ 0

2

)T = (
mω2 (ρ + R sin (φ0)) 0

)T
. (47)

Note that, in contrast to the Lagrange multipliersΛ0 of
Eq. (32), Γ 0 is a constant vector.

Using that, fromEq. (33), x = x0+x̃; fromEq. (41),
x0 = A(t)x̄0 + C(t); and defining ˜̄x = x̄ − x̄0, the
following relation is found:

x̃ = A(t) ˜̄x. (48)

Using the coordinate partition of Eq. (34), and the def-
inition of the matrix A (t) in Eq. (43), Eq. (48) can be
expressed as:
(
x̃ad
x̃ai

)
=

(
L (t) 02×3

03×2 I3×3

)( ˜̄xad
˜̄xai

)

, (49)

where ˜̄xai =
( ˜̄ψ ˜̄φ ˜̄θ

)T
and ˜̄xad = ( ˜̄xC ˜̄yC

)T
. Dif-

ferentiating with respect to time Eq. (49), the following
relations at velocity level are obtained:

˙̃xad = L̇ (t) ˜̄xad + L(t) ˙̄̃xad , (50)

˙̃xai = ˙̄̃xai . (51)

The substitution of Eqs. (50) and (51) in the linear
system of equations (35) and (36) leads to:

¨̄̃xai = J̄21 ˜̄xai + J̄22
˙̄̃xai + J̄23 ˜̄xad , (52)

˙̄̃xad = J̄31 ˜̄xai + J̄32
˙̄̃xai + J̄33 ˜̄xad , (53)

where the matrices J̄21, J̄22, J̄23, J̄31, J̄32 and J̄33
are computed as follows:

J̄21 = J21, J̄31 = L−1 J31,

J̄22 = J22, J̄32 = L−1 J32,

J̄23 = J23L, J̄33 = L−1 (
J33L − L̇

)
. (54)

Finally, defining ˜̄X =
(
˜̄xai ˙̄̃xai ˜̄xad

)T
, the linearized

equations of motion (52) and (53) can be written as

a first order system of the form
˙̄̃
X = J̄ ˜̄X , with the

Jacobian matrix J̄ :

J̄ =

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 αi

1 0 0 0
0 αi

2 0 αi
3 0 αi

4 0 0
0 0 0 0 αi

5 0 0 0
−�Ω 0 0 0 a 0 0 ω

0 −aΩ sin (φ0) 0 0 0 � −ω 0

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

,(55)

where the coefficients αi
j were defined in Eq. (40).

Note that, in contrast to Eq. (39), the Jacobian matrix
J̄ does not depend explicitly on time and presents con-
stant coefficients. In this case, the linear stability can be
assessed directly, being all the information contained
in the set of eigenvalues of J̄ .

The 8 × 8 Jacobian matrix (55) results in 2n −
l = 8 eigenvalues. As detailed in Ref. [49], the lin-
earization approach yields l = 2 spurious eigenval-
ues, associated with the linearized nonholonomic con-
straints in Eq. (55). These eigenvalues are easily rec-
ognizable and, in this case, are given by ±ωi , aris-
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ing from the rotating coordinate system 〈XωYωZω〉
that is used to transform the time-dependent Jacobian
matrix of Eq. (39) into the time-independent Jacobian
matrix (55). The remaining six eigenvalues obtained
from the Jacobian matrix (55) correspond to the spec-
trum of the problem and are discussed in Sect. 4.

4 Results and discussion

In this section, the linear stability of the steady straight-
line rolling motion, steady spinning around a vertical
diameter and the circular steady motion are analysed
in detail.

4.1 Linear stability of the steady straight-line rolling
motion

First, the linear stability of the steady straight-line
rolling motion of the toroidal wheel is studied. This
motion corresponds to a limit case of the circular steady
motion (22), with ω → 0, ρ → ∞ and φ0 → 0. This
reference motion can be expressed as:

x0C (t) = ΩRt, y0C (t) = 0,

ψ0 (t) = 0, φ0 (t) = 0,

θ0 (t) = Ωt. (56)

Note that Eq. (22), particularized for ω → 0 and
ρ → ∞, yield x0C (t) → 0, y0C (t) = ΩRt and

ψ0 (t) = π

2
, which corresponds to the toroidal wheel

moving along the Y1-axis. For simplicity, the equiva-
lent reference motion defined by Eq. (56), correspond-
ing to the straight-line rolling of the wheel along the
X1-axis (see Fig. 5), is considered. In vector form, the
reference motion of Eq. (56) is given by x0 (t) = Ω0t ,

with Ω0 = (
ΩR 0 0 0 Ω

)T
. In the steady straight-

line rolling motion, the values of the Lagrange multi-
pliers, denoted as Λ0

S, are given by:

Λ0
S = (

Λ0
S,1 Λ0

S,2

)T = (
0 0

)T
. (57)

The Jacobianmatrix ofEq. (55) canbeparticularized
for the reference motion (56). The following system of
linear equations, involving theyaw, lean and roll angles,

Fig. 5 Steady straight-line rolling motion of the toroidal wheel

is obtained:

¨̃
ψ = −2μi

1 (η)Ω
˙̃
φ,

¨̃
φ = 2

3
μi
2 (η)

g

R
φ̃

+ 4

3
μi
3 (η)Ω

˙̃
ψ,

¨̃
θ = 0,

(58)

where μi
j (η) are functions of the torus aspect ratio η,

with i = {s, h} and j = 1 . . . 3, given by:

μs
1 (η) = 3η2 + 4

5η2 + 4
, μh

1 (η) = 3η2 + 2

5η2 + 2
,

μs
2 (η) = 12 (1 + η)

13η2+16η+12
, μh

2 (η) = 6 (1 + η)

9η2+8η+6
,

μs
3(η)= 21η2+24η+24

26η2+32η+24
, μh

3(η)= 15η2+12η+12

18η2+16η+12
.

