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Resumen
Las máquinas térmicas son dispositivos que convierten energía térmica en trabajo útil

operando de manera cíclica. Durante siglos, han desempeñado un papel fundamental en
el desarrollo industrial y tecnológico. Históricamente, se han empleado únicamente gases
y líquidos como sustancia de trabajo, pero los avances técnicos alcanzados en las últimas
décadas permiten ampliar las posibilidades experimentales y diseñar también máquinas
que operan con una única partícula. Los sistemas de interés en este caso no pueden
tratarse a nivel macroscópico y su estudio se enmarca en el campo de la termodinámica
estocástica.

En este trabajo estudiamos máquinas térmicas mesoscópicas constituidas por una
partícula browniana confinada en un potencial armónico e inmersa en un fluido que actúa
como baño térmico. Diseñamos un ciclo análogo al clásico motor de Stirling, compuesto
por dos ramas isotermas y dos isócoras. Nos centramos en el caso irreversible, no cuasi-
estático, cuya duración finita permite al dispositivo generar una potencia no nula. Este
aspecto es crucial, pues permite plantear la optimización de nuestro ciclo para maximizar
la potencia producida, respondiendo así a un interés relevante a nivel práctico. Buscamos
los protocolos de control del dispositivo que llevan a la optimalidad, utilizando herrami-
entas del cálculo variacional y de la teoría del control óptimo. Asimismo, exploramos
numéricamente la dependencia de la potencia máxima obtenida y la eficiencia correspon-
diente con los parámetros que caracterizan nuestro sistema.



Abstract
Heat engines transform thermal energy into useful work, operating in a cyclic manner.

For centuries, they have played a key role in industrial and technological development.
Historically, only gases and liquids have been used as working substances, but the technical
advances achieved over the past decades allow for expanding the experimental possibilities
and designing engines operating with a single particle as well. In this case, the systems of
interest cannot be addressed at a macroscopic level and their study is framed in the field
of stochastic thermodynamics.

In the present work, we study mesoscopic heat engines built with a Brownian particle
submitted to harmonic confinement and immersed in a fluid acting as a thermal bath. We
design a Stirling-like heat engine, composed of two isothermal and two isochoric branches.
We focus on the irreversible, non quasi-static, case—whose finite duration enables the
device to deliver a non-zero power output. This is a crucial aspect, inasmuch as it permits
to put forward the optimisation of our cycle in order to maximise the delivered power,
thereby addressing a relevant interest at a practical level. We search for driving protocols
yielding optimality by using tools from variational calculus and optimal control theory.
Likewise, we explore numerically the dependence of the maximum power output and the
corresponding efficiency on the parameters characterising our system.
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Chapter 1

Introduction

Classical thermodynamics is devoted to the study of heat and related properties in
macroscopic systems. The effective conversion of thermal energy into mechanical work
was a key factor in the course of the industrial revolution, where the development of
steam engines played a major role. Blossoming in the 19th century, the field of classical
thermodynamics is governed by a concise set of well-known universal laws, which were
stated thanks to the work of scientists such as Sadi Carnot or Rudolf Clausius, culminating
in an axiomatic formulation schemed by Constantine Carathéodory [1].

Statistical mechanics, primarily thanks to the contributions of Ludwig Boltzmann,
unravelled the probabilistic nature lying underneath the principles of equilibrium ther-
modynamics. Therein, the macroscopic character of the systems of interest allows for
neglecting all the fluctuations involved. At the opposite end, pursuing a deterministic
microscopic description of a complex system is, besides unattainable, inessential. Finding
an adequate separation between the relevant variables in a physical problem and those
whose effect can be encoded by a stochastic noise, causing random fluctuations, is one
of the cornerstones of statistical mechanics. With this aim, one typically focuses on an
intermediate level of description between the microscopic and macroscopic scales: the
mesoscopic one.

Since its inception, statistical mechanics has gone beyond equilibrium, studying a
broad and diverse ensemble of physical systems and leading to numerous interdisciplinary
applications ranging from plasma physics to modelling biomolecular dynamics. A colloidal
particle immersed in a fluid at equilibrium, known as Brownian particle, embodies a
paradigmatic system in this wide framework. Its multiple collisions with the tiny particles
composing the surrounding fluid give rise to the random Brownian motion.

As the size of a system is reduced, the importance of fluctuations grows, since they may
become of the same order of magnitude as the meaningful average values. Present-day
miniaturisation of technological devices has brought increasing attention to the extension
of thermodynamic results to the mesoscale. Stochastic thermodynamics addresses this
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CHAPTER 1. INTRODUCTION 2

challenging goal, extending concepts such as heat, work and entropy to individual fluc-
tuating trajectories governed by stochastic equations of motion, thereby incorporating
time into the study of thermodynamic processes. Furthermore, this fluctuating nature
gives rise to novel phenomena with no analogy in the macroscopic world, such as the
occurrence of ‘transient’ violations of the second law of thermodynamics or super Carnot
efficiencies in some of the above-mentioned individual trajectories [2,3]. Notwithstanding,
the average physical quantities do obey the corresponding universal laws. Moreover, key
concepts in thermodynamics, such as that of adiabaticity, require a careful translation to
stochastic thermodynamics, with the impossibility of connecting certain states and the
emergence of a speed limit for finite-time adiabatic processes [4].

Leveraging the unavoidable fluctuations in a mesoscopic system in order to extract
work, as a Maxwell’s demon would do [5], constitutes a revolutionary idea that has been
deeply studied —both theoretically and experimentally— in the last decades. Recent ad-
vances in novel sensing and manipulation techniques in the micro and nanometre length
scales, such as optical trapping, have allowed experimental physicists to transfer originally
gedanken experiments, analogous to Feynman’s ratchet and pawl or Szilard’s engine, to
actual laboratories [6, 7]. Indeed, we are now equipped to engineer small heat engines
performed with a single colloidal particle. Stochastic thermodynamics provides the ad-
equate framework for the design of such mesoscopic heat engines. Finding convenient
driving protocols (in terms of delivered power, efficiency, or time duration) for this type
of systems has been a major topic in the field [4,8,9]. In addition, interesting connections
between information and thermodynamics have arisen as a consequence of the study of
feedback protocols [6].

Researchers have explored multiple shortcuts for connecting equilibrium states faster
than the corresponding natural relaxation time of the system at hand, often finding inspir-
ation in quantum-control ideas [10,11]. Thus, building mesoscopic finite-time counterparts
of classical thermodynamic engines (such as the Carnot, Stirling or Otto cycles) has be-
come a relevant line of research in the field. In reminiscence of its paradigmatic classical
counterpart, Carnot-like heat engines have been mainly studied [12–14], encouraging the
analysis of other thermal engines as well.

The final objective of the present work is to build an irreversible Stirling cycle. The
corresponding classical version, invented and patented by engineer Robert Stirling in 1816,
encompasses two isothermal and two isochoric branches. Here, we analyse how this motor
can be implemented with a Brownian particle in a harmonic trap. Furthermore, we study
how the delivered power can be optimised. This purpose is not only theoretically mean-
ingful, but also worthwhile in practice: experimental realisations of Stirling cycles are
achievable [15] and their optimisation may be useful in the search of innovative methods
for renewable energy production [16].



Chapter 2

The model system

2.1 Harmonically confined Brownian particle

We consider an overdamped Brownian particle immersed in a thermal bath at tem-
perature T and trapped in a one-dimensional harmonic potential of stiffness k. Both of
these parameters are externally controlled. The friction coefficient is denoted as λ and
it is considered as constant. This assumption is consistent with the experimental realisa-
tion of the model: a colloidal particle in an optical trap, where the friction coefficient is
determined by both the particle geometry and the solvent viscosity.1

Let x denote the particle’s position with respect to the centre of the trap. Its evolution
follows the Langevin equation

λ
dx

dt
(t) = −k(t)x(t) + ζ(t), (2.1)

where ζ is a Gaussian white noise, characterised by a null average value and a temperature
dependent autocorrelation function,

⟨ζ(t)⟩ = 0, ⟨ζ(t)ζ(t′)⟩ = 2λkBT (t)δ(t − t′). (2.2)

In the above equation, kB is the Boltzmann constant and δ is the Dirac delta function.
The stochastic dynamics of the system can be equivalently described in the Fokker-

Planck or Langevin formalisms. In order to show this equivalence, we study the evolution
of the position’s probability distribution in both levels of description.

1Actually, recent experimental realisations of colloidal heat engines operate at constant ‘physical’
temperature and effective kinetic temperatures are implemented by means of external random forces,
whose amplitude is controlled. Albeit the friction coefficient λ could depend on the physical temperature,
the use of an effective kinetic temperature ensures that considering λ as a constant is a rather sensible
assumption.

3



CHAPTER 2. THE MODEL SYSTEM 4

2.1.1 Fokker-Planck description

This formalism is based on the Fokker-Planck equation [17, 18], which governs the
probability density function P (x, t) of finding the Brownian particle at position x in the
time instant t, and reads

∂

∂t
P (x, t) =

∂

∂x
[
k(t)x

λ
P (x, t)] +

kBT (t)

λ

∂2

∂x2P (x, t). (2.3)

In the case of overdamped Brownian motion, the Fokker-Planck equation is also known
as the Smoluchowski equation. For the case of harmonic confinement, it can be solved for
any given initial distribution P (x,0). Specifically, we derive the solution for a Gaussian
initial condition of mean value µ0 and variance σ2

0,

P (x,0) = 1
√

2πσ2
0

exp[−(x − µ0)2

2σ2
0

]. (2.4)

In Fourier space, the characteristic function corresponding to the probability distribution
P (x, t) is defined as

G(ξ, t) ≡ F [P (x, t)] (ξ) = ∫
+∞

−∞
dxeiξxP (x, t), (2.5)

which is the moment generating function. This name refers to the relation between its
derivatives with respect to ξ and the moments of the distribution,

G(ξ, t) =

∞

∑
n=0

(iξ)n

n! ⟨xn⟩(t)⇒ ⟨xn⟩(t) =
1
in
∂G(ξ, t)

∂ξn

RRRRRRRRRRRξ=0

.

Let us recall the expressions of the Fourier transforms of the derivatives involved in
Eq. (2.3),

F [
∂

∂t
P (x, t)] (ξ) =

∂

∂t
G(ξ, t), (2.6)

F [
∂

∂x
P (x, t)] (ξ) = −iξG(ξ, t), (2.7)

F [
∂

∂x
(xP (x, t))] (ξ) = −ξ

∂

∂ξ
G(ξ, t). (2.8)

Therefore, the problem of solving the Smoluchowski equation (2.3) with an initial Gaus-
sian condition, given in Eq. (2.4), can be equivalently formulated in Fourier space as
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follows,
⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∂

∂t
G(ξ, t) = −

k(t)

λ
ξ
∂

∂ξ
G(ξ, t) −

kBT (t)

λ
ξ2G(ξ, t),

G(ξ,0) = exp[iµ0ξ +
1
2σ

2
0ξ

2].

(2.9)

By defining the cumulant generating function

Λ(ξ, t) = logG(ξ, t), (2.10)

the problem given in Eq. (2.9) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∂

∂t
Λ(ξ, t) = −

k(t)

λ
ξ
∂

∂ξ
Λ(ξ, t) −

kBT (t)

λ
ξ2,

Λ(ξ,0) = iµ0ξ +
1
2σ

2
0ξ

2.

(2.11)

We shall consider the power series expansion of the cumulant generating function,

Λ(ξ, t) =

∞

∑
n=1

cn(t)
(iξ)n

n! , (2.12)

from which the cumulants cn(t) are obtained. Substituting Eq. (2.12) in Eq. (2.11), one
easily derives the evolution equations for all the cumulants, which are fully uncoupled.
Specifically, for n = 1, we have

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

iξ
dc1

dt
(t) = iξ

k(t)

λ
c1(t)⇒

dc1

dt
(t) = −

k(t)

λ
c1(t),

c1(0) = µ0.

