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Abstract

Language is such a powerful tool that enables communication between humans.
However, there have been some barriers, historically, which arose the need for auto-
matisation of linguistic tasks. After overcoming setbacks, a balance between lin-
guistics and computer science was achieved, which was based mainly on artificial
intelligence. The objective of this work is to understand the text preprocessing so
that machine learning algorithms can be applied to draw insights. For this purpose,
we will dive into supervised learning theory together with discriminative and gener-
ative algorithms that will be perform text classification tasks: a fake news classifier
and a film reviews sentiment analysis. Furthermore, we will explore the variety of
purposes and the industrial applications that Natural Language Processing has.





Resumen

El lenguaje es una herramienta tan poderosa que permite la comunicación entre
los seres humanos. Sin embargo, históricamente han existido algunas barreras que
fomentaron la necesidad de automatizar las tareas lingǘısticas. Tras superar los
contratiempos, se logró un equilibrio entre la lingǘıstica y la informática, el cual se
fundamentó principalmente en la inteligencia artificial. El objetivo de este trabajo es
comprender el preprocesamiento de textos para poder aplicar algoritmos de apren-
dizaje automático que permitan extraer conclusiones. Para ello, nos sumergiremos
en la teoŕıa del aprendizaje supervisado junto con algoritmos discriminativos y gen-
erativos que realizarán tareas de clasificación de textos: un clasificador de noticias
falsas y un análisis de sentimientos de cŕıticas de peĺıculas. Además, exploraremos
la variedad de propósitos y de aplicaciones industriales que tiene el Procesamiento
del Lenguaje Natural.
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Chapter 1

Text Basics

This chapter explains the basic concepts of NLP together with a deep understanding
of its history. This would allow us to better understand which are the setbacks that
NLP has overcome during the history and how NLP has been evolving as a result.
By understanding the historical context and evolution of NLP, we gain valuable
insights into the challenges, breakthroughs and paradigm shifts that have shaped
this dynamic field. We witness how NLP has evolved from rule-based systems to
data-driven approaches, unlocking new opportunities for understanding, analysing
and generating human language.

1.1 Introduction

This section introduces the fields of computational linguistics and natural language
processing, which are closely related, but each still retains their differences in mo-
tivation and purpose. Both combine linguistics and artificial intelligence.

Computational Linguistics (CL) is an interdisciplinary field that combines the
study of linguistics with the techniques of computer science and artificial intelligence
to study the structure, meaning, and use of human language. Its main objective is
to understand language modelling by humans, including written and spoken natural
language. In other words, it focuses on the system or concept that machines can
compute to understand, learn or output languages. This field has evolved from being
considered within computer science until it has become part of applied science such
as psychology, neuroscience or philosophy. Since the rise of social media, Computa-
tional Linguistics is playing a vital role in modelling human language.

Natural Language Processing (NLP) refers to the branch of artificial intelligence
focused on giving computers the ability to understand text and speech in the same
way humans can. NLP integrate computational linguistics (rule-based modelling
of human language) with statistical, machine learning and deep learning models to
analyse and extract information.

1



Chapter 1. Text Basics 1.2. History

1.2 History

The history of Natural Language Processing is a story full of twists and turns. It
started with non-productive research, progressed through years of fruitful work, and
finally ended at a time when we are still trying to determine the limits of this field.

The area of Natural Language Processing began in the 1940s, since during World
War II, people became aware of the need for machine translation. Therefore, re-
searchers began to train computers to emulate natural language understanding by
applying linguistic rules. This is the main reason why this era is known as Symbolic
or rule-based NLP as it was focused on generating syntax with the help of linguists
and computer scientists. One of these researchers, Noam Chomsky, published his
influential work Syntactic Structures [2] in 1957. He argued for the independence
of syntax (the study of sentence structure) from semantics (the study of meaning),
since sentences that were nonsense but grammatically correct were classified as im-
probable to the same extent as sentences that were nonsense and not grammatically
correct. As a result, Chomsky created the Phase-Structure Grammar which is a
type of generative grammar where a set of ordered rules known as rewrite rules
are applied stepwise. At the same time, Alan Turing published the seminal paper
Computing Machinery and Intelligence [3], which introduced the Turing Test or also
known as the Imitation Game whose main objective was testing machine’s ability
to exhibit intelligent behaviour equivalent to a human. In addition to this, John
McCarthy organised the Dartmouth Conference in 1956, where he created the term
artificial intelligence and started brainstorming about this immense field.

Due to the development of linguistic syntactic theory and parsing algorithms,
the 1950s were filled with outrageous enthusiasm. It was widely believed that high-
quality fully automated translation systems would be able to produce results that
are indistinguishable from those of translators. However, given the language skills
and computer systems available at the time, this thought was completely unrealistic.
These are the reasons why there was a huge investment in NLP, which started to
decrease sharply as a result of unfruitful research.

In the late 1980s, there was a revolution in NLP with the introduction of ma-
chine learning algorithms, which led to the statistical era of NLP. This was due
to both the increase in computing power and the gradual decline in Chomskyan
language theories. Although some of the earliest used machine learning algorithms
produced systems with performance similar to the old-fashioned handwritten rules,
statistical models overcame the complexity barrier of hand-coded rules by creating
them through automatic learning. The main reason is that it required the use of
statistical inference to automatically learn such rules through the analysis of large
numbers of typical real-world examples. For this, the latter can be made more accu-
rate simply by providing more input data. On the other hand, the others can only
be made more accurate by increasing the complexity of the rules, which is a much
more laborious task.

Regarding the success of statistical models in NLP, it mainly occurred in the
field of machine translation, primarly through work at IBM Research [4]. Moreover,
with the growth of the World Wide Web, increasing amounts of raw language data

2



Chapter 1. Text Basics 1.2. History

became available, which made research focused on unsupervised learning algorithms
and semi-supervised learning algorithms. Such algorithms can learn from data that
has not been hand-annotated with the desired answers or by using a combination of
annotated and non-annotated data. In general, this task is much more difficult than
supervised learning, and usually produces less accurate results for certain input data.

During the 2000s, neural networks acquired importance in machine learning
models and then, in 2010, neural network-like representation and machine learn-
ing methods became widespread in NLP, in part due to some results showing that
such techniques can achieve state-of-the-art results on many tests such as language
modelling and parsing. Furthermore, three types of neural networks appeared: re-
current neural networks, convolutional neural networks and recursive neural net-
works. These completely revolutionised the NLP world. At the same time, the most
popular word embedding model, Word2Vec, was introduced, which refers to the
representation of a word as a real-valued vector to be processed by neural networks.

In addition to this, reinforcement learning has also an impact in NLP, which is a
subfield of deep learning that focuses on training agents to make sequential decisions
in an environment to maximize a reward signal. It is particularly well-suited for tasks
with temporal dependencies and non-differentiable optimisation zones, where tradi-
tional gradient-based methods may not be effective.

Undeniably, NLP together with AI is under constant evolution and it is used
in a wide range of applications, which will be discussed in section (4). With the
proliferation of social media and online communication, NLP has become increas-
ingly important for understanding, translating and processing large volumes of text
data. Recent advances have enabled NLP to perform complex tasks and natural
language generation with high accuracy. Scientists want to develop algorithms that
can understand the meaning and intent of sentences with as few words as possible.
They intend to capture the meaning and intent of sentences and develop a set of
algorithms that can extract information from them. This is the reason why there
is still no limit on what we want to achieve with NLP as long as it supports hu-
man activities in everyday life. They say that the development of NLP has greatly
helped people on a daily basics. Nevertheless, there are some dangers behind the
development of NLP, but there are also many opportunities. Surely, we can expect
to see in the future even more sophisticated applications and human-like dialogue
systems, which will completely revolutionise the way we live.

3





Chapter 2

Language Normalisation

It is crucial to understand the basic concept of natural language, which refers to any
language that has evolved naturally in humans through use and repetition without
conscious planning or forethought. Natural languages can take different forms, such
as speech, written or signing. Estimates of the number of human languages in the
world vary between 5,000 and 7,000, depending on distinction between languages
and dialects, respectively. Despite the variety of vocabulary in our mother language,
we only use at most 10% of words in a day-to-day setting. This ambiguity makes
it inherently hard for computers to process and understand natural language. This
difficulty increases when sentiments influence human language with sarcasm, irony,
metaphors and humour. Moreover, social networks are changing human language
with the introduction of emojis and new terminology resulting from current trends.

To analyse a natural language, it has to be distinguished the different linguistic
characteristics for text and speech analysis. These categories found in table 2.1 are
useful to provide a rich set of representations for machine learning algorithms.

Text analysis

Morphology Word structure
Lexical Segmenting words
Syntax Sentence structure
Semantics Linguistic meaning
Discourse Meaning among sentences
Pragmatics Meaning through speaker intent

Speech analysis

Acoustics Representations of sound
Phonetics Speech sounds
Phonemics Sound patterns and changes
Prosodics Intonation, stress, and rhythm

Table 2.1: Summary of language analysis categories. Source: [1]

Natural language processing is the mapping of language to representations which
capture the characteristics of morphology, dictionaries, syntax, semantics or dis-
course. The choice of the representation can have a major impact on subsequent
tasks and will depend on the selected machine learning algorithms.

4



Chapter 2. Language Normalisation 2.1. Morphological Analysis

In the following sections of this chapter, we will dive into these representations
to better understand their role in linguistics and purpose in natural language pro-
cessing. In this work, we will focus on the most common text-based representations
and the preprocess methodology to follow.

2.1 Morphological Analysis

Within the discipline of linguistics, morphology is the study of the structure and
formation of words. This refers to the rules and conventions used to shape words
depending on their contexts, such as plural, gender, contraction and conjugation.

Words are composed of subcomponents called morphemes, which are the sma-
llest unit of meaning in a language. Morphemes can be classified into free or bound
morphemes:

� Free morpheme: a morpheme which is a word by themself, such as “run”,
“dog” or “book”. They can also appear within lexemes such as “bookstore”,
which is the compound of two free morphemes: “book” and “store”.

� Bound morpheme: a morpheme that cannot stand alone as a word but
must be attached to a free morpheme to create a word. Here, it is important
to make a distinction between two classes: inflectional and derivational.

– Inflectional bound morphemes: they add information about gram-
matical number, gender or verbal tense. Some examples are “dogs”,
“prince” to “princess” or “booked”.

– Derivational bound morphemes: create new words by adding affixes,
which are prefixes when added to the front of a word and suffixes when
added to the back. Another less common types are infixes, when added
in the middle of a word, and circumfixes, which consists of two parts, one
attached to the beginning and the other to the end of the word. They
directly change the meaning of words as well as the part of speech. For
instance, adding the suffix -er to the root run creates the word “runner”,
which has been tranformmed from a verb to a noun.

Despite the diversity of possible morpheme combinations, English has simple
morphologic rules in comparison to other languages like Arabic [6]. For this reason,
computers have to consider morphological analysis, whose main normalisation approa-
ches are stemming and lemmatisation. Both truncating techniques aim to sim-
plify text processing by reducing words to their root or base form and are widely
used in different applications such as information retrieval, machine translation,
text classification and tagging systems. These and even more applications will be
discussed in section (4).

5



Chapter 2. Language Normalisation 2.1. Morphological Analysis

2.1.1 Stemming

Researcher J.B. Lovins defines stemming in his publication Development of a Stem-
ming Algorithm [7] as:

“A stemming algorithm is a computational procedure which reduces
all words with the same root (or, if prefixes are left untouched, the
same stem) to a common form, usually by stripping each word of its
derivational and inflectional suffixes.”