(59)

The linearized equations (58) are also valid for the
steady straight-line motion of the rolling hoop, which
corresponds to the limit caseη → 0.Note thatμi

j (0) =
1. As can be seen in Eq. (58), the equation associated

with the forward motion, ¨̃
θ = 0, is decoupled from

the following two coupled linear system of differen-
tial equations, involving the yaw and lean angles of the
wheel:
( ¨̃

ψ
¨̃
φ

)

+ Ω

(
0 cS1
cS2 0

)

︸ ︷︷ ︸
GS

( ˙̃
ψ
˙̃
φ

)
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+
(
kS1 0
0 kS2

)

︸ ︷︷ ︸
KS

(
ψ̃

φ̃

)
=

(
0
0

)
, (60)

with cS1 = 2μi
1 (η), cS2 = −4

3
μi
3 (η), kS1 = 0 and

kS2 = −2

3
μi
2 (η)

g

R
. In Eq. (60), KS and GS are the

stiffness and velocity-dependentmatrices, respectively.
The following set of eigenvalues, associatedwith the

linear system of equations (58), is obtained:

λS = (
01×4 λ1S λ2S

)T
, (61)

with λ1S = ϕi (η, ω0)

√
ζ i

(
η, Ω̄

)
and

λ2S = −ϕi (η, ω0)

√
ζ i

(
η, Ω̄

)
. The functions ϕi and

ζ i , with i = {s, h}, are given by:

ϕs (η, f0) = 2ω0√(
5η2 + 4

) (
13η2 + 16η + 12

) ,

ζ s (
η, Ω̄

) =
(
10η2 + 8

)
(1 + η) − Ω̄2

×
(
21η4 + 24η3 + 52η2 + 32η + 32

)
,

ϕh (η, f0) = 2ω0√(
5η2 + 2

) (
9η2 + 8η + 6

) ,

ζ h (
η, Ω̄

) =
(
5η2 + 2

)
(1 + η) − Ω̄2

×
(
15η4 + 12η3 + 22η2 + 8η + 8

)
.

(62)

The eigenvalues of Eq. (61), particularized for the case
of the rolling hoop (η → 0), become:

λ1
S

∣∣
∣
η→0

=
√
6

3
ω0

√
1 − 4Ω̄2,

λ2
S

∣∣
∣
η→0

= −
√
6

3
ω0

√
1 − 4Ω̄2. (63)

InEq. (61), twonull and twononzero eigenvalues are
associated with the system of equations (60). Note that,
since the stiffness matrix KS of Eq. (60) is degenerate
(kS1 = 0), only two nonzero eigenvalues are obtained.
Furthermore, the remaining two null eigenvalues in
Eq. (61) correspond to the forward motion as a rigid
body of the rolling wheel.

From the eigenvalues of Eq. (63), it can be seen
that the gyroscopic stabilization of the rolling hoop is

obtained for Ω̄c = 1

2
. Therefore, the critical rotational

speedΩc forwhich the stabilization is achieved is given
by:

Ω̄c = 1

2
⇒ Ωc = 1

2

√
g

R
. (64)

This result corresponds to the critical rolling speed of
the rolling hoop found in the literature [31,33], validat-
ing the linear stability analysis.

In the case of a toroidal wheel of aspect ratio η,
the value of Ω̄ for which the gyroscopic stabilization
is obtained is denoted as Ω̄ i

ηc, with i = {s, h}. From
the non-null eigenvalues of Eq. (61), the boundary that
determines the linear stability of the steady straight-line

rolling motion is therefore given by ζ i
(
η, Ω̄ i

ηc

)
= 0.

The values of Ω̄ i
ηc, for the solid and hollow cases, are

given by:

Ω̄s
ηc =

√ (
10η2 + 8

)
(1 + η)

21η4 + 24η3 + 52η2 + 32η + 32
, (65)

Ω̄h
ηc =

√ (
5η2 + 2

)
(1 + η)

15η4 + 12η3 + 22η2 + 8η + 8
. (66)

From Eq. (64)–(66), the following relation is obtained:

Ω̄ i
ηc = √

χi (η) Ω̄c, (67)

with the functions χi :

χs (η) = 4
(
10η2 + 8

)
(1 + η)

21η4 + 24η3 + 52η2 + 32η + 32
, (68)

χh (η) = 4
(
5η2 + 2

)
(1 + η)

15η4 + 12η3 + 22η2 + 8η + 8
. (69)

Note that these functions verify χs (0) = χh (0) = 1.
The critical rotational speed of the toroidal wheel ver-
ifies Ω̄ i

ηc < Ωc ∀η �= 0, for both the solid and hollow
scenarios, since χs (η) and χh (η) are monotonically
decreasing functions. Therefore, in the toroidal wheel
case, a lower rotational speed than in the rolling hoop
scenario is required to achieve the stabilization. The
evolution of these functions with the torus aspect ratio
η is shown in Fig. 6.

Figure 6 allows a comparison of the linear stability
of the steady straight-line rolling motion between the
solid and hollow toroidal wheels. The intersection of
χs (η) and χh (η) occurs for η∗ ≈ 0.7115. For η < η∗,
the gyroscopic stabilization is achieved for a lower rota-
tional speed in the solid case, while the hollow scenario
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Fig. 6 Functions χs (η) and χh (η)

becomes stable for a lower rotational speed than the
solid case if η > η∗.