(2.13)

Hence, the first cumulant, which is the position’s mean value, can be readily obtained,

⟨x⟩(t) ≡ c1(t) = µ0e
− 1
λ
K(t), (2.14)

where K is a primitive function of k defined as

K(t) ≡ ∫
t

0
dt′k(t′). (2.15)

For n = 2, one gets

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

−
1
2ξ

2dc2

dt
(t) =

k(t)

λ
ξ2c2(t) −

kBT (t)

λ
ξ2⇒

dc2

dt
(t) = −

2k(t)
λ

c2(t) +
2kBT (t)

λ
,

c2(0) = σ2
0.

(2.16)
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Therefore, the second cumulant, which is the variance of the distribution, is

⟨x2⟩(t) − ⟨x⟩2(t) = c2(t) = e
− 2
λ
K(t) [σ2

0 +
2kB
λ ∫

t

0
dt′ e

2
λ
K(t′)T (t′)] . (2.17)

Since the selected initial probability distribution is Gaussian, all cumulants cn(0) for n ≥ 3
vanish. Given that, in addition, Eq. (2.11) does not have any independent terms going
as ξn for n /= 2, the power expansion of the aforementioned problem for n ≥ 3 gives an
homogeneous equation with null initial value, yielding the trivial solution cn(t) = 0. Thus,
we can write the evolution of the cumulants in a compact manner,

cn(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ0e
− 1
λ
K(t), n = 1,

e−
2
λ
K(t) [σ2

0 +
2kB
λ ∫

t

0 dt
′ e

2
λ
K(t′)T (t′)] , n = 2,

0, n ≥ 3.

(2.18)

Therefore, an initial Gaussian condition guarantees that the probability density function
remains Gaussian at any time instant. Thence, it suffices to characterise the evolution of
both the mean value and the variance of the particle’s position to fully depict the time
evolution of the probability density function P (x, t). Equation (2.14) proves that the
mean value ⟨x⟩ vanishes at any time instant if the position origin is selected according
to the initial mean value, coinciding with the centre of the trap, µ0 = 0 = ⟨x⟩. Thus, the
position distribution evolution is entirely encoded by that of its variance—which, given
that ⟨x⟩ (t) = 0 ∀t, coincides with the second moment of the distribution. Thence, it is
governed by Eq. (2.16), equivalent to

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

λ
d

dt
⟨x2⟩(t) = −2k(t)⟨x2⟩(t) + 2kBT (t),

⟨x2⟩(0) = σ2
0.

(2.19)

2.1.2 Langevin description

All of the results presented above can be analogously derived using the Langevin
approach. Given a Gaussian initial distribution for x(0), we can deduce that x(t) is also
Gaussian. Indeed, since the initial condition x(0) and the noise ζ(t) are both Gaussian,
Eq. (2.1) entails that the particle position remains Gaussian.

The Langevin equation (2.1) can be straightforwardly solved,

x(t) = [x0 +
1
λ ∫

t

0
dt′ζ(t′)eK(t

′)/λ] e−K(t)/λ, (2.20)
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where x0 is the position of the particle in the initial time instant (i.e. x0 ≡ x(t = 0)), and
K is defined as in Eq. (2.15). Therefore, the position’s mean value is

⟨x⟩ (t) = ⟨x0⟩ e
−K(t)/λ, (2.21)

as we obtained in Eq. (2.14), where we denoted ⟨x0⟩ = µ0.
From Eq. (2.20), the squared value of the position of the Brownian particle can be

readily computed,

x2(t) = [x2
0 +

2x0

λ ∫
t

0
dt′ζ(t′)eK(t

′)/λ +
1
λ2 ∫

t

0
dt′ζ(t′)eK(t

′)/λ
∫

t

0
dt′′ζ(t′′)eK(t

′′)/λ] e−2K(t)/λ.

(2.22)
Now, the second moment of the distribution is easily obtained bearing in mind the prop-
erties of the Gaussian white noise (2.2),

⟨x2⟩(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⟨x2
0⟩ +

2 ⟨x0⟩

λ ∫

t

0
dt′ ⟨ζ(t′)⟩

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
0

eK(t
′)/λ

+
1
λ2 ∫

t

0
dt′∫

t

0
dt′′ ⟨ζ(t′)ζ(t′′)⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2λkBT (t)δ(t−t′)

e
K(t′)+K(t′′)

λ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

e−2K(t)/λ

=

⎡
⎢
⎢
⎢
⎢
⎣

⟨x2
0⟩ +

2kB
λ ∫

t

0
dt′T (t′)e2K(t′)/λ

⎤
⎥
⎥
⎥
⎥
⎦

e−2K(t)/λ. (2.23)

Hence, the time evolution of this physical quantity is determined by the following equation,

λ
d

dt
⟨x2⟩(t) = −2k(t)⟨x2⟩(t) + 2kBT (t). (2.24)

Thereupon, we retrieve the time evolution of the second moment captured in Eq. (2.19).
As aforementioned, a proper choice of the origin in our coordinate system gives ⟨x0⟩ = 0,
thereby the variance and the second moment coincide and the above equation suffices to
fully determine the evolution of the position distribution of our Brownian particle.

2.1.3 Energy, work and heat

In the described system, the three-dimensional phase space (k, ⟨x2⟩, T ) is considered.
The implicit equation defining the equilibrium surface in this space, which is called equa-
tion of state, can be directly obtained by looking for the stationary solution of Eq. (2.24),
when both the stiffness and the temperature are time-independent,

0 = −2k⟨x2⟩eq + 2kBT ⇒ ⟨x2⟩eq =
kBT

k
. (2.25)
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The energy of the system has a kinetic term and a configurational contribution derived
from the harmonic potential,

E(t) =
1
2mv

2(t) +
1
2k(t)x

2, (2.26)

where m is the mass of the Brownian particle and v is its velocity. In the overdamped
limit, which corresponds to our description, the latter variable is always at its equilibrium
value: v2(t) = kBT (t)/m. Therefore, the average energy is

⟨E⟩(t) =
1
2kBT (t) +

1
2k(t)⟨x

2⟩(t). (2.27)

Thus, the equilibrium energy is characterised by the temperature of the system,

⟨E⟩eq = kBT. (2.28)

Taking differentials on both sides of Eq. (2.27), one gets

d⟨E⟩ =
1
2kB dT +

1
2k d⟨x

2⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d̄Q

+
1
2dk ⟨x2⟩

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d̄W

. (2.29)

We can identify work’s inexact differential d̄W as the contribution to the energy variation
stemming from the change of the external mechanical parameters (namely, the stiffness of
the trap k). The energy variation caused by a configurational change in the probability
distributions is depicted as the heat’s inexact differential d̄Q. It includes two terms, each
of which corresponds to the change in the variance of the particle’s velocity or position.
Since the former variable, as aforementioned, is always at equilibrium, the associated
variation term is directly connected to the temperature change. Although we focus here
on heat and work as average energy contributions, the corresponding stochastic quantities
can also be defined on individual fluctuating trajectories.

Let us consider a process connecting two equilibrium state points: (ki, ⟨x2⟩i, Ti) and
(kf , ⟨x2⟩f , Tf), where the subscripts denote the initial and final situations, respectively.
Work and heat associated to this transition are defined as follows,

Wi→f =
1
2 ∫

f

i
dk ⟨x2⟩, (2.30)

Qi→f =
1
2 ∫

f

i
(kB dT + k d⟨x2⟩) =

kB
2 (Tf − Ti) +

1
2 ∫

f

i
k d⟨x2⟩. (2.31)

Note that our sign convention considers any ‘kind’ of energy change (both work and heat)
as positive if it is transferred from the environment to the system, and negative in the
opposite case. Since our objective is to extract energy from our heat engine, we thus
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study cycles with a negative total work. The first law of thermodynamics is expressed as

∆⟨E⟩i→f =Wi→f +Qi→f , (2.32)

where ∆⟨E⟩i→f = ⟨E⟩f − ⟨E⟩i.

2.2 Dimensionless variables

In order to simplify our notation, let us introduce dimensionless variables for the
physical properties that characterise our three-dimensional phase space. Specifically, we
choose the units of (k, ⟨x2⟩ , T ) to be normalised with respect to a reference equilibrium
point (kref, ⟨x2⟩ref , Tref), i.e.

κ ≡
k

kref
, y ≡

⟨x2⟩

⟨x2⟩ref
=

kref

kBTref
⟨x2⟩, θ ≡

T

Tref
. (2.33)

Note that the second equality for the normalised variance is a direct consequence of the
equilibrium condition (2.25), which now reads

κyeq = θ. (2.34)

Consistently, dimensionless average energy is defined,

E =
⟨E⟩

kBTref
. (2.35)

Thereupon, we can rewrite Eq. (2.27) in dimensionless form as

E =
1
2θ +

1
2κy, (2.36)

where we have omitted the time dependence for the sake of clarity. Non-dimensional work
and heat are defined consistently,

Wi→f =
1
2 ∫

f

i
dκy, (2.37)

Qi→f =
1
2(θf − θi) +

1
2 ∫

f

i
dy κ. (2.38)

The first law of thermodynamics now reads

∆Ei→f =Wi→f +Qi→f . (2.39)
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In addition, it is useful to adimensionalise time as follows,

τ ≡
t kref

λ
. (2.40)

The state of the system at any time τ is thus characterised by the triplet (κ, y, θ). From
now on, differentiation with respect to τ is denoted as q̇ ≡ dq/dτ , for any physical quantity
q. Hence, the evolution of the non-dimensional variance follows the equation

ẏ = −2κy + 2θ. (2.41)

With the previous definitions, we can write Eq. (2.17) as

y(τ) = e−2 ∫
τ

0 dτ κ(τ ′) [yi + 2∫
τ

0
dτ ′ θ(τ ′)e2 ∫

τ ′
0 dτ ′′ κ(τ ′′)] , (2.42)

which gives us the evolution of the variance. Note that, for the special case of constant
stiffness κ and temperature θ, we have that the variance exponentially decays to its
equilibrium value,

y(τ) =
θ

κ
+ e−2κτ (yi −

θ

κ
) . (2.43)

Thus, if we consider an infinitely slow process (compared to the characteristic relaxation
time of our system), the stiffness of the trap and the temperature behave as constants in
our time-scale and the second term on the rhs vanishes. Thence, the normalised variance
attains its equilibrium value. This situation corresponds to the quasi-static limit, which
will be studied in the upcoming chapters.



Chapter 3

Building blocks for a Stirling cycle

The aim of this work is to build and investigate a non-equilibrium version of the
Stirling cycle, in analogy to the studies of irreversible Carnot-like heat engines [12–14].
Hence, our stochastic cycle should encompass isothermal and isochoric branches. In the
following, we define and analyse in detail these branches.

3.1 Isothermal processes

In phase space, isothermal processes are represented by curves with a constant value
for θ. In this work, we consider two kinds of isothermal processes: quasi-static and op-
timal. The former is not our main interest; not only are quasi-static processes non-feasible
experimentally, but also they lack practical interest, due to their null output power. How-
ever, the study of quasi-static transitions is theoretically meaningful, and it is essential to
compare both scenarios. Nevertheless, our focus is the power optimisation of an irrevers-
ible heat engine, and hence isothermal processes in which the extracted work is maximised
play a key role.

3.1.1 Quasi-static isothermal processes

A quasi-static process is defined as a succession of equilibrium states [1]. Therefore,
an isothermal quasi-static process is represented by an equilibrium curve of the form
given in Eq. (2.34), in which the temperature θ is fixed. To sweep this equilibrium curve
y(τ) = θ/κ(τ), the control parameter κ(τ) must be varied sufficiently slowly. For a quasi-
static process, the work required to drive the system from one state to another always
equals the Helmholtz free energy difference between the initial and final points ∆Fi→f ,
which is a function of state.

