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Abstract: Food allergy (FA) is an adverse immunological reaction to a specific food that can trigger a
wide range of symptoms from mild to life-threatening. This adverse reaction is caused by different
immunological mechanisms, such as IgE-mediated, non-IgE-mediated and mixed IgE-mediated
reactions. Its epidemiology has had a significant increase in the last decade, more so in developed
countries. It is estimated that approximately 2 to 10% of the world’s population has FA and this
number appears to be increasing and also affecting more children. The diagnosis can be complex
and requires the combination of different tests to establish an accurate diagnosis. However, the
treatment of FA is based on avoiding the intake of the specific allergenic food, thus being very
difficult at times and also controlling the symptoms in case of accidental exposure. Currently,
there are other immunomodulatory treatments such as specific allergen immunotherapy or more
innovative treatments that can induce a tolerance response. It is important to mention that research
in this field is ongoing and clinical trials are underway to assess the safety and efficacy of these
different immunotherapy approaches, new treatment pathways are being used to target and promote
the tolerance response. In this review, we describe the new in vitro diagnostic tools and therapeutic
treatments to show the latest advances in FA management. We conclude that although significant
advances have been made to improve therapies and diagnostic tools for FA, there is an urgent need
to standardize both so that, in their totality, they help to improve the management of FA.
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1. Introduction

Food allergy (FA) is an abnormal and exacerbated response of the immune system to
certain food allergens by immunoglobulin E (IgE)-mediated [1], non-IgE-mediated or mixed
reaction [2]. The mechanisms involved consist of the dysregulated immune responses and
a skewing towards a type 2 immune response. This is associated with production of IgE
antibodies and inflammatory cytokines, which are reviewed in detail in the next section.
This immune response can result in various ways towards allergen foods, leading to a wide
variety of symptoms and clinical manifestations.

The food allergens that most frequently cause the allergies are the following: cow’s
milk, eggs, fish, peanuts, peach, and soy amongst others [3]. FA patients can suffer a wide
variety of symptoms ranging from mild to severe, such as effecting the digestive system,
skin, respiratory tract and in extreme cases it can cause a severe allergic reaction known
as anaphylaxis [4]. However, some severe reactions can also be associated with other
risk factors (co-factors) such as exercise, nonsteroidal anti-inflammatory drugs (NSAIDs),
alcohol, alterations in the intestinal microbiota, genetic and even environmental factors.
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Theses underlying mechanisms are unknown [5,6], which represents a significant burden
for health and quality of life.

FA in our society is growing, already affecting an estimated 1 to 4% of young children,
9 to 11% of adults from Europe and USA, respectively [7]. It is believed that several
co-factors may be contributing to this increase.

FA diagnosis can be complex due to the nature of the immunological mechanisms
involved in allergic reactions to foods. Therefore, the need to improve strategies for diagno-
sis and therapy is essential. Diagnosis of FA relies on the combination of clinical/reaction
history, skin and IgE testing as well as oral food testing. This is currently favored by method
of using in vitro diagnostic techniques such as the basophil activation test (BAT) or the
mast cell activation test (MAT) [8] which complement the diagnosis.

In recent years, important advances have been made in the search for other options
for the treatment of FA, mainly emphasizing immunomodulatory therapies such as specific
allergen immunotherapies (AIT). For example, oral immunotherapy (OIT) using peanut
(Arachis hypogea) allergen powder-dnfp (PTHA) in children with peanut allergy has
been approved as a treatment in certain cases [9]. Although AIT has achieved a beneficial
response for allergic patients, it does not cure the disease so avoiding foods that may contain
allergens strictly continues to be applied. Advances in the field of AIT and other novel
therapies (nanoparticle design, probiotics, symbiotic, and herbal extracts) have emerged
as new options for the development of FA treatments, including the use on monoclonal
antibody (anti-IgE). In this review, we provide an overview of the most recent major
advances in the diagnosis (in vitro tools) and FA treatment.

2. Immune Mechanism in FA

In FA, a physio-pathological reaction of the immune system is triggered by the inges-
tion of a food protein or food allergens. This leads to type I hypersensitivity and immediate
reaction, which involves IgE-mediated release of antibodies against the soluble antigen.
Theses reactions can be IgE-mediated, non-IgE-mediated, and mixed IgE reactions [10,11].
IgE-mediated FA reactions develop a multi-organ system anaphylaxis. Non-IgE-mediated
FAs include a group of disorders characterized by subacute or chronic inflammatory pro-
cesses affecting the gastrointestinal tract [12]. Mixed IgE and non-IgE-mediated reactions
such as food protein-induced allergic proctocolitis, food protein-induced enterocolitis or
eosinophilic gastrointestinal disorders [13] have variable symptoms.