Stemming can be useful for standardising vocabulary since the stem and their
inflected words have related meaning, which allows to build relationships between
them. However, due to the cut of the end beginning of a word, this process can
result in stems that are not real words. In addition to this, stemming can introduce
ambiguity, as it is shown in the following example:

photographs → photograph

photographed → photograph

photographers → photograph

Although humans can easily identify differences in meaning, it is still difficult for
computers to do so through stemming. It is relevant to notice that words with dif-
ferent meanings have the same stem: “photographers” and “photographs” (people
versus items). On the contrary, this shows that stemming is robust to spelling
errors, as the correct root may still be inferred correctly.

From 1960s, several stemming algorithms, which are known as stemmers, have
been developed. The most popular algorithm is the Porter stemmer, which was
published in 1980 by Martin F. Porter, in the paper An algorithm for suffix stripping
[8]. It consists of five steps to remove suffixes, within each step, rules are tested
until a condition is satisfied. For this particular rule, the suffix is removed, and the
algorithm goes to the next step. The rules have the following structure:

(condition) suffix −→ new suffix

For instance, the rule (2.1.1) means that the words whose stem contains a vowel
should be removed the ing suffix. So, “motoring” becomes “motor”, while “sing”
remains unchanged. The algorithm consists of 60 rules approximately, which can be
found in [9].

(*v*) ING −→ (2.1.1)

A few years later, Martin Porter implemented some corrections in a new al-
gorithm known as Snowball Stemmer, as a tribute to SNOBOL1. While Porter

1SNOBOL (”StriNg Oriented and symBOlic Language”) is a programming language developed
in the 1960s for text and string manipulation. It has built-in support for pattern-matching and
search capabilities, and is designed to handle complex pattern matching and text processing tasks
that are difficult or impossible to express in other programming languages.

6



Chapter 2. Language Normalisation 2.1. Morphological Analysis

Stemmer can only be used in English, Snowball Stemmer supports 13 languages,
incluiding French, German and Spanish. Snowball is characterised to be more ag-
gressive but also more accurate than Porter stemmer. Another relevant algorithm is
Lancaster stemmer, which was developed by C.D. Paice at Lancaster University
in 1990. This is an iterative algorithm containing 120 rules, which are only applicable
to English. Compared with the previous stemmers, Lancaster is the most aggressive.

Python:
With the aim of implementing these stemmer algorithms in Python, NLTK (Nat-

ural Language Toolkit) is used. This is a Python library used for natural language
processing into we will dive in the subsection (5.1). Therefore, the first step is
to download and import this library. To use stemmers, import the corresponding
algorithm from the module nltk.stem. For instance, Martin Porter algorithm co-
rresponds with the PorterStemmer class, from which we have to create an instance.
Then, use the stem() method for each word by passing it through a for loop to
evaluate different examples. An analogous implementation can be made for the rest
of stemmers.

Word Porter Snowball Lancaster

program program program program
programming program program program
programer program program program
programs program program program

programmed program program program
people peopl peopl peopl

procedure procedur procedur proc
successful success success success

photographers photograph photograph photograph
photographs photograph photograph photograph
protographed protograph protograph protograph
unacceptable unaccept unaccept unacceiv

fairly fairli fair fair
sportingly sportingli sport sport
universal univers univers univers
university univers univers univers

data data data dat
datum datum datum dat

Table 2.2: Porter, Snowball and Lancaster algorithms results for a list of words.
Source: Own elaboration (see section (7)).

As it is displayed in table 2.2, the stemmers were able to correctly reduce each
word to its base form, but some are not perfect and can sometimes result in stem
words that are not actual words or might be too aggressive in their stemming, as it
is the case of Lancaster algorithm.
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Regarding incorrect stemmisation, there are two types of errors:

� Over-stemming: is when two words with different stems are stemmed to
the same root. Statistically, this definition matches what is known as a false
positive. In the table 2.2, “universal” and “university” are a clear over-
stemming example. This would imply that both words have a similar meaning,
which is not correct.

� Under-stemming: is when two words that should be stemmed to the same
root are not. This corresponds to a false negative. If we consider the stem-
ming of “data” and “datum” shown in table 2.2, we can see that only the
Lancaster algorithm does in the correct way since both words have the same
stem and meaning. However, this occurs mainly because Lancaster is the most
straightforward stemmer.

On general, stemmers which reduce over-stemming errors, increase under-stemming,
and viceversa. A good stemmer algorithm would be one that finds the balance
between these two extremes.

2.1.2 Lemmatisation

In the chapter Lemmatisation as a Tagging Task [13], lemmatisation is defined as
the following:

“Lemmatisation is the task of grouping together word forms that be-
long to the same inflectional morphological paradigm and assigning to
each paradigm its corresponding canonical form called lemma.”

Lemma refers to a word form that exists and has meaning by itself, being found
in the dictionary. For this purpose, lemmatisation relies more on morphological
analysis of words, using a sophisticated approach that takes into account the part of
speech and the word context in the sentence. This requires the existence of dictio-
naries for each language to provide this type of analysis. However, such dictionaries
are created manually and cannot be developed quickly in many languages.

To understand the differences with stemming, we can analyse the previous ex-
ample:

photographs → photograph

photographed → photograph

photographers → photographer

Now, we can see that the meaning of each word is considered and remains. The
results are similar to those of stemming, but they are actually words. In contrast to
stemming, meaning and context are considered. On the other hand, lemmatisation
is sensitive to spelling errors, which requires a preprocessing task for spell correction

8
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and it is slower because of looking up in a dictionary.

Python:
We consider the implementation in Python with NLTK package, from which

we download WordNet (see section (2.1.2.1)) lemmatiser. Firstly, we create an
instance of the lemmatiser and use its lemmatize() method to lemmatise a word.
For this, we have to indicate in the argument pos the grammatical category, or also
known as part of speech (POS) tags of each word. These grammatical categories
are v for verbs, a for adjectives, r for adverbs and n for nouns, which is the default
option. With this information, the words are lemmatised accordingly and the result
are actual words. The results are shown in table 2.3, which can be compared with
the stemming methods in in table 2.2.

Word POS Lemmatisation

program n program
programming v program
programer n programer
programs v program

programmed v program
people n people

procedure n procedure
successful a successful

photographers n photographer
photographs n photograph
photographed v photograph
unacceptable a unacceptable

fairly r fairly
sportingly r sportingly
universal a universal
university n university

data n data
datum n datum

Table 2.3: Lemmatisation results indicating the corresponding POS tag. Source:
Own elaboration (see section (7)).

Words are reduced to their canonical form, lemma, which has meaning by itself.
The main problem is that words that cannot be found in WordNet will remain un-
changed and that the POS tag has to be included in this method to obtain better
results.

To summarise, here you can find a table 2.4, which compares the benefits and
drawbacks between stemming and lemmatisation.
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Advantages Disadvantages

Stemming

Model performance Overstemming
Grouping similar words Understemming

Easier to analyse and understand Language difficulties
Robust to spelling errors Not actual words

Lemmatisation
Accuracy Time-consuming

Actual words Sensitive to spelling errors

Table 2.4: Advantages and disadvantages of stemming and lemmatisation. Source:
Own elaboration.

2.1.2.1 WordNet

Since there are words that can have multiple different lemmas, lemmatisation al-
gorithms or lemmatisers need the part of speech tag in that specific context. For
this purpose, WordNet [15] is used as an English dictionary for lemmatisation.
WordNet was released in 1986 at Princeton University by Christiane Fellbaum. It
consists of a large semantic network or graph in which words are interconnected by
means of labelled arcs that represent meaning relations. This database is organised
in synsets, which each refers to a set of words which are semantically equivalent (or,
also known as synonyms). This can be seen as a many-to-one mapping of word forms
and concepts. Synsets can be seen as the nodes of WordNet and edges as meaning-
based relations. Nowadays, there are 117000 synsets, each one corresponding to
one category: nouns, verbs, adjectives and adverbs. Regarding another semantic
representation present in table 2.5, polysemy can be captured when the same word
appears in different synsets, each with their own synonyms, since this would imply
that it has distinct meanings. In contrast, antonyms are linked by an “antonym”
pointer between words.

Synonymy Words having the same meaning
Antonymy Words having the opposite meaning
Polysemy Word with two or more distinct meanings

Hypernymy Generic word whose meaning includes other words (hyponyms)
Hyponymy Specific word whose meaning is included in a broad category (hypernym)

Table 2.5: Semantic relations between words. Source: [1]

Considering that WordNet is a graph, there is an important semantic relation
which can be represented through directed edges: hypernymy and hyponymy. In
this way, we link specific concepts to more general ones, but it could also be seen the
other way around, as a bi-directional relation, from a global category to a particular
case. However, with the aim of representing it as a directed graph, we will consider
that each directed edge v → w means that w is a hypernym of v, or equivalently,
v is a hyponym of w. For example, the synset gym shoe, sneaker, tennis shoe is
a hyponym of shoe, which in turn is a hyponym of footwear, footgear, etc. And
gym shoe, sneaker, tennis shoe is a hypernym of plimsoll, which denotes a specific
type of sneaker ([15] pp. 233). This is how this hierarchical relation is constructed,
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Figure 2.1: The WordNet example representation as a rooted DAG. Source: [16]

where scaling through all noun synsets, we can reach to a common node. This
root corresponds to the concept entity, which encompassess all things that exist in
the world, incluiding physical entity, abstract entity and thing. For these reasons,
WordNet can be seen as a directed acyclic graph (DAG), though not a tree since
each synset can have several hypernyms. In figure 2.2, there is a graphical example
of the is-a relationship, which joins a hyponym to a hypernym [17]. As before, for
this particular case, a birdcage is a hyponym to cage, and cage is a hyponym to
enclosure.

These mathematical concepts are explained below, and are useful because it
provide researchers with DAG properties and tools, which can be very useful to
implement in NLP.

Definition 2.1.1. A directed graph G is a pair G=(V, E) comprising:

� V: a set of vertices (nodes).

� E: a set of directed edges, which are ordered pairs of distinct vertices.

E ⊆ {(x, y) | (x, y) ∈ V 2, x ̸= y}
Definition 2.1.2. A cycle in a graph G = (V, E) is a sequence of distinct vertices
v1, v2, . . . , vk ∈ V such that vivi+1 ∈ E(G) ∀i = 1, . . . , k − 1 and v1vk ∈ E(G).
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Cage, coop 

 

Entity 
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Birdcage 

Squirrel cage 

Hutch 

Figure 2.2: The “is a” relationship. Source: [17]

Definition 2.1.3. A directed acyclic graph (DAG) is a directed graph, with no
directed cycles.

Definition 2.1.4. A vertex v is an ancestor of w in graph G if v = w or there is
a directed path in G from w to v.

Definition 2.1.5. A root in a graph is a vertex which is an ancestor of every other
vertex.

Regarding the NLP problem of establishing similarity relationships between
words, WordNet DAG plays a vital role since it allows to find the shortest path
which connects two words. For this, new concepts are introduced:

Definition 2.1.6. An ancestral path between two vertices v and w in a digraph
(directed graph) is a directed path from v to a common ancestor x, together with a
directed path from w to the same ancestor x.

Definition 2.1.7. A shortest ancestral path between two vertices v and w is
an ancestral path of minimum total length. In other words, it is the shortest path
between these two vertices that leads to their closest common ancestor.

