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Numerical methods are often used to put in evidence the existence of global connections in differ-
ential systems. The principal reason is that the corresponding analytical proofs are usually very
complicated. In this work we give an analytical proof of the existence of a pair of homoclinic
connections in a continuous piecewise linear system, which can be considered to be a version of the
widely studied Michelson system. Although the computations developed in this proof are specific to
the system, the techniques can be extended to other piecewise linear systems. © 2010 American
Institute of Physics. �doi:10.1063/1.3339819�

The occurrence of a homoclinic orbit to a saddle-focus
equilibrium satisfying certain eigenvalue condition as-
sures the appearance of complex dynamics (Shil’nikov,
1965). Unfortunately, the proof of the existence of such an
orbit is generically a difficult task and numerical tech-
niques are often used. Arneodo, Coullet, and Tresser, in
1982, realized that piecewise linear systems gave a good
chance of proving the existence of those dynamical ob-
jects and that Shil’nikov’s result could be extended to this
class of systems [see Arneodo et al. (1982) and Tresser
(1984)]. In fact, as it is well known nowadays, piecewise
linear systems are able to reproduce most of the dynami-
cal behavior exhibited by general nonlinear systems. Fur-
thermore, they are also becoming an important tool in
the understanding of a wide range of dynamical phenom-
ena in several areas of physics, engineering, and sciences
in general. In this work, we present alternative conditions
to those established in Arneodo et al. (1982) for the exis-
tence of a homoclinic connection in piecewise linear sys-
tems. Moreover, we give a complete analytical proof of
the existence of a symmetrical pair of such connections in
a continuous piecewise linear system which can be con-
sidered to be a version of the widely studied Michelson
system.

I. INTRODUCTION

Homoclinic connections are orbits that are biasymptotic,
for t→ ��, to the same equilibrium point. The existence of
a homoclinic connection to a saddle-focus equilibrium point
usually forces a complex dynamical behavior in a neighbor-
hood of such connection. For instance, the celebrated works
of Shil’nikov �Shil’nikov, 1965; Shil’nikov, 1970� assure,

under certain eigenvalue ratio condition, the existence of in-
finitely many periodic orbits of saddle type accumulating to
the homoclinic cycle.

An exhaustive recent revision of homoclinic connections
for autonomous vector fields has been carried out in Hom-
burg and Sandstede �2009�. That work deals with the dy-
namic behavior related to the existence of homoclinic and
heteroclinic orbits, the bifurcations of global connections,
and the main analytical and geometric techniques used in
their study. Other good works about theoretical and numeri-
cal aspects related to global connections are the pair of books
�Shil’nikov et al., 1998; 2001� and the survey �Champneys
and Kuznetsov, 1994� which is more focused on the detec-
tion and continuation of global connections.

A large list of references about homoclinic connections
and their bifurcations can also be found in these four previ-
ously cited works. Nevertheless, we would like to add here a
short list of references about different topics regarding ho-
moclinic cycles. For instance, several analyses of periodic
motions near homoclinic connections �both in phase and pa-
rameter space� appear in Belyakov �1974�; �1981�; �1984�,
Gaspard et al. �1984�, and Glendinning and Sparrow �1984�.

The works �Devaney, 1976; 1978; Champneys, 1998;
1999� are devoted to global connections in reversible and
Hamiltonian systems. The particular case of the restricted
three-body problem is considered in Gómez et al. �1988�.

Homoclinic connections and their bifurcations have also
been reported and studied in nonsmooth systems �Arneodo et
al., 1982; Tresser, 1984� and partial differential equations
�Feroe, 1981; Coullet, Riera, and Tresser, 2004; and Coullet,
Toniolo, and Tresser, 2004�. In fact, there are applications in
many fields of science where homoclinic orbits have a spe-
cial relevance �Gaspard et al., 1993�.