2.1. IgE-Mediated Reactions

Sensitization to food allergens occurs in subjects after intake of foods which leads to an
adverse inflammatory immune response [14]. The sensitization occurs in a microenviron-
ment that shows damage to the epithelial permeability and dysbiosis (studied in Section 5.1.)
which contributes to an imbalance of the host metabolism and immunometabolism. In
response, allergens are taken up by dendritic cells (DCs) which interact with a naïve T
cell and stimulate the effector response. In this process, DCs undergo phenotypic changes
by increasing surface costimulatory receptors and cytokine production to induce a Th2
response (Figure 1) [15].

Recent studies have demonstrated the involvement of innate lymphoid cells (ILCs)
emerging as a key in the cause of FA [16,17]. Among them, ILC2 are activated by interleukin
(IL)-25, IL-33, thymic stromal lymphopoietin (TSLP) originates from their expansion and
production of Th2 cytokines (IL-4, IL-5, and IL-13) [18]. Higher levels of these cytokines
have been observed in FA patients [19]. With IL-33, after inducing the ILC2 activation, it
produces high IL-4 levels which promotes a Th2 response and can inhibit the regulatory
T cell (Treg) function in epithelia (skin and intestinal mucosa) [19]. Therefore, both Th2
and ILC2 release type 2 cytokines that promote B cell differentiation into allergen-specific
IgE producing plasma cells which bind to the high-affinity IgE receptor (FcεRI) [11,19].
Moreover, in vitro assays had shown that both IL-33 and IgE-mediated activation of mast
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cells inhibited the generation of a Treg response pattern from T cells in FA an animal
model [20].
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Figure 1. Immune cells involved in healthy subject’s tolerance to food allergens (A) and with a food
allergic subject with IgE-mediated reactions (B).

In the effector phase, re-exposure to the food allergen triggers rapid IgE-mediated
degranulation of mast cells, basophils which release histamine and other inflammatory
mediators (PGE2). This is accompanied by the adaptive Th2 response, associated with
the manifestation of symptoms and the generation of allergen-specific B and T memory
cells [11,19,21]. Additionally, it has recently been proposed that specific effector T cell
subsets such as Th1, Th17, Tfh13, Th9 and Th22, might also contribute to ongoing FA [21,22].

2.2. Non-IgE-Mediated Reactions

This heterogeneous group of delayed reactions to foods harbor disorders including
food protein-induced enterocolitis syndrome (FPIES), food protein-induced allergic procto-
colitis (FPIAP), food protein-induced allergic enteropathy (FPE) and food protein-induced
dysmotility disorders (gastro-esophageal reflux disorder (GORD) and constipation) [23].
Although the immune mechanism in these disorders remain unclear, they share the charac-
teristics of the complete absence of IgE in the skin serum of patients with FA. Thus, they are
being associated generally with a Th2 response pattern such as the classical IgE-mediated
FA allergic reactions. In FPES, a pan-leukocyte activation has been observed with associ-
ation of innate cells and increased gastrointestinal permeability, but the identification of
food allergen-specific T lymphocyte is not conclusive [4,24].
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2.3. Mixed Reactions

Mixed IgE and non-IgE-mediated FAs include eosinophilic gastrointestinal disorders
(EGIDs), such as eosinophilic esophagitis (EoE), cow’s and soja’s milk protein allergy
(CMPA and SMPA, respectively) and atopic dermatitis [23]. Contrarily to FPIES, in the
EoE disorder, T cells may play a central role in the development of this FA, [24]. Moreover,
CMPA has been classified as IgE-mediated immediate reaction, non-IgE-mediated delayed
reaction, or a mix of both [25,26].

Therefore, understanding the immunological mechanisms that occur in allergic reac-
tions to foods is essential for an accurate diagnosis. The exploration of these mechanisms
will allow us to identify the trigger allergen of the reaction, determine the severity of the
allergy, amongst others. However, despite the recent studies, we found there are still
limitations in the knowledge of the mechanisms, which means that in vitro diagnostic tools
still need to be improved as well.

3. FA In Vitro Supporting Diagnostic Tools

The variability of complex immunological mechanisms contributes to inaccurate
diagnosis and complicates the studies on the epidemiology of FA [27–29]. The diagnosis of
FA is usually made through a combination of the patient’s medical history, SPT, laboratory
tests, and/or oral food challenges (OFC). Here, we will review the latest advances in
the application of in vitro supporting diagnostic tools, including the current limitations
(Table 1).

3.1. Allergen-Specific IgE In Vitro Testing

In vitro tests that measure serum sIgE allergen levels are conventionally used to
diagnose FA, already being the standardized diagnostic tools [30,31]. The utility of allergen-
specific IgE testing as an alternative to the OFC—the diagnostic standard—is being inves-
tigated. A study has determined that the combination of the sIgE levels (ImmunoCAP)
and the basophil activation test (BAT) to Ses i 1 can decrease the need for OFC in sesame
food allergy (SFA) patients. The authors showed Ses i 1 sIgE levels were not robust enough
to be used for diagnosis; however, the simultaneous use of BAT and IgE showed positive
correlations [32]. Recently, a systematic review using ImmunoCAP demonstrated that
Cor a 9 and Cor a 14 drastically improved the specificity of hazelnut allergy diagnosis,
compared to hazelnut extract (HE) sIgE. Using a cutoff of 0.35 ku/L, Cor a 14 sIgE had a
specificity of 81.7%, compared to 10.8% for HE sIgE, although sensitivity of HE sIgE was
slightly superior (95.5% for HE vs. 77.9% for Cor a 14) [33].