Note that the length of the shortest path between v and w is the combination
of the lengths from both v and w to their nearest common ancestor. In relation to
NLP, if u is an ancestor of v, this means that u is a hypernym of v, or the other way
around, v is an hyponym of u.
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Figure 2.3: Example of shortest ancestral path. Source: [18]

Python:

The NLTK package provides a wide range of functions and algorithms [19] de-
veloped to dive in WordNet:

� synsets(): it is a method that returns a list of synsets for a given word, which
has an optional pos argument which lets you constrain the part of speech of
the word. If pos is not provided, all synsets for all parts of speech will be
returned. Another optional parameter is lang, which determines the language
of the synsets and by default is set to English. Once the method is called, the
output will be a list of Synset objects, where each represents a collection of
synonymous words that are semantically related. These Synset objects provide
different methods to access and retrieve information:

– definition(): provides a brief explanation of the meaning of the concept
represented by the synset.

– examples(): returns a list of example sentences that illustrate the use of
the words in the synset.

– lemmas(): returns a list of Lemma objects that represent the different
words in the synset. A Lemma object contains the spelling of the word,
the part of speech and the synset ID.

– hypernyms(): returns the synsets that represent more general concepts
that include the concept represented by the synset.

– hyponyms(): returns the synsets that represent more specific concepts
that are included in the concept represented by the synset.

� path similarity(): determines the similarity between two synsets by ex-
amining the length of the shortest path that connects them in the WordNet
DAG.

13
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� common hypernyms(): determines the synsets that are shared by two synsets,
which represent concepts that are more general and higher up in the WordNet
hierarchy.

2.2 Lexical Representations

Lexical representations in NLP refer to the way words and phrases are represented in
computational systems, which can be useful for further processing. For this, lexical
analysis consists of identifying the structure of text to segment it into its lexical
expressions. The segmentation can be done by words, sentences or even documents.
This is the first step to preprocess or normalise a text.

2.2.1 Tokenisation

Tokenisation is the process of breaking down a text into smaller units of meaning,
which are called tokens. Tokens are usually words, but they can also be sentences,
documents or even individual characters such as numbers or punctuation marks.
The main reason why tokenisation is vital is that it splits the text into a list from
which we can use statistical tools to draw insights.

The tokenisation techniques rely on the specific language to be analysed since
each language has unique challenges. Therefore, depending on the language, a par-
ticular technique will be used.

The most common approach is achieved by splitting text through whitespace.
Although whitespace-based tokenisation may work correctly for most cases, it is not
ideal if we do not want to split open compound words. Below, there is an example
for better understanding:

A token is a sequence of characters that are grouped together.
Tokens: |A|, |token|, |is|, |a|, |sequence|, |of|, |characters|, |that|, |are|, |grouped|,

|together|, |.|

Problems

Los Angeles and New York are located in the United States.
Tokens: |Los|, |Angeles|, |and|, |New|, |York|, |are|, |located|, |in|, |the|, |United|,

|States|, |.|

Notice that Los Angeles, New York and the United States refer to specific lo-
cations and each one should have been considered as a single token. Therefore,
whitespace-based tokenisation does not perform well in cases where tokens must
consist of multiple words which are separated by whitespace.

On the other hand, there are some languages that do not use whitespace such
as Chinese. Alternatively, character tokenisation can be used to cope with this cha-
llenge, altough there are other advanced techniques that we are not going to look
into. In this work, we are focused on English tokenisation.

14



Chapter 2. Language Normalisation 2.2. Lexical Representations

In reference to sentence tokenisation, punctuation plays a crucial role since it
delineates the end of a sentence and beginning of another one. Unfourtunately, this
still retains ambiguity as punctuation marks are also used for other purposes such
as abbreviations and decimal numbers.

Problems

Mr. Henry drinks 2.5 litres of water per day.
Sentence tokens: |Mr.|, |Henry drinks 2.|, |5 litres of water per day.|

Sentence tokenisation algorithms should not be simple punctuation-based.

Python:

Tokenisation can be implemented using regular expressions, although more com-
plex algorithms are required to overcome the problems mentioned above. This is
the reason why nltk.tokenize module is frequently used since it provides a wide
range of functions and classes for tokenising text. It contains the following methods:

� word tokenize(): tokenisation method by words which returns a list of tokens
(words).

� sent tokenize(): tokenisation method by sentences which returns a list of
tokens, in this case, sentences.

Regarding regular expressions and the basis of tokenistation, the findall()

module from the re library allow us to search for all occurrences of a pattern in
a given string and return a list of all matched substrings. For word tokenisation
purpose, we implement the following regular expression:

� []: a set of characters.

� \w: returns a match where the string contains any word characters (characters
from A to Z, digits from 0 to 9, and the underscorer character).

� +: quantifier of one or more occurrences.

A simple-based sentence tokenisation method can also be easily implemented
although it is not going to perform well due to other punctuation marks uses. For
this, we can use the compile() module to compile the regular expression pattern
into a regular expression object, which is then used to split the input text using the
split() method. This method splits the input text wherever the regular expres-
sion matches, and returns a list of the resulting substrings. The regular expression
we compile is the one which matches any punctuation marks followed by a space
character: ‘[.!?] ’.

2.2.2 Stop Words

Assuming that word tokenisation is performed, recall that tokens would be basically
words. These words are not distributed uniformly in the text, where there are
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important differences in their frequency use. Stop words refer to the words which
are commonly used and they do not provide any useful meaning for text processing.
Typical examples of stop words include determiners, coordinating conjunctions and
prepositions. All of them are the basis for articulating English language, which leads
to the overuse compared to the actual words that add the relevant differentiating
meaning. This is the reason why stop words removal is part of text normalisation.
The list of words excluded is known as a stop word list.

This phenomenon is known as Zipf’s law. Zipf’s law is a statistical distribution
in which the rank-frequency distribution is inversely related. It has several appli-
cations in biology species, cities, and of course, linguistics, where this relationship
was originally noticed.

To illustrate, we are going to use the Brown Corpus2, which was the first million-
word electronic corpus of English, created in 1961 at Brown University. This corpus
contains 500 text samples about 15 genres. NLTK has this categorised corpus avai-
lable as a list of words or a list of sentences, where each sentence is shown as a list
of words.

The main objective is to obtain the frequency of each word so that we could
test the Zipf’s law hyphotesis for this given corpus. To meet the goal, it is vital
to pre-process the corpus, which includes lowercasing, removing punctuation and
word-tokenisation. This can be easily done in Python using a list comprehension,
which is a syntactic construction to create a list from an existing list based on some
conditions. It shares some similarities with the mathematical set-buider notation.
Mathematically, let w be a word, W be the set of Brown corpus words and P be
the set of punctuation marks:

{lowercase(w) | w ∈ W,w /∈ P}

In Python, we have to mimic the structure, but we have to adapt it to the program-
ming language.

punctuations = list(string.punctuation)

tokens = [word.lower() for word in brown.words()

if not all(char in punctuations for char in word)]

The next step is to calculate the frequency of each word. FreqDist tells us the
frequency of each item in the text. In general, it could count any kind of observable
event. It is a distribution because it tells us how the total number of tokens in the
text are distributed across the vocabulary items. The output is a dictionary whose
values related to the frequency are sorted in decrease order. Most common() is a
method whose argument is the number of the most common tokens we want to ex-
tract. Applying this methodology some Python functions are defined in section (7)
to show the results.

2A corpus, or corpora in plural, is a collection of structured texts, which are often used to do
statistical analysis and hypothesis validations.
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Figure 2.4: Barplot of the 30 most frequent words in the Brown Corpus. Source:
Own elaboration (section (7)).

In this type of distribution, frequency declines sharply as the rank number in-
creases. Therefore, a small number of items appear very often, and a large number
rarely occur. If we focused on which are these words, we notice that the majority of
them are stop words. As previously mentioned, normalisation includes removal of
stop words. As a result of this process, dimensionality is strictly reduced. In fact,
calculating the cumulative frequency distribution of each word and their correspond-
ing percentage, we can see that only 133 tokens, mainly stop words, are needed to
account for half the Brown corpus number of words.

Frequency % of total words Rank
the 69971 6.905131 1
of 36412 3.593340 2
and 28853 2.847376 3

Table 2.6: Three most frequent words in Brown Corpus. Source: Own elaboration
(section (7)).

Mathematically, the frequency of the nth-word, fn, follows a distribution which
could be approximated by

fn ∼ 1

na
(2.2.1)

where a is a real positive number, generally slightly greater than 1.
According to Zipf’s law, the most common word occurs twice as often as the

second most frequent word, three times as often as the third most frequent word
and so on until the least frequent one. This can be easily verified in the Brown Cor-
pus. Out of slighly over one million total words, the word “the” represents almost
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7% of them with 69971 occurences. The half of this value approximately corres-
ponds with the frequency of the second ranked word “of”, which accounts for 3.5%
of words, followed by “and”, with nearly 3% of representation in the corpus.

To sum up, the word in the position n appears 1
n
times as often as the most

frequent one. This relationship can be visually tested using a log scale for both axis:
if Zipf’s law is satisfied, the result is a straight line.

Figure 2.5: Log-log scale plot of the 20000 most frequent words in the Brown Corpus,
regarding their rank. Source: Own elaboration.

In conclusion, the analysis of the Brown Corpus has provided evidence to follow
Zipf’s law. On the whole, the line could be considered approximately as a straight
line, despite existing some irregularities regarding the least frequent words as well
as those words whose log rank is around 2.

2.2.3 Documents representation

In natural language processing, various document representarion methods are used
when dealing with a corpus of documents. These methods can be token-based,
multitoken-based or character-based, and can be either sparse or dense representa-
tions. The motivation for this representations is that providing raw text data to a
machine is not enough. It is necessary to convert the text into a numerical format
that can be easily understood by the machine. This mathematical representation of
a set of documents is known as a document-term matrix.
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A document-term matrix is a matrix that describes the frequency of terms that
occur in a collection of documents. In this case, rows correspond to documents and
columns correspond to terms. However, it is also common to use the transpose,
which is known as term-document matrix. The entries of the matrix can be
computed with different methods, which are explained below. These matrices are
often stored as a sparse matrix object, which can be treated as though they were
matrices, but are stored in a more efficient format.

2.2.3.1 Bag-of-Words

The bag-of-words (BoW) set each entry of the document-term matrix equal to the
frequency of word occurrence within each document. This process is also known
as count vectorisation. Therefore, each document (row) can be represented by
a high dimensional sparse vector, where each component corresponds to the term
frequency of a unique word within a dictionary. In other words, the bag-of-words is
basically the absolute frequency fij of word j in the document i.

As mentioned in section (2.2.2), the most frequent words tend to be the less
relevant regarding semantics. To solve this issue, it is enough to remove stop words in
a preprocessing step. This also allows to reduce the dimension of the matrix and save
memory, but still the matrix would contain many 0s (sparse matrix), which can be
computationally challenging. This is why lowercasing, stemming or lemmatisation
are also carried out before constructing the BoW to reduce the dimension of the
vocabulary.

Another drawback is that it only takes into account the spelling. Therefore, a
word appearing with different meanings (polysemic) in the same document will not
be distinguised.

Alternative method:
Since absolute frequencies can be influenced by the length of each document, nor-
malisation could also be applied using relative frequencies. These are some possible
implementations:

� Respect the maximum frequency per document, denotaded by max
j∈J

fij :
fij

maxj∈J fij
.

� Respect the total number of occurrences per document:
fij∑

w∈W fiw
.