11
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The computation of work, heat and energy variation in such a process is straightfor-
ward,

W
QS
i→f =

1
2 ∫

f

i
dκ

θ

κ
=
θ

2 log (
κf
κi

) = ∆Fi→f , (3.1)

Q
QS
i→f =

1
2 ∫

f

i
dy
θ

y
=
θ

2 log (
yf
yi

) = −
θ

2 log (
κf
κi

) = −W
QS
i→f , (3.2)

∆EQSi→f = 0. (3.3)

The last equality can be derived as a consequence of the first law, or directly remembering
that Ei = Ef = θ for an isothermal process.

3.1.2 Optimal isothermal processes

Let us consider an isothermal process lasting a finite time τf . In such a protocol, the
system sweeps non-equilibrium states and thus work depends on the selected protocol
for the control κ(τ). Therefore, it is possible to minimise the work performed on the
system (i.e. maximise the work done by the system) by finding an optimal protocol κ(τ).
This optimisation problem has already been solved in Ref. [12]. Hereafter, we revisit the
obtaining of such optimal isothermal protocol.

Work is a functional of the engineered protocol,

Wi→f [κ] =
1
2 ∫

f

i
dκy =

�
�
�
��>

0
1
2[y κ]

f

i
−

1
2 ∫

f

i
dy κ, (3.4)

where integration by parts leads to the second equality. Note that the first term on the rhs
vanishes, due to the equilibrium condition at the initial and final states: κiyi = κfyf = θ.
Similarly to the quasi-static case, we have that Ei = Ef = θ and thus

Qi→f [κ] = −Wi→f [κ], ∆Ei→f = 0. (3.5)

The evolution equation of the variance, captured in Eq. (2.41), yields

κ =
θ

y
−

1
2
ẏ

y
. (3.6)

Introducing this relation in Eq. (3.4), one obtains

Wi→f [κ] = −
θ

2 ∫
f

i
d(log y) + 1

4 ∫
f

i
dτ
ẏ2

y
= ∆Fi→f +

1
4 ∫

f

i
dτ
ẏ2

y
. (3.7)



CHAPTER 3. BUILDING BLOCKS FOR A STIRLING CYCLE 13

The first term in the last expression does not depend on the selected protocol, given that
it is the free energy difference, i.e. the quasi-static contribution. Hence, since it is a
function of state, its value is determined by the boundary point states, which are fixed.
Thereupon, the optimisation problem is solely determined by the second term, which is
the ‘irreversible’ or ‘excess’ work, i.e. the difference between the actual work and its value
in the quasi-static, reversible, limit. Note that, as expected, the irreversible contribution
is positive regardless of the selected protocol.

Let us introduce the ‘Lagrangian’

L(y, ẏ) =
ẏ2

y
. (3.8)

The Euler-Lagrange equation corresponding to our variational problem, i.e. the minim-
isation of the irreversible work, is

d

dτ

∂L

∂ẏ
−
∂L

∂y
= 0 ⇐⇒ 2ÿ y − ẏ2 = 0. (3.9)

The solution of this second-order differential equation is obtained by standard methods,
with the result

y(τ) = (aτ + b)
2
, (3.10)

where (a, b) are integration constants. They can be determined by imposing the boundary
conditions y(0) = yi, y(τf) = yf ,

yi = b
2⇒ b =

√
yi, (3.11)

yf = (aτf + b)
2⇒ a =

1
τf

(
√
yf −

√
yi) . (3.12)

Hence, the evolution of the variance in the optimal process is

ỹ(τ) = [
√
yi + (

√
yf −

√
yi)

τ

τf
]

2

, ∀τ ∈ [0, τf ] . (3.13)

We observe that ỹ(τ) is continuous in the closed interval [0, τf ] and it is a positive-defined
quantity, as the variance of any distribution must be.

The control κ̃ evolution in the optimal process is obtained from Eq. (3.6), in the open
time interval τ ∈ (0, τf),

κ̃(τ) =
θ

ỹ(τ)
−

1
2
d

dτ
log ỹ(τ) = θ

[
√
yi + (

√
yf −

√
yi)

τ
τf
]

2 −

⎡
⎢
⎢
⎢
⎢
⎣

τ +
τf

(
√
yf/yi − 1)

⎤
⎥
⎥
⎥
⎥
⎦

−1

. (3.14)

Note that the stiffness of the trap is discontinuous at both the initial and final time
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instants,

lim
τ→0+

κ̃(τ) = κi −
1
τf

(

√
yf
yi
− 1) /= κi, (3.15)

lim
τ→τ−

f

κ̃(τ) = κf −
1
τf

(1 −
√

yi
yf

) /= κf . (3.16)

Similar discontinuities in the control parameter have been repeatedly found in stochastic
thermodynamics [9,11,12,14,19]. Note that the continuity at the boundaries is recovered
in the quasi-static limit, in which τf →∞.

Work associated with the optimal process is obtained from Eq. (3.4),

W̃i→f =W
QS
i→f +

1
τf

(
√
yf −

√
yi)

2
=W

QS
i→f +

θ

τf
(

1
√
κf

−
1

√
κi

)

2

. (3.17)

The work does not only depend on the initial and final equilibrium states connected by the
isothermal process, but also on the duration of such transition. The minimum irreversible
work scales as τ−1

f , which vanishes in the quasi-static limit τf →∞.
We recall that, according to our sign convention, work delivered by the heat engine is

negative. Hence, when we refer to ‘optimal work’, we are talking about a minimum value.
In Eq. (3.17), we obtain that the optimal work is always greater (i.e. ‘worse’ in energetic
exploitation terms) than the corresponding quasi-static value. Albeit the extracted work
is maximum in the quasi-static limit, it leads to a vanishing power output. The opposite
limit, an instantaneous isothermal transition (τf → 0+), leads to the least energetically
advantageous case: infinite work is required to perform the process.

3.2 Isochoric processes

In this section, our focus of interest are processes in which the harmonic potential is
kept constant.1 They are represented by curves with a fixed value for the trap stiffness
κ in the phase space. Similarly to our treatment of isothermal branches, we will study
quasi-static and optimal isochoric transitions. In this case, optimality refers to shortest
time protocols, given that work vanishes for any isochoric process. Hence, minimal time
will imply maximal power output.

Therefore, isochoric processes are particularly simple: since the required work is always
zero, heat is fully determined by the temperature difference between the final and initial

1In reminiscence of macroscopic heat engines operating with gases, our nomenclature exploits the
analogy between (κ, y) and volume and pressure (V, p). Consequently, an isochoric process—associated
with constant V in gases—corresponds here to keeping κ constant.
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states, and so is the energy variation,

Wi→f =
1
2 ∫

f

i
dκy = 0, (3.18)

Qi→f =
1
2 ∫

f

i
dy κ +

1
2 (θf − θi) =

Õ
×
×

κ(yf−yi)=θf−θi

κ

2 (yf − yi) +
1
2 (θf − θi) = θf − θi, (3.19)

∆Ei→f =Wi→f +Qi→f = θf − θi. (3.20)

As one may intuitively expect, the system delivers heat to the bath in cooling processes
(θf < θi) and absorbs heat from the bath in heating ones (θf > θi).

3.2.1 Quasi-static isochoric processes

In order to sweep a quasi-static curve, the control parameter, which in this case is the
bath temperature θ(τ), shall be tuned in an infinitely slow manner in order to maintain
the equilibrium condition y(τ) = θ(τ)/κ. As outlined above, the energetic characterisation
of the isochoric process is identical for any given protocol, independently of the duration
of the process or whether the intermediate states are at equilibrium or not.

3.2.2 Optimal isochoric processes

We now aim at studying the thermal optimal protocol that minimises the connection
time between the equilibrium initial and final states, keeping the potential fixed. This
optimal shortcut has been investigated in depth in Ref. [9]. Therein, the problem is
solved for arbitrary dimension, which yields a rich phenomenology. Hereupon, we restrict
ourselves to the one-dimensional case that we are considering throughout.

The external control θ(τ) is submitted to physical constraints, θ(τ) ≥ 0, ∀τ . But,
moreover, tighter bounds might be brought up by technical limitations in practice. Thus,
we consider the general constraints θmin ≤ θ(τ) ≤ θmax for the bath temperature to solve
the optimisation problem, particularising later for the ideally relaxed conditions θmin →

0+, θmax → ∞. The addressed optimisation problem cannot be solved with the tools
of standard variational calculus and less restrictive methods of optimal control theory
are needed. The solution of our problem is a bang-bang protocol without ‘switchings’
(i.e. with a single continuity interval), in which θ(τ) is equal to one of its bounds. A
detailed derivation of this result can be found in Appendix A. Therein, we obtain that
the optimal temperature control in a heating process corresponds to reaching the upper
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bound, θ̃(τ) = θmax, ∀τ ∈ (0, τf); whereas, in a cooling procedure, optimality is achieved
by setting the temperature control to its lower bound, θ̃(τ) = θmin, ∀τ ∈ (0, τf). Thus, the
optimal control θ̃(τ) can be expressed as

θ̃(τ) = θ̃ ≡

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

θmax, if θi < θf ,

θmin, if θi > θf ,
∀τ ∈ (0, τf) . (3.21)

Note that, again, our optimal control presents jumps: θ̃(τ) is discontinuous at the initial
and final time instants, given that it is submitted to the boundary conditions

θ̃(0) = θi, θ̃(τf) = θf . (3.22)

The optimal protocol is physically reasonable: it coincides with the intuitive idea of using
the largest or smallest possible bath temperatures—depending on whether one intends
to heat or cool the system, respectively. Then, one just needs to select the adequate
temperature bound and wait until the target state is reached. Since the optimal control is
constant in the open interval (0, τf), it is particularly easy to solve the evolution equation
for the variance of the confined Brownian particle, obtaining

ỹ(τ) =
θ̃

κ
+ (yi −

θ̃

κ
) e−2κτ , ∀τ ∈ (0, τf) , (3.23)

where θ̃ is given by Eq. (3.21). The optimal time connection is obtained by solving the
equation

yf = lim
τ→τ−

f

ỹ(τ) =
θ̃

κ
+ (yi −

θ̃

κ
) e−2κτf , (3.24)

or, equivalently after dividing by yf ,

1 = θ̃

θf
+ (

θi
θf

−
θ̃

θf
) e−2κτf , (3.25)

where we have taken into account that yf = κθf , since the final state verifies the equilib-
rium condition. This equation can be readily solved, yielding an optimal time

τ̃f = −
1

2κ log(
θf − θ̃

θi − θ̃
) . (3.26)
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Therefore, considering the expression of θ̃ given in Eq. (3.21), one has

τ̃f =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2κ log(

θmax − θi
θmax − θf

) , if θi < θf ,

1
2κ log(

θi − θmin

θf − θmin
) , if θi > θf .

(3.27)

The argument of the logarithmic function is greater than 1 in both cases, thus, the
obtained optimal value τf is always positive, as it must be. Note that an opposite selection
in Eq. (3.21) (i.e. choosing the largest temperature of the bath for cooling processes and
the minimal temperature for heating), besides of being a physically unreasonable choice,
would turn into a negative connection time. Thereof, our choosing in Eq. (3.21) has been
proven to be correct. It is worth highlighting that, although the control parameter θ̃(τ)
is not continuous at both ends of the isochoric process, the associated optimal variance ỹ
is continuous in the whole time interval, since its expression, given in Eq. (3.23), verifies

lim
τ→0+

ỹ(τ) = yi, lim
τ→τ−

f

ỹ(τ) = yf . (3.28)

The energetic analysis of this optimal isochoric process is identical to the quasi-static
one, given that work is null and heat and energy variation only depend on the boundary
temperatures. As previously mentioned, the key difference between the quasi-static and
optimal isochoric processes is that the latter lasts a finite time, whereas the former involves
an infinite duration.