A comparison of the root loci of a solid toroidal
wheel, with η = 0.75, and a hoop of equivalent radius
is shown in Fig. 7a. The torus aspect ratio η = 0.75

has been chosen for a convenient visualization of the
results. A numerical value of ω0 = 1 rad/s is consid-
ered. For Ω < Ω i

ηc, the rolling toroidal wheel presents
a hyperbolic equilibrium, with two nonzero real eigen-
values of opposite sign, and is therefore unstable. In
the case of Ω = Ω i

ηc, the eigenvalues coalesce and
the wheel is still unstable. The gyroscopic stabiliza-
tion is finally achieved for Ω > Ω i

ηc, presenting an
elliptic equilibrium with a pair of purely imaginary
eigenvalues. The crossmarkers in Fig. 7a correspond to
Ω = 0 rad/s, and the square markers to Ω = 1 rad/s.
Moreover, the unstable and stable regions are depicted
in Fig. 7b. The transition from the unstable to the stable
region is given by the critical rotational speed, which
in the case of a solid toroidal wheel of η = 0.75 and
ω0 = 1 rad/s, is Ωs

ηc = 0.4834 rad/s.
Figure 8a, b show the evolution of the real and imag-

inary parts, respectively, of the eigenvalue λ1S with
the rotational speed, for different torus aspect ratios:
η = {0, 0.25, 0.5, 0.75, 1}. The results are analogous
for the eigenvalue λ2S, with opposite sign. Note that, in
linewithFig. 6, inwhich the functionsχi (η) are shown,

Fig. 7 Eigenvalues of the
rolling toroidal wheel in the
steady straight-line rolling
motion

Fig. 8 Variation of the real
and imaginary parts of λ1S
(Re

(
λ1S

)
and Im

(
λ1S

)
,

respectively) with Ω , for
η = {0, 0.25, 0.5, 0.75, 1}.
The solid (S) and hollow
(H) scenarios are shown
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the rotational speed for which the real eigenvalue λ1S
becomes purely imaginary decreases as η increases,
due to the stabilizing effect of the toroidal geometry.
Figure8a, b also allows a comparison betweeen the
solid and hollow scenarios. For a torus aspect ratio
lower than η∗ ≈ 0.7115 (η = 0.25 and η = 0.5 in
Fig. 8a, b), the gyroscopic stabilization is achieved and
the eigenvalue λ1S turns purely imaginary for a lower
rotational speed in the solid case, while the hollow sce-
nario becomes stable for a lower rotational speed than
the solid case if η > η∗ (η = 0.75 and η = 1 in Fig. 8a,
b). This behavior is consistent with the evolution of the
functions χs (η) and χh (η) in Fig. 6.

4.2 Linear stability of the steady spinning motion
around a vertical diameter

The linear stability of the steady spinning motion
around a vertical diameter is analysed. In this case,
this reference motion corresponds to a limit case of the
circular steady motion (22), with Ω → 0, ρ → 0 and
φ0 → 0:

x0C (t) = 0, y0C (t) = 0,

ψ0 (t) = ωt, φ0 (t) = 0,

θ0 (t) = 0. (70)

In vector form, the reference motion of Eq. (70) can be

expressed as x0 (t) = ω0t , with ω0 = (
0 0 ω 0 0

)T
.

In the steady spinning motion around a vertical diame-
ter, the values of the Lagrange multipliers, denoted as
Λ0

ω, are given by:

Λ0
ω = (

Λ0
ω,1 Λ0

ω,2

)T = (
0 0

)T
. (71)

Figure 9 shows an arbitrary position of the toroidal
wheel during the steady spinning motion.

Particularizing the Jacobian matrix (55) for this ref-
erencemotion, the following systemof linear equations
of motion, involving the yaw, lean and roll angles, is
obtained:

¨̄̃
ψ = 0,

¨̄̃
φ =

(
σ i
1 (η) ω2 + 2

3
σ i
2 (η)

g

R

)
˜̄φ + 4

3
σ i
3 (η) ω

˙̄̃
θ,

¨̄̃
θ = −3

2
σ i
4 (η) ω

˙̄̃
φ,

(72)

Fig. 9 Steady spinning
motion around a vertical
diameter of the toroidal
wheel

where σ i
j (η) are the following functions of the torus

aspect ratio, with i = {s, h} and j = 1 . . . 4:

σ s
1 (η)= η2 + 8η + 12

13η2 + 16η + 12
, σ h

1 (η)= η2 + 4η + 6

9η2 + 8η + 6
,

σ s
2 (η)= 12 (1 + η)

13η2 + 16η + 12
, σ h

2 (η)= 6 (1 + η)

9η2 + 8η + 6
,

σ s
3 (η)= 21η2+24η+24

26η2+32η+24
, σ h

3 (η)= 15η2+12η+12

18η2+16η+12
,

σ s
4 (η)= 14η2+24η+24

21η2+24η+24
, σ h

4 (η)= 10η2+12η+12

15η2+12η+12
.

(73)

Note that σ i
j (0) = 1. The linearized equations (72)

are also valid for the rolling hoop (η → 0). As can
be seen in Eq. (72), the spinning motion is decoupled
from the following two coupled linear system of dif-
ferential equations, involving the lean and roll angles
of the wheel:
⎛

⎝
¨̄̃
φ
¨̄̃
θ

⎞

⎠ + ω

(
0 cω1

cω2 0

)

︸ ︷︷ ︸
Gω

⎛

⎝
˙̄̃
φ
˙̄̃
θ

⎞

⎠

+
(
kω1 0
0 kω2

)

︸ ︷︷ ︸
Kω

( ˜̄φ
˜̄θ

)

=
(
0
0

)
, (74)

with cω1 = −4

3
σ i
3 (η), cω2 = 3

2
σ i
4 (η), kω1 =

−σ i
1 (η) ω2 − 2

3
σ i
2 (η)

g

R
and kω2 = 0. In Eq. (74),
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Kω and Gω are the stiffness and velocity-dependent
matrices of the steady spinning motion, respectively.

The following set of eigenvalues, associatedwith the
linear system of equations (72), is obtained:

λω = (
01×4 λ1ω λ2ω

)T
, (75)

with λ1ω = κ i (η, ω0)
√

ς i (η, ω̄) and
λ2ω = −κ i (η, ω0)

√
ς i (η, ω̄). The functions κ i and

ς i are given by:

κs (η, ω0) = ω0√
13η2 + 16η + 12

,

ς s (η, ω̄) = 8 (1 + η) − ω̄2
(
13η2 + 16η + 12

)
,

κh (η, ω0) = ω0√
9η2 + 8η + 6

,

ςh (η, ω̄) = 4 (1 + η) − ω̄2
(
9η2 + 8η + 6

)
. (76)

In the limit case of the rolling hoop, the eigenvalues of
Eq. (75) become, for η → 0:

λ1
ω

∣∣
∣
η→0

=
√
6

3
ω0

√

1 − 3

2
ω̄2,

λ2
ω

∣∣∣
η→0

= −
√
6

3
ω0

√

1 − 3

2
ω̄2. (77)

InEq. (75), twonull and twononzero eigenvalues are
associated with the system of equations (74). Note that,
as in the steady straight-line rollingmotion, the stiffness
matrix Kω of Eq. (74) is degenerate (kω2 = 0), and only
two nonzero eigenvalues are obtained. Moreover, the
remaining two null eigenvalues of Eq. (75) correspond
to the spinning motion as a rigid body of the toroidal

wheel, given by
¨̄̃
ψ = 0 in Eq. (72).