2.2.3.2 TF-IDF

Term Frequency (TF) - Inverse Document Frequency (IDF) is a numerical
statistic whose aim is to reflect the importance a word has in a document within
a corpus. It is a document representation where a penalty coefficient is applied to
common words in different documents. It is based on the following ideas:

1. The most frequent terms in a given document should have a higher relevance
than the rest of the words. This is implemented through theTerm Frequency
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(TF) as the relative frequency explained before

TFij =
fij∑

w∈W fiw
(2.2.2)

where fij denotes the number of ocurrences of term j in the document i. This
can also be defined using the logarithmically scaled frequency as:

1 + log (TFij) (2.2.3)

2. The terms occurring multiple times in different documents of the corpus do
not help to determine the unambiguous content of a text and should therefore
be penalised. To consider this, the Inverse Document Frequency (IDF) is
calculated

IDFj = log

(
N

nj

)
(2.2.4)

where N denotes the total number of documents and nj is the number of
documents containing the term j.

Therefore, the result TF-IDF is the combination of both criteria so that the
associated weights are directly proportional to the occurrences of the term in a
document and at the same time, it reduces the TF-IDF value for the term based on
the frequency across all documents. Combining the previous equations 2.2.2, 2.2.3
and 2.2.4, assuming a logarithmic scale, TF-IDF is obtained:

TF -IDFij = (1 + log (TFij))× IDFj =

(
1 + log

(
fij∑

w∈W fiw

))
× log

(
N

nj

)
(2.2.5)

Suppose there is a term that is present in all the documents of the corpus, that
is to say, nj = N . This would imply that IDFj would be 0 since the fraction of the
logarithm would be 1, and therefore, the value of TF -IDF is 0 too. This is how
terms which do not add useful information are completely penalised.

Currently, TF-IDF is one of the most popular weighting method, with well-
known libraries using it. Some practical examples are explained in section (7) for
better understanding of these methods.

2.2.4 N-Grams

Word level representations have limitations in capturing the relationship with adja-
cent words, hindering the ability to incorporate grammar and context. The bag-of-
words model, based on a Markov assumption, disregards word order and focuses
solely on token presence and frequency. This model predicts a phrase containing L
tokens with probability [1]:

P (w1, w2 . . . wL) =
L∏
i=1

P (wi) (2.2.6)
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However, there are many situations where sequences of words are relevant. For
this reason, another approach known as n-gram is very useful in NLP. An n-gram
is a sequence of n consecutive words or tokens in a text. In this case, the probability
would be predicted as:

P (w1, w2 . . . wL) =
L∏

i=n

P (wi | wi−1 wi−2 wi−n) (2.2.7)

Note that equation (2.2.6) is a particular case for n = 1 in equation (2.2.7). This
is also known as unigram. Another particular case are bigrams, which considers two
consecutive words. They distinguish between “lion king” and “king lion” [1]. Then,
a sentence of L tokens would yield L− 1 bigrams:

P (w1, w2 . . . wL) =
L∏
i=2

P (wi | wi−1) (2.2.8)

This can be useful to solve the problem of tokens, where United States was
considered as two separate tokens and using a bigram we would be able to capture
this relationship in a unique token.
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Chapter 3

Machine Learning

Machine Learning (ML) has emerged as a powerful discipline that enables computers
to learn from data and make predictions or decisions. In this chapter, we dive into
the fundamentals of ML, with a primary focus on supervised learning. We will ex-
plore the statistical learning theory, the trade-off between bias and variance, model
performance evaluation and model validation techniques.

Moving further, we distinguish between discriminative and generative classifiers.
Discriminative classifiers focus on learning the decision boundary between diffe-
rent classes, while generative classifiers model the underlying distribution of each
class. We provide a comprehensive explanation of logistic regression, support vector
machines (SVM), decision trees, gradient descent (GD), stochastic gradient des-
cent (SGD), boosting, gradient boosting, and XGBoost as prominent examples of
discriminative classifiers. Additionally, we explore Naive Bayes and Linear Discri-
minant Analysis (LDA) as examples of generative classifiers.

3.1 Introduction

Learning is the process of converting information and experience into knowledge and
understanding, which is measured by the ability to perform certain tasks indepen-
dently [23]. Machine learning is therefore a field dedicated to building methods that
let machines learn (learning process) so that they could carry out tasks without
assistance.

Machine Learning is a subcategory of Artificial Intelligence (see figure 3.1), which
refers to the simulation of human intelligence in machines, programmed to execute
tasks that would typically require human intelligence. The key difference is that
while AI is about creating machines that can reason and make decisions like humans,
Machine Learning is about developing algorithms that enable machines to learn from
data and improve their performance over time.

Mathematically, Machine Learning encompasses approximation theory, proba-
bility and optimization theory. The goal is to learn, which implies finding a function
that models the outputs appropiately according to the inputs.

h : X → Y
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Figure 3.1: Machine Learning as a subset of Artificial Intelligence. Source: [1]

This function h maps the space of inputs or characteristics X to the space of outputs
or responses Y . Such a function is called a hypothesis, a predictor or a classifier.
Another common name is binary classifier when dealing with problems with two
categories, which can be coded as 0 and 1, or −1 and 1.

Machine Learning can be divided into the following areas, which are also shown
in figure 3.1:

� Supervised Learning: it consists of learning from answers (labels) belonging
to a collection of data {xi, yi}ni=1 ⊂ X×Y . This input data allows the model to
adjust its weights until it has been fitted appropriately, considering a balance
between overfitting and underfitting. Depending on the type of output, there
are two types of supervised learning:

– Classification: labels correspond to a fixed set of categories. For ins-
tance, classifying a new as either fake or true.

– Regression: the output would be a real number. For instance, predicting
the cost of buying a house in the future.

Neural networks, Näıve Bayes, linear regression, logistic regression, random
forest and support vector machine (SVM) are common algorithms used in
these tasks.

� Unsupervised Learning: it determines clusters from data where there are
no labels present. These algorithms discovers hidden patterns of similarities
and differences. Not only is unsupervised learning used for grouping, but it is
also used to reduce the number of features in a model through the process of
dimensionality reduction.
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Principal component analysis (PCA), singular value decomposition (SVD) and
k-means clustering are methods used in unsupervised learning.

� Semi-Supervised Learning: it is a combination of the previous ones, that
is to say, the entire set is not labelled or it is expensive to label all the data.

� Reinforcement Learning: it focuses on maximising a reward or penalty
associated with an action or environment provided as input. The algorithms
are trained to encourage certain sucessive actions or behaviours. It is common
to use these techniques for games, where the reward may be winning the game
and a number of actions must to be taken before.

Regarding figure 3.1, Deep Learning is a subset of Machine Learning that in-
volves the development of neural networks with multiple layers that can learn and
make decisions based on complex data inputs. In essence, it is a type of machine
learning algorithm that uses artificial neural networks to simulate the function of the
human brain, allowing machines to learn from large amounts of data and improve
their performance over time.

3.2 Supervised Learning

As previously stated, supervised machine learning consists of learning from answers
(labels). Then, some concepts are introduced to build the basic framework.

Let X be the population of all possible data for a particular learning problem
(e.g., distinguish between fake and true news). From X , samples can be obtained in-
dependently with an unknown probability distribution P (X ). Therefore, a sampleX
of n elements or also known as instances can be represented as X = x1,x2, . . . ,xn.
It is clear that X ⊆ X . The input space X is modelled as a metric space Rd, in
which the dimension d refers to the attributes or features. These features can be:

� Categorical or qualitative variables represent characteristics or attributes
that can be observed and categorised but not measured numerically. They can
also be distinguised between:

– Ordinal: when there are a discrete categories or levels. For example,
quality = {poor, fair, good, excellent}.

– Nominal: describe categories that do not have a specific order to them.
For instance, gender = {male, female}.

� Numeric or quantitative variables represent numerical quantities that can
be measured or counted. These variables have meaningful numerical values and
allow for mathematical operations such as addition, subtraction, multiplication
and division. A further distinction could be made:

– Discrete: takes a finite number of values. Examples of discrete variables
include the number of siblings a person has, the number of cars in a
parking lot and the number of customers in a store at a given time.

24



Chapter 3. Machine Learning 3.2. Supervised Learning

– Continuous: can be a scalar in R and can be measured on a continuous
scale. Examples of continuous variables include length, weight, speed and
income.

This is a general classification of variables, which also includes the output (la-
bels). As mentioned in the introduction (3.1), when the output is categorial, the
problem is to classify, whereas a numerical output involves a regression problem.

Therefore, each instance can be seen as a d-dimensional vector, which together
with the whole sample X of n elements, a n× d matrix can be obtained. Each row
would be the vector xi corresponding to the i-th instance of the sample, and its
label yi could be stored in a vector Y .

X =


x1

x2

...
xn

 =


x11 x12 · · · x1d

x21 x22 · · · x2d
...

...
. . .

...
xn1 xn2 · · · xnd

 , Y =


y1

y2

...
yn

 (3.2.1)

We can also represent the sample as a labelled dataset D:

D = {(x1, y1), (x2, y2), . . . (xn, yn)} (3.2.2)

3.2.1 Statistical Learning Theory

In addition to the probability distribution P (X ), there is another unknown element
referred to as the target function. This function f : X → Y maps the input space
X to the desired output space Y . The goal in machine learning is to approximate
the function f with a function h from a large hypothesis space H, based only on the
knowledge of a finite sample as D in (3.2.2).

The evaluation of the best fit is measured by a loss function or also known as
cost function.

Definition 3.2.1. A loss function L : Y × Y → R+ is a function that measures
the mismatch between a prediction on a given input x ∈ X and its label y ∈ Y, and
associate a cost.

There are different loss functions, but we will focused on two approaches depen-
ding on the type of problem. For classification problems, an indicator loss func-
tion is commonly used:

L(h(xi), yi) = 1{h(xi )̸=yi} =

{
1 if h(xi) ̸= yi

0 if h(xi) = yi
(3.2.3)

Notation: 1A(x) denotes the indicator function. Then, if x ∈ A, 1A(x) = 1, and
1A(x) = 0 otherwise.

For regression problems, where the output is a real number, the square error
is used as a loss function:

L(h(xi), yi) = (h(xi)− yi)2 (3.2.4)
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Definition 3.2.2. The empirical or training error of a function h : X → Y is
the average loss L(h(xi), yi) over the training data.

R̂(h) :=
1

n

n∑
i=1

L(h(xi), yi) (3.2.5)

Therefore, substituting the loss function expression in (3.2.5) with the corres-
ponding forms used for classification and regression problems in equations (3.2.3)
and (3.2.4), respectively, it is obtained:

R̂(h) =
1

n

n∑
i=1

L(h(xi), yi) =
1

n

n∑
i=1

1{h(xi )̸=yi} (3.2.6a)

R̂(h) =
1

n

n∑
i=1

L(h(xi), yi) =
1

n

n∑
i=1

(h(xi)− yi)2 (3.2.6b)

The equation (3.2.6a) is the final expression of the empirical error for classifica-
tion problems, while (3.2.6b) is used in the regression case.

All things considered, the main objective was to find an approximation function
h among a setH close to the target function. Using the previous concept introduced,
we can formulate an optimisation problem whose aim is to minimise the empirical
error:

min
h∈H

R̂(h) (3.2.7)

However, if this was the only objective, the result would lead to overfitting
because the optimal solution would be any function h that satisfies

h(xi) = yi ∀i = {1, . . . , n} (3.2.8)

This is known as memorisation and it occurs when the function adapts too
closely to the seen data. As a result, there is no empirical risk, but the function will
perform poorly on unseen data.