In our discussion, we are particularly interested in the ideal situation θmin → 0+, θmax →

∞, for which the minimum connecting time in an isochoric process is

τ̃f =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

lim
θmax→∞

1
2κ log(

θmax − θi
θmax − θf

) = 0, if θi < θf ,

lim
θmin→0+

1
2κ log(

θi − θmin

θf − θmin
) =

1
2κ log(

θi
θf

) , if θi > θf .

(3.29)

Thus, in the ideal limit of infinite heating power, it is possible to instantaneously heat the
system up to any desired temperature; while the physical bound for minimal temperatures
leads to a non-zero finite limit of the optimal time for cooling processes.



Chapter 4

Stirling stochastic heat engine

In this chapter, we study the stochastic version of a Stirling cycle performed by our
model system. Experimental versions of such engines have been experimentally built in
the last decades [3, 15].

Analogously to the classical Stirling heat engine, our cyclic process encompasses four
stages, which are illustrated in Fig. 4.1:

1. Isothermal expansion at the hot bath temperature θh ≡ θA = θB, connecting the
phase points A and B, i.e. (κA, yA, θA) and (κB, yB, θB). The confining harmonic
potential is modified via time control of the trap strength κ(τ). Here and onwards,
the term expansion (compression) refers to the sign of the variance increment: ∆y >
0 (∆y < 0), in analogy to the classical thermodynamic cycle.

2. Isochoric compression at ‘loose’ stiffness κl ≡ κB = κC , starting from the state-
point B ≡ (κB, yB, θB) up to C ≡ (κC , yC , θC). The time-dependence of the temper-
ature of the heat bath θ(τ) is now controlled.

3. Isothermal compression at the cold bath temperature θc ≡ θC = θD < θh, linking
states C ≡ (κC , yC , θC) and D ≡ (κD, yD, θD). Similarly to process 1, the stiffness of
the harmonic trap is externally controlled.

4. Isochoric expansion at ‘tight’ stiffness κt ≡ κD = κA > κl, departing from state D ≡

(κD, yD, θD) and closing the cycle by returning to the initial point A ≡ (κA, yA, θA).
As in process 2, the control variable is the time-dependent temperature of the bath.

Since the energy increment in an isothermal process vanishes, from the application of
the first law of thermodynamics, we infer that in branches 1 and 3 the absorbed (released)
heat equals the delivered (consumed) work,

WAB = −QAB < 0, WCD = −QCD > 0. (4.1)

18
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Figure 4.1: Scheme of the stochastic Stirling cycle. The harmonic con-
fining potential at the operating points of the cycle is represented by the purple
curves. The filled red and blue areas correspond to the probability density func-
tions at those state-points, where red (blue) refers to the hot (cold) equilibrium
temperatures. The representation of the heat engine in the (κ, y) plane corres-
pond to the quasi-static version of the described cycle.
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As we mentioned in the previous chapter, isochoric processes do not generate nor require
work, and therein the associated dissipated heat equals the temperature increment. We
recall that these energetic considerations apply to any isochoric process, independently of
the protocol for the temperature. Therefore, we have the following identities for branches
2 and 4 of our cycle:

WBC = 0, QBC = θC − θB = θc − θh < 0; (4.2)

WDA = 0, QDA = θA − θD = θh − θc > 0. (4.3)

We are interested in building a heat engine, and thus we want our device to extract
heat from the baths and perform work. On one hand, the absorbed heat corresponds to
the first isothermal branch A → B: QAB. On the other hand, the total work transferred
from the environment to our Stirling cycle is

W ≡WAB +�
�>

0
WBC +WCD +�

�>
0

WDA =WAB +WCD. (4.4)

The efficiency of our stochastic heat machine is defined, in analogy with macroscopic
thermodynamics, as the ratio of the performed work over the extracted heat,

η ≡
−W

QAB
=
− (WAB +WCD)

QAB
= 1 − WCD

QAB
< 1. (4.5)

Let us denote the time duration of each branch as τAB, τBC , τCD, τDA. Thence, the
delivered power of the cycle, defined as the ratio of the performed work over the employed
time, is

P ≡
−W

τAB + τBC + τCD + τDA
=

− (WAB +WCD)

τAB + τBC + τCD + τDA
. (4.6)

If we temporarily forgot about the constraints to which our engine is submitted, we would
expect that 4 × 3 = 12 parameters were necessary to fully depict the cycle characterised
by 4 points in a 3-dimensional phase space. Nonetheless, we now consider normalisation
on the phase space coordinates with respect to the initial state, and thence point A is
fixed: (κA, yA, θA) = (1,1,1). Furthermore, the operating points describe equilibrium
states and thus the corresponding condition, given in Eq. (2.34), imposes three additional
constraints,

κByB = θB, κCyC = θC , κDyD = θD. (4.7)

Moreover, as a consequence of the processes being isothermal and isochoric, two more
pairs of restrictions are added,

θA = θB, θC = θD, (4.8)

κB = κC , κA = κD. (4.9)
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Table 4.1: Operating points of the stochastic Stirling
heat engine. See also Fig. 4.2.

κ y θ

A 1 1 1

B χ χ−1 1

C χ νχ−1 ν

D 1 ν ν

Accordingly, the operating points of the described Stirling cycle are uniquely defined by
two parameters. Similarly to the choice of parameters in Ref. [14], we characterise the
device using the temperature ratio between the cold and heat baths,

ν ≡
θc
θh

= θc < 1, (4.10)

and the compression ratio among the two isochoric branches,

χ ≡
κl
κs

= κl < 1. (4.11)

The phase coordinates of the operating points of the cycle as a function of the selected
variables (ν,χ) are collected in Table 4.1.

4.1 Quasi-static Stirling cycle

We first study the quasi-static limit of the designed cycle. Therein, the system is
always at equilibrium and the time required to sweep the cycle is infinite. The analysis
of isothermal and isochoric quasi-static processes discussed in the previous chapter allows
for straightforward calculating work, heat and energy increases over each branch. The
obtained values are collected in Table 4.2. The total work corresponding to this infinitely
slow process is

WQS ≡
1 − ν

2 logχ < 0. (4.12)

Since the required time for this engine to operate is infinite, it does not deliver any
power. As mentioned in the previous chapter, this quasi-static limit is not experimentally
realisable. Nonetheless, the efficiency of such device attains the Carnot efficiency,

ηQS = ηC ≡ 1 − θc
θh

= 1 − ν, (4.13)
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Table 4.2: Quasi-static energetics of the Stirling cycle.

W
QS
i→f Q

QS
i→f ∆EQSi→f

(1) A→ B 1
2 logχ −1

2 logχ 0

(2) B → C 0 ν − 1 ν − 1

(3) C →D −ν2 logχ ν
2 logχ 0

(4) D → A 0 1 − ν 1 − ν

Total 1−ν
2 logχ ν−1

2 logχ 0

which is the maximum achievable thermal efficiency, as stated by Carnot’s theorem, which
can be derived as a consequence of the second law of thermodynamics. A corollary of the
aforementioned theorem proves that all reversible engines operating between the same
hot and cold reservoirs are equally efficient. Thus, the equality provided in Eq. (4.13)
between the efficiency of our quasi-static, reversible, heat engine and the Carnot efficiency
is consistent with the results of macroscopic thermodynamics.

The projection of the described quasi-static cycle onto the (κ, y) plane in the phase
space is illustrated on the left panel in Fig. 4.2, for the particular choice of parameters
ν = χ = 0.5.

4.2 Optimal irreversible Stirling cycle

Let us consider now the irreversible version of the above described stochastic Stirling
cycle. Now, the four branches are swept in a finite time and the heat engine delivers thus
a non-zero power output. As anticipated in previous sections, our aim is to build the
‘optimal’ irreversible cycle for any given operating points (A,B,C,D); i.e. the cycle that
delivers maximum power for any choice of temperature and compression ratios (ν,χ).
Therefore, these parameters are considered as constants in the following.

Henceforth, our objective is to maximise the power output of the cycle, which is given
by Eq. (4.6). Inasmuch as the isochoric branches only contribute to the delivered power
through their time spans, we must minimise their duration in order to achieve our goal.
We have already addressed this problem in detail in Sec. 3.2.2 of the previous chapter.
Therein, we obtained that the optimal temperature protocol is of bang-bang type, and
it consists of applying the minimal bath temperature in the cooling branch (i.e. B → C)
and using the maximum bath temperature in the heating branch (i.e. D → A).

This procedure leads to the following optimal times for the isochoric brachistochrones
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Figure 4.2: Projection onto the (κ, y) plane of the phase trajectory described
by the system in the Stirling cycle. The left (right) panel corresponds to the
reversible (irreversible) versions of the cycle. In both panels, the cycles correspond
to ν = χ = 0.5; for the irreversible cycle, we have considered that the bounds for
the temperature are ideal: θmin → 0+, θmax →∞.

connecting, respectively, B → C and D → A,

τ̃BC(θmin) =
1

2χ log (
1 − θmin

ν − θmin
) , τ̃DA(θmax) =

1
2 log (

θmax − ν

θmax − 1) , (4.14)

which are directly obtained from Eq. (3.29). Here, we have explicitly showed the depend-
ence of these optimal times on the extremal admissible bath temperatures. Let us denote
the total optimal time for the isochoric branches as

τ̃isoc ≡ τ̃BC + τ̃DA, (4.15)

where we have omitted the dependence on (θmin, θmax) in our notation for the sake of
simplicity.

Regarding the isothermal branches, in order to optimise the cycle power given in
Eq. (4.6), we need to minimise the irreversible work in these processes (or, equivalently,
maximise the work performed by the system). In the previous chapter, specifically in
Sec. 3.1.2, we derived the optimal protocol for this type of processes for any given time
duration. We obtained that the stiffness κ experimented finite jump discontinuities at the
endpoints of these isothermal processes. This behaviour is shown on the right panel in
Fig. 4.2, where the dashed lines represent the aforementioned jumps. The optimal work
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for these processes as a function of their time span is

W̃AB(τAB) =
1
2 logχ + 1

τAB
(

1
√
χ
− 1)

2

, (4.16)

W̃CD(τCD) = −
ν

2 logχ + ν

τCD
(1 − 1

√
χ
)

2

, (4.17)

which are a direct consequence of Eq. (3.17).
Therefore, the optimal protocols for the isochoric branches are fixed by the bath para-

meters and the optimal protocols for the isothermal connections are only dependent on
their respective times. Naturally, we may now ask ourselves what are the times τ̃AB, τ̃CD
that make our device deliver maximum power,

P̃ = max
τAB ,τCD

P (τAB, τCD) , (4.18)

where

P (τAB, τCD) ≡ −
W̃AB(τAB) + W̃CD(τCD)

τAB + τ̃BC + τCD + τ̃DA
= −
W̃AB(τAB) + W̃CD(τCD)

τAB + τ̃isoc + τCD
. (4.19)

To answer this question, let us rewrite Eq. (4.19) as follows,

P (τAB, τCD) = −
1
τcyc

⎡
⎢
⎢
⎢
⎢
⎣

1 − ν
2 logχ + (

1
√
χ
− 1)

2

(
1
τAB

+
ν

τCD
)

⎤
⎥
⎥
⎥
⎥
⎦

= −
1
τcyc

[WQS + α(
1
τAB

+
ν

τCD
)] , (4.20)

where WQS is the total work corresponding to the quasi-static cycle, given in Eq. (4.12),

τcyc ≡ τAB + τ̃isoc + τCD (4.21)

is the total duration of the cycle, and the coefficient α is defined as

α ≡ (
1

√
χ
− 1)