Sensitization to allergen components can be detected by using single plex (Immuno-
CAP) or multiplex assays (ISAC) [34]. In particular, the multiplex assays offer a complete
profile of multiple allergens in a single test. This is especially useful for identifying different
allergens present in a patient and better understanding their sensitivities and allergies. A
retrospective study for children with a suspected peanut allergy analyzed the Ara h 2 and
Ara h sIgE levels using ImmunoCAP and ISAC. The results showed that the determination
of Ara h 6 and Ara h 2 sIgE levels in ISAC was considered good predictors of peanut allergy
in children. Even so, the levels of Ara h 2 were comparable to the levels obtained with
ImmunoCAP. They concluded that the different peanut components using ISAC was an
advantage and clinically useful to detect peanut allergic children [35]. It has been published
that the sIgE levels measured with ISAC (Act d 1, Act d 2) showed a sensitivity (59.5%)
similar to that of ImmunoCAP (with whole kiwi extract, 63.9%). Act d 1 from ISAC was
associated with positive sIgE results from whole kiwi extract detected by ImmunoCAP [36],
which indicated that the two in vitro tools showed a similar diagnostic capacity. In a Polish
study of a large cohort of children determined sIgE to 112 allergen components using ISAC,
and sIgE for hazelnut, Cor a 14, Cashew and Ana o 3, using ImmunoCAP. Both in vitro
tools determined that Ana o 3 was the allergen component that predicted anaphylaxis.
Although its quantity was lower in ISAC compared to ImmunoCAP, due to the sensitivity
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of sIgE. Despite this, the identification of a single allergen component allowed the authors
to determine the risk of severe anaphylaxis in FA [37].

In addition to these in vitro techniques, new systems based on IgE multiplex-immunoblot
assay are being evaluated. Recently, a study evaluated improvement of lipid transfers
protein syndrome (LTP) diagnosis using a EUROLINE-LTP strip. It was observed that there
was a positive correlation between the sIgE levels of the single allergen components (Pru p 3,
Mal d 3, Ara h 9, Cor a 8 and Jug r 3) with respect to the sIgE levels of the ImmunoCAP. This
new IgE multiplex-immunoblot LTP assay showed a good diagnostic performance allowing
the culprit food allergies assessment [38]. Another study evaluated the ImmunoCAP and
the EUROLINE system for the sensitization profiles towards egg white, yolk extract with
the allergen components Gal d 1, 2, 3, 4. The authors determined that sIgE to Gal d 1 (single
component) was highly specific in hen’s egg that affect corresponding allergic adults [39].

3.2. The Activation Test (BAT)

The BAT is a functional assay that measures the degree of degranulation of the ba-
sophils after stimulation with specific allergens, this being basophil reactivity (% CD63+
basophils) and basophil sensitivity (EC50), the main outcomes of the test [40]. Activation
of basophils can be detected through upregulation of CD63 activation marker, then its
expression is correlated with histamine released. EC50 is the concentration eliciting the
half-maximal basophil activation and is a measure of basophil sensitivity [40]. The large
number of articles published on BAT in the last year (2022) and the trend towards more
regulation by the FDA, it is essential to understand methodological aspects also [41]. For
example, passive sensitization experiments, selection of the optimal allergen concentration
or the determination of the threshold. [42]. Considering these technical aspects, the BAT
has limitations such as the presence of basophils that non-respond to the allergen. Peanut
allergy studies (LEAP/LEAP-On studies) have reported that when BAT is performed for
a single time, 14% of patients have unreactive basophils [43]. This non-responder status
could be associated to transient changes in cell signaling proteins and can be reversed in
different culturing conditions.

BAT in FA has already been studied extensively. In a peanut allergy study, the BAT for
hazelnut, cashew nut, sesame, almond, peanut discriminated between allergic and non-
allergic children, its sensitivity to peanut ranged between 96 and 100% [44]. A prospective
study of patients from pediatric centers and universities, children between 0.5 and 17 years
with confirmed allergy or sensitization to peanuts and/or tree nuts (almonds, cashews,
hazelnuts, pistachios, walnuts) determined that BAT could predict allergic clinical status,
and therefore may reduce the need for high-risk OFC in patients [45]. In addition, there
was a study that also described these technique as a diagnostic tool in LTP allergy [46]
showing that BAT could differentiate between LTP allergic patients and tolerant controls
(Ara h 9), although neither the reactivity nor sensitivity could distinguish the severity of
clinical symptoms. In a randomized controlled trial in children, it has been showed that
BAT reduces the need for a food challenge test in children suspected of IgE-mediated cow’s
milk allergy (CMA) [47]. The results showed that only a 37% reduction was achieved in
in the requirement for food challenge. Similar results were obtained in a clinical trial for
children with egg allergy, here BAT for egg allergy was considered a better diagnostic
test than to double-blind placebo-controlled food challenge. The results showed a 41%
reduction in the number of OFC was achieved [48].