R̂(h) =
1

n

n∑
i=1

L(h(xi), yi) =
1

n

n∑
i=1

L(yi, yi) = 0

Therefore, it is vital to consider how the classifier generalise the learning process
instead of memorising to be able to forecast unseen data. When a model generalises
well, it is able to capture underlying patterns and relationships from the training
data and apply them to make accurate predictions or classifications on new ins-
tances. Nonetheless, generalisation could lead to the opposite side, underfitting,
when the model has not been trained enough on the data. This also lead to a poor
classifier or prediction function since it would not predict accurately neither training
nor new data and it would only capture a general trend, which is not enough to fit
appropiately. These are the reasons why it is important to find a balance between
memorisation and generalisation, or, in other words, between overfitting and under-
fitting.
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Figure 3.2: Overfitting and underfitting in regression and classification models.
Source: [25]

To introduce the concept of generalisation risk, we assume that the training data
is considered as samples from a pair of random variables (X, Y ) with an unknown
probability distribution X × Y .

Definition 3.2.3. The generalisation risk explains how a classifier h ∈ H per-
forms on average on unseen data given a loss function L.

R(h) := E[L(h(X), Y )] (3.2.9)

Note that if we consider the unit loss function, the generalisation risk is the
probability of misclassifying a random instance of the distribution X × Y .

R(h) := E[L(h(X), Y )] = 1·P ({h(X) ̸= Y }) + 0·P ({h(X) = Y }) = P ({h(X) ̸= Y })

Instead of considering training data to be n instances {xi, yi}ni=1, the data can
be also modelled as sampling from n pairs of random variables (Xi, Yi), which are
identically distributed and independent copies of (X, Y ).

Proposition 3.2.1. The empirical risk R̂(h) is an unbiased estimator of the
generalisation risk R(h).

Proof. For this framework and a given classifier h, the empirical risk is now a random
variable, to which the expected value can be applied:

E[R̂(h)] = E

[
1

n

n∑
i=1

L(h(Xi), Yi)

]
lin
=

1

n

n∑
i=1

E[L(h(Xi), Yi)]

iid
=

n

n
E[L(h(X), Y )] = E[L(h(X), Y )] = R(h)

The linearity property of expectation and the independence and identically distri-
bution of (Xi, Yi) to (X, Y ) ∀i ∈ {1, . . . , n} help to conclude the proof.
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Definition 3.2.4. The Bayes classifier is a function that achieves the minimal
risk among all possible functions.

Mathematically, the Bayes classifier can be expressed as a maximum a posteriori
(MAP) estimador as:

h∗(x) = argmax
y

P (Y = y|X = x) (3.2.10)

Definition 3.2.5. The excess risk of a classifier h ∈ H compares the generalisa-
tion risk of this classifier to the Bayes classifier.

E(h) = R(h)−R(h∗) (3.2.11)

Note that the excess risk satisfies E(h) ≥ 0 by definition.

We can decompose the generalisation risk of a given classifier ĥ ∈ H into three
quantities:

R(ĥ) = R(ĥ)− inf
h∈H

R(h)︸ ︷︷ ︸
Estimation error

+ inf
h∈H

R(h)−R(h∗)︸ ︷︷ ︸
Approximation error

+ R(h∗)︸ ︷︷ ︸
Irreducible error

(3.2.12)

� Estimation error: it is the difference in performance between the classifier
ĥ and the best possible classifier within the class H.

� Approximation error: it measures how close the best generalisation error in
the space H is to the one associated with the Bayes classifier (the best among
all).

� Irreducible error: it is the generalisation error associated to the Bayes clas-
sifier, and therefore, it cannot be reduced.

There is a trade-off between estimation and approximation errors: they are in-
versely related, that is to say, when one increases, the other decreases. Here, there
are the two possible extreme situations:

1. The estimation error is reduced when the classifier ĥ ∈ H is close to the best
among the space H. This can be achieved by making H smaller, but this
would lead to an increase in the approximation error since the space H would
be too restrictive and it would be more difficult that the Bayes classifier or a
closed approximation could be contained in H.

2. On the contrary, the approximation error is reduced by increasing the size of
the space H so that the best within the class could be closer or even equal
to the Bayes classifier. This would imply an increase in the estimation error
since it would be complex in some situations to find the minimum within a
large space H.

This is the reason why it is vital to find a balance between them.
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3.2.2 Generalisation-Approximation Trade-off via the Bias-
Variance Analysis

The same analysis as before can be done to evaluate how close our predictions using
a function ĥ is to the response variable Y . This is known as the bias-variance
trade-off in statistics.

We assume that there is a function f that relates X and Y such that

Y = f(X) + ε where E[ε] = 0 (3.2.13)

This function f is what we called target function, and this is the relation h would
like to capture and learn, considering a perturbation factor ε. This can be assumed
since in the case X and Y were totally independent, there would not be nothing to
learn. There would not be any classifier better than just random guessing.

E[(Y − ĥ(X))2] = E[(Y − E[ĥ] + E[ĥ]− ĥ(X))2]

= E[(Y − E[ĥ])2] + E[(E[ĥ]− ĥ(X))2] + 2E[(Y − E[ĥ])(E[ĥ]− ĥ(X))]︸ ︷︷ ︸
=0

(3.2.14)

The last term of equation (3.2.14) is null by using the linearity of expectation
and then, the same term is subtracted, making all the term to be 0. In addition to
this, the hypothesis (3.2.13) could be use to develop the first term.

E[(Y−E[ĥ])(E[ĥ]−ĥ(X))] = (Y−E[ĥ])E[(E[ĥ]−ĥ(X))] = (Y−E[ĥ])(E[ĥ]− E[ĥ(X)]︸ ︷︷ ︸
=0

)

E[(Y − E[ĥ])2] = E[(f(X) + ε− E[ĥ])2]
= E[(f(X)− E[ĥ])2] + E[ε2] + 2E[(f(X)− E[ĥ])ε]︸ ︷︷ ︸

=0

= E[(f(X)− E[ĥ])2] + E[ε2]

(3.2.15)

Here, we have use the independence regarding the expectation together with the
null mean of ε.

E[(f(X)− E[ĥ])ε] = E[f(X)− E[ĥ]] E[ε]︸︷︷︸
=0

Now, we can substitute the previous expression (3.2.15) in (3.2.14) to obtain the
final result.
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E[(Y − ĥ(X))2] = E[(Y − E[ĥ] + E[ĥ]− ĥ(X))2]

= E[(Y − E[ĥ])2] + E[(E[ĥ]− ĥ(X))2] + 2E[(Y − E[ĥ])(E[ĥ]− ĥ(X))]︸ ︷︷ ︸
=0

= E[(f(X)− E[ĥ])2] + E[(E[ĥ]− ĥ(X))2] + E[ε2]
= E[(f(X)− E[ĥ])2︸ ︷︷ ︸

Bias2

] + E[(E[ĥ]− ĥ(X))2]︸ ︷︷ ︸
Variance

+ σ2︸︷︷︸
Noise

(3.2.16)

The idea of the bias-variance trade-off is to decompose the mean squared error
in terms of the following quantities:

� Variance: how much the learning method ĥ will move around its average
from the entire set H.

� Bias: corresponds to the systematic error caused by simplifying assumptions
to approximate the target function f(X). An example would be restricting
the space of classifiers H to linear functions to approximate a non-linear target
function f .

� Noise or also known as irreducible error since it is the error associated to
the Bayes classifier (the best among all possible classifiers). This noise comes
from the data.

From (3.2.16), we can do a similar analysis as before:

1. If our classifier is unbiased, which is usually achieved by complex models, it
can suffer from a large error if it is very variable. This is extremely related to
overfitting.

2. On the contrary, if our classifier is very stable (low variance), it can suffer from
a large bias, which would result in a large error. This is related to underfitting.

3.2.3 Model Performance

This subsection provides an overview of model validation, which plays a vital role
in machine learning, whether it entails choosing the most suitable model or evalua-
ting the performance of an existing model. Broadly speaking, numerous metrics
are established for supervise learning in both classification and regression domains,
which are described above.

3.2.3.1 Classification Metrics

In this work, we will focus on the simple case of binary classification, but the metrics
can also be extended to multiclass classification. We can assume that the two classes
are positive or negative. The results of a classification task can be simply visualised
using the confusion matrix, which can be shown in table 3.1.
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When dealing with classification, we have to do a previous analysis to know when
the data is balanced in terms of the classes. A balanced dataset is a dataset where
the number of samples in each category is approximately equal, that it to say, the
classes have a similar representation. Having a balanced dataset is often desirable
because it helps prevent bias towards one class during the training process. When
dealing with imbalanced datasets, where one class is significantly underrepresented
compared to others, machine learning models tend to have difficulty in learning
patterns and making accurate predictions for the minority class. This imbalance
can lead to biased models that favor the majority class and perform poorly on the
minority class. These are the reasons why accuracy is a success informative measure
when dealing with balanced sets, but more specific measures such as TPR, TNR
and FNR as indicated below are needed in case of imbalance.

Predicted Class
True label Positive Negative
Positive TP FN
Negative FP TN

Table 3.1: Confusion matrix for binary classification. Source: [1]

As shown in table 3.1, the confusion matrix divides the test samples into four
categories according to the predicted and true label:

� True Positives (TP): both the predicted and the true label are positive.

� True Negatives (NP): both the predicted and the true label are negative.

� False Positives (FP): the true label is negative whereas the predicted label
is positive.

� False Negatives (FN): the true label is positive whereas the predicted label
is negative.

These categories are also used to construct the following measures for model
performance. Regarding the question whether false positives or false negatives are
equally problematic, the answer really depends on the application and what we
are considering as positive and negative. Once an expert has adviced about the
importance and the implications of misclassifying, we could consider to give more
relevance to some specific metrics which punish more false or true negatives, accord-
ing to what had been advised.

Basic metrics

� True positive rate (TPR), recall or sensitivity: fraction of positive samples
actually classified as positive.

TPR =
TP

TP + FN
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� Positive predictive value (PPV) or precision: proportion of correctly
predicted positive instances out of all the instances predicted as positive.

TPR =
TP

TP + FP

� True negative rate (TNR) or specificity: fraction of negative samples
actually classified as negative.

TNR =
TN

TN + FP

� Negative predictive value (NPV): proportion of correctly predicted neg-
ative instances out of all the instances predicted as negative.

NPV =
TN

TN + FN

� False negative rate (FNR), miss rate or Type II error rate: proportion
of actual positive instances that are incorrectly classified as negative by a
classification model.

FNR =
FN

TP + FN

Summary metrics

� Accuracy: proportion of the samples correctly classified.

Accurary =
TN + TP

TP + FN + FP + TN

� F1 score: is the harmonic mean of precision and recall.

F1 =
2

1
Precision

+ 1
Recall

=
2× Precision×Recall

Precision+Recall
=

2TP

2TP + FP + FN

A higher F1 Score indicates a better balance between precision and recall, with
values ranging from 0 to 1. An F1 Score of 1 represents perfect precision and
recall, while a score of 0 indicates poor performance.

� Matthews correlation coefficient (MCC): it combines the basic measures
to provide a balanced assessment of the model’s performance.

MCC =
TP × TN − FP × FN√

(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)

MCC ranges from −1 to +1, where +1 indicates a perfect classification, 0 indi-
cates random performance, and −1 indicates a complete disagreement between
predicted and actual labels.
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� Area under the receiver operating characteristic curve (ROC AUC).
The ROC curve is a graphical representation that shows the trade-off between
the true positive rate (sensitivity) and the false positive rate (1 − specificity)
at various classification thresholds. It effectively demonstrates the model’s
ability to differentiate between positive and negative instances across varying
threshold settings. On the other hand, the ROC AUC (Area Under the Curve)
is a metric that quantifies the overall performance of the model by computing
the area under the ROC curve. It ranges from 0 to 1, with a higher value
indicating stronger discrimination and predictive capability. A score of 0.5
implies a random classifier, while a score of 1 signifies a flawless classifier [26].