2

, (4.22)

for the sake of compactness.
We maximise the power by imposing the necessary conditions for optimality, i.e. mak-

ing the partial derivatives of P with respect to τAB and τCD equal to zero,

∂P

∂τAB

RRRRRRRRRRRτ̃AB ,τ̃CD

= 0 ⇐⇒ 1
(τ̃cyc)

α

τ̃ 2
AB

+
1

(τ̃cyc)
2 [WQS + α(

1
τ̃AB

+
ν

τ̃CD
)] = 0, (4.23)
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∂P

∂τCD

RRRRRRRRRRRτ̃AB ,τ̃CD

= 0 ⇐⇒ 1
(τ̃cyc)

αν

τ̃ 2
CD

+
1

(τ̃cyc)
2 [WQS + α(

1
τ̃AB

+
ν

τ̃CD
)] = 0. (4.24)

Both Eq. (4.23) and Eq. (4.24) must be verified by the optimal times. Therefore, sub-
tracting both equations, we infer that the optimal times for the isothermal branches are
proportional,

α

(τ̃cyc)
[

1
τ̃ 2
AB

−
ν

τ̃ 2
CD

] = 0⇒ τ̃CD =
√
ν τ̃AB, (4.25)

where we have taken into account that α > 0, since χ < 1, and τ̃AB, τ̃CD > 0.
Thus, multiplying Eq. (4.23) by (τ̃cyc)

2
τ̃ 2
AB > 0 and using the relation in Eq. (4.25) to

express τ̃CD as a function of τ̃AB, one has

WQS τ̃ 2
AB + 2α (1 +

√
ν) τ̃AB + ατ̃isoc = 0. (4.26)

This is a simple quadratic equation, the solution of which is

τ̃AB =
α

WQS

⎡
⎢
⎢
⎢
⎢
⎣

− (1 +
√
ν) −

√

(1 +
√
ν)

2
−
WQS

α
τ̃isoc

⎤
⎥
⎥
⎥
⎥
⎦

, (4.27)

where we have selected the solution with negative sign before the square root to ensure
positivity of the optimal time: τ̃AB > 0 (remember that WQS > 0). Let us introduce the
new parameters

w ≡ −
WQS

α (1 +
√
ν)

2 > 0, σ ≡
√

1 +wτ̃isoc > 1, (4.28)

in order to simplify the resulting expressions. With these definitions, we have

τ̃AB =
1 + σ

w (1 +
√
ν)
, τ̃CD =

√
ν

1 + σ
w (1 +

√
ν)
, (4.29)

which are equivalent to Eqs. (4.27) and (4.25).
Therefore, we have solved the optimisation problem presented in Eq. (4.18) and the

optimal irreversible Stirling cycle is fully characterised for any given operation points and
extremal bath temperatures (θmin, θmax). Note that we have not explicitly written the
dependence of the optimal solution on the latter, which is encoded in the parameter σ by
means of τ̃isoc = τ̃isoc (θmin, θmax). The corresponding protocols for the trap stiffness κ(τ)
in the isothermal branches and the bath temperature θ(τ) in the isochoric connections
have been described in detail in Chapter 3.

The energetics of the designed optimal irreversible Stirling cycle can be readily calcu-
lated. In analogy with Table 4.2, which collected the energetic description of the quasi-
static limit, we present the corresponding description for the optimal irreversible cycle in
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Table 4.3: Energetics of the optimal irreversible Stirling cycle.

W̃i→f Q̃i→f ∆Ẽi→f

(1) A→ B
1
2 logχ − WQS

(1 +
√
ν) (1 + σ)

−
1
2 logχ + WQS

(1 +
√
ν) (1 + σ)

0

(2) B → C 0 ν − 1 ν − 1

(3) C →D −
ν

2 logχ − (

√
ν

1 +
√
ν
)
WQS

1 + σ
ν

2 logχ + (

√
ν

1 +
√
ν
)
WQS

1 + σ 0

(4) D → A 0 1 − ν 1 − ν

Total σ

1 + σW
QS −

σ

1 + σW
QS 0

Table 4.3. Note that the total work absorbed by the system is

W̃ =
σ

1 + σW
QS. (4.30)

This result exhibits a strong parallelism to the one presented in Ref. [14] for an optimal
irreversible Carnot engine. As pointed out therein, the form of Eq. (4.30) yields a physical
interpretation for the parameter σ: it is a measurement of the deviation of the total
irreversible work from the value corresponding to the quasi-static case. In the limit
σ → ∞, one has W̃ → WQS. Note that, from the definition of σ in Eq. (4.28), it is clear
that the limit σ →∞ corresponds, indeed, to infinitely slow isochoric processes: τ̃isoc →∞.
Consistently, Eq. (4.29) evinces that the limit σ →∞ implies an infinite duration for the
optimal isothermal branches as well.

Therefore, the optimal power for any given operating points, defined by the temper-
ature ratio between the hot and cold isotherms ν and the compression ratio between the
isochoric branches χ, is

P̃ = (
σ

1 + σ)
wWQS

1 + σ +wτ̃isoc
. (4.31)

We recall that the optimal time for the isochoric branches τ̃isoc also depends on the bounds
of the temperature control. Hence, the optimal time is a function of all the aforementioned
parameters, which have been considered as fixed constants in our derivation,

P̃ (ν,χ; θmin, θmax) = [
σ (ν,χ; θmin, θmax)

1 + σ (ν,χ; θmin, θmax)
]

w (ν,χ)WQS (ν,χ)

1 + σ +w (ν,χ) τ̃isoc (ν,χ; θmin, θmax)
.

(4.32)
In the above expression, we explicitly show where the dependence on these four parameters
comes from.
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Let us look into the efficiency of the optimised irreversible Stirling cycle,

η̃ =
− (W̃AB + W̃CD)

Q̃AB
= 1 + W̃CD

W̃AB

, (4.33)

which, similarly to the optimal power P̃, depends on (ν,χ; θmin, θmax), although we omit
this dependency in our notation for the sake of conciseness. We can easily check that the
Carnot efficiency ηC = 1 − ν is an upper bound for η̃,

η̃ = ηC +
W̃CD + νW̃AB

W̃AB

= ηC +
���

��−ν2 logχ −
√
νWQS

(1+
√
ν)(1+σ) +��

��ν
2 logχ − νWQS

(1+
√
ν)(1+σ)

W̃AB

= ηC −
(
√
ν + ν)WQS

(1 +
√
ν) (1 + σ) W̃AB

= ηC − (

√
ν

1 + σ)
WQS

W̃AB
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

, (4.34)

where the factor within parentheses is clearly positive, and the termsWQS, W̃AB are both
negative. We can rewrite the expression of the latter, given in Table 4.3, to make clear
that it has a well-defined sign,

W̃AB =
1
2 logχ − WQS

(1 +
√
ν) (1 + σ)

=
1
2 logχ

⎡
⎢
⎢
⎢
⎢
⎣

1 − 1 − ν
(1 +

√
ν) (1 + σ)

⎤
⎥
⎥
⎥
⎥
⎦

=
1
2 logχ(1 − 1 −

√
ν

1 + σ ) =
1
2 logχ
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

<0

(
σ +

√
ν

1 + σ )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

< 0. (4.35)

Nonetheless, a similiar manipulation of Eq. (4.33) shows that the Curzon-Ahlborn
efficiency [20]

ηCA ≡ 1 −
√
ν (4.36)

is not an upper but a lower bound for our optimal irreversible Stirling cycle. Indeed,

η̃ = ηCA +
W̃CD +

√
ν W̃AB

W̃AB

= ηCA +
−ν2 logχ −

√
νWQS

(1+
√
ν)(1+σ) +

√
ν

2 logχ −
√
νWQS

(1+
√
ν)(1+σ)

W̃AB

= ηCA +
1
W̃AB

⎡
⎢
⎢
⎢
⎢
⎣

√
ν(1 −

√
ν)

2 logχ − 2
√
νWQS

(1 +
√
ν) (1 + σ)

⎤
⎥
⎥
⎥
⎥
⎦

= ηCA +

√
ν logχ
W̃AB

⎡
⎢
⎢
⎢
⎢
⎣

1 −
√
ν

2 −
1 − ν

(1 +
√
ν) (1 + σ)

⎤
⎥
⎥
⎥
⎥
⎦

= ηCA +
√
ν(1 −

√
ν)

logχ
2W̃AB

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

(
σ − 1
σ + 1)

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
>0

,

(4.37)
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Figure 4.3: Density plots of the optimal power (left) and the corresponding
efficiency (right) in the (ν,χ) plane. We have considered that the bounds for the
temperature are θmin → 0+, θmax →∞.

where we have taken into account that ν < 1 , W̃AB and logχ are both negative and σ > 1.
Curzon and Ahlborn found ηCA to be the efficiency of a Carnot engine operating at

maximum power output when limitations in the rates of heat transfer were considered
[20]. They derived this result for a specific model, generating a long-standing debate
about its universality and validity as an upper bound. Its generality has been discarded,
since efficiencies at maximum power below and above ηCA have been reported in the
literature [12,14,21,22]. However, it turns out to be an actual upper bound for the linear
response at maximum power, being reached in this regime by systems with strong coupling
between work and heat fluxes [23]. We recall that, in linear order, the Curzon-Ahlborn
efficiency is exactly half of the Carnot efficiency, ηCA = ηC/2 +O(η2

C). Moreover, in the
special case of systems with strong coupling between the fluxes, possessing in addition
left-right symmetry, the Curzon-Ahlborn result is verified up to quadratic order [21]. Our
designed engine is found to operate always above the Curzon-Ahlborn efficiency, as shown
by Eq. (4.37).

In order to illustrate the results obtained in this section, density plots of the op-
timal power and the corresponding efficiency as a function of (ν,χ), in the ideal case of
θmin → 0+, θmax →∞, are presented in Fig. 4.3.

4.2.1 Further optimisation of the irreversible Stirling cycle over
the operating points

Hitherto, we have studied the optimisation of an irreversible Stirling cycle for which
the operating points, defined by the temperature and compression ratios (ν,χ), were
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fixed. Naturally, the question of what choice of ratios renders maximal power arises, and
this section is devoted to answering this question. We first analyse the ideal case of non-
technical, but only physical, constraints in the temperature control: θmin → 0+, θmax →∞.
Secondly, we focus on more realistic limitations for the thermal control.

4.2.1.1 Optimisation of the irreversible Stirling cycle in the ideal limit

Let us consider an irreversible Stirling cycle with variable operating points in the
limit case of an ideal thermal control, i.e. one in which the temperature has no upper
bound, θmax →∞, and the lower bound corresponds to the absolute zero, θmin → 0+. The
optimal power for any given operating points only depends here on the temperature and
compression ratios, P̃ = P̃(ν,χ).

Herein, we first look into the delivered power optimisation over the compression ratio
χ, which will depend on the choice of the temperature ratio ν between the cold and hot
branches of the cycle,

P̃∗(ν) ≡ max
χ∈(0,1)

P̃ (ν,χ) = P̃ (ν,χ∗(ν)) , (4.38)

where χ∗(ν) denotes the compression ratio yielding optimal power for any fixed temper-
ature ratio ν. Furthermore, we can find the overall optimal Stirling cycle by maximising
now P̃∗ over the temperature ratio ν,

P̃∗∗ ≡ max
χ∈(0,1)
ν∈(0,1)

P̃ (ν,χ) = max
ν∈(0,1)

P̃∗(ν) = P̃ (ν∗, χ∗∗) = 0.041, (4.39)

where ν∗ = 0.060 is the temperature ratio that gives the overall maximum delivered power
and χ∗∗ ≡ χ∗(ν∗) = 0.507 is the corresponding optimal compression ratio.