3.3. Mast Cell Activation (MAT)

An alternative test to the BAT is the mast cell activation test (MAT). This consists of
measuring the degranulation of mast cells, through levels of CD63, CD107a expression and
the release of mediators (prostaglandin D2 and β-hexosaminidase) [49]. MAT is carried
out in a similar way to BAT, although it is less sensitive [50]. In a study testing of peanut-
sensitized patients (allergic patients) vs. non-peanut-sensitized patients (non-allergic
patients), MAT provided conclusive results to aid in the diagnosis of allergic patients [51].
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Related to peanut allergy, a study analyzed the activation of mast cells with the presence
of Ara h 2 in a group of allergic children. MAT used for Ara h 2 strongly correlated with
Arah2-sIgE levels, indicating specific mast cell response, and constituting an alternative
diagnostic pathway [52]. Another study demonstrated for the first time the utility of MAT
in the diagnosis of LTP allergy, with higher specificity compared to sIgE determination.
The results from the study concluded that MAT can be used as complementary tool in the
diagnosis of LTP allergy and just with BAT increased the sensitivity up to 95% [53].

3.4. T Cells Assay

The study of allergen-specific T cells is limited by the low frequencies of these cells in
blood and the lack of methods able to characterize them. However, last year’s development
of innovative techniques such as single-cell, genomic, epigenomic and immune repertoire
sequencing [54] opened the door to progress the application of T cell assays as diagnostic
tool for FA. CD8 T cells attenuate FA in some experimental models, while in humans,
CD8 T cells have been shown to expand in response to wheat ingestion corresponding
to celiac disease. Additionally, another study showed that CD8 T cells are activated by a
peanut peptide in a dependent manner with peanut allergic individuals [55]. These CD8
T cells could express CCR4, suggesting that they were involved with a type 2 allergic
immune response. A further study has identified a new Th2 effector, follicular subtypes
with potential functional consequences in the pathogenesis and severity of allergic disease
in patients with milk-triggered disease (EoE) [56]. A clinical trial identified characteristics
of the peanut-specific CD4 T cell response in FA patients, correlated with high clinical
sensitivity [57].

Therefore, theses in vitro diagnostic tools have been valuable to better understand
the underlying mechanisms of allergic reactions to food and have helped to evaluate and
develop treatments, which we will describe in the following sections.

Table 1. Diagnostic tests for FA including allergen-specific IgE, the basophil activation test, the mast
cell activation test, and T cells assay.

Diagnostic Tools FA Advantages Limitations

Specific IgE
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Table 1. Cont.

Diagnostic Tools FA Advantages Limitations

T cells
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4. FA Immunotherapy Treatment

Immunomodulatory treatments in FA are therapeutic approaches that regulate the
exaggerated immune response (Table 2). These treatments are in various stages of re-
search and development, and some of these have been already used in clinical trials with
promising results.

4.1. Allergen Immunotherapy

Allergen immunotherapy (AIT) has been shown to increase the reactivity threshold
in most FA individuals [58]. Regarding this, different clinical trials have demonstrated
that oral immunotherapy (OIT) for food allergens is safe and effective, improving the
quality of life for peanut allergic patients. OIT for peanut has been approved by the
FDA and EMA for its use in FA [9,59]. Peanut OIT is safe for children 1 to 3 years of
age, from which 71% became desensitized, tolerating peanut protein [60]. Similar results
were observed in patients (aged 7 to 55 years) treated with peanut OIT, highlighting that
sustained unresponsiveness (SU) was only achievable in less than 35% of those who were
successfully desensitized and the SU was maintained for a year [61]. It demonstrated
that peanut OIT induces the blocking antibodies [62], low basophil activation and peanut-
specific IgE [63].

Epicutaneous immunotherapy (EPIT) employs a non-invasive delivery system of the
food allergen. Regarding EPIT, a clinical trial using peanut patches among peanut-allergic
children, this assessed the efficacy and adverse events of EPIT. Its results provided a modest
success, improving threshold sensitivity to one peanut (300 mg protein) for 35.3% after one
year of therapy [64] and for patients after 130 weeks of desensitization using EPIT, this
reached a threshold of 400 mg peanut protein [65].