In multiclass classification, distinguishing between multiple classes differs from
the binary classification scenario. Traditional performance measures such as sensitivi-
ty, specificity, F1-score, ROC curves, and precision-recall curves may not hold mean-
ing for the entire dataset. Nonetheless, accuracy remains a relevant and straight-
forward metric to evaluate performance. In this situation, analysing the confusion
matrix in multi-class settings provides a valuable tool for understanding errors and
gaining insights into the classification process.

A common approach in multiclass setting is to calculate metrics for each class
individually, treating it as the positive class and the rest as the negative class (one
versus all). There are different methods for averaging the results [26]:

� Macro average computes the metric for each class and then averages them,
but it may give too much importance to infrequent classes. It is an arithmetic
(unweighted) mean.

� Weighted average considers the metric weighted by the number of true
instances (also known as support).

� Micro average combines the results taking into account the number of ins-
tances for each class, that is to say, the number of true positives, true negatives,
false positives, and false negatives across all classes. It essentially computes
the proportion of correctly classified observations out of all observations, which
is the definition of accuracy.

3.2.3.2 Regression Metrics

Regression analysis is a statistical predictive modelling technique, which invest-
igates the relationship between a dependent (target) and independent variable(s)
(predictor) [29]. This technique is used for forecasting, time series modelling and
finding the causal effect relationship between variables [27]. In the regression do-
main, we have to compare the predicted output ŷi, which is a real number, to the
actual real-value yi [1]. Regression metrics mainly consist of variants of squared
errors:

� Mean Bias Error (MBE): is the average of the bias error, which is defined
as the difference between the predicted values and the real target values.

MBE =
1

n

n∑
i=1

(yi − ŷi)
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Note that MBE = 0 is a necessary but not a sufficient condition for a perfect
match since the positive and negative errors can cancel each other in cases
where the match is not perfect [27].

� Mean Squared Error (MSE): is the average squared error. Thus, it can take
positive or zero values, giving importance to large errors. Lower MSE values
indicate better model performance.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

In this case, note that MSE = 0 is a necessary and sufficient condition for a
perfect match.

� Root Mean Squared Error (RMSE): is the square root of MSE, providing a
measure of the average prediction error in the same units as the target variable.

RMSE =
√
MSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

� Mean Absolute Percentage Error (MAPE): calculates the average per-
centage absolute difference between the predicted and actual values, relative
to the actual values.

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
ŷi

∣∣∣∣
� Coefficient of determination or (R2): summarises the explanatory power
of the regression model. It ranges from 0 to 1, with higher values indicating a
better fit of the model to the data.

R2 = 1− SSEresidual

SSEtotal

= 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − y)2

where y = 1
n

∑n
i=1 yi. It is also worth mentioning that R2 can sometimes be

misleading, especially in the case of overfitting. A high R2 value does not
necessarily mean that the model will generalise well to new data.

� Adjusted R2: modification of the R2 coefficient to take into account the
number of predictors since overfitting increases as unnecessary predictors are
included.

R2 = 1−
SSEresidual

dfresidual
SSEtotal

dftotal

= 1−
∑n

i=1(yi−ŷi)
2

n−(p+1)∑n
i=1(yi−y)2

n−1

where p is the number of explanatory variables the model has.
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3.2.4 Model Validation

In the context of machine learning, model validation refers to the procedure of eva-
luating and assessing the performance as well as the generalisation capability of a
trained model using validation data. It helps to determine the model’s performance
on unseen data, offering valuable insights into its effectiveness and reliability.

Validation requires selecting a model with the right hyperparameter values. For
this, it is crucial that performance should not be measured using the same data
that was used for training. Therefore, the first step is to split the data into a
training set Dtrain and a validation set Dval. This can be done using the func-
tion model selection.train test split from the library sklearn (section (5.3)).
The process consists of training the model and then, evaluating this model in the
validation set for further improvement, as shown in Figure 3.3.

Figure 3.3: Model training and validation process. Source: [30]

The main drawback with this methodology is the requisite to have a large dataset
for splitting, which sometimes can be a difficult or expensive task. For this reason,
an alternative is k-fold cross-validation, in which the dataset is divided into k
folds of approximately equal size. The model is trained k times, each time using
k − 1 folds for training and one fold for validation to measure the error Ei

V al for a
fold i ∈ {1, ..k}. These metrics are then averaged across all the iterations to obtain
a single estimte of the validation error EV al.

EV al =
1

k

k∑
i=1

Ei
V al

This technique provides a more robust estimation of model performance and is
less dependent on a single data split. For the smallest datasets, a special case of
k-fold cross-validation is used: the leave-one-out cross validation, where only
one observation is omitted.

The process is illustrated in figure 3.7, which can be used to retrieve information
about model performance and also for hyper-parameters search.
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Figure 3.4: Illustration of 5-fold cross-validation. Source: Scikit-learn [83].

As mentioned in the previous section (3.2.3), it is important to have a ba-
lanced set. In some cases, we may want also want labels to be equally distri-
buted in the training and testing sets. This is called stratification, which can
be easily implemented by sklearn.model selection.StratifiedShuffleSplit()

or StratifiedKFold method for stratified k-fold cross-validation.
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3.3 Discriminative Classifiers

In this section, we are introducing discriminative classifiers that are used in the final
section (7). Discriminative classifiers focuses on modelling the decision boun-
dary or the posterior probability of the class labels given the input features P (Y |X).
Rather than explicitly modelling the joint probability distribution of the features
and class labels, discriminative classifiers directly learn the mapping function from
input features to class labels.

Discriminative classifiers require labelled training data to learn the mapping
function that directly predicts the labels from the input features. This learning
should consider unseen data when deciding the best parameters for the model. In
classification, a decision rule is required to assign instances to classes.

3.3.1 Logistic Regression

Logistic regression extends the ideas of linear regression since it can be seen as a
transformation on the linear combination β⊺x, which returns a probability in case of
classification.

Figure 3.5: Sigmoid function.
Source: [32].

This transformation is mainly based in the logit
or sigmoid function:

σ(x) =
1

1 + e−x
=

ex

ex + 1

Properties of the sigmoid function:

� Bounded in (0,1).

� lim
x→∞

σ(x) = 1

� lim
x→−∞

σ(x) = 0

� σ(x)′ = σ(x) (1− σ(x))

For a binary classification, then we assume the following framework yi ∈ {0, 1}
and explanatory variables xi1, . . . , xip , xi ∈ Rp ∀i ∈ {1, . . . , n}.

In this case, we want to model P (yi = 1|xi) . Since it is a probability, we cannot
model it as a linear function as this would return values outside of (0,1). This is the
reason why the logit function was used as well as odds ratio to end up modelling
their log-odds as a linear function:

P (yi = 1|xi)

P (yi = 0|xi)
=

pi
1− pi

(3.3.1)

Taking the logarithm, it can now take any real value, which can be modelled as an
instance of a generalised linear model (GLM).

log

(
P (yi = 1|xi)

P (yi = 0|xi)

)
= log

(
pi

1− pi

)
= β0 + β⊺xi (3.3.2)
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where β ∈ Rp.
It sufficies to solve for pi to obtain the value modelled by the logit or sigmoid

function as:

pi = P (yi = 1|xi) =
eβ0+β⊺xi

1 + eβ0+β⊺xi
=

1

1 + e−(β0+β⊺xi)
= σ (β0 + β⊺xi) (3.3.3)

Now, we can know the value of the odds ratio in equation (3.3.1) :

P (yi = 1|xi)

P (yi = 0|xi)
=

pi
1− pi

= eβ0+β⊺xi

The resulting classifier is ŷi = 1 if pi > c and ŷi = 0 if pi < c for a threshold c
fixed according to classification metrics (section (3.2.3.1)), which is usually 1

2
.

The problem has been reduced to estimating the parameters β0 and β given a
dataset.

Some advantages of logistic regression are that it can detect irrelevant variables
(βj = 0) and it also allows for non-linear terms by substituting with a new variable
(zk = x2

k).

The likelihood given a dataset can be written as:

L(x) =
n∏

i=1

P (yi|xi)

Taking the logarithm, we obtain the log-likelihood:

logL(x) =
n∑

i=1

log (P (yi|xi)) =
n∑

i=1

{
logP (yi = 1|xi) = log(pi) if yi = 1

logP (yi = 0|xi) = log(1− pi) if yi = 0

logL(x) =
n∑

i=1

{
log (σ (β0 + β⊺xi)) if yi = 1

log (1− σ (β0 + β⊺xi)) if yi = 0
(3.3.4)

This expression (3.3.4) can be rewritten as:

logL(σ(x)) =
n∑

i=1

(yi log (σ (β0 + β⊺xi)) + (1− yi) log (1− σ (β0 + β⊺xi))) (3.3.5)

As mentioned in section (3.2.1), the loss or cost function can be used to measure
how a model performs. In the case of logistic regression, we use the logarithmic
cost or cross-entropy function (3.3.5). This loss function can be used to optimise
the solution through iterative algorithms as gradient descent (see section (3.3.4)).
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3.3.2 Support Vector Machines

Figure 3.6: SVM finding the max-
imum margin separation between
labelled data. Source: Wikipedia
[33].

Support Vector Machines (SVM) is con-
sidered to be one of the most relevant machine
learning algorithm based on statistical learning
theory. This model was developed by Vladi-
mir Vapnik and his colleagues (Boser, Guyon
and Cortes). SVM is designed to map train-
ing examples to points in space with the ob-
jective of maximising the margin or width of
separation between different categories. This
margin represents the gap between the decision
boundary of the SVM and the closest data
points from each category. Once the map-
ping is established, new examples can be pro-
jected onto the same space and predicted to
belong to a specific category based on which
side of the margin they fall on. In other
words, the SVM classifies new examples by
determining which side of the gap they lie
on.

In the simplest case, given a binary labelled dataset Dlabelled, which corresponds
to {(xi, yi)}Ni=1, with xi ∈ X ⊂ R and yi ∈ {−1, 1}, being linearly separable. The
goal is to find a hyperplane that separates one class from the other so that we can
determine the maximum separation between labels. This problem can be formulated
as a linear programming problem:

Find the weights w ∈ Rd and a bias term b ∈ R such that

w⊺x− b ≥ 1 if yi = 1, w⊺x− b ≤ −1 if yi = −1 (3.3.6)

By convention, the quantities 1 and −1 are used, but any other quantity could be
accepted by rescaling w and b. In addition to this, the problem (3.3.6) is equivalent
to:

yi(w
⊺x− b)− 1 ≥ 0 ∀i ∈ {1, . . . , n} (3.3.7)

When the equality of these inequations is reached, that is to say, a point x that
satisfies w⊺x− b equal to 1 or −1 is known as support vector since it is closest to
the maximum-margin hyperplane. This hyperplane satisfies w⊺x− b = 0.

Denote the distance from the maximum-margin hyperplane to the closest posi-
tive and closest negative point by δ+ and δ−, respectively. Then, the margin of a
classifier is the sum of these two distances δ = δ+ + δ−.