To illustrate these definitions, we present in Fig. 4.4 the density plot of the optimal
power in the (ν,χ) plane with the curve χ = χ∗(ν), as well as two plots showing the
behaviour of the optimal power as a function of the compression ratio χ for fixed val-
ues of the temperature ratio ν ∈ {1/2, ν∗}. Interestingly, we find the compression ratio
χ∗(ν) yielding optimal power for fixed ν to be monotonically increasing with respect the
temperature ratio ν.

Similarly to the optimal power, the efficiency at maximum power for fixed operating
points is a function of the temperature and compression ratios, η̃ = η̃(ν,χ). We denote
the efficiency corresponding to the power optimisation over the compression ratio and to
the overall maximum power in an analogous manner,

η̃∗(ν) ≡ η̃ (ν,χ∗(ν)) , η̃∗∗ ≡ η̃ (ν∗, χ∗∗) = 0.842, (4.40)

respectively.
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Figure 4.4: Density plot of the optimal power in the (ν,χ) plane (left) and
vertical sections for fixed values of the temperature ratio ν (right). The curve
χ = χ∗(ν) (dotted line) gives the compression ratio yielding optimal power for
every temperature ratio. On the right, the upper panel corresponds to ν = 0.5
and the bottom one to ν = ν∗. The points at which maximum power is reached
in each case are also displayed (squares).
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Figure 4.5: Efficiency at maximum power in the present approach (black line),
Carnot efficiency (red dashed line), Curzon-Ahlborn efficiency (blue dashed line)
and η+ (green dashed line), defined in Eq. (4.42), as a function of the temperature
ratio ν.

In the previous section, we proved that the efficiency of our device is always below
the Carnot efficiency, as expected, but above the Curzon-Ahlborn value. Of course, these
bounds, which were obtained for arbitrary values of the temperature and compression
ratios (ν,χ), also apply when optimisation over χ is carried out,

ηCA < η̃∗ < ηC . (4.41)

This behaviour is illustrated in Fig. 4.5. In addition, we observe that the upper bound of
the efficiency at low dissipation

η+ ≡
ηC

2 − ηC
=

1 − ν
1 + ν (4.42)

presented in Ref. [22] for engines reaching the Carnot efficiency in the reversible limit, as
our Stirling cycle does, is verified in our system.

We are interested in the asymptotic study of the efficiency at maximum power η̃∗ in
the limit ν → 1, which corresponds to ηC << 1. Our approach is the following: we find
the expansion of χ∗ in powers of the Carnot efficiency ηC and introduce this scaling of χ∗

in η̃∗(ν) = η̃(ν,χ∗(ν)) to obtain the power expansion of η̃∗ up to the desired order in ηC .
Thus, let us consider the following ansatz for χ∗ in the limit as ν → 1:

χ∗ = 1 + a1 ηC + a2 η
2
C + a3 η

3
C +O (η4

C) , (4.43)

where the coefficients (a1, a2, a3) are determined by enforcing the first three terms in the
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expansion of the partial derivative of the optimal power with respect to the compression
ratio ∂P̃/∂χ to vanish at χ∗, since it corresponds to the optimal power output. Note that
we determine the zero-order value of χ∗ by using that χ∗ → 1 as ν → 1, as the dotted line
in Fig. 4.4 shows. The described procedure yields

a1 = −
1
2 , a2 = −

1
48 , a3 =

11
1152 . (4.44)

In Fig. 4.6, we compare the numerically evaluated optimal values of χ∗ with the obtained
expansion up to third order in ηC . The agreement of the numerical solutions and the
theoretical estimation is quite good, even when considering a range of ηC not so close to
zero.

We now introduce the obtained expansion for χ∗ in η̃∗(ν) ≡ η̃ (ν,χ∗(ν)), obtaining the
corresponding expansion for the efficiency,

η̃∗ =
ηC
2 +

3
16η

2
C +

41
384η

3
C +O (η4

C) . (4.45)

Note that the linear coefficient 1/2 has been proved to be a general upper bound for the
linear response at maximum power, as a result of the Onsager reciprocity theorem, which
has been considered as the fourth law of thermodynamics [23].

For the Curzon-Ahlborn efficiency, one has

ηCA =
ηC
2 +

η2
C

8 +
η3
C

16 +O (η4
C) . (4.46)

As expected, we find that the efficiency at maximum power for our engine coincides with
the Curzon-Ahlborn efficiency to first order in ηC . Notwithstanding, the non-linear terms
deviate from the Curzon-Ahlborn value. This is not surprising either, since we have
proved in the previous section that our efficiency is always above the Curzon-Ahlborn
bound, even for arbitrary values of the temperature control bounds (θmin, θmax). It has
been shown that the quadratic coefficient being equal to 1/8 is associated with left-right
symmetry in the system [21]. It would be interesting to study the role of the asymmetry
between heating and cooling processes, triggered by the upper and lower bounds of the
temperature control in the isochoric branches of the cycle, on the observed deviation from
the Curzon-Ahlborn efficiency yet in second order.

We recall that the expansion of the upper bound η+ is

η+ =
ηC
2 +

η2
C

4 +
η3
C

8 +O (η4
C) . (4.47)

This efficiency bound, presented in Ref. [22], is reached in a completely asymmetric limit.
Note that the quadratic coefficient in the expansion of our efficiency at optimal power,
given in Eq. (4.45), lies between the corresponding values for ηCA and η+: 1/8 < 3/16 < 1/4.
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Figure 4.6: Optimal compression ratio χ∗ as a function of the corresponding
Carnot efficiency ηC = 1 − ν. We compare numerical results (black circles) with
the perturbative expansion in ηC up to linear order (green dotted line), quadratic
order (red dashed line) and cubic order (blue dashed line). The inset shows a
comparison beyond first order.

4.2.1.2 Optimisation of the irreversible Stirling cycle for variable (θmin, θmax)

In this section, we study again the maximisation of the optimal power with respect
to the compression ratio χ, but now considering arbitrary bounds (θmin, θmax) in the
temperature control. Restrictions concerning these parameters and the temperatures of
the cold and hot branches of the cycle arise,

θmin < θc = ν < θh = 1 < θmax. (4.48)

As one may intuitively expect, the most beneficial scenario corresponds to the ideal bounds
studied in the previous section: θmin → 0+, θmax → ∞. To illustrate how more realistic
bounds for the thermal control impinge on the optimal power, we present in Fig. 4.7 the
behaviour of P̃ as a function of χ for multiple finite values in one of the bounds (lower
or upper) when the other one (upper or lower) reaches the corresponding ideal limit (∞
or 0). We do so for two meaningful values of the temperature ratio: ν ∈ {1/2, ν∗id}, where
ν∗id denotes the temperature ratio yielding the overall maximum power in the ideal limit
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θmin → 0+, θmax →∞ (note that, in the previous section, this parameter was simply written
as ν∗).

We observe that, indeed, the optimal power for the ideal bounds θmin → 0+, θmax →∞

is always above the corresponding value for more realistic limits in the thermal control.
In addition, the optimal power vanishes when the compression ratio reaches its bounds
χ → 0+ and χ → 1− in all the studied cases. Hence, there exists an optimal compression
ratio χ∗ for each temperature ratio ν and thermal bounds (θmin, θmax) yielding maximal
power. We address this further optimisation of P̃ (ν,χ; θmin, θmax), given in Eq. (4.32),
over the compression ratio χ,

P̃∗ (ν; θmin, θmax) ≡ max
χ∈(0,1)

P̃ (ν,χ; θmin, θmax) = P̃ (ν,χ∗; θmin, θmax) , (4.49)

obtaining the maximal power as a function of the temperature ratio in our cycle and the
bounds in the thermal control. The associated compression ratio is defined consistently
and it also depends on these three parameters, χ∗ = χ∗ (ν; θmin, θmax).

Similarly to our study of the overall maximal power found in the case of ideal thermal
bounds, it is interesting to carry out an even further optimisation over the temperature
ratio ν. The interest of such search is transparent: since our physical system is solely
submitted to the technical constraints represented by (θmin, θmax), it is natural to wonder
what choice of the parameters defining the cycle (ν,χ) gives optimal power,

P̃∗∗ (θmin, θmax) ≡ max
χ∈(0,1)

ν∈(θmin,1)

P̃ (ν,χ; θmin, θmax) = max
ν∈(θmin,1)

P̃∗ (ν; θmin, θmax) . (4.50)

The optimal parameters are denoted consistently,

ν∗ = ν∗ (θmin, θmax) , χ∗∗ (θmin, θmax) ≡ χ
∗ (ν∗; θmin, θmax) , (4.51)

as well as the corresponding efficiency,

η̃∗∗ (θmin, θmax) ≡ η̃ (ν
∗, χ∗∗; θmin, θmax) , (4.52)

which are all function of the temperature bounds in the control.
The identification of the optimal parameters (ν∗, χ∗∗) defining the Stirling cycle over

the parallelogram defined by the restrictions 0 < θmin < 0.4 and 1.15 < θmax < 2.50 has
been numerically obtained. It is shown, along with the corresponding evaluation of the
maximal power P̃∗∗ and efficiency η̃∗∗, in Fig. 4.8.

As expressed by Eq. (4.37), the efficiency of our engine is always above the Curzon-
Ahlborn value. This result, particularised for the overall optimal cycle for fixed (θmin, θmax),
is shown in Fig. 4.9. Therein, we present a density plot of η̃∗∗/ηCA on the above men-
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Figure 4.7: Optimal power P̃ versus the compression ratio χ for fixed tem-
perature ratios, ν = 0.5 (top panels) and ν = ν∗id (bottom panels). In the left
(right) panels, the upper (lower) bound in the temperature control reaches its
ideal limit, and multiple values of the lower (upper) bound are considered. The
optimal power corresponding to the ideal limits of both bounds are also displayed
in the four panels (dotted black line).
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Figure 4.8: Density plots of the temperature and compression ratios (top pan-
els) yielding optimal power (bottom left panel), and the corresponding efficiency
(bottom right panel) in the (θmin, θmax) plane. We have considered the region
defined by intervals 0 < θmin < 0.4, 1.15 < θmax < 2.50.
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Figure 4.9: Density plot of the quotient η̃∗∗/ηCA in the
(θmin, θmax) plane. Similarly to Fig. 4.8, we have considered the
region defined by intervals 0 < θmin < 0.4 and 1.15 < θmax < 2.50.

tioned parallelogram in the (θmin, θmax) plane. As theoretically predicted, we observe that
the quotient η̃∗∗/ηCA is always greater than 1. We recall that here the Curzon-Ahlborn
efficiency depends on the considered point, since it is given by ηCA = 1 −

√
ν∗, and the

temperature ratio yielding optimal power depends on the bounds on the thermal control,
ν∗ = ν∗ (θmin, θmax).



Chapter 5

Conclusions

In the present work, we have designed and optimised an irreversible Stirling-like heat
engine, modelled by an overdamped Brownian particle trapped in a harmonic potential,
achieving the final goal of this project. The motivation of such a goal is presented in
Chapter 1, where a general description of the field of stochastic thermodynamics, within
which this work is framed, is given. In order to meet our objective, we have followed the
steps that we itemise below:

• First, we have described our model system in Chapter 2. It consists of a Brownian
particle in a harmonic trap, in the overdamped regime. Not only does a Brownian
particle epitomise the stochastic systems of interest in non-equilibrium statistical
mechanics, but is also a very sensible model for practical realisations of colloidal heat
engines. The harmonic confinement is also both theoretically and experimentally
relevant, since, besides of being a paradigmatic potential in physics, the harmonic
oscillator describes optical trapping to a very good approximation.

• We have illustrated the equivalence between the Fokker-Planck and the Langevin
approaches, pillars of the description of Markovian processes, by studying the evol-
ution of the position of our Brownian particle in both frameworks. We have been
able to prove that, if the initial condition is Gaussian, the solution of both equa-
tions is also Gaussian for all times. Thanks to this, we have showed that, with a
proper choice of the origin in our coordinate system, the evolution of the position
distribution is fully depicted by that of its variance.

