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Abbreviated Abstract

We aim with this original article to develop, validate, and compare three deep transfer learning 
algorithms to predict between in situ or invasive melanoma and < 0.8 or â‰¥ 0.8 millimetres of 
Breslow thickness.
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Bullet statements: 

’What is already known about this topic?’

 Previous studies assessed the prediction of CNN for the comparison between in 

situ or invasive melanoma using ResNet50 and de novo CNN.

’What does this study add?’

 This study compared three DTL pretrained CNN and dermatologist performance 

predicting in situ versus invasive melanoma and < or ≥ 0.8 millimetres of Breslow 

thickness.

 DTL could be an ancillary aid to support dermatologists' decision in the near 

future.
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Abstract

Background: The distinction between in situ (MIS) or invasive melanoma is challenging 

even for expert dermatologists. The use of pretrained convolutional neural networks 

(CNNs) as ancillary decision systems needs further research.

Objective: To develop, validate and compare three deep transfer learning algorithms to 

predict between MIS or invasive melanoma and < or ≥ 0.8 millimetres of Breslow 

thickness (BT).

Methods: A dataset of 1,315 dermoscopic images of histopathologically confirmed 

melanomas was created from Virgen del Rocio University Hospital and open repositories 

of the ISIC archive and Polesie et al.  The images were labelled as MIS or invasive 

melanoma and < or ≥ 0.8 millimetres of BT. We conducted three trainings, and overall 

means for ROC curves, sensitivity, specificity, positive and negative predictive value, and 

balanced diagnostic accuracy outcomes were evaluated on the test set with ResNetV2, 

EfficientNetB6, and InceptionV3. The results of ten dermatologists were compared with 

the algorithms. Grad-CAM gradient maps were generated, highlighting relevant areas 

considered by the CNNs within the images.

Results: EfficientNetB6 achieved the highest diagnostic accuracy for the comparison 

between MIS and invasive melanoma, and < 0.8 versus ≥ 0.8 of BT were 61% and 75%, 

respectively. For the latter, ResNetV2, with an area under the ROC curve of 0.76, and 

EfficientNetB6, of 0.79, outperformed the results obtained by the dermatologist group 

with 0.70. 

Conclusions: EfficientNetB6 recorded the best prediction results, overcoming 

dermatologists for the comparison of 0.8 mm of BT. DTL could be an ancillary aid to 

support dermatologists' decision in the near future.
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Introduction

Cutaneous melanoma is responsible for almost 90% of skin cancer deaths, worsening the 

prognosis when diagnosis is delayed1. Breslow thickness (BT) is the main prognostic 

factor in primary cutaneous melanoma, which measures the microinvasion of the tumour 

in millimetres (mm) from the granular layer to the deepest of tumour invasion2. In 

addition to ulceration, BT sets out the T classification of 8thAJCC1. 

An accurate diagnosis of early melanoma is one of the major goals of dermoscopy3, but 

distinction between in situ (MIS) and invasive melanoma could be challenging even for 

expert dermatologist4. 

Deep learning methods are a novel approach for the diagnosis of melanoma, which uses 

convolutional neural networks (CNNs) to computationally analyse dermoscopic images5. 

One of the drawbacks of deep learning is the need for large amounts of training data to 

complex patterns within images. To address this issue, deep transfer learning (DTL) is a 

technique that allows training of CNNs with a lower amount of data, using previous 

learned model knowledge with minimum training or fine-tuning to perform a new task6. 

To discriminate between MIS and invasive melanoma, some authors created de novo 

CNNs7–10, but only one pretrained ResNet50 CNN model was previously used for this 

comparison10,11. Human readers outperformed de novo CNNs, but not the pretrained 

CNN10, so the scope of pretrained CNNs to differentiate MIS versus invasive melanoma 

should be further analysed. 

To our knowledge, no studies compared different DTL approaches using pretrained 

CNNs. This study aimed to develop, validate, and compare three DTL algorithms to 

predict whether a melanoma is MIS or invasive and whether the BT is < 0.8 or ≥ 0.8 mm, 
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based on dermoscopic images. Also, we aimed to compare the performance of human 

readers with that of DTL algorithms. 

Material and methods

This retrospective study was performed according to the Declaration of Helsinki and the 

Standards for Reporting Diagnostic Accuracy (STARD). The Andalusian Review Board 

and Ethics Committee Virgen Macarena-Virgen del Rocio Hospitals approved the study 

protocol (ID 0096-N-20). The main dataset was composed of dermoscopic images of 

histopathologically confirmed melanomas in which BT was measured.  To increase 

clinical relevance, we did not restrict the melanoma subtype or subjects' phototype12. 