Assume x to be the closset positive point to H = {x : h(x) = 0}. Then,

w⊺x− b = 1 and δ2+ = min
z

∥x− z∥2 such that h(z) = 0
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The latter can be formulated using Lagrange multipliers:

L(z, λ) = ∥x− z∥2 + λh(z) = ∥x− z∥2 + λ(w⊺z − b)

To solve the optimisation problem, differenciate as follows:

∇zL(z, λ) = 2(x− z) + λw = 0 (3.3.8)

∂

∂λ
L(z, λ) = w⊺z − b = 0 ⇒ w⊺z = b

By multiplying the first equation (3.3.8) by w⊺ and substituting then:

2(w⊺x−w⊺z︸︷︷︸
=b

) + λ∥w∥2 = 0 ⇒ 2(w⊺x− b︸ ︷︷ ︸
=h(x)=1

) + λ∥w∥2 = 0 ⇒ λ =
−2

∥w∥2

Once we have λ value, we can substitue it in equation (3.3.8):

x− z =
−λw

2
=

w

∥w∥2

Then, we have found the minimum distance to the closest positive label by applying
the norm to the previous equation:

δ+ = ∥x− z∥ =
1

∥w∥
The same argument can be applied to the distance closest to the negative label δ−
and then, the margin of this particular hyperplane is:

δ = δ+ + δ− =
2

∥w∥
To find the hyperplane with largest margin, we thus have to solve a quadratic

optimisation problem:

(P) min
w,b

∥w∥2
2

subject to yi(w
⊺x− b)− 1 ≥ 0 ∀i ∈ {1, ..n} (3.3.9)

The Lagrangian of this problem is

L(w, b,λ) =
1

2
∥w∥2 −

n∑
i=1

(λiyiw
⊺x− λiyib− λi) =

1

2
w⊺w−λ⊺Xw+ bλ⊺y+

n∑
i=1

λi

where X denotes the matrix with the yixi
⊺ as rows. Now, we can derive the condi-

tions on the gradient with respect to w and b of the Lagrangian as

∇wL(w, b,λ) = w −X⊺λ = 0 (3.3.10)

∂

∂b
L(w, b,λ) = y⊺λ = 0 (3.3.11)

If (3.3.11) is not satisfied, the problem is unbounded and cannot be solved.
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If y⊺λ = 0, (3.3.10) is a necessary and sufficient condition for a minimiser. To
obtain the Lagrange dual g(λ), we use the conditions (3.3.10) and (3.3.11):

g(λ) =

{ −1
2
λ⊺XX⊺λ+

∑n
i=1 λi if y⊺λ = 0

−∞ else

Since, it sufficies to maximise the Lagrange dual problem:

max
λ≥0

g(λ) ⇔ min
λ≥0

−g(λ)

Then, the dual optimisation problem to solve is:

(D) min
λ

1

2
λ⊺XX⊺λ− λ⊺e subject to λ ≥ 0 (3.3.12)

where e is the vector whose components are equal to 1.
Karush-Kuhn-Tucker conditions are introduced to determine b, since the solu-

tion of the dual problem only gives the weights w obtained from w = X⊺λ (equa-
tion (3.3.10)).

Theorem 3.3.1 (Karush-Kuhn-Tucker conditions). Given a primal problem

min
x∈Rn

f(x)

subject to h(x) ≤ 0

l(x) = 0

Assume x∗ and (λ∗,µ∗) are the primal and dual solutions to the previous pro-
blem, respectively. Then, the following conditions are satisfied:

h(x∗) ≤ 0

l(x∗) = 0

λ∗ ≥ 0

λ∗
ihi(x

∗) = 0, 1 ≤ i ≤ n

∇xf(x
∗) +∇xh(x

∗)⊺λ∗ +∇xl(x
∗)⊺µ∗ = 0

(3.3.14)

Then, combinaning the KKT conditions of the primal problem (3.3.9) with the
conditions of the Lagrangian, we obtain the following:

Xw − by − e ≥ 0

λ ≥ 0

λi(1− yi(w
⊺x− b)) = 0 ∀i ∈ {1, . . . , n}

w −X⊺λ = 0

y⊺λ = 0

(3.3.15)

We can know b from the third equation when λi ̸= 0. Now, we can find the
maximum margin hyperplane solving the previous equations since it provides the
weights w and the bias term b.
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Nevertheless, this method is not applicable when labels are not linearly separable
(our main assumption). To solve this problem, we introduce slack variables si to
allow some observations to be misclassified. The resulting problem would be:

(P) min
w,b

∥w∥2
2

+ µ

n∑
i=1

si

subject to yi(w
⊺x− b)− 1 + si ≥ 0 ∀i ∈ {1, ..n}

si ≥ 0 ∀i = {1, . . . , n}
where the parameter µ determines how much weight is given to misclassification,

that is to say, if µ is large, then si will be close to 0 and less observations would be
misclassified. The restrictions also allow for the i-th point to land on the wrong side
if si > 1.

Following a similar procedure as before, the Lagrangian of this problem can also
be retrieved.

Despite this new methodology, which can solve non-linearity issues in some cases,
it can also not be enough. For this reason, non-linear transformations can be per-
formed through the kernel trick. Note that the dual problem (3.3.12) depends only
on the dot product of the data points, the entries of the matrix XX⊺. The trick is
to perform non-linear separation by embedding data in higher-dimensional space
H:

Φ : Rp → H
This function Φ is known as feature map.

Definition 3.3.1. A function

k(·, ·) : Rp ×Rp → R

is a kernel function if ∀m ≥ 1 and x1, . . . ,xm ∈ Rp, the m ×m matrix K with
(K)ij := k(xi,xj) is symmetric and positive semi-definite.

Proposition 3.3.1. If k(·, ·) : Rp ×Rp defined as

k(x,y) = ⟨Φ(x),Φ(y)⟩H
is a kernel function.

Proof. For the proof, we use the definition of a kernel function (3.3.1) to prove that
the matrix K defined by Kij = k(xi,xj) is:

� Symmetric: use the commutative property of the dot product.

Kij = k(xi,xj) = ⟨Φ(xi),Φ(xj)⟩H = ⟨Φ(xj),Φ(xi)⟩H = k(xj ,xi) = Kji

� Positive semi-definite: for any v ∈ Rm

v⊺Kv =
m∑

i,j=1

viKijvj =
m∑

i,j=1

vik(xi,xj)vj =
m∑

i,j=1

vi⟨Φ(xi),Φ(xj)⟩Hvj

= ⟨
m∑
i=1

viΦ(xi),
m∑
j=1

vjΦ(xj)⟩H = ∥
m∑
i=1

viΦ(xi)∥2H ≥ 0
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Theorem 3.3.2 (Moore-Aronszajn theorem: Every kernel has an associated feature
map). If k(·, ·) is a kernel function, then there exists a Hilbert space H with dot
product ⟨·, ·⟩H such that

k(x,y) = ⟨Φ(x),Φ(y)⟩H ∀x,y ∈ Rp

By theorem (3.3.2), we can know work with a kernel instead of using the feature
map. Some useful kernel functions are:

� Radial basis function or also known as Gaussian kernel:

k(x,y) = e−
∥x−y∥2

2σ2

� Polynomial kernel of degree p:

k(x,y) = (1 + xx⊺)p

Now, it sufficies to implement this idea into the (3.3.12) formulation:

(D) min
λ

1

2

n∑
i=1

n∑
j=1

(λiyik(xi,xj)yjλj) +
n∑

i=1

λi subject to λ ≥ 0 (3.3.17)

Figure 3.7: Non-linear transformation and finding of a separating hyperplane in the
transformed space. Source: [36]

In summary, the key is to transform the data to a higher dimensional space so
that linearity separation could be achieved to classify.
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3.3.3 Decision Tree

Decision tree is a hierarchical data structure that represents data through a divide
and conquer strategy ([37] pp 2) and it is used for both classification and regression
tasks.

Figure 3.8: Decision Tree parts. Source: [39]

As depicted in table 3.8, the
structure of a decision tree begins
with a root node that lacks inco-
ming branches. From the root node,
branches extend to internal nodes,
also referred to as decision nodes.
These nodes evaluate the available
features to create subsets of data that
exhibit homogeneity, which are rep-
resented by leaf nodes or terminal
nodes. Each leaf node corresponds
to a distinct outcome within the
dataset, encompassing all the pos-
sible results. The maximum depth
is the maximum number of nodes
between the root note and the lower
end.

The tree structure is constructed in a recursive manner, where each node splits
the data into subsets based on a selected feature. This process continues until a
stopping criterion is met, such as reaching a maximum depth or when all the ins-
tances in a subset belong to the same class.

Once the decision tree is constructed, it can be used for classification or regre-
ssion tasks. For classification, each instance follows the decision path from the root
to a leaf node, and the class associated with that leaf node is assigned as the pre-
dicted class for the instance. For regression, the predicted value is determined by
averaging the target values of the instances in the leaf node.

Decision trees have several advantages. They are easy to interpret and visualise,
providing insights into the decision-making process. Decision trees can handle both
numerical and categorical features and can capture non-linear relationships in the
data. They can also handle missing values and outliers effectively.

However, decision trees are prone to overfitting, especially when the tree grows
too deep. Techniques like pruning, setting a maximum depth, or using ensemble
methods like random forests can help mitigate overfitting.
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3.3.4 Gradient Descent

Gradient descent is an iterative algorithm usually applied with a view to mini-
mising the loss or cost function.

xk+1 = xk + αk dk such that f(xk+1) ≤ f(xk)

The parameter αk is the learning rate and dk is the search direction. Gradient
descent is the method that takes the steepest descent:

dk = −∇f(xk)

Considering the Taylor expansion around xk:

f(xk + αk dk) = f(xk) + (xk + αk dk − xk)
⊺∇f(xk) +O(α2)

The rate of change in direction dk at xk is the derivative of this function at
α = 0.

df(xk + αk dk)

dαk

|α=0 = d⊺
k∇f(xk)

Then, we have a descent direction if d⊺
k∇f(xk) < 0. Gradient descent satisfies this

condition since −∥∇f(xk)∥2 < 0.

It is important to consider a good learning rate parameter so that the algorithm
do not progress very slow neither end up at a point with larger function value.
Armijo and minimisation rules are often used to determine this parameter.

Figure 3.9: Gradient descent on a series of level sets. Source: [41]

Another relevant decision is the termination criterion, which can be set at a
maximum number of iterations or when the value of the gradient reaches a threshold.
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3.3.4.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a variant of the traditional gradient des-
cent algorithm that performs updates on the model parameters based on a random
subset of the training data at each iteration. This implies a decrease in the use of
the memory and an increase in computational speed.

Let {(xi, yi)}ni=1 ∈ X × Y and a set of functions H = {hw : w ∈ Rd}, we want
to minimize the empirical risk

min
w∈Rd

1

n

n∑
i=1

fi(w) = min
w∈Rd

1

n

n∑
i=1

L(hw(xi, yi)) = min
w∈Rd

f(w) (3.3.18)

Note that f(w) is an estimator of the generalisation risk Eξ[fξ(w)].

EU [fU(w)] =
n∑

i=1

P (U = i)fi(w) =
1

n

n∑
i=1

fi(w) = f(w)

fU(w) is an unbiased estimator of f(w).
Then, SGD procedure focus on finding an unbiased estimator of the gradient.

The simplest SGD Algorithm 1, SGD with uniform sampling, consits of
picking uniformly at random one of the gradients ∇fi(w).

Data: Data {(xi, yi)}ni=1, xi ∈ Rd

begin
Initialise weights: w0 ∈ Rd.;
for k = 1, 2, . . . do

Compute an unbiased estimator gk of the gradient wk:

E[ gk|wk ] = ∇f(wk)

Take a step in the direction gk:

wk+1 = wk − ηkg
k

end

end
Algorithm 1: Stochastic Gradient Descent Algorithm. Source: [23]

This algorithm 1 can be extented to mini-batch sampling, which selects a small
random subset of data to compute the gradient and update the model parameters.
Then, we can formulate a new algorithm 2 for this particular case.