From the eigenvalues of Eq. (77), it can be seen that
the gyroscopic stabilization of the hoop in the steady

spinning motion occurs for ω̄c =
√
2

3
. Therefore, the

critical spinning speed ωc for which the stabilization
of the hoop is achieved is given by:

ω̄c =
√
2

3
⇒ ωc =

√
2g

3R
. (78)

This result corresponds to the critical spinning speed of
the rolling hoop presented in [33], validating the linear
stability analysis.

In a toroidal wheel of aspect ratio η, the bound-
ary that determines the linear stability of the steady

spinning motion around a vertical diameter is, by
virtue of the non-null eigenvalues of Eq. (75), given

by ς i
(
η, ω̄i

ηc

)
= 0, with ω̄i

ηc being the value of ω̄

for which the gyroscopic stabilization of the spinning
wheel occurs. The values of ω̄i

ηc, for the solid and hol-
low case, are given by:

ω̄s
ηc =

√
8 (1 + η)

13η2 + 16η + 12
, (79)

ω̄h
ηc =

√
4 (1 + η)

9η2 + 8η + 6
. (80)

From Eq. (78) and Eqs. (79)–(80), the following rela-
tion is obtained:

ω̄i
ηc = √

γi (η) ω̄c, (81)

where the functions γi , with i = {s, h}, are given by:

γs (η) = 12 (1 + η)

13η2 + 16η + 12
, (82)

γh (η) = 6 (1 + η)

9η2 + 8η + 6
. (83)

Figure 10 shows the evolution of γs (η) and γh (η)

with the torus aspect ratio. Both functions aremonoton-
ically decreasing, with γs (0) = γh (0) = 1. Therefore,
as in the case of the steady straight-line rolling motion,
the toroidal geometry results in a stabilizing effect with
respect to the hoop, since the critical angular speed of
the toroidal wheel verifies ωi

ηc < ωc ∀η �= 0, both in
the solid and the hollow scenarios. Given that γh < γs

Fig. 10 Functions γs (η) and γh (η)
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∀η �= 0 (see Fig. 10), the gyroscopic stabilization is
achieved for a lower angular speed in the hollow case.

Figure 11a shows a comparison of the root loci of a
solid torus, with η = 0.75, and a hoop with equivalent
radius. As in the case of Fig. 7, the torus aspect ratio
η = 0.75 has been chosen for a convenient visualiza-
tion of the results. A numerical value of ω0 = 1 rad/s
is considered. In Fig. 11a, the cross marks correspond
toω = 0 rad/s, and the squaremarks toω = 1.5 rad/s.
Figure11b represents the evolution of the real and com-
plex parts of the eigenvalues λ1ω and λ2ω with the angu-
lar speed ω. The unstable and stable regions are also
depicted in Fig. 11b. The transition from the unsta-
ble to the stable region is given by the critical angular
speed, which in the case of a solid toroidal wheel with
η = 0.75 and ω0 = 1 rad/s, is ωs

ηc � 0.6687 rad/s.
The critical angular speed of the hoop with equiva-

lent radius, ωc =
√
2

3
� 0.8165 rad/s, is also high-

lighted. The toroidal wheel, in the steady spinning
motion around a vertical diameter, presents the same
behaviour as in the steady straight-line rolling motion.

A hyperbolic equilibrium exists for ω < ωi
ηc, with

two nonzero real eigenvalues of opposite sign, being
unstable. For ω = ω∗

ηi , the eigenvalues coalesce, with

λ1ω = λ2ω = 0, and the system remains unstable. Lastly,
whenω > ωi

ηc, the gyroscopic stabilization is achieved
and the real eigenvalues turn into a complex conjugate
pair, leading to an elliptic equilibrium.

The influence of the aspect ratio η on the real
and imaginary parts of the eigenvalue λ1ω is shown in
Fig. 12. Figure12a represents the variation of the real
part Re

(
λ1ω

)
with the angular speed ω, for a set of val-

ues of η = {0, 0.25, 0.5, 0.75, 1}. Similarly, Fig. 12b
shows the imaginary part Im

(
λ1ω

)
. Note that, in consis-

tency with the functions γs (η) and γh (η) of Eqs. (82)
and (83), depicted in Fig. 10, the toroidal geometry
leads to a stabilizing effect, since the value of ω for
which the real eigenvalues become purely imaginary
decreases as η increases. For a given torus aspect ratio
η, the gyroscopic stabilization of the steady spinning
motion around a vertical diameter is always achieved
for a lower speed in the hollow scenario.