Three independent subsets made up our dataset: (i) 1,055 images of 279 cases from the 

dermoscopic image repository of Virgen del Rocio University Hospital (Seville, Spain) 

between 2016 and 2022 (Supplemental material); (ii) 193 images of 184 cases from 

Polesie et al.13 (iii)  67 images of 67 cases from the ISIC archive14. In the (i) and (ii) 

subsets, some cases had more than one image. These were discarded from the validation 

and test datasets, but not from the training dataset since it improves training performance. 

Upsampling was conducted to prevent a higher weight being conferred on cases with 

more than one image. Thus, we built synthetic copies up to equalling 10 images per case. 

Image labelling

The ground truth was established by histopathological diagnosis. Each image was labelled 

as MIS or invasive melanoma, and < 0.8 or ≥ 0.8 mm of BT. We considered 0.8 mm of 

BT, as it is the threshold in Europe to perform a sentinel lymph node biopsy, when 

associating with additional histological risk factors as ulceration15. To assess CNNs 

prediction potential, we performed two comparisons, MIS (283 images) versus invasive 

melanoma (1,032 images) and < 0.8 (702 images) versus ≥ 0.8 mm (613 images) of BT.
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Image subsets and overfitting prevention

The 80% of the images were used for the training dataset, 10% for validation, and 10% 

for the test dataset. A cross-validation was not possible since some of our cases comprised 

more than one image. Instead, we performed the Dropout Regularization16 and an external 

test dataset. Also, we conducted 3 trainings with the same test dataset, and the overall 

means for all outcomes were calculated.

CNN architecture

To train the different CNNs, we resized all images to an appropriate input size, using 299 

x 299 pixels for ResNetV2 and InceptionV3, and 512 x 512 pixels for EfficientNetB6. To 

enhance the external validity to real clinical settings, we did not use any software to 

modify or curate the dermoscopic images. 

As we used different numbers of images per class within each training dataset, the 

distribution of labelled images in each subset was imbalanced. To solve this, we 

performed the weight assignment with the class_weight function from Keras17. To 

optimize training performance, we established parameters like exponential learning rate 

scheduler, and callbacks to save model parameters and to perform an early stopping 

(monitor=’val_loss’, patience=10). To avoid overfitting, we used data augmentation with 

the following transformations: rotation_range=40, width_shift_range=0.2, 

height_shift_range=0.2, horizontal_flip=True. 

Gradient maps

To make CNNs output comprehensible, we created gradient maps with the Gradient-

weighted Class Activation Mapping (Grad-CAM)18. Grad-CAM is a technique of 

computer vision that remarks the region of interest of the input images that are relevant 

for the prediction of a CNN model.   
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Statistical analysis   

The R software (v.4.1.2) was used to perform all statistical analyses. The capacity to 

differentiate classes (MIS or invasive, and < or ≥ 0.8 mm of BT) inferred by the model 

was used to calculate the receiver operating characteristic (ROC) curves. To calculate the 

ROC curves with 95% confidence intervals, we used the package “nsROC” (v.1.1)19. 

Sensitivity, specificity, positive and negative predictive value, and balanced diagnostic 

accuracy outcomes were evaluated for each CNN. To examine the performance of the 

model, we compared the prediction outcomes obtained with those achieved by 5 board-

certified dermatologists and 5 dermatology residents. All human readers independently 

performed predictions for the same test datasets evaluated by all the CNN models. To 

calculate the interobserver agreement we used the Fleiss’ kappa index (k)20. 

Results

We compared 3 pretrained CNNs, which test set performance is shown in Table 1.  The 

test set for the comparison between MIS and invasive melanoma (n = 111 images) 

consisted of 51 MIS and 59 invasive melanomas. The test set for the comparison between 

melanoma < or ≥ 0.8 BT (n = 86) was constituted by 55 and 31 cases, respectively. 