The principal problem in the study of homoclinic orbits
is that a rigorous proof of its existence is generally a difficult
task. One of the approaches of this problem is based on
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finding local degeneracies whose unfoldings may exhibit
global bifurcations. Two classical works about the appear-
ance of homoclinic connections from a nilpotent singularity
of a planar vector field are Bogdanov �1976� and Takens
�1974�. Regarding global connections in R3, Ibáñez and Ro-
driguez proved the existence of homoclinic orbits to saddle-
focus equilibria in the three-parameter unfolding of a nilpo-
tent singularity of codimension three �Ibañez and Rodriguez,
2005�. Some recent works �Wilczak, 2005; Wilczak, 2006�
have been devoted to a different approach, which consist on
the derivation of computer-assisted proofs for the existence
of global connections.

Regarding piecewise linear systems, there are a lot of
works about the existence of homoclinic cycles �Arneodo et
al., 1981; Arneodo et al., 1982; Chua et al., 1986; Matsu-
moto et al., 1985; Matsumoto et al., 1988; Medrano-T. et al.,
2005; and Medrano-T. et al., 2006�. In many of them, au-
thors require numerical arguments to show that existence. In
others �Llibre et al., 2007�, authors start from a degenerate
situation to avoid any numerical dependence. In the present
work we consider a different strategy which can be also used
in a generic case.

Recently, in work �Carmona et al., 2008�, the proof of
the existence of a reversible T-point heteroclinic cycle has
been given in a continuous piecewise linear system. A
T-point is a global bifurcation that organizes a rich periodic
and aperiodic behavior �see Glendinning and Sparrow
�1986�, Bykov �1993�; �1999�; �2000�, and Fernández-
Sánchez et al. �2002��. This global bifurcation has generi-
cally codimension two but in the presence of a symmetry or
reversibility this codimension can be reduced. The methods
used in Carmona et al. �2008� are based on the explicit inte-
gration of the flow in each linear region of the space of
variables and the construction of a system of equations and
inequalities that have to be fulfilled by such kind of global
bifurcation. Similar ideas are developed here for the case of
a homoclinic connection. These techniques can be extended
to other piecewise linear systems �for instance, the Chua’s
circuit �Matsumoto, 1984�� taking into account that it is im-
portant to obtain suitable expressions for the solution in each
zone of linearity.

The system studied in work �Carmona et al., 2008�,

�ẋ = y

ẏ = z

ż = 1 − y − c�x� ,
� �1.1�

where c�0, can be considered as a continuous piecewise
linear version of the well-known Michelson system �Kura-
moto and Tsuzuki, 1976; Michelson, 1986; Freire et al.,
2002; and Webster and Elgin, 2003�. In fact, the equations of
system �1.1� can be obtained from the Michelson system
performing a simple linear change of variables followed by
the change of x2 to �x�. Moreover, both systems are volume
preserving and time reversible with respect to the involution
R�x ,y ,z�= �−x ,y ,−z�. Some other dynamical aspects of the
Michelson system also remain in its piecewise linear version
�Carmona et al., 2008�.

System �1.1� is formed by two linear systems separated
by the plane �x=0	, called separation plane, and it can be
written in a matricial form as

ẋ = 
A+x + e3 if x � 0

A−x + e3 if x � 0
� �1.2�

with

A+ = � 0 1 0

0 0 1

− c − 1 0

, A− = �0 1 0

0 0 1

c − 1 0

 and

e3 = �0

0

1

 .

In the half-space �x�0	, the system has exactly one equilib-
rium point p−= �−1 /c ,0 ,0�T, which is a saddle-focus point.
Let ��0 and �� i	 be the eigenvalues of the Jacobian ma-
trix at p−. This clearly implies that

c = ��1 + �2�, � = −
�

2
, 	 =

�4 + 3�2

2
. �1.3�

By the reversibility with respect to R, there exists exactly
one saddle-focus equilibrium p+= �1 /c ,0 ,0�T in the half-
space �x�0	 whose eigenvalues are given by −� and
−�� i	.

Using the expression of the parameter c given in Eq.
�1.3�, system �1.1� can be written as

�ẋ = y

ẏ = z

ż = 1 − y − ��1 + �2��x� ,
� �1.4�

and the parameter ��0 can be chosen as the fundamental
parameter of the family.