Fig. 11 Eigenvalues of the
rolling toroidal wheel in the
steady spinning motion
around a vertical diameter

Fig. 12 Variation of the
real and imaginary parts of
λ1ω (Re

(
λ1ω

)
and Im

(
λ1ω

)
,

respectively) with ω, for
η = {0, 0.25, 0.5, 0.75, 1}.
The solid (S) and hollow
(H) scenarios are shown
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4.3 Linear stability of the circular steady motion

The linear stability of the circular steadymotion, which
was defined in Eqs. (21) and (22), is analysed. From
the Jacobian matrix of Eq. (55), the following system
of linear equations, involving the yaw, lean and roll
angles, is obtained:

¨̄̃
ψ =

(
δi1 (η, φ0) ω + δi2 (η, φ0)Ω

) ˙̄̃
φ, (84)

¨̄̃
φ=

(
δi3 (η, φ0) ω2+δi4 (η, φ0)

g

R
+δi5 (η, φ0)Ωω

) ˜̄φ

+
(
δi6 (η, φ0) ω+δi7 (η, φ0)Ω

) ˙̄̃
ψ+δi7 (η, φ0) ω

˙̄̃
θ,

(85)

¨̄̃
θ =

(
δi8 (η, φ0) ω + δi9 (η, φ0) Ω

) ˙̄̃
φ, (86)

where the functions δik (η, φ0), with i = {s, h} and
k = 1 . . . 9, were introduced after Eq. (40) and their
expressions can be found in “Appendix A”. The linear
system of equations (84)–(86), particularized for the
case of the rolling hoop (η → 0), becomes:

¨̄̃
ψ = − 2Ω

cos (φ0)

˙̄̃
φ, (87)

¨̄̃
φ=

(
ω2 cos (2φ0)+ 2

3

g

R
cos (φ0)− 4

3
Ωω sin (2φ0)

)
˜̄φ

+
(
4

3
Ω cos (φ0)+ω sin (2φ0)

) ˙̄̃
ψ+ 4

3
ω cos (φ0)

˙̄̃
θ,

(88)

¨̄̃
θ =

(
2Ω tan (φ0) − 3

2
ω cos (φ0)

) ˙̄̃
φ. (89)

Equations (84)–(86) can be rewritten as follows:

⎛

⎜⎜
⎝

¨̄̃
ψ
¨̄̃
φ
¨̄̃
θ

⎞

⎟⎟
⎠ +

⎛

⎜⎜
⎜⎜⎜⎜
⎝

ω

⎛

⎝
0 cω1 0
cω2 0 cω3

0 cω4 0

⎞

⎠

︸ ︷︷ ︸
Gω
c

+Ω

⎛

⎝
0 cΩ1 0
cΩ2 0 0
0 cΩ3 0

⎞

⎠

︸ ︷︷ ︸
GΩ
c

⎞

⎟⎟
⎟⎟⎟⎟
⎠

⎛

⎜⎜
⎝

˙̄̃
ψ
˙̄̃
φ
˙̄̃
θ

⎞

⎟⎟
⎠ +

⎛

⎝
0 0 0
0 kc1 0
0 0 0

⎞

⎠

︸ ︷︷ ︸
K c

⎛

⎜
⎝

˜̄ψ
˜̄φ
˜̄θ

⎞

⎟
⎠ =

⎛

⎝
0
0
0

⎞

⎠ , (90)

where K c is the stiffness matrix, and Gω
c , G

Ω
c are

velocity-dependent matrices, proportional to the angu-
lar and rotational speeds ω and Ω , respectively. In
Eq. (84), cω1 = −δi1 (η, φ0), cω2 = −δi6 (η, φ0), cω3 =
−δi7 (η, φ0), cω4 = −δi8 (η, φ0), cΩ1 = −δi2 (η, φ0),
cΩ2 = −δi7 (η, φ0), cΩ3 = −δi9 (η, φ0) and kc1 =

−
(
δi3 (η, φ0) ω2 + δi4 (η, φ0)

g

R
+ δi5 (η, φ0) Ωω

)
. In

contrast to the linearized equations of motion associ-
ated with the steady straight-line rolling and spinning
around a vertical diameter, given by Eqs. (58) and (72),
respectively, equations (90) constitute a linear system
of three coupled equations.

The following set of eigenvalues, associatedwith the
linear system (90), is obtained:

λc = (
01×4 λ1c λ2c

)T
, (91)

where

λ1c = ω0√
β i
5 (η, φ0)

√
S i

β

(
Ω̄, ω̄, φ0, η

)
,

λ2c = − ω0√
β i
5 (η, φ0)

√
S i

β

(
Ω̄, ω̄, φ0, η

)
, (92)

and S i
β , with i = {s, h}, is given by:

S i
β

(
Ω̄, ω̄, φ0, η

) = β i
1 (η, φ0) + β i

2 (η, φ0) Ω̄2

+ β i
3 (η, φ0) Ω̄ω̄ + β i

4 (η, φ0) ω̄2.

(93)

The analytical expressions of the functions β i
k in

Eqs. (92) and (93), with i = {s, h} and k = 1 . . . 5,
can be found in “Appendix A”.

The nonzero eigenvalues of the circular steady
motion, presented in Eq. (92), become, for ω̄ → 0 and
φ0 → 0, those of the steady straight-line rollingmotion
of Eq. (61). Furthermore, in the limit case Ω̄ → 0 and

φ0 → 0, the eigenvalues (75) of the steady spinning
motion around a vertical diameter are obtained. There-
fore, the same eigenvalues of the linear stability anal-
ysis of the limit motions are obtained, validating the
linear stability results of the circular steady motion. In
the limit case of the rolling hoop, the eigenvalues of
Eq. (92) become, for η → 0:
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λ1
c

∣
∣∣
η→0

=
√
6ω0

3

√

cos (φ0) − 3

2
ω̄2 − 4Ω̄

(
Ω̄ + ω̄ sin (φ0)

)
,

λ2
c

∣∣
∣
η→0

= −
√
6ω0

3

√

cos (φ0) − 3

2
ω̄2 − 4Ω̄

(
Ω̄ + ω̄ sin (φ0)

)
.

(94)

The equilibrium equations (27) and (28), particular-
ized for a given aspect ratio η, can be represented as
the following surface:

Sie
(
Ω̄, ω̄, φ0

) = 0, with i = {s, h}. (95)

Moreover, the function S i
β

(
Ω̄, ω̄, φ0, η

)
, particular-

ized for a torus aspect ratioη, is denoted as Siβ
(
Ω̄, ω̄, φ0

)
.