For the MIS versus invasive melanoma prediction model, EfficientNetB6 presented the 

highest diagnostic accuracy (61%) and sensitivity (72%), whilst it performed the lowest 

specificity value (31%) of the three pretrained models. The mean area under the ROC 

curve (AUC) was 0.59, 0.63 and 0.54 for ResNetV2, InceptionV3 and EfficientNetB6, 

respectively (Figure 1). The readers outperformed the three models for this comparison, 

showing a diagnostic accuracy of 64% and an AUC of 0.64 (Table 2). Interobserver 

agreement of dermatologists for this comparison was moderate, k = 0.46. 
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In the assessment of invasive melanomas ≥ 0.8 mm of BT, EfficientNetB6 achieved the 

highest diagnostic accuracy (84%) and specificity (84%). This CNN model recorded a 

sensitivity of 58%, being the lowest value compared to the 60% and 65% achieved by 

ResNetV2 and InceptionV3, respectively. The mean AUC was 0.76, 0.75 and 0.69 for 

ResNetV2, InceptionV3, and EfficientNetB6, respectively (Figure 2). For this 

comparison, the mean diagnostic accuracy achieved by the dermatologist was 69%, with 

an AUC of 0.70 (Table 2).  Interobserver agreement of dermatologists was fair, k = 0.35. 

Radar charts illustrated the juxtaposition of the main results to compare the performance 

of each pretrained CNN model and dermatologists (Figure 3). 

Gradient maps

Gradient maps spotlight influential areas of dermoscopic images, where the red colour 

remarks high attribution area for a specific prediction (Figure 4). Figure 4 remarks 

gradient map examples of a true positive (TP), true negative (TN), false positive (FP), 

and false negative (FN) dermoscopic image. 

Discussion

This study analysed the performance of three DTL models for the prediction of 

microinvasion using melanoma dermoscopic images. EfficientNetB6 achieved the 

highest diagnostic accuracy for the comparison between MIS and invasive melanoma, 

and < 0.8 versus ≥ 0.8 of BT. For the latter, ResNetV2 and EfficientNetB6 outperformed 

the dermatologist group. 

The state of the art related to the use of deep learning as a decision support system has 

grown in recent years. Most of the studies that focused on the differentiation between 

MIS and invasive, developed, and implemented a de novo CNN; only Polesie et al.10 and 

Chu et al.11 used a pretrained ResNet50 CNN. The first author tested CNN performance 
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on a dataset of 523 dermoscopic images, achieving an AUC of 0.83. This result was not 

significantly outperformed by 438 international readers for the comparison between MIS 

and invasive, who reached an AUC of 0.85. The AUC results in this study were superior 

to ours in the three pretrained CNNs, but it should be noted that our dermatologists did 

not receive any baseline educational program prior to discrimination of dermoscopic 

images. This was conducted to avoid recall bias and to match the research context with 

daily clinical practice. 

Chu et al.11 used ResNet50 to differentiate between MIS and invasive and depth of 

microinvasion, but in acral lentiginous melanoma. Despite being in a different clinical 

setting, the CNN performed effectively to distinguish between < 0.8 mm and ≥ 0.8 mm 

of BT, with and AUC of 0.90 in 57 dermoscopic images. Similarly, we achieved 

favourable results to discriminate between MIS and invasive and for the level of 

microinvasion. 

Regarding de novo CNNs, all studies recorded a fair to moderate accuracy for the 

distinction between MIS and invasive melanoma like the performance of our pretrained 

CNNs. De novo CNNs were not superior to dermatologists in the classification of MIS or 

invasive melanoma, whereas only pretrained CNNs outperformed them, as Polesie et al.10 

confirmed. This could help to achieve early detection and accurate stratification at the 

time of diagnosis. In our results, pretrained CNNs performed better for the prediction of 

melanomas ≥ 0,8 mm of BT, possibly related to the fact that most of the dermoscopic 

features between MIS and thin melanomas are overlapped21. 

In addition to similar performance as de novo CNNs and outperformance versus 

dermatologists to predict between MIS and invasive melanoma, further advantages of 

pretrained CNNs compared to de novo have been reported in the scientific literature.  DTL 

uses open code pretrained CNNs that store the information images from other problems 

Page 10 of 63Clinical and Experimental Dermatology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

10

and utilize for a different target. Additionally, it presents better image feature extraction, 

lower sample size and shorter time for the learning process, making DTL an optimal tool 

to obtain quicker and more cost-effective results in healthcare22.

Clinical and research implications

Our pretrained CNNs appears to be useful ancillary aids in selecting the optimal surgical 

approach and tumour staging in cutaneous melanoma based on the threshold of 0.8 mm 

BT. The implementation of CNNs in the dermatology field could help to support the triage 

and prioritize early cases. A recent study confirmed that most patients were open to CNN 

use in diagnosis, but always under dermatology supervision23. Within the research 

framework, the implementation of these CNN needs to be prospectively examined in the 

real-world clinical setting. Also, a call for action is needed for the standardisation of 

dermoscopic imaging that could lead to robust results of algorithms. We propose 

attaching the DICOM standard (supplement 221)24, which suggests adding metadata to 

images, so the CNN could handle patient data to make the prediction as dermatologists 

make in their daily practice.