In the particular case of piecewise linear systems with
two zones, homoclinic connections can be classified attend-
ing to the number of intersections with the separation plane.
It is obvious that the number of intersections between any
homoclinic connection of system �1.4� and the separation
plane �x=0	 has to be greater than one. So, we say that a
homoclinic connection of system �1.4� is direct if it intersects
the separation plane �x=0	 at exactly two points.

The analytical proof of the existence of a pair of direct
homoclinic connections will be the main goal of this work,
as it is summarized in the following theorem.

Theorem 1.1: There exists a value �h�1 /2 such that
the piecewise linear version �1.4� of the Michelson system
has, for �=�h , two direct homoclinic connections, which are
symmetric with respect to the involution R.

Note that due to the reversibility, if there exists a ho-
moclinic connection 
 of system �1.4�, then a new ho-
moclinic connection which can be mapped onto 
 by R also
exists. Thus, it is only necessary to prove the existence of a
direct homoclinic connection 
 to the equilibrium p−.

In Fig. 1 the pair of homoclinic connections of system
�1.4� given by Theorem 1.1 is shown. It is important to re-
mark that the proof of Theorem 1.1 is partially based on
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some results of Carmona et al. �2008�. In that work the
boundary value 1/2 mentioned in the statement of the theo-
rem was chosen for the sake of simplicity of the handmade
calculations and it does not have any dynamical meaning.
In fact, some numerical computations allow to obtain
�h�0.660 759 953.

On the other hand, the saddle index of the saddle-focus
equilibria is −� /�=1 /2 for every value �. From the point of
view of the stability of the periodic orbits close to the ho-
moclinic connection, this can be considered to be a limit case
�see Glendinning and Sparrow �1984� and Ovsyannikov and
Shil’nikov �1987��. Moreover, due to the piecewise-linear
character of system �1.1� it is not possible to use other quan-
tities which can be interesting for smooth systems. For ex-
ample, when the saddle index is 1/2, the sign of the integral
of the divergence of the vector field over a homoclinic orbit
has an important role for the dynamics in a neighborhood of
the homoclinic orbit �see Gonchenko and Shil’nikov �2007��.
In the case of system �1.1�, this quantity vanishes and thus,
no conclusions can be obtained in this way.

The rest of the paper is organized as follows. In Sec. II
we describe the basic geometric elements of the problem.
Section III is devoted to the proof of Theorem 1.1, which is
divided into two parts. In Sec. IV we deal with other global
connections and show some numerical results.

II. SOME GEOMETRIC ELEMENTS OF THE FLOW

In this section we describe the behavior of the flow
crossing the plane �x=0	 and the basic elements of the linear
dynamics locally contained in the half-spaces �x�0	 and
�x�0	. For every point p= �xp ,yp ,zp�T�R3 we denote by
xp�t ;��= �xp�t ;�� ,yp�t ;�� ,zp�t ;���T the solution of the sys-
tem �1.4� with parameter � and initial condition xp�0;��=p.
The corresponding orbit is denoted by �p.

If xp=0 and yp�0, then the orbit �p crosses transver-
sally the plane �x=0	 with xp�−t ;���0 and xp�t ;���0 for
t�0 small enough. If xp�t ;�� vanishes in �0,+��, then we
define the flying time tp

+ as the positive value such that
xp�tp

+ ;��=0 and xp�t ;���0 in �0, tp
+�. In such a case, we

define the Poincaré map �+ at the point p as �+�p�
=xp�tp

+ ;��. Note that the Poincaré map �+ only depends on
the linear system ẋ=A+x+e3 given in system �1.2�.

If xp=0 and yp�0, then the orbit �p crosses transver-
sally the plane �x=0	 with xp�−t ;���0 and xp�t ;���0 for
t�0 small enough. If xp�t ;�� vanishes in �0,+��, then we
define the flying time tp

− as the positive value such that
xp�tp

− ;��=0 and xp�t ;���0 in �0, tp
−�. In such a case, we

define the Poincaré map �− at point p as �−�p�=xp�tp
− ;��.