• We have obtained the average energy of our system as a function of the particle’s
position variance, which defines the state of the system, and the temperature of the
bath and the stiffness of the trap, both of which have been considered as control
parameters. Accordingly, we have obtained the average work and heat exchanges
associated with any process connecting equilibrium points.

38
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• In Chapter 3, we have studied in depth the isothermal and isochoric branches of
which a Stirling cycle is composed. We have considered both the quasi-static limit
and the optimal process in each case. As outlined therein, optimisation is essentially
different for isothermal and isochoric transitions. In the first case, we have searched
for the maximum delivered irreversible work—which is found to be dependent on the
time duration of the transition; whereas in the second case, given that the average
work vanishes in isochoric processes, we have looked for the minimum connection
time, i.e. the brachistochrone. The first problem can be solved with standard
methods of variational calculus, but the second one requires tools from optimal
control theory. Expounding the calculation details in Appendix A, the optimal
protocol in the isochoric branches is found to be of bang-bang type, exclusively
depending on the initial and final states and the external bounds (θmin, θmax) to
which the temperature control is submitted.

• Our Stirling stochastic heat engine is put forward in Chapter 4, where four operation
points are connected by means of the previously studied isothermal and isochoric
branches. The cycle is completely characterised by the temperature ratio ν and the
compression ratio χ. Two scenarios are studied: the quasi-static limit, in which the
efficiency attains the Carnot bound but the power output is null, and the cycle
delivering maximum power. The latter is designed by maximising work in the
isothermal branches and minimising time in the isochoric ones. Thus, the optimal
delivered power and its corresponding efficiency are obtained for every point on
the (ν,χ) plane. We have verified that the efficiency at optimal power for our
irreversible cycle is always below the Carnot efficiency but, noteworthily, above the
Curzon-Ahlborn efficiency.

• A further optimisation has been carried out by finding the optimal compression
ratio yielding maximum power for any given temperature ratio. Finally, we have
maximised power over the temperature ratio as well. The case of ideal bounds in
temperature, θmin → 0+, θmax → ∞, has been studied first. Therein, the behaviour
of the optimal efficiency in the limit ν → 1− has been asymptotically predicted and
compared to representative efficiencies found in the literature. Secondly, arbitrary
finite bounds, allowing for a more realistic description of experimental studies, have
been considered.

Possible future research work based on the present results are discussed in the follow-
ing. First, considering an alternative normalisation for the temperatures, taking θmax = 1,
is worth-studying. In practical experiments, the maximum feasible temperature is fixed,
whereas the temperature of the hot isotherm θh can be conveniently tuned. The proposed
renormalisation permits the study of the limit θh → θ−max in a more natural manner, even
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when the upper bound of the temperature is considered as infinite. Second, it would
be especially interesting to implement the proposed engine in practice. Present-day ex-
perimental techniques make it possible to control both the stiffness of the trap—using
optical tweezers—and the temperature of the bath—which is effectively modified by ap-
plying a random electric field whose amplitude is controlled. Experimental realisations
of micrometre-sized stochastic Stirling engines have already been presented in the literat-
ure [15]. Third, investigating the irreversible analogue of other classical thermodynamic
cycles, such as Otto’s or Diesel’s, may lead to interesting results, both on the theoretical
and experimental contexts. Finally, it would be interesting to analyse the fluctuations of
the relevant magnitudes in our irreversible Stirling cycle, obtaining a deeper theoretical
characterisation of the heat engine, beyond the mean values considered in the present
work.
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Appendix A

Pontryagin’s Maximum Principle

Pontryagin’s Maximum Principle provides the convenient mathematical tool for the
bounded optimisation problem that we have stated in Sec. 3.2.2 [24]. In the following, we
enunciate the general time-optimal problem undertaken by a particularisation of Pontry-
agin’s Principle and later we focus on the one-dimensional case concerning our isochoric
branches.

A.1 Pontryagin’s Time-Optimal Problem

Statement of the Pontryagin’s Time-Optimal Problem Let us consider an object
whose law of motion can be written in the form of a system of differential equations

dxi

dt
= f i(x1, . . . xn, u1, . . . , ur) ≡ f i(x,u), i = 1, . . . , n, (A.1)

which are equivalent to the differential vector equation

dx

dt
= (f 1(x,u), . . . , fn(x,u)) ≡ f(x,u). (A.2)

Here, x ≡ (x1, . . . , xn) are the phase coordinates of the system, belonging to the phase
space X; u ≡ (u1, . . . , ur) are the control parameters, which determine the course of the
process and belong to a ‘control region’ U ; t denotes time; and f i ∶ X × U → R are
continuous functions which are also differentiable with respect to the phase coordinates.

Arbitrary piecewise continuous controls u = u(t) are admissible. Thence, for any
control function, defined on an interval [t0, tf ], there exists, at most, a finite number k of
time instants α0 ≡ t0 < α1 < . . . < αk < αk+1 ≡ tf at which the control may have finite jump
discontinuities (an example is shown in the top panel of Fig. A.1).

For any given control u = u(t) and any chosen initial condition x(t0) = x0, in most
cases it is possible to uniquely define the evolution of the system x(t) in phase space
to be continuous and piecewise differentiable (see Fig. A.1). The procedure that allows
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Figure A.1: Qualitative representation of the control u (top panel) and the
corresponding phase coordinate x (bottom panel) time evolutions. For the sake
of clarity, we have considered one-dimensional variables in both cases.
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for the construction of such function consists in concatenating the solutions of the initial
value problems associated with the system in Eq. (A.1) (or, equivalently, Eq. (A.2)) and
appropriate initial conditions for each interval in which the control u(t) is continuous.1

Namely, the first initial value problem that we need to consider is

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

dx

dt
= f(x,u(t)), α0 ≤ t ≤ α1,

x(α0) = x0.

(A.3)

Let us denote as x(0)(t) the solution of problem stated in Eq. (A.3), whose existence is
assumed. Subsequently, we need to solve the initial value problems

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

dx

dt
= f(x,u(t)), αj ≤ t ≤ αj+1,

x(αj) = x(j−1)(αj).

j = 1, . . . , k, (A.4)

where x(j)(t) is the solution corresponding to the j-th interval (i.e. [αj, αj+1] for j =

0, . . . , k), which, again, is assumed to exist. The chosen initial condition in Eq. (A.4)
guarantees the continuity of the constructed solution, which is said to correspond to the
control u(t), and it is given by the following expression,

x(t) = x(j)(t), αj ≤ t ≤ αj+1; ∀j = 0, . . . k. (A.5)

If the obtained solution x(t) satisfies the additional boundary condition x(αk+1) = xf ,
we shall say that the considered control u(t) transfers the phase point from the position
x0 to the position xf . Now, we are ready to formulate the optimisation problem that we
need to assess:

Given two points x0, xf ∈X, we aim to find, among the admissible controls u(t) which
transfer the phase point from position x0 to xf (if such controls exist), one for which the
functional

J [u] = ∫
tf

t0
dt = tf − t0 (A.6)

attains its minimum possible value.

Maximum Principle for Time-Optimal Processes Pontryagin’s Maximum Prin-
ciple provides a necessary condition for optimality. It can be applied to a wider range of
problems in which, instead of the functional given in Eq. (A.6), more general ones with

1We extend the definition intervals for the studied initial value problems to be closed ones, considering
the corresponding limit values for the control u(t), which is not strictly defined on the endpoints αj .
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explicit dependence on the control u(t) and the phase-space trajectory x(t) are covered.
The proof of the Maximum Principle and its general formulation go beyond the purposes
of this text and they are omitted, but can be found in Refs. [24,25].

In the case of the Time-Optimal Problem previously formulated, we shall consider an
additional system of equations in the auxiliary variables ψ ≡ (ψ1, . . . , ψn),

dψi
dt

= −
n

∑
α=1

∂fα(x,u)

∂xi
ψα, i = 1, . . . , n. (A.7)

For a given control u(t) and the corresponding trajectory x(t), this system becomes lin-
ear and homogeneous, and thus it has a uniquely defined solution ψ(t). For clarity, this
solution is said to correspond to the chosen control evolution u(t) and phase trajectory
x(t).

Theorem 1 (Necessary Condition for Time-Optimality). If the control u(t) and the
corresponding trajectory x(t) are time-optimal, then there exists a continuous, nonzero
vector function ψ(t) corresponding to them which verifies the following conditions:

1. The so-called ‘Pontryagin’s Hamiltonian’, defined as

H(ψ(t),x(t),u(t)) ≡
n

∑
i=1
ψnf

n(x(t),u(t)), (A.8)

reaches its maximum value

M(ψ,x) = sup
u∈U

H(ψ,x,u) (A.9)

for all t ∈ [t0, tf ],

H(ψ(t),x(t),u(t)) =M(ψ(t),x(t)), ∀t ∈ [t0, tf ] . (A.10)

2. Pontryagin’s Hamiltonian is non-negative at the terminal time:

M(ψ(tf),x(tf)) ≥ 0. (A.11)

Furthermore, if Eq. (A.10) is verified, the function M is found to be constant in time.
Thus, condition in Eq. (A.11) can be equivalently stated ∀t ∈ [t0, tf ], not only at the
terminal time tf .

In general, existence and sufficiency conditions for optimality are difficult to find and
exhibit a strong dependence on the vector function f(x,u) characterising the evolution
of the trajectory in the phase space. Fortunately, in our case of interest this function is
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linear in its variables and this yields interesting and useful properties. In particular, the
existence of an optimal control is guaranteed.

Note that, with the definition of H given in Eq. (A.8), the systems in Eqs. (A.1) and
(A.7) are equivalent to

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

dxi

dt
=
∂H

∂ψi
, i = 1, . . . , n,

dψi
dt

= −
∂H

∂xi
, i = 1, . . . , n.

(A.12)

Linear Time-Optimal Processes Let us now consider the case in which functions
describing the trajectory evolution in the phase space are linear:

f i(x,u) =
n

∑
µ=1

aiµx
µ +

r

∑
ν=1

biνu
ν , i = 1, . . . , n, (A.13)

or, in vector form,
f(x,u) = Ax +Bu, (A.14)

where A and B are linear operators defined, respectively, by matrices (aiµ) and (biν).
Furthermore, in this case we shall consider the control region U to be a parallelepiped
verifying that every vector v ∈ U with the direction of one of its edges satisfies that

Bv, ABv, . . . An−1Bv (A.15)

are linearly independent.
In this particular case, Pontryagin’s Hamiltonian takes de form

H(ψ,x,u) = (ψ,Ax) + (ψ,Bu) =∑
i,µ

ψia
i
µx

µ +∑
i,ν

ψib
i
νu

ν , (A.16)

where (⋅ , ⋅) denotes the scalar product. In this particular case of study, the second equality
in Eq. (A.12) can be written as

dψi
dt

= −
∂H

∂xi
= −

n

∑
j=1
ajiψj, i = 1, . . . , n; (A.17)

or, equivalently, in vector form,
dψ

dt
= −ATψ. (A.18)

Theorem 1 implies that, if u(t) is an optimal control transfering the phase point from x0

to xf , there must exist a solution ψ(t) of Eq. (A.18) verifying Eq. (A.10). In particular,
as the first term in Eq. (A.16) does not depend explicitly on the control, the optimal
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solution ũ satisfies that

P (ψ(t)) ≡ sup
u∈U

(ψ(t),Bu(t)) = (ψ(t),Bũ(t)) . (A.19)

Note that, for any given solution ψ(t) of system in Eq. (A.17), this equation can be
used to determine possible optimal controls u(t). Is condition in Eq. (A.19) sufficient for
determining the control uniquely? The next theorem (whose proof may be consulted in
Ref. [24]) yields an answer for this question.