Sublingual immunotherapy (SLIT) is another alternative to OIT and EPIT, which has
proven to be safe and effective [66,67]. Peanut SLIT induced long-term desensitization in
peanut allergic patients after 3 to 5 years of treatment. Recently, a study reported that during
16 weeks of SLIT with recombinant (r) Mal d 1, but not rBet v 1, significantly improved
also for birch pollen-related apple allergy and showed that allergen-sIgE-blocking IgG
antibodies were associated with clinical efficacy [68]. Although the SLIT treatment was
conducted with only two patients, the results showed that SLIT was able to reduce the
levels of antigen-sIgE in severe egg allergy also [69]. Furthermore, in a prospective study
where patients diagnosed with LTP allergy and treated with Pru p 3 SLIT were included.
One year after the start of Pru p 3 SLIT, the patients had negative OFC to peach and after
2 years of treatment, the OFC remained negative for walnuts and/or peanuts confirming
the safety of the therapy [70].

Taking all these results into account and the importance of IgG antibodies in AIT,
it has been proposed that IgG antibodies could have a modulatory role in FA. A study
has described that FA is associated with increased levels of food-specific IgG and that
they interfere with IgE interaction by regulating mast cell and basophil functions [71]. A
study for children with suspected FA determined different patterns of sIgG in persistent
(peanut) and transient (milk and egg) FA. The authors measured sIgG levels and sIgG
isotypes regarding these foods, this showed that for peanut the sIgG, sIgG1, sIgG2, sIgG3
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and sIgG4 were higher in peanut-allergic than in non-peanut-allergic patients. However,
there is no difference in allergen-specific IgG isotypes when observed between allergic
and non-allergic for milk or egg. With exception for milk-specific IgG4 that was higher in
non-cows-milk-allergic than in cows-milk-allergic children [72]. They found no evidence
that IgG was able to bind to receptors on the surface of mast cells or basophils or to suppress
IgE-mediated activation of mast cells or basophils after allergen stimulation. sIgG4 is the
most interesting of the IgG antibodies due to its inherent anti-inflammatory properties and
its clinical relevance [73,74]. It has been reported that treatment with AIT in patients with
peanut allergy, regulated the sIgG4 levels [75]

4.2. Nanoparticles: Platform AIT

Although the use of simple immunotherapies modify the immune response towards
food tolerance, there are alternative strategies that promote desensitization such as the use
of nanoparticles [11]. A large number of studies are investigating the safety and efficiency
of the use of nanoparticle-encapsulated purified peanut extract in peanut allergic patients
and animal models [76], masked administration of allergens (peanut) are encapsulated in
poly(lactide-co-glycolide) (PLG). Nanoparticles attenuated the anaphylactic response in
mouse models with peanut allergy, inducing a more tolerogenic phenotype and conferring
protection from intragastric allergen challenge [77]. An innovative therapy has been devel-
oped based on the use of lipid nanoparticles (LNP) with encapsulated mRNA encoding
peanut allergen epitopes. LNP demonstrated an increase in IL-10-producing Treg cells,
suppression of Th2-mediated cytokine production, IgE synthesis and mast cell release in a
peanut animal model [78,79].

Nanoparticles with T cells epitopes of arginine kinase with CpG attenuated shrimp
allergen enhancing the FOXP3 expression and IL-10 production with a decrease in the Th2
differentiation [80]. Associated with CpG, another study showed that oral pre-treatment
with β-lactoglobulin derived peptide and CpG co-encapsulated in PLG nanoparticles prior
to sensitization, attenuates the development of CMA in mice [81,82].

New glycosystems functionalized with mannose or fucose and specific ligands com-
bined with Pru p 3 peptides are focused on the modulation of the immune response via
C-type lectin receptors (CLRs) [83,84] or Toll-Like Receptors (TLRs) [85]. Regarding this,
glycosylated nanostructures combined with immunotherapy, induced long-lasting toler-
ance with specific transcriptional and methylations changes on DCs [86,87], Treg cells [88]
in a peach allergy mouse model.

4.3. Hypoallergenic Proteins: Product AIT

The modification of allergens, through a physical or chemical alteration of their struc-
tures have been developed to improve the tolerance response, inducing Th1 and Treg
responses. Within the hypoallergenic proteins, synthetic peptides and recombinant pro-
teins have been designed as immunotherapy or vaccines to treat FA [11,89].

Allergy to cow’s milk requires the avoidance of cow’s milk proteins, currently the use
of hypoallergenic milk protein formulation (CM-based hydrolysates or hydrolyzed rice)
has been a strategy for the management of CMA [90–92]. The effects of these formulations
have showed a tolerance response in human cells [93]. From the hydrolyzed formulas, the
structural alteration of the Bos d 5 allergen (B5M) has been identified as a product for use
in a hypoallergenic vaccine for CM allergy. B5M induced IgG antibodies and inhibited the
degranulation of basophils induced by Bos d 5 [94].