Therefore, the boundary that determines the linear sta-
bility of the circular steady motion of a toroidal wheel
with aspect ratio η is given by the intersection of the
equilibrium surface Sie

(
Ω̄, ω̄, φ0

) = 0 of Eq. (95) and
the surface Siβ

(
Ω̄, ω̄, φ0

) = 0:
{
Sie

(
Ω̄, ω̄, φ0

) = 0,
Siβ

(
Ω̄, ω̄, φ0

) = 0.
(96)

Figure 13 shows a three-dimensional view of the sta-
bility boundaries, obtained for different aspect ratios η.
In particular, the numerical values ofη = {0, 0.25, 0.5,
0.75, 1} are considered. Note that, for convenience, the
absolute valueof the equilibrium lean angle |φ0| is used.
To verify the results, the same curve is obtained, for
η = 0, in the solid and hollow scenarios (see Fig. 13),
and tallies with the result obtained for the rolling hoop.

Moreover, Fig. 14 shows the projections of the
stability boundaries on the ω̄–Ω̄ plane. The stability
results obtained in the study of the limitmotions (steady
straight-line rolling in Sect. 4.1 and spinning around a
vertical diameter in Sect. 4.2) can also be observed in

Fig. 13 Stability boundaries of the circular steady motion. The
solid (S) and hollow (H) cases, for η = {0, 0.25, 0.5, 0.75, 1},
are shown

Fig. 14 Projections of the stability boundaries, in the solid (S)
and hollow (H) case, for η = {0, 0.25, 0.5, 0.75, 1}

Fig. 14. For ω̄ → 0, the intersections of the projec-
tions with the Ω̄-axis of Fig. 14 correspond to Ω̄ i

ηc,
and are in accordance with the expression of Ω̄ i

ηc in
Eq. (67) and the functions χs and χh of Eqs. (68) and
(69), respectively. Likewise, for Ω̄ → 0, the intersec-
tions of the projections with the ω̄-axis correspond to
ω̄i

ηc, and are in accordance with the expression of ω̄i
ηc

in Eq. (81) and the functions γs and γh of Eqs. (82)
and (83), respectively. Note that the torus aspect ratio
η of the toroidal wheel greatly impacts on the stability
boundaries. As η increases, the stability is achieved for
a lower combination of rotational speed Ω̄ and angular
speed ω̄.

Lastly, Fig. 15 shows, for a solid toroidal wheel,
the stability boundaries on the equilibrium surfaces
Sse

(
Ω̄, ω̄, φ0

) = 0, for η = 0 and η = 0.75. The
torus aspect ratio η = 0.75 has been chosen for a con-
venient visualization of the results. The part of the equi-

Fig. 15 Stability boundaries, for η = 0 and η = 0.75, on the
equilibrium surfaces Sse

(
Ω̄, ω̄, φ0

) = 0
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librium surface below the stability boundary represents
the unstable region, and the toroidal wheel presents a
hyperbolic equilibrium, where the nonzero eigenvalues
λ1c and λ2c of Eq. (92) are real with opposite sign. On
the stability boundary, the eigenvalues λ1c and λ2c coa-
lesce and become null. Finally, the part of the equilib-
rium surface above the stability boundary is the stable
region, corresponding to an elliptic equilibrium, where
the eigenvalues λ1c and λ2c are purely imaginary.

In the particular case of a circular trajectory with
large radius compared to the radius of the wheel
(ρ � R), an accurate expression of the rotational speed
required for stability in the circular steady motion can
be analytically found. Paris et al. [31] showed this result
for the rolling disk and hoop. Particularizing the eigen-
values (94) for the condition ρ � R, which by virtue of
Eq. (24) is equivalent to ω̄ � Ω̄ , the critical rotational
speed Ω̄∗

c is obtained:

Ω̄∗
c = 1

2

√
cos (φ0) = Ω̄c

√
cos (φ0), (97)

where Ω̄c is the critical rotational speed of the rolling
hoop in the steady straight-line rolling motion, defined
in Eq. (64). Equation (97) provides the same result
shown by Paris et al. [31]. From Eq. (97), it can be
seen that the critical rolling speed for stability in the
circular steady motion Ω̄∗

c (corresponding to ω̄ � Ω̄)
is lower than in the steady straight-line rolling motion
Ω̄c (associated with ω̄ = 0). Similarly, in the case of
a toroidal wheel describing a circular trajectory with
large radius compared to the radius of the wheel, the
expression of the critical rolling speed required for sta-
bility can be obtained:

Ω̄ i∗
ηc =

√

−β i
1 (η, φ0)

β i
2 (η, φ0)

, (98)

where the functions β i
1 (η, φ0) and β i

2 (η, φ0) can be
found in “Appendix A”. The functions β i

1 (η, φ0) and
β i
2 (η, φ0) have opposite signs. As in the case of the

rolling hoop, and as can be seen in the projections of the
stability boundaries shown inFig. 14, the critical rolling
speed in the circular steadymotion Ω̄ i∗

ηc (corresponding
to ω̄ � Ω̄) is lower than the critical rolling speed
in the steady straight-line rolling Ω̄ i

ηc (associated with
ω̄ = 0).

5 Conclusions

In this paper, the linear stability of the rolling toroidal
wheel was analysed in detail. The nonlinear equations
of motion of the solid and hollow toroidal wheel with
circular-cross section were derived. The circular steady
motion, which constitutes a relative equilibrium of
the system, was obtained. The linearized equations of
motion along this reference solution were analytically
derived as a function of the torus aspect ratio η.