This map only depends on the linear system ẋ=A−x+e3.
If p belongs to the z-axis, i.e., xp=0 and yp=0, then p is

called a contact point of the flow of system �1.4� with the
plane �x=0	 because the vector field at this point is tangent
to the plane. Following Llibre and Teruel �2004�, the first
coordinate of the Taylor expansion of xp�t ;��−p at t=0 is

e1
T�xp�t;�� − p� = zp

t2

2
+

t3

3!
+ e1

Txp
�4��
;��

t4

4!
.

Hence, if zp�0, then orbit �p is locally contained in the
half-space �x�0	; if zp�0, then �p is locally contained in
the half-space �x�0	; and if zp=0, then �p crosses the plane
�x=0	 from the half-space �x�0	 to the half-space �x�0	.

Now we describe the basic elements of the linear dy-
namics in the half-space �x�0	. All this information is sum-
marized in Fig. 2. The elements in the other half-space can
be obtained using the involution R.

The unstable manifold Wu�p−� of p− contains the half-
line L−= �p−−��1,� ,�2�T :−1 / ��+�3�����	 generated
by the eigenvector associated with the eigenvalue � of the
matrix A−. The half-line and the plane �x=0	 intersect at the
point

-2
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1

2
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-1

0
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0

1
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(a)

-2
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0
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-1

0

1
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(b)

FIG. 1. �Color online� Direct homoclinic orbit to �a� p− and �b� p+.
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FIG. 2. �Color online� Direct homoclinic connection to p− and some geo-
metric elements of the flow.
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m− = �0,
1

1 + �2 ,
�

1 + �2�T

.

The stable two-dimensional manifold Ws�p−� is locally
contained in the half-plane

P− = ���1 + �2�x + �2y + �z = − 1:x � 0	 ,

which is called the focal half-plane of p−. This half-plane is
obtained from the eigenvectors associated with the complex
eigenvalues of A−. The half-plane P− and the separation
plane �x=0	 intersect along the straight line

D− = �x = 0,�2y + �z = − 1	 .

Let us emphasize that not every point in D− belongs to the
stable manifold Ws�p−�. The intersection point of D− and the
z-axis is q−= �0,0 ,−1 /��T. Since q− is a contact point, the
orbit �q−

is tangent to the separation plane �x=0	 at q−. Thus,
the segment S−�D− with end points q− and �−

−1�q−� is con-
tained in Ws�p−�.

III. EXISTENCE OF A DIRECT HOMOCLINIC
CONNECTION TO p−

A direct homoclinic orbit to p− has to intersect the plane
�x=0	 at m−, since it corresponds to the linear one-
dimensional manifold of p−. On the other side, this orbit also
has to belong to the two-dimensional manifold of p−, that is,
it has to intersect segment S−. Thus, when the condition
�+�m−��S− holds, a direct homoclinic connection to p− ex-
ists in system �1.4�. In fact, the existence of such homoclinic
connection can be derived from conditions

qq− � S− �3.1�

and

�+�m−� � qq−, �3.2�

where q= �0,−1 /�2 ,0� is the intersection point of the
straight lines D− and D+, see Fig. 2.

As a corollary of Proposition 3.3 in Carmona et al.
�2008�, it follows that there exists a value ��� �0,1 /2� such
that for every ���� condition �3.1� is satisfied. On the other
hand, since the orbit through m− cannot intersect the focal
plane P+, it is easy to conclude that �+�m−��qq− if and
only if �+�m−��D−. In other words, conditions �3.1� and
�3.2� are equivalent to the existence of th�0 and �h�1 /2,
such that xm−

�th ,�h��D− and xm−
�t ,�h��0 for every

t� �0, th�. It is obvious that if such a pair �th ,�h� exists, then
xm−

�th ,�h� has to satisfy the system


xm−
�t,�� = 0

�2ym−
�t,�� + �zm−

�t,�� + 1 = 0,� �3.3�

obtained by integrating, for x�0, system �1.4� with initial
condition x�0,��=m−.