Hypoallergenic derivatives of Scylla-paramamosain (mud crab), heat-stable tropomyosin
(TM) and myosin light chain (MLC) have been preliminarily explored in vitro. A study
recently showed that hypoallergenic derivatives of heat-stable allergens (mtTM, mtMLC)
alleviated FA symptoms in a crab allergy model, inducing a significant IL-10 production
which equilibrated Th1/Th2 cells [95]. Regarding shrimp allergy, TM has been modified
by glycation (GTM) and combined with Al(OH)3 to form hypoallergenic complex and
be used in AIT. This hypoallergenic complex has been able to induce desensitization in
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allergic reactions in shrimp allergic patients [96,97]. The glycation in the sesame proteins
has been shown to reduce the allergenicity of sesame proteins effectively, identifying new
hypoallergenic products to treat FA [98].

In addition, hypoallergenic wheat line (1BS-18H) lacking ω5-gliadin, induced oral
tolerance to wheat gluten proteins in a wheat allergy rat model [99]. In this study, the results
demonstrated that the early ingestion of 1BS-18H wheat before immunization induced oral
tolerance to gluten andω5-gliadin, a suppression of gluten-sIgE and IgG1 levels with an
induction of Treg cells.

Although the recombinant Mad d 1 shows high allergenicity [100], recently a study
showed that the recombinant Mal d 1 combined with immunotherapy blocked the IgE-
mediated reactions also improving apple allergy [68].

4.4. Monoclonal Antibodies (Anti-IgE): Adjuvant AIT

Monoclonal antibodies (anti-IgE) have been considered as adjuvants in food AIT treat-
ments [101] and as monotherapies [102]. These are based on the IgE neutralization. which
reduces the sensitivity of the immune system to food allergens, reducing the activation of
mast cells and basophils [103].

As monotherapy, an observational study has reported that patients with FA and severe
asthma treated with omalizumab were able to increase the allergen threshold for milk, egg,
wheat, hazelnut, also control of severe asthma. This resulted in an improvement in the
quality of life [102]. An observational study which included children with severe CMA
who did not respond successfully to OIT were treated with omalizumab. Interestingly,
their CM threshold and IgG4 milk-specific protein levels were significantly increased [104].
Therefore, as monotherapy it can help patients to consume multiple foods and allow for
increasing the dose of where its limited.

However, in recent years, several studies have revealed its role as adjuvant for AIT.
A phase 2 randomized controlled multisite study using omalizumab combined with OIT
decreased time to desensitization and simultaneously desensitizes multiple food aller-
gens [105]. In addition, the combination of omalizumab with peanut OIT induced an
increase in peanut intake, a reduction in sIgE, an increase in sIgG4 for peanut, Ara h 1 and
Ara h 2 [106,107]. Another study similar determined that OIT with adjunctive anti-IgE can
induce immunological changes decreasing type 2 immune response (IL-4 peanut-reactive
CD4 T cells, downregulation of CD86 expression in antigen-presenting cell subsets and
reduction in pro-inflammatory cytokines) [104]. Additionally, in a cohort of 181 patients,
omalizumab dose-related efficacy in OIT was adjusted based on body weight, regardless
of total IgE level [108]. Taken together, these results suggest that as an adjunct to OIT,
omalizumab can facilitate rapid desensitization, regulate IgE and IgG4 and induce the
change immunologically.

Table 2. Immunotherapeutic approaches for FA: advantages and limitation.

Immunotherapy Treatment Type/FA Advantages Limitations

Allergen im-
munotherapy

OIT: Peanut [60–63]
EPIT: Peanut [65]

SLIT: Peanut, Apple, Egg and
LTP (Multiple Food) [66–70]

-AIT is specific treatment that can
address underlying cause of the

allergic reaction.
-Long-term effects, reducing the

severity of allergic reactions.
-ATI eliminates the need for other

medications to control allergic reactions

-Lack of clinical studies to evaluate
its safety and efficacy

-Risks of
suffering severe allergic reactions

during treatment
-Prolonged duration of treatment

Nanoparticles

PLG and LNP: Peanut [77–79]
T cells epitopes + CpG:
Shrimp and CM [80–82]

Glycoparticles: Peach [86–88]

-Controlled delivery of allergens.
-Improved absorption and

bioavailability

-More studies are needed to
evaluate their long-term safety

and effectiveness
-Technical complexity

-Lack of regulation and approval for
its implementation as therapies
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Table 2. Cont.

Immunotherapy Treatment Type/FA Advantages Limitations

Hypoallergenic
proteins

Hydrolyzed protein
formulation and B5M:

CMA. [90–92,94]
mtTM, mtMLC: Crab [95]

GTM: Shrimp [96,97]
1BS-18H: Wheat [98,99]

r Mal d 1: Apple [68]

-Reduced risk of allergic reactions.
-Potential nutrient deficiency

-Cost and availability
-Altered taste and texture

Monoclonal
antibody
(anti-IgE)

Monotherapy: Multiple Food
and CM [102,104]

Multiple therapy: Multiple
Food and peanut [105–107]

-Reduced risk of allergic reactions
(IgE inhibition).

-Increasing food intake.
-Improves the quality of life of patients.