Limitations

A major pitfall of our dermoscopic image repository, found in the background literature, 

is that people with skin of colour were not involved. Thus, as Butt et al.25 declared it is 

imperative to conduct future studies in this population, to avoid racial bias and to evaluate 

CNN performance.  Due to the retrospective design of the study, patient metadata was 

not available to be included in the dermoscopic image. 

Conclusions

This study showed a suitable prediction of three pretrained CNN for discrimination 

between MIS and invasive melanoma and for the distinction between a BT < 0.8 and ≥ 
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0.8 mm, using 1,315 dermoscopic images. For both models, EfficientNetB6 recorded the 

best prediction results, overcoming dermatologists for the comparison of 0.8 mm of BT. 

DTL could be an ancillary aid to support dermatologists' decision in the near future. 

Nevertheless, a standardisation on dermoscopic images is necessary to achieve the best 

output of CNN.
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Supporting information: 

The CNNs code can be found at 

https://github.com/juaherrod/UHVR_DERMOSCOPY_BRESLOW. The dataset of 

dermoscopic images from Virgen del Rocio University Hospital is available as online 

supplementary material. 

Figure legends: 

Figure 1. ROC curves for the prediction model between in situ and invasive melanoma 

for (a) ResNetV2, (b) InceptionV3 and (c) EfficientNetB6.  

Figure 2. ROC curves for the prediction model between melanoma < 0.8 or ≥ 0.8 mm of 

Breslow thickness for (a) ResNetV2, (b) InceptionV3 and (c) EfficientNetB6.

Figure 3. Radar Chart for the comparison of the performance of the three pretrained CNN 

for (a) MIS vs invasive melanoma and (b) melanoma < 0.8 mm or ≥ 0.8 mm of BT. 

Figure 4. Gradient maps. (a) True positive (TP): the algorithm identified a blue-white veil 

area as an important region of a melanoma ≥ 0.8 BT. (b) True negative (TN): a regular 

network area was identified by the algorithm to predict a melanoma < 0.8 mm BT. (c) 

False positive (FP): the algorithm focused on the healthy surrounding skin of a tiny 

nodular melanoma ≥ 0.8 mm. (d) False negative (FN): the algorithm was unable to focus 

on a specific dermoscopic structure to correctly perform the prediction in a melanoma < 

0.8 mm BT.
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Table 1. Comparison of the Performance of Convolutional Neural Networks for prediction of 
melanoma Breslow thickness
Comparison Training 

dataset
Se Sp PPV NPV Accuracy F1-

score
AUC

ResNetV2 0.61 ± 
0.15

0.50 ± 
0.14

0.66 ± 
0.15

0.45 ± 
0.19

0.54 ± 
0.02

0.61 ± 
0.01

0.59 
± 
0.03

InceptionV3 0.63 ± 
0.13

0.51 ± 
0.12

0.68 ± 
0.14

0.45 ± 
0.14

0.56 ± 
0.03

0.64 ± 
0,04

0.63 
± 
0.02

In situ vs 
Invasive

EfficientNetB6 0.72 ± 
0.03

0.39 ± 
0.04

0.70 ± 
0.04

0.41 ± 
0.09

0.61 ± 
0.02

0.71 ± 
0.01

0.54 
± 
0.06

ResNetV2 0.60 ± 
0.17

0.76 ± 
0.08

0.57 ± 
0.07

0.79 ± 
0.11

0.70 ± 
0.04

0.57 ± 
0.04

0.76 
± 
0.06

InceptionV3 0.65 ± 
0.22

0.70 ± 
0.14

0.53 ± 
0.17

0.79 ± 
0.17

0.65 ± 
0.04

0.54 ± 
0.04

0.75 
± 
0.01

< 0.8 mm vs 
≥ 0.8 mm of 
BT

EfficientNetB6 0.58 ± 
0.20

0.84 ± 
0.06

0.61 ± 
0.09

0.81 ± 
0.10

0.75 ± 
0.03

0.58 ± 
0.09

0.69 
± 
0.06

AUC, area under the ROC curve; NPV, negative predictive value; PPV, positive predictive value; Se, 
sensitivity; Sp, specificity
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Table 2. Dermatologist performance on dermoscopic images
Melanoma in situ vs invasive