Now, the proof of condition �3.2� is divided into two
parts. First, we establish that system �3.3� has a solution
�th ,�h� with th�0 and �h�1 /2. Second, we check that
xm−

�t ,�h��0 for every t� �0, th�.
After some algebra, system �3.3� leads to the following

equivalent system:


 E1�t,�� = 0

E2�t,�� = 0,
� �3.4�

where

E1�t,�� = 2�2e�3�/2�t��4 + 3�2 cos�	t� − 3� sin�	t��

+ �4 + 3�2��1 + �2� − �1 + 3�2�e�t� , �3.5�

E2�t,�� = 2�2e�3�/2�t��4 + 3�2 cos�	t� + � sin�	t��

+ �4 + 3�2�1 + �2�e�t, �3.6�

and 	 is defined in expression �1.3�.
The curves defined by the equations of system �3.4� are

shown in Fig. 3. It is possible to see that they intersect in
several points. This is a numerical evidence of the existence
of solutions �t ,��, with t�0 and ��0, for this system. In
what follows, an analytical proof of the existence of the first
intersection point �corresponding to the smallest value of
t�0� is derived.

Taking into account the relative position of the curves
given by the equations of system �3.4� it is convenient to
manipulate these equations to get a more suitable system.
Adding e�t�1+�2� times Eq. �3.5� to �e�t�1+3�2�− �1+�2��
times Eq. �3.6� and dividing by 2�2e�3�/2�t gives

E�t,�� = �4 + 3�2�2�1 + 2�2�e�t − �1 + �2��cos�	t�

− ��2e�t + 1 + �2�sin�	t� = 0. �3.7�

From Eq. �3.4� the trigonometric functions are given by

sin�	t� = −
�4 + 3�2�2�1 + 2�2�e�t − �1 + �2��e�−3�/2�t

8�3 ,

�3.8�

cos�	t� = −
�1 + �2 + 2e�t�e�−3�/2�t

8�2 .

Note that both functions are strictly negative for t�0 and
��0.

It is now obvious that

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

t

λ

FIG. 3. �Color online� Dashed curves are given by equation E1�t ,��=0 and
solid ones correspond to equation E2�t ,��=0.
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sin2�	t� + cos2�	t�

=
e−3�t

64�4� �4 + 3�2��2�1 + 2�2�e�t − �1 + �2��2

�2

+ �1 + �2 + 2e�t�2�
or, equivalently,

e−3�t

64�4� �4 + 3�2��2�1 + 2�2�e�t − �1 + �2��2

�2

+ �1 + �2 + 2e�t�2� − 1 = 0.

Simplifying this equation gives

p�t,�� = − 16�6e3�t + �1 + �2�2�4�1 + 3�2�e2�t

− 2�2 + 3�2�e�t + 1 + �2�

= 0. �3.9�

Note that a solution �t ,�� of system �3.4� also satisfies
the system given by Eqs. �3.7� and �3.9�. However, as it is
established in Lemma 3.1, another condition is necessary for
the converse to be true: the sinus function in Eq. �3.8� must
always be negative for t�0 and ��0.

In Fig. 4 the curves given by Eqs. �3.7� and �3.9� and the
sign of the sinus function in Eq. �3.8� are shown. Comparing
with Fig. 3, note that there exist intersection points between
the curves which are not solutions of system �3.4�.

Lemma 3.1: For t�0 and ��0, system �3.4� is equiva-
lent to the system

� E�t,�� = 0

p�t,�� = 0

sin�	t� � 0.
� �3.10�

Proof: The first part of the equivalence, that is, the proof
that a solution �t ,�� of system �3.4� with t�0 and ��0 also
satisfies the system �3.10�, is direct.

For the other implication, let us consider the system

�− �4 + 3�2�2�1 + 2�2�e�t − �1 + �2��X
+ ��2e�t + �1 + �2��Y = 0

X2 + Y2 − 1 = 0,
� �3.11�

which represents the intersection in coordinates �X ,Y� of a
straight line with positive slope containing the origin and the
unit circle. Obviously, system �3.11� has a unique solution
with negative second coordinate.