-Cost
-Side effects

-Duration of treatment

AIT: Allergen immunotherapy; OIT: oral immunotherapy; EPIT: epicutaneous immunotherapy SLIT: sublin-
gual Immunotherapy; PLG: poly(lactide-co-glycolide); LNP: lipid nanoparticle; CMA: cow´s milk allergy.
r: recombinant.

5. New Therapeutic Approaches

Despite advances in specific treatments, they present certain limitations (Table 3);
because of this, the interest in alternative medicine is increasing. Although there are not
defined limits between these new natural approaches, we can classify them into three
groups: probiotics, herbal medicine and dietary supplements.

5.1. Probiotics and Symbiotics

The microbiome has recently been described as a crucial interface between environ-
mental factors and the development of FA, among other allergic diseases. This relationship
has been exploited through the microbial immune modulatory effects of probiotics, prebi-
otics and symbiotics for the generation of food allergen tolerance, maintaining the Th1/Th2
cell balance, thus improving intestinal barrier function, controlling the intestinal microbiota
and its metabolism [109].

The effect of lactic acid bacteria on food protein allergies in infants is studied most,
showing a regulation of the intestinal flora of allergic infants, hydrolysis of allergens, inhi-
bition of the inflammatory response, enhancement of the intestinal barrier and modulation
of immune cell differentiation [110].

Several studies in FA animal models have demonstrated how some probiotics show the
capacity to increase the ratio of effector Treg cells and enhance the secretion of regulatory
cytokines (IL-10) such as Clostridium butyricum and Lactobacillus gasseri [111,112] including
the probiotics from the Bifidobacterium species [113].

In recent study, the activation of the TLR4 pathway by Bifidobacterium animalis KV9
and Lactobacillus vaginalis FN3 also led to modulation of the Th1/Th2 balance, attenuating
allergic responses in FA mice [114]. The study demonstrated that KV9 and FN3 possessed
anti-allergic activities, they modulated the expression of IRF-1 and IRF-4.

Decreasing antigen-specific immunoglobulins has also been an important goal in pro-
biotic therapies. In a murine model of CMA, 3 probiotics with anti-allergic properties have
been identified, showing a reduction in the levels of IgE, IgG1, IgG2a, and β-lactoglobulin-
specific mast cell protease [115]. In other ovalbumin (OVA)-induced FA animal models,
the probiotic Akkermansia muciniphila BAA-835 attenuated the levels of IgE anti-OVA and
eosinophils [116].

There are numerous interventional trials utilizing prebiotics, probiotics or symbiotics
to investigate its effects on FA. In a randomized controlled trial based on the coadministra-
tion of probiotic (Lactobacillus rhamnosus) with peanut OIT, this reduced peanut-specific IgE
levels and increased peanut-specific IgG4 [117]. In addition, the use of probiotic peanut
OIT leads to substantial and continued improvement for quality of life 4 years after treat-
ment [118,119]. This outcome has also been described with the combination of heat killed
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Lactiplantibacillus plantarum and OIT in CMA. In fact, this clinical trial showed improved
tolerance to CM and an increase in the sIgG4 level with reduction in IL-5 and IL-9 [120].

A symbiotic-containing fructo-oligosaccharides and Bifidobacterium breve M-16V helped
transform the gut microbial composition of non-IgE CM allergic infants to resemble that
of healthy infants [121,122]. A pilot study with a symbiotic showed potential in the
improvement of symptoms in infants with CMA; however, it lacked a proper a control
group [123].

5.2. Herbal Medicine

In the past, herbal plants have been used for medical issues. Nowadays, many studies
are being conducted to identify anti-allergic agents from these plants to treat IgE-mediated
and non-IgE-mediated allergic reactions [124].

FA Herbal Formula 2 (FAHF-2), composed by 9 different herbs was the first plant
origin-based drug approved by US FDA for FA treatment (2007). New techniques have been
applied to improve some of its disadvantages. Two types of formulas have been purified,
this being B-FAHF-2 (butanol purified FA herbal formula-2) and E-B-FAHF-2 (ethyl acetate
and butanol purified FA herbal formula-2) [125]. Recently, in vivo experiments into murine
models of peanut allergy showed that E-B-FHFA-2 and its active compound (berberine)
protected the mice from anaphylaxis, decreased IgE levels and IgE plasma cells [126].

Apart from FAFH-2, in addition to its improved versions, many other plant origin
compounds have been tested in vitro and in vivo for FA treatments. In this sense, N-
nornuciferine and lirinidine alkaloids from lotus seed pods showed potent anti-food allergic
activity in RBL-2H3 cells measured as β-hexosaminidase activity [127].

The oleuropein was evaluated for the prevention of OVA- induced FA. The results of
their studies showed that sensitized mice treated with oleuropein had decreased levels
of IgE, IgG and histamine. Moreover, oleuropein enhanced intestinal epithelium, altering
mucosal mast cells and Treg cells [128]. Additionally, other compounds as the isoflavones
isolated from kakkonto, a Japanese herbal medicine (Genistein and genistin) suppressed
allergic symptoms in OVA-induced FA mice [129].