Readers AUC 95%CI Accuracy Se Sp
1 0.69 0.60 to 0.77 0.69 0.73 0.65
2 0.68 0.59 to 0.77 0.67 0.74 0.62
3 0.63 0.54 to 0.72 0.64 0.65 0.62
4 0.68 0.59 to 0.77 0.68 0.70 0.66
5 0.60 0.53 to 0.68 0.63 0.60 0.73
6 0.69 0.60 to 0.78 0.65 0.69 0.62
7 0.58 0.49 to 0.70 0.59 0.59 0.60
8 0.58 0.50 to 0.66 0.60 0.59 0.64
9 0.64 0.56 to 0.73 0.65 0.64 0.69
10 0.62 0.54 to 0.71 0.64 0.62 0.68

Mean 0.64 0.61 to 0.67 0.64 0.66 0.65
Melanoma < 0.8 vs ≥ 0.8 millimetres Breslow thickness

Readers AUC 95%CI Accuracy Se Sp
1 0.84 0.76 to 0.93 0.87 0.88 0.87
2 0.70 0.59 to 0.80 0.72 0.61 0.78
3 0.71 0.64 to 0.82 0.68 0.54 0.89
4 0.48 0.37 to 0.59 0.52 0.33 0.63
5 0.72 0.65 to 0.82 0.70 0.55 0.90
6 0.75 0.66 to 0.86 0.77 0.66 0.84
7 0.75 0.68 to 0.86 0.77 0.65 0.86
8 0.69 0.62 to 0.76 0.60 0.47 1.00
9 0.67 0.58 to 0.77 0.63 0.49 0.85
10 0.69 0.60 to 0.80 0.67 0.53 0.85

mean 0.70 0.64 to 0.76 0.69 0.57 0.84
AUC, area under the ROC curve; Se, sensitivity; Sp, specificity, 95% CI, 95% confidence interval
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ROC curves for the prediction model between in situ and invasive melanoma for (a) ResNetV2, (b) 
InceptionV3 and (c) EfficientNetB6.   
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ROC curves for the prediction model between in situ and invasive melanoma for (a) ResNetV2, (b) 
InceptionV3 and (c) EfficientNetB6.   
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ROC curves for the prediction model between in situ and invasive melanoma for (a) ResNetV2, (b) 
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ROC curves for the prediction model between melanoma < 0.8 or ≥ 0.8 mm of Breslow thickness for (a) 
ResNetV2, (b) InceptionV3 and (c) EfficientNetB6. 

233x171mm (144 x 144 DPI) 
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ROC curves for the prediction model between melanoma < 0.8 or ≥ 0.8 mm of Breslow thickness for (a) 
ResNetV2, (b) InceptionV3 and (c) EfficientNetB6. 
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ROC curves for the prediction model between melanoma < 0.8 or ≥ 0.8 mm of Breslow thickness for (a) 
ResNetV2, (b) InceptionV3 and (c) EfficientNetB6. 
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Radar Chart for the comparison of the performance of the three pretrained CNN for (a) MIS vs invasive 
melanoma and (b) melanoma < 0.8 mm or ≥ 0.8 mm of BT 
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Radar Chart for the comparison of the performance of the three pretrained CNN for (a) MIS vs invasive 
melanoma and (b) melanoma < 0.8 mm or ≥ 0.8 mm of BT 
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Gradient maps. (a) True positive (TP): the algorithm identified a blue-white veil area as an important region 
of a melanoma ≥ 0.8 BT. (b) True negative (TN): a regular network area was identified by the algorithm to 
predict a melanoma < 0.8 mm BT. (c) False positive (FP): the algorithm focused on the healthy surrounding 
skin of a tiny nodular melanoma ≥ 0.8 mm. (d) False negative (FN): the algorithm was unable to focus on a 

specific dermoscopic structure to correctly perform the prediction in a melanoma < 0.8 mm BT. 
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Gradient maps. (a) True positive (TP): the algorithm identified a blue-white veil area as an important region 
of a melanoma ≥ 0.8 BT. (b) True negative (TN): a regular network area was identified by the algorithm to 
predict a melanoma < 0.8 mm BT. (c) False positive (FP): the algorithm focused on the healthy surrounding 
skin of a tiny nodular melanoma ≥ 0.8 mm. (d) False negative (FN): the algorithm was unable to focus on a 

specific dermoscopic structure to correctly perform the prediction in a melanoma < 0.8 mm BT. 
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