First, the linear stability of the steady straight-line
rollingmotion and the steady spinningmotion around a
vertical diameter, which correspond to limit motions of
the circular steady solution, were studied. In the steady
straight-line rolling motion, the corresponding eigen-
values and the critical rolling speed required for stabi-
lizationΩ i

ηc were analytically obtained. ForΩ < Ω i
ηc,

the rolling toroidal wheel presents a hyperbolic equi-
librium, with two nonzero real eigenvalues of opposite
sign, and is therefore unstable. In the case ofΩ = Ω i

ηc,
the eigenvalues coalesce and the wheel is still unstable.
Finally, forΩ > Ω i

ηc, an elliptic equilibriumwith a pair
of purely imaginary eigenvalues is obtained, becom-
ing stable. A comparison between the solid and hollow
scenarios was also performed. Below a critical torus
aspect ratio η∗, the gyroscopic stabilization is achieved
for a lower rolling speed in the solid case, while for
η > η∗, the hollow toroidal wheel becomes stable for
a lower rotational speed than the solid case. Similarly,
the eigenvalues and the critical spinning speed ωi

ηc of
the steady spinning motion around a vertical diameter
were derived. Forω < ωi

ηc, a hyperbolic equilibrium is
obtained,with twononzero real eigenvalues of opposite
sign, being unstable. Forω = ωi

ηc, the eigenvalues coa-
lesce and, forω > ωi

ηc, the stability is achieved, obtain-
ing an elliptic equilibrium with a pair of purely imagi-
nary eigenvalues. In this reference motion, the stability
is always achieved for a lower spinning speed in the hol-
low toroidal wheel. For both limit motions, the eigen-
values and the critical rolling and spinning speeds were
particularized for η = 0, obtaining the same results of
the rolling hoop. A comparison between the toroidal
wheel and the rolling hoop was also included, showing
the stabilizing effect of the toroidal geometry.

Concerning the linear stability of the circular steady
motion, the corresponding eigenvalues were analyti-
cally obtained, for both the solid and hollow scenarios.
The influence of the torus aspect ratio η on the stabil-
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ity boundary was studied, and it was shown that, as
η increases, a lower combination of rolling speed Ω

and spinning speed ω was required to achieve the sta-
bility. The equilibrium surfaces, with the correspond-
ing stability boundaries, were shown for η = 0.75
and the hoop case (η = 0). The stability results of
the steady straight-line rolling motion and the steady
spinning motion around a vertical diameter were ana-
lytically validated by particularizing the eigenvalues of
the circular steadymotion for these reference solutions.
Moreover, these results were also verified with the pro-
jections of the stability boundaries on the ω̄−Ω̄ plane.
Lastly, in the case of a circular trajectory with large
radius compared to the radius of the wheel (ρ � R),
an accurate expression of the critical rolling speed
required for the stability of the circular steady motion
was obtained.

It is important to note that, in thiswork, all the results
have been obtained for a toroidal wheel with a circular-
cross section. In future work, the influence of differ-
ent geometries of the cross-section on the stability of
the relative equilibria could be studied. Moreover, the
bifurcations of the system could be analysed and com-
pared with those of the rolling hoop and disk.
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A Appendix

The functions δik (η, φ0), with i = {s, h} and k =
1 . . . 9, are given by:

δs1 (η, φ0) = −2η4 sin (3φ0) − 34η4 sin (φ0) − 28η3 sin (2φ0) − 56η2 sin (φ0) + 8η2 sin (3φ0) − 16η sin (2φ0)

cos (φ0)
(
39η4 − 4η4 cos2 (φ0) + 40η3 cos (φ0) + 84η2 − 16η2 cos2 (φ0) + 32η cos (φ0) + 32

) ,

δs2 (η, φ0) = − 42η4 + 48η3 cos (φ0) + 104η2 + 64η cos (φ0) + 64

cos (φ0)
(
39η4 − 4η4 cos2 (φ0) + 40η3 cos (φ0) + 84η2 − 16η2 cos2 (φ0) + 32η cos (φ0) + 32

) ,

δs3 (η, φ0) = η2 cos (2φ0) + 8η cos (φ0) + 12 cos (2φ0)

13η2 + 16η cos (φ0) + 12
, δs4 (η, φ0) = 8 cos (φ0)(

13η2 + 16η cos (φ0) + 12
)
(1 + η)

,

δs5 (η, φ0) = −14η2 sin (φ0)+8η sin (2φ0)+16 sin (φ0)

13η2 + 16η cos (φ0) + 12
, δs6 (η, φ0) = η2 sin (2φ0)+16η sin (φ0)+12 sin (2φ0)

13η2 + 16η cos (φ0) + 12
,

δs7 (η, φ0) = 14η2 cos (φ0) + 8η + 8η cos2 (φ0) + 16 cos (φ0)

13η2 + 16η cos (φ0) + 12
,

δs8 (η, φ0) = η4 cos2 (φ0) − 36η4 − 60η3 cos (φ0) − 64η2 − 24η2 cos2 (φ0) − 48η cos (φ0) − 48 cos2 (φ0)

cos (φ0)
(
39η4 − 4η4 cos2 (φ0) + 40η3 cos (φ0) + 84η2 − 16η2 cos2 (φ0) + 32η cos (φ0) + 32

) ,

δs9 (η, φ0)

= 38η4 sin (φ0)+4η4 sin3 (φ0)+22η3 sin (2φ0)+88η2 sin (φ0)+16η2 sin3 (φ0)+24η sin (2φ0)+64 sin (φ0)

cos (φ0)
(
39η4 − 4η4 cos2 (φ0) + 40η3 cos (φ0) + 84η2 − 16η2 cos2 (φ0) + 32η cos (φ0) + 32

) ,

δh1 (η, φ0) = −η4 sin (3φ0) − 23η4 sin (φ0) − 14η3 sin (2φ0) − 22η2 sin (φ0) + 2η2 sin (3φ0) − 4η sin (2φ0)

cos (φ0)
(
27η4 − 2η4 cos2 (φ0) + 20η3 cos (φ0) + 34η2 − 4η2 cos2 (φ0) + 8η cos (φ0) + 8

) ,

δh2 (η, φ0) = − 30η4 + 24η3 cos (φ0) + 44η2 + 16η cos (φ0) + 16

cos (φ0)
(
27η4 − 2η4 cos2 (φ0) + 20η3 cos (φ0) + 34η2 − 4η2 cos2 (φ0) + 8η cos (φ0) + 8

) ,
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δh3 (η, φ0) = η2 cos (2φ0) + 4η cos (φ0) + 6 cos (2φ0)

9η2 + 8η cos (φ0) + 6
, δh4 (η, φ0) = 4 cos (φ0)(

9η2 + 8η cos (φ0) + 6
)
(1 + η)