5.3. Dietary Supplements

Some components of food have been related to pro-inflammatory effects (fat, sugar,
folate deficit) and others to anti-inflammatory effects (omega-3 PUFAs, vitamin D, polyphe-
nols). Some studies have focused on diet supplementation as a treatment for FA disor-
ders [130].

A study observed that ginger could upregulate the expression of the retinoic acid
(RA) receptor in the gut, which suggested that immune responses mediated through RA
regulation could contribute to the suppression of FA inflammation [131].

An OVA-sensitized mouse model supplemented with olive oil had a reduction in
allergic symptoms, with a reduction in cytokines associated with Th2 cells and an increase
in cytokines released by Treg cells [132]. The combined supplementation with arachidonic
and docosahexaenoic acids during suckling period presented beneficial effects on OVA
oral tolerance of the rat offspring, revealing that this combination decreased Th2 immune
response due to an increase in Th1 cytokine levels [133]. A meta-analysis study concluded
that omega-3 supplementation during pregnancy reduces the risk of FA in children. On
the other hand, omega-3 supplementation during childhood did not show any beneficial
effects [134].
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Table 3. Therapeutic approaches and their achievements.

Therapeutic Approaches Model/FA Achievements

Probiotics and symbiotics

Clostridium butyricum, Lactobacillus gasseri and
Bifidobacterium species [111–113] and

Lactobacillus vaginalis [114]: FA animal model.
Lactobacillus paracasei L9: CM [135]

Leuconostoc citreum: FA animal model [116]
Akkermansia muciniphila: FA animal model [136].

Lactobacillus rhamnosus: Penaut [117]
Synbiotic-containing fructooligosaccharides and

Bifidobacterium breve M-16V:CM [121,122].

-Increase the ratio of effector Treg cells and
enhance the secretion of regulatory cytokines.

-Modulation of Th1/Th2 balance and attenuation
of allergic reaction.

-IgE reduction
-Transformation of gut microbial to improve the

healthy infants.

Herbal medicine

E-B-FAHF-2 and B-FAHF-2: Peanut [125,126].
Berberine: peanut and cholera toxine animal

model [126].
Oleuropein: FA animal model [128].

-Reduction in anaphylaxis symptoms.
-Reduction in histamine and IgE plasma levels.
-Reduction in B cells in spleen and modification

of gut microbiota

Dietary supplements

Ginger: CACO2 cells [131].
Olive oil: FA animal model [132].

Arachidonic and docosahexaenoic acids (PUFAs):
mother during suckling period levels [133].
Omega-3 supplementation: mothers during

pregnancy [134].

-Suppression of FA inflammation.
-Reduction in allergic symptoms.

-Th2 cells reduction and increase in Treg.
-Increase in oral tolerance in children.

-Increase in Th1 cytokines levels.
-Reduction in the risk of FA in children.

FA: food allergy; CMA: cow´s milk allergy.

6. Conclusions

FAs are complex and mediated by a variety of immunological mechanisms. The
IgE-mediated response is the most common, but cellular mechanisms and other types
of immunological reactions can also be involved. Understanding these mechanisms is
essential for the proper diagnosis and treatment of FA. In this sense, it is essential to note
that diagnostic tools continue to develop constantly, since they have certain limitations,
such as needing to be agreed upon or the low sensitivity. Nonetheless, theses in vitro
diagnostic tools have helped to evaluate and develop new treatments for FA.

Regarding immunomodulatory approaches as treatment for FA, many of them are still
in the research and development stages. However, all of them are focused on reducing the
allergic response by inducing a tolerance response. Despite this, they still present certain
weaknesses that give rise to new therapeutic approaches. More studies are still needed to
investigate the role of IgG in FA.

Overall, new therapeutic approaches for the prevention and treatment of FAs have
shown clinical potential; however, the results of these trials remain controversial. With
contradiction, these approaches face several limitations including the heterogeneity in
dosages/administration in trials and the mechanism of probiotics or herbal medicine for
FA remains unknown. Further studies are required to discern the actual benefits of these
new therapies in FA.
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Abbreviations
ATI Allergen immunotherapy
BAT Basophil activation test
CMPA Cow milk protein
EGID Eosinophilic gastrointestinal disorders
EoE Eosinophilic esophagitis
EMA European Medicines Agency
FA Food allergy
FPIES Food protein-induced enterocolitis syndrome
FPIAP Food protein-induced allergic proctocolitis
FPE Food protein-induced allergic enteropathy
FDA Food and Drug Administration
GORD Gastro-esophageal reflux disorder
MAT Mast cell activation test
NSAIDs Nonsteroidal anti-inflammatory drugs
OFC Oral food challenge
OIT Oral immunotherapy
SPT Skin prick test
SMPA Soja’s milk protein allergy
sIgE Specific immunoglobulin E
TSLP Thymic stromal lymphopoietin
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