Theorem 2. If all the eigenvalues of matrix A are real, then, for every non-trivial solution
ψ(t) of Eq. (A.18) (or, equivalently, system in Eq. (A.17)), relation in Eq. (A.19) uniquely
determines the control function. Moreover, each component uj(t), = 1, . . . r is piecewise
constant, taking on only the minimum and maximum values of the interval in which it is
bounded, and it has at most n − 1 jump discontinuities. Hence, the control is a so-called
‘bang-bang’ protocol.

A.2 Thermal brachistochrone for an isochoric branch

We now return to our particular system of interest: a one-dimensional harmonically
confined Brownian particle in an isochoric process. The application of Pontryagin’s Max-
imum Principle is extremely simple in this special case.

We aim to minimise the functional

J [θ] = ∫
τf

0
dτ = τf , (A.20)

which corresponds to the duration of the process.
We start by recalling that our phase space is three-dimensional, with the state of the

system being determined by the triplet (κ, y, θ). Since we are in an isochoric branch, κ is
fixed and the temperature θ is considered as the control. Accordingly, our ‘effective’ phase
space in this case is one-dimensional (n = 1) and it is characterised by a single coordinate
x1 = y. Likewise, the control region is also one-dimensional (r = 1), since the only control
considered is the temperature u1 = θ. Furthermore, it is bounded on a closed interval:
θmin ≤ θ ≤ θmax, which corresponds to the one-dimensional version of a parallelepiped.
Given that n = r = 1, instead of the system in Eq. (A.1), we have a single equation

dy

dτ
= f 1(y, θ) ≡ −2κy + 2θ. (A.21)

It is a linear equation of the form previously studied, with A = −2κ and B = 2 (note
that A and B are scalars here). In this one-dimensional case, condition in Eq. (A.15)
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is superfluous (a unitary set is not linearly dependent if and only if its only element is
zero, i.e. if v = 0, but then v would not determine any direction). Hence, the linearity of
Eq. (A.21) and the type of bounds for θ imply that our problem corresponds to a linear
time-optimal process.

Although Theorem 2 proves that the optimal protocol must be constant with either
θ(t) = θmax or θ(t) = θmin (this depends on whether we intend to heat or cool our system),
we shall derive the result for this simple case.

Pontryagin’s Hamiltonian reads

H (ψ, y, θ) = (−2κy + 2θ)ψ. (A.22)

Thus, in this case, Eq. (A.18) is written as follows,

dψ

dτ
= −

∂H

∂y
= 2κψ. (A.23)

The general solution for this first-order differential equation is

ψ(τ) = ψ0e
2κτ , (A.24)

which does not depend on the control parameter θ and has a well-defined constant sign,
dependent on the initial value ψ0. According to our previous discussion, the Hamiltonian
attains a maximum at the optimal value, and thence

∂H

∂θ
= 2ψ = 0 (A.25)

if the optimal control belonged to the open interval θ(τ) ∈ (θmin, θmax). Nevertheless, this is
not possible, since, as we just mentioned, ψ is either positive or negative in the whole time
interval. This is an alternative path to prove that the solution of our problem is a bang-
bang protocol without ‘switchings’ (i.e. with a single continuity interval), in which θ(τ)
is equal to one of its bounds. In a heating process, we have that θ̃(τ) = θmax, ∀τ ∈ (0, τf),
whereas θ̃(τ) = θmin, ∀τ ∈ (0, τf) in a cooling procedure. Thus, the optimal control θ̃(τ),
which is illustrated in Fig. A.2, can be expressed as

θ̃(τ) = θ̃ ≡

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

θmax, if θi < θf ,

θmin, if θi > θf ,
∀τ ∈ (0, τf) . (A.26)

Note that θ̃(τ) is discontinuous at the initial and final time instants, given that it is
submitted to the boundary conditions

θ̃(0) = θi, θ̃(τf) = θf . (A.27)
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Figure A.2: Sketch of the optimal temperature driving in heating (left panel)
and cooling (right panel) processes.



Addendum: Code example

The numerical optimisation problems presented throughout this work have been solved
using the software Mathematica 13.1. In this addendum, we include the notebook used
to find the overall optimum in Sec. 4.2.1.1 as an illustrative example. The codes used to
obtain the rest of our results are similar and they are omitted for the sake of conciseness.

Optimisation of the irreversible Stirling cycle in 
the limitθmax ∞, θmin  0
In[ ]:= ClearAll["Global`*"]

In[ ]:= << MaTeX`

Definition of physical quantities and parameters

In[ ]:= Wqs[ν_, χ_] :=
1 - ν

2
Log[χ];

α[χ_] :=
1

χ

- 1

2

;

w[ν_, χ_] :=
-Wqs[ν, χ]

α[χ]*1 + ν 
2
;

tisoc[ν_, χ_] :=
-1

2 χ
Log[ν];

σ[ν_, χ_] := 1 + w[ν, χ]*tisoc[ν, χ] ;

tAB[ν_, χ_] :=
1 + σ[ν, χ]

w[ν, χ]*1 + ν 

;

tCD[ν_, χ_] := ν *tAB[ν, χ];

WAB[ν_, χ_] :=
Log[χ]

2
+

α[χ]

tAB[ν, χ]
;

WCD[ν_, χ_] :=
-ν*Log[χ]

2
+

ν*α[χ]

tCD[ν, χ]
;

P[ν_, χ_] :=

-((WAB[ν, χ] + WCD[ν, χ])/(tAB[ν, χ] + tCD[ν, χ] + tisoc[ν, χ]));

η[ν_, χ_] := 1 +
WCD[ν, χ]

WAB[ν, χ]
;

ηC[ν_] := 1 - ν;

ηCA[ν_] := 1 - ν ;

Printed by Wolfram Mathematica Student Edition
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Optimisation over the compression ratio: χ*(ν)

We search for the compression ratio yielding maximum delivered power for each tempera-
ture ratio, using the obtained theoretical expansion of χ* up to third order in ηC = 1- ν as 
starting point.

In[ ]:= pχopt[ν_] := FindMaximum{P[ν, χ], 0 < χ < 1},

χ, 1 -
1

2
(1 - ν) -

1

48
(1 - ν)

2
+

11

1152
(1 - ν)

3


popt[ν_] := First[pχopt[ν]]

χopt[ν_] := χ /. Last[pχopt[ν]]

This direct approach only gives satisfactory results for 0<ν<0.9 , but the flatness and small-
ness of the power for 0.9<ν<1 triggers notable numerical error in this interval.

Using a monotonically increasing transformation of the power allows for finding the actual 
optimal compression ratio in the interval 0.9<ν<0.99. Specifically, we use here the transfor-
mation x  ex+5.

In[ ]:= fχoptAux[ν_] := FindMaximum{Exp[P[ν, χ] + 5], 0.9 < χ < 1},

χ, 1 -
1

2
(1 - ν) -

1

48
(1 - ν)

2
+

11

1152
(1 - ν)

3


χoptAux[ν_] := χ /. Last[fχoptAux[ν]]

For ν>0.99, we use a fine mesh for directly obtaining χ* by comparing the corresponding 
delivered power among all the considered values of χ for every ν in the mesh.

δ = 10-6;

xs := Table[x, {x, 0.99, 1 - δ, δ}];

PauxMesh[ν_] := Table[P[ν, x], {x, 0.99, 1 - δ, δ}]

χoptAuxMesh[ν_] := xs〚Ordering[PauxMesh[ν], -1]〛〚1〛;

We perform the described calculations to obtain a table {ν, χ*(ν)} and we interpolate in 
order to estimate χ*(ν) in the whole interval 0<ν<1.

In[ ]:= point1 = 0.90;

point2 = 0.99;

Δ = 10-3;

χsOptA := Table[{N[ν], χopt[ν]}, {ν, Δ, point1 - Δ, Δ}]

χsOptB := Table[{ν, χoptAux[ν]}, {ν, point1, point2 - Δ, Δ}]

χsOptC := Table[{ν, χoptAuxMesh[ν]}, {ν, point2, 1 - Δ, Δ}]

χsOpt := Join[χsOptA, χsOptB, χsOptC]

fχsOpt = Interpolation[χsOpt];

Printed by Wolfram Mathematica Student Edition
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Optimisation over the temperature ratio: ν*

νopt := ν /. Last[FindMaximum[{P[ν, fχsOpt[ν]], 0 < ν < 1}, {ν, 0.08}]]

Calculation of {ν*, χ**, P(ν*, χ**)}

In[ ]:= {νopt, fχsOpt[νopt], P[νopt, fχsOpt[νopt]]}
Out[ ]=

{0.0604619, 0.507215, 0.0413035}

Figure

LTicks[xm_, xM_, ΔxM_, Δxm_, n_] :=

Join[Table[{x, NumberForm[x, {2, n}],

{0.02, 0}, Thickness[0.004]}, {x, xm, xM, ΔxM}],

Table[{x, "", {0.01, 0}, Thickness[0.002]}, {x, xm, xM, Δxm}]];

STicks[xm_, xM_, ΔxM_, Δxm_] :=

Join[Table[{x, "", {0.02, 0}, Thickness[0.004]}, {x, xm, xM, ΔxM}],

Table[{x, "", {0.01, 0}, Thickness[0.002]}, {x, xm, xM, Δxm}]];

LTicksLegend[xm_, xM_, ΔxM_, Δxm_, n_] :=

Join[Table[{x, NumberForm[x, {2, n}],

{0.02, 0}, Thickness[0.004]}, {x, xm, xM, ΔxM}],

Table[{x, "", {0.01, 0}, Thickness[0.002]}, {x, xm, xM, Δxm}]];

xm = 0; xM = 1; Δxm = 0.1; ΔxM = 0.2;

ym = 0; yM = 1; Δym = 0.1; ΔyM = 0.2;

min = 0; max = 0.042; step = 0.01;

Colors = "Rainbow"; magnif = 2;
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Show[DensityPlot[P[ν, χ], {ν, xm, xM},

{χ, ym, yM}, PlotRange  {{xm, xM}, {ym, yM}, {min, max}},

ColorFunction  ColorData[Colors],

PlotLegends  BarLegend[{Colors, {min, max}}, Ticks 

LTicksLegend[min, max, step, step/2, 2], LegendMarkerSize  250,

LegendLabel  MaTeX["\\widetilde{\\mathcal{P}}(\\nu,\\chi)",

Magnification  magnif], LegendMargins  {{-4, 0}, {35, 0}}],

LabelStyle  Directive[Black, 16, FontFamily  "Times New Roman"],

RotateLabel  False, Axes  False,

FrameStyle  Directive[Black, 20,

FontFamily  "Times New Roman", Thickness[0.004]],

FrameLabel  {MaTeX["\\nu", Magnification  magnif],

MaTeX["\\chi", Magnification  magnif]}, ImageSize  Medium,

FrameTicks  {{LTicks[ym, yM, ΔyM, Δym, 1], STicks[ym, yM, ΔyM, Δym]},

{LTicks[xm, xM, ΔxM, Δxm, 1], STicks[xm, xM, ΔxM, Δxm]}},

PlotRangeClipping  False], ContourPlot[P[ν, χ], {ν, xm, xM},

{χ, ym, yM}, PlotRange  {{xm, xM}, {ym, yM}, {min, max}},

Contours  Table[x, {x, min, max, step/2}], ContourShading  False],

ParametricPlot[{ν, fχsOpt[ν]}, {ν, Δ, 1},

PlotStyle  {Thickness[0.008], Dashed, Black}],

Graphics[{PointSize[0.03], Black, Point[{νopt, fχsOpt[νopt]}]}]]
Out[ ]=

0.00

0.01

0.02

0.03

0.04
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