Note that

�X1,Y1� = �−
�2e�t + 1 + �2�e�−3�/2�t

8�2 ,

−
�4 + 3�2�2�1 + 2�2�e�t − �1 + �2��e�−3�/2�t

8�3 �
is a solution of system �3.11� whose second coordinate is
negative for t�0 and ��0. On the other hand, if �t ,�� is a
solution of system �3.4� with t�0 and ��0, then

�X2,Y2� = �sin�	t�,cos�	t��

is also a solution of system �3.11� whose second coordinate
is negative.

Therefore, we conclude that �X1 ,Y1�= �X2 ,Y2� with t�0
and ��0. Since this equality corresponds to system �3.8�,
which is equivalent to system �3.4�, the lemma holds.

Now let us prove that system �3.10� has at least a solu-
tion.

Lemma 3.2: System (3.3) has a solution �th ,�h� in the
open set

� = 
�t,�� � R2:
2�

�4 + 3�2
� t �

4�

�4 + 3�2
,

1

2
� � � �3� .

Proof: From Lemma 3.1 it is known that systems �3.3�
and �3.10� are equivalent for t�0 and ��0.

Since the third condition of system �3.10� is satisfied for
every �t ,����, it is only necessary to show that system


E�t,�� = 0

p�t,�� = 0
� �3.12�

has solution in �. This is, as it is going to be proved, a
consequence of Poincaré–Miranda theorem �Kulpa, 1997�,
which can be considered as an n-dimensional extension of
Bolzano theorem.

The change of variables �=�2, �=�4+3�2t /2 trans-
forms system �3.12� into the system

� Ẽ��,�� = E� 2�

�4 + 3�
,��� = 0

p̃��,�� = p� 2�

�4 + 3�
,��� = 0,� �3.13�

and � into �̃= �� ,2��� �1 /4,3�.
From the definition of E it is obvious that Ẽ�� ,���0

and Ẽ�2� ,���0 for ��0. Thus, function Ẽ takes different

signs at the vertical sides of the boundary of �̃.

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8
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1.2

1.4

t

λ

FIG. 4. �Color online� Solid curves are given by Eq. �3.7� and the dashed
one corresponds to Eq. �3.9�. The set where sin�	t��0 is shaded.
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In order to analyze the sign of function p̃ at the horizon-

tal sides of the boundary of �̃, let us define

P�s,�� = − 16�3s3 + �1 + ��2�4�1 + 3��s2

− 2�2 + 3��s + 1 + �� , �3.14�

which corresponds to function p̃ when

s = exp���
2�

�4 + 3�
� � 1. �3.15�

Since the derivative of P�s ,3� with respect to s is negative in
R and P�1,3��0, we have P�s ,3��0 for s�1. Therefore,
p̃�� ,3��0 for every �� �� ,2��.

For the last side of the rectangle, straightforward com-
putations show that the derivative of P�s ,1 /4� is positive in
�1,27�. Taking into account that P�1,1 /4�= 259

64 it follows that
P�s ,1 /4� is positive for every s� �1,27�.

Note that from Eq. �3.15�, if �=1 /4 and �� �� ,2��,
then s� �1,27�. Thus, p̃�� ,1 /4� is positive for �� �� ,2��.
The lemma is followed by the Poincaré–Miranda theorem.

At this moment we have proved that there exists a point
�th ,�h��� such that xm−

�th ,�h��D−. For condition �3.2� to
be fulfilled it is also necessary to prove that xm−

�t ,�h��0 for
every t� �0, th�. The next result deals with this inequality.

Lemma 3.3: If �th ,�h��� is a solution of system �3.10�,
then xm−

�t ,�h��0 for every t� �0, th�.
Proof: According to the equations of system �1.4�, the

derivative with respect to t of function xm−
�t ,�h� is given by

ym−
�t ,�h�. By integrating this system for x�0, we obtain

ẋm−
�t,�h� = ym−

�t,�h�

= c1e−�ht + e��h/2�t�c2 cos��4 + 3�h
2

2
t�

+ c3 sin��4 + 3�h
2

2
t�� , �3.16�

where

c1 =
1

1 + 3�h
2 � 0, c2 =

2�h
2

�1 + 3�h
2��1 + �h

2�
� 0,

c3 =
2�h�2 + 3�h

2�

�1 + 3�h
2��1 + �h

2��4 + 3�h
2

� 0.