,

δh5 (η, φ0) = −10η2 sin (φ0) + 4η sin (2φ0) + 8 sin (φ0)

9η2 + 8η cos (φ0) + 6
, δh6 (η, φ0) = η2 sin (2φ0) + 8η sin (φ0) + 6 sin (2φ0)

9η2 + 8η cos (φ0) + 6
,

δh7 (η, φ0) = 10η2 cos (φ0) + 4η + 4η cos2 (φ0) + 8 cos (φ0)

9η2 + 8η cos (φ0) + 6
,

δh8 (η, φ0) = −η4 cos2 (φ0) + 24η4 + 30η3 cos (φ0) + 24η2 + 16η2 cos2 (φ0) + 12η cos (φ0) + 12 cos2 (φ0)

cos (φ0)
(
27η4 − 2η4 cos2 (φ0) + 20η3 cos (φ0) + 34η2 − 4η2 cos2 (φ0) + 8η cos (φ0) + 8

) ,

δh9 (η, φ0)= 28η4 sin (φ0)+2η4 sin3 (φ0)+11η3 sin (2φ0)+40η2 sin (φ0)+4η2 sin3 (φ0)+6η sin (2φ0)+16 sin (φ0)

cos (φ0)
(
27η4 − 2η4 cos2 (φ0) + 20η3 cos (φ0) + 34η2 − 4η2 cos2 (φ0) + 8η cos (φ0) + 8

) .

(99)

The functions β i
k , with i = {s, h} and k = 1 . . . 5,

are:

βs
1 (η, φ0) = 8 (1+η)

((
39η4+84η2+32

)
cos2 (φ0)

+
(
40η3+32η

)
cos3 (φ0)−

(
4η4+16η2

)
cos4 (φ0)

)
,

βs
2 (η, φ0) = −4

(
84η5 + 208η3 + 128η

+
(
147η6 + 628η4 + 768η2 + 256

)
cos (φ0)

+
(
252η5 + 624η3 + 384η

)
cos2 (φ0)

+
(
96η4 + 128η2

)
cos3 (φ0)

)
,

βs
3 (η, φ0) = 1

1 + η cos (φ0)((
462η7 + 1216η5 − 1568η3 − 2304η

)
sin (φ0)

+
(
207η6 + 148η4 − 864η2 − 512

)
sin (2φ0)

−
(
462η7 + 1264η5 − 1248η3 − 1792η

)
sin3 (φ0)

+
(
536η6 − 448η4 − 1152η2

)
sin (φ0) cos

3 (φ0)

−
(
112η7 + 448η5 + 512η3

)
sin (φ0) cos

4 (φ0)

−
(
32η6 + 128η4

)
sin (φ0) cos

5 (φ0)
)

,

βs
4 (η, φ0) = 1

(1 + η cos (φ0))
2

(
288η5 + 512η3

+
(
105η6 + 408η4 − 400η2 − 384

)
cos (φ0)

−
(
654η7+2160η5+3104η3+1280η

)
cos2 (φ0)

−
(
471η8+3488η6+6464η4+3136η2

)
cos3 (φ0)

−
(
1424η7 + 5144η5 + 4160η3 + 384η

)
cos4 (φ0)

+
(
8η8 − 1304η6 − 1984η4 − 384η2

)
cos5 (φ0)

+
(
88η7 + 64η5 + 384η3

)
cos6 (φ0)

+
(
8η8 + 128η6 + 384η4

)
cos7 (φ0)

)

βs
5(η, φ0)=

(
507η6+1560η4+1424η2+384

)
cos (φ0)

+
(
1144η5 + 2240η3 + 896η

)
cos2 (φ0)

−
(
52η6 − 384η4 − 320η2

)
cos3 (φ0)

−
(
64η5 + 256η3

)
cos4 (φ0) , (100)

βh
1 (η, φ0) = 4 (1 + η)

((
27η4 + 34η2 + 8

)
cos2 (φ0)

+
(
20η3+8η

)
cos3 (φ0) −

(
2η4+4η2

)
cos4 (φ0)

)
,

βh
2 (η, φ0) = −4

(
30η5 + 44η3 + 16η

+
(
75η6 + 194η4 + 144η2 + 32

)
cos (φ0)

+
(
90η5 + 132η3 + 48η

)
cos2 (φ0)

+
(
24η4 + 16η2

)
cos3 (φ0)

)
,

βh
3 (η, φ0) = 1

1 + η cos (φ0)

×
((

210η7 + 320η5 − 344η3 − 288η
)
sin (φ0)
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+
(
93η6 + 18η4 − 160η2 − 64

)
sin (2φ0)

−
(
210η7 + 344η5 − 264η3 − 224η

)
sin3 (φ0)

+
(
188η6 − 80η4 − 144η2

)
sin (φ0) cos

3 (φ0)

−
(
40η7 + 80η5 + 64η3

)
sin (φ0) cos

4 (φ0)

−
(
8η6 + 16η4

)
sin (φ0) cos

5 (φ0)
)

,

βh
4 (η, φ0) = 1

(1 + η cos (φ0))
2

(
96η5+96η3+

(
−27η6+4η4−100η2−48

)
cos (φ0)

−
(
342η7 + 760η5 + 616η3 + 160η

)
cos2 (φ0)

−
(
219η8 + 1158η6 + 1356η4 + 440η2

)
cos3 (φ0)

−
(
500η7 + 1260η5 + 704η3 + 48η

)
cos4 (φ0)

+
(
−10η8 − 412η6 − 456η4 − 48η2

)
cos5 (φ0)

+
(
12η7 − 48η5 + 48η3

)
cos6 (φ0)

+
(
4η8 + 32η6 + 48η4

)
cos7 (φ0)

)

βh
5 (η, φ0)=

(
243η6+468η4+276η2+48

)
cos (φ0)

+
(
396η5 + 464η3 + 112η

)
cos2 (φ0)

−
(
18η6 − 112η4 − 40η2

)
cos3 (φ0)

−
(
16η5 + 32η3

)
cos4 (φ0) . (101)
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