On the one hand, note that xm−
�0,�h�=0 and

ẋm−
�0,�h��0. On the other hand, let us assume that

�th ,�h��� is a solution of system �3.10�. Therefore,
xm−

�th ,�h�=0. Substituting Eq. �3.8� in Eq. �3.16� it is obvi-
ous that

ẋm−
�th,�h� = ym−

�th,�h� =
− 2 + e−�hth

2�h
2 � 0.

Let us also assume that there exists a value t̂� �0, th�
such that xm−

�t̂ ,�h�=0. Then, ym−
�t ,�h� must vanish in at

least three values in �0, th�, that is, the equation

h��� = e�3�h/�4+3�h
2��� c2

c1
cos��� +

c3

c1
sin���� = − 1,

which is obtained from ym−
�t ,�h�=0, has to vanish in at least

three values in �0,2��.
Since h�0�=c2 /c1�0, equation h���=0 must have at

least three solutions in �0,2��, what is not possible. Thus,
function xm−

�t ,�h� cannot vanish in �0, th� and the proof is
concluded.

IV. OTHER GLOBAL CONNECTIONS

In Sec. III, the existence of a pair of direct homoclinic
connections, which are symmetric with respect to the invo-
lution R, has been proved for �=�h�0.660 759 953. The
first step of this proof is the analysis of the solutions of the
system �3.10�. Those solutions are the intersections of the
solid and dashed curves in Fig. 4 which lie in the shadow
regions. Besides the first intersection, which corresponds to
the value �h, we can observe that other intersections exist.

The second intersection point corresponds to �tH ,�H�
��10.154 021 01,0.433 912 36�. It can be also proved that a
pair of direct homoclinic connections, which are symmetric
with respect to the involution R, exists for �H. Remember
that the existence of an intersection point is not the only
condition that has to be fulfilled to assure the existence of a
homoclinic connection; it is also necessary to check that the
orbit with initial condition m− does not intersect the separa-
tion plane for t� �0, tH� and xm−

�tH ,�H� belongs to S−. As a
comparison to the first pair of homoclinic orbits, these sec-
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FIG. 5. �Color online� �a� Projection onto the plane xy of a direct ho-
moclinic orbit with a second loop to p−. �b� Zoom of �a�, where it is clear
that the second loop does not intersect x=0.

013124-6 Carmona et al. Chaos 20, 013124 �2010�

 29 February 2024 06:55:26



ond homoclinic connections give an extra loop around the
one-dimensional manifold of the other equilibrium. The ho-
moclinic connection to p− is shown in Fig. 5.

Regarding the remainder intersection points in Fig. 4,
they do not correspond to real direct homoclinic connections:
although each one of them is a solution �t� ,��� of system
�3.10�, the orbit with initial condition m− intersects the sepa-
ration plane for values of t� �0, t��.

This behavior is similar for reversible T-point hetero-
clinic cycles in system �1.4�. In Carmona et al. �2008�, the
existence of a “direct” reversible T-point heteroclinic cycle
was proved for ��0.651 535 56. This cycle is called direct
in the sense that its heteroclinic orbit corresponding to the
one-dimensional manifolds has exactly three intersections

with the separation plane �which is the minimum possible
number of intersections�, while the heteroclinic orbit corre-
sponding to the two-dimensional manifolds has only one in-
tersection. Moreover, the existence of another direct revers-
ible T-point heteroclinic cycle can be proved for
��0.433 278 34. This cycle has two extra loops around the
one-dimensional manifolds of the equilibria, see Fig. 6.

A first step in the proof of the existence of these revers-
ible T-point heteroclinic cycles is the analysis of the exis-
tence of solution of a system analogous to Eq. �3.10� �given
by Eqs. �4.3� and �4.6� in Carmona et al. �2008��. Besides the
values of � given in the previous paragraph, there exist other
solutions of the system which, as the homoclinic case, do not
correspond with real reversible T-point heteroclinic cycles.
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