Following a similar reasoning as before, it is shown that ∇fU is an unbiased
estimator of ∇f .

EU [∇fU(w)] =
n∑

i=1

P (U = i)∇fi(w) =
1

n

n∑
i=1

∇fi(w) = ∇f(w)
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Data: Data {(xi, yi)}ni=1, xi ∈ Rd

begin
Initialise weights: w0 ∈ Rd.;
for k = 1, 2, . . . do

Draw a random subset I ∈ {1, . . . , n};
Update

wk+1 = wk − ηk
1

|I|
∑
i∈I

∇fi(w
k)

end

end
Algorithm 2: Stochastic Gradient Descent Algorithm. Mini-batch sampling.
Source: [43]

Figure 3.10: Gradient Descent and Stochastic Gradient Descent on a series of level
sets comparison. Source: [47]
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3.3.5 Boosting

Boosting (Freund and Shapire, 1997) is a machine learning emsemble technique1

whose main idea is to iteratively train a sequence of weak learners, where each sub-
sequent weak learner focuses on correcting the mistakes made by its predecessors. A
weak learner refers to a model that performs slightly better than random guessing
but is not highly accurate. It is typically characterised by having a limited pre-
dictive capacity and making relatively simple predictions. They are often combined
in ensemble methods as boosting to create a stronger learner. The training set for
constructing each classifier is obtained through weighted sampling, which allows ins-
tances that are misclassified in one iteration to be more likely to be selected in the
following iteration.

The original gradient boosting procedure consits of training a classifier C1(x)
with a subset E1 from the training set. To improve performance, it would have to
be forced to learn more in the difficult parts of the given feature space. To do so, we
create a new training dataset E2 by taking another subset of the training set with
the peculiarity that half of them must have been misclassified by C1(x). Now, we
use E2 to train the C2(x) classifier. Finally, we take all the elements of the training
set for which C1(x) ̸= C2(x), and train on them the last model C3. Finally, we
construct the assembly the final classifier C(x) using the majority voting criterion
between C1, C2 and C3.

The first successful boosting algorithm was the Adaptive Boosting, which is
summarised in Algorithm 3. It is mainly presented for binary classification.

Figure 3.11: Boosting algorithm classifiers. Source: [50]

1Ensemble methods leverage the power of multiple learning algorithms to achieve enhanced
predictive performance that surpasses what could be achieved by any individual algorithm alone.
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Figure 3.12: Boosting algorithm final classifier. Source: [50]

Data: Data {(xi, yi)}ni=1, xi ∈ Rd, yi ∈ {−1,+1}, M be the number of
iterations

Result: A final classifier C(x)
begin

Initialise weights for each observation: wi =
1

n
, i = 1, . . . , n;

for m = 1 to M do
Obtain a Classifier Cm(x), that minimises the weighted error εm

εm =
∑

i:yi ̸=Cm(xi)

wi

If εm ≥ 1
2
. END (αm < 0);

Calculate the weight of the Cm classifier:

αm =
1

2
log

(
1− εm
εm

)
Update the weights of the observations

wi := wie
−αmCm(xi)yi ∀i = {1, . . . , n}

Rescale the weights: wi =
wi∑n
j=1 wj

end
Final classifier:

C(x) = sign(
M∑

m=1

αmCm(x))

end
Algorithm 3: AdaBoost Algorithm. Source: [48]
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� A classifier as random guessing (εm = 0.5), would have weight 0.

� A perfect classifier (εm = 0) would have weight +∞.

� A wrong classifier, always misclassifying, (εm = 1) would have weight −∞.

The updated of the weights in Algorithm 3 can be interpreted as:

Figure 3.13: Classifier weight as a function of error.
Source: Own elaboration extracted from [48]

� If yi = Cm(xi), the weight
associated wi decreases:

wi := wie
−αm = wi

√
εm

1− εm

� If yi ̸= Cm(xi), the weight
associated wi increases:

wi := wie
αm = wi

√
1− εm
εm

It is observed that Ada-
Boost tends to overfit in the
presence of noise/outliers. This
can be attributed to the expo-
nential loss function used. The
costs of misclassification are ex-
ponential. A possible solution
could be to reduce the cost of misclassification by using a different loss function
such as the mean squared error or logit function.

3.3.5.1 Gradient Boosting

Gradient Boosting produces a prediction model in the form of an ensemble of
weak prediction models, typically decision trees. It is an ensemble learning method
that sequentially builds a series of models, each one correcting the mistakes of the
previous models through a loss function and gradient descent. This allows to find
better parameters in each iteration [42].

Gradient Boosting encompasses different boosting algorithms, including Ada-
Boost, as specific cases. It is a versatile technique that can be employed for both
regression and classification tasks, with AdaBoost designed for classification.

Let y ∈ R be the target variable and x be the vector of explanatory variables
with a joint probability distribution P (x, y).

The objective is to find a function F ∗ that minimises the expected value of a
given loss function L(y, F (x)), that is to say:
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F ∗ = argmin
F

E[L(y, F (x))] (3.3.19)

Gradient Boosting searchs for an approximation of (3.3.19) as:

F̂ (x) =
M∑
i=1

αihi(x) (3.3.20)

where hi(x) are functions belonging to the class H, which are usually trees.

To determine F̂ , a training sample {(x1, y1), . . . , (xn, yn)} is used.

A recursive greedy2 procedure is used, starting from a constant function F0:

F0(x) = argmin
α

n∑
i=1

L(yi, α)

Fm(x) = Fm−1(x) + argmin
h∈H

n∑
i=1

L(yi, Fm−1(xi) + h(xi))

To solve the previous problem, a maximum descent algorithm is used (see sec-
tion (3.3.4)), which moves in the direction of the gradient vector of the loss function
L but in the opposite sense.

Fm(x) = Fm−1(x)− αm

n∑
i=1

∇hL(yi, Fm−1(xi))

αm = argmin
α

n∑
i=1

L

(
yi, Fm−1(xi)− α

[
∂L(yi, F (xi))

∂F (xi)

]
Fm(x)=Fm−1(x)

)

This procedure is summarised in Algorithm 4.

Gradient boosting can be prone to overfitting because of the model capacity,
learning rate or the weak learner complexity. To mitigate overfitting, regularisa-
tion can be employed.

� Modify the model update rule.:

Fm(x) = Fm−1(x) + ν αm hm(x)

where ν is an adjustable parameter known as learning rate.

2A greedy algorithm makes locally optimal choices at each step with the aim of finding a global
optimum. It makes the best choice at each stage without considering the larger context or potential
consequences of that decision. The algorithm greedily selects the option that appears to be the
most advantageous at the current moment, without reconsidering or revising previous choices.
While this approach can often yield efficient solutions, it does not guarantee finding the optimal
solution in all cases.
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Data: Data {(xi, yi)}ni=1, xi ∈ Rd, yi ∈ R, M be the number of iterations
Result: A final model F (x)
begin

Initialise the model: F0(x) = argmin
α

n∑
i=1

L(yi, α);

for m = 1 to M do
Calculate the pseudo-residual:

wi = −
[
∂L(yi, F (xi))

∂F (xi)

]
Fm(x)=Fm−1(x)

∀i = 1, . . . , n

Train a base classifier hm(x) to the pseudo-residuals by using as
training sample {(xi, wi)}ni=1.;
Calculate the search step α by solving the following one-dimensional
optimization problem:

αm = argmin
α

n∑
i=1

L(yi, Fm−1(xi) + αhm(xi))

Update the model:

Fm(x) = Fm−1(x) + αmhm(x)

end

end
Algorithm 4: Gradient Boosting Algorithm. Source: [48]
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The model’s ability to generalise is greatly enhanced by using small values of
ν (ν < 0.1), despite the significant increase in computational effort associated
with them.

� Stochastic Gradient Boosting introduces randomness into the algorithm
to improve its performance and reduce overfitting. Unlike traditional gradient
boosting, which uses the full training set to grow each weak learner, stochastic
gradient boosting samples a subset of the training data at each iteration as it is
mainly based on SGD (see section (3.3.4.1)). This reduces the computational
cost as well as decreases overfitting.

A specific fraction f of the learning sample is chosen, where values of f ranging
from 0.5 to 0.8 yield satisfactory outcomes. Generally, a value of f = 0.5 is
commonly employed.

3.3.5.1.1 XGBoost

XGBoost (eXtreme Gradient Boosting) is a high-performance, adaptable and port-
able distributed gradient boosting library that has been optimised for efficiency. It
implements machine learning algorithms within the Gradient Boosting framework
[51]. XGBoost is is an open-source software library for C++, Java, Python, R,
Julia, Perl and Scala. Therefore, it has a large and active community, which has
contributed to its continuous development and improvement.

XGBoost incorporates regularisation techniques to control overfitting and im-
prove generalisation. It includes L1 and L2 regularisation terms which penalise the
complexity of the model. Regularisation can be defined as an application of Occam’s
Razor (also known as the principle of parsimony) in that the goal is to choose a
simpler hypothesis [1].

� Lasso Regularisation (L1 Norm): adds a penalty term to the loss func-
tion that is proportional to the absolute value of the model’s coefficients. It
encourages some of the coefficients to become exactly zero, effectively per-
forming feature selection. Due to this, the resulting models tend to be more
interpretable, indicating the most important features in the model.

wopt = arg min
w∈Rd+1

(Ltrain(h) + λ|w|) (3.3.21)

� Ridge Regularisation (L2 Norm): adds a penalty term proportional to the
squared value of the coefficients. By contrary, the coefficients tend to 0 , but
they are not equal to 0. This can be advantageous when dealing with highly
correlated features.

wopt = arg min
w∈Rd+1

(Ltrain(h) + λw⊺w) (3.3.22)

λ is known as the regularisation constant, which is normally selected using
the validation technique.
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What made XGboost so popular was the remarkable success in various machine
learning competitions [52] and real-world applications. Its excellent performance,
scalability and feature-rich nature make it a popular choice for data scientists and
practitioners working on predictive modelling tasks.

3.4 Generative Classifier

Generative Classifier learn a model of the join probability distribution P (X, Y )
on given input data X and their labels Y . Then, algorithms such as naive Bayes or
Linear Discriminant Analysis are used to calculate conditional probability P (Y |X)
and predict the most likely label.

Generative classifiers offer more than just predicting class labels: they also have
the capability to generate new samples based on the learned data distribution. This
feature makes generative classifiers valuable for tasks such as data synthesis or gen-
erating new instances that exhibit similarities to the original data.

3.4.1 Naive Bayes

Naive Bayes classifier is a simple probabilistic classifier based on Bayes’s rule
and an assumption of independence between the features or attributes.

Theorem 3.4.1 (Baye’s rule).

P (A|B) =
P (B|A)P (A)

P (B)

where A and B are events with P (B) ̸= 0.
P (A|B) is the posterior probability.
P (B|A) is known as the likelihood.
P (A) and P (B) are prior probabilities.

The aim is to model P (Y = y|X = x), which using Bayes’ rule (3.4.1):

P (Y = y|X = x) =
P (X = x|Y = y)P (Y = y)

P (X = x)

which under Naive Bayes assumption,

=

∏m
j=1 P (Xj = xj|Y = y)P (Y = y)

P (X = x)
∝

m∏
j=1

P (Xj = xj|Y = y)P (Y = y)

We want the maximum a-posteori to know how to classify, that is to say:

hBayes(x) = arg max
y∈{0,1}

P (Y = y)
m∏
j=1

P (Xj = xj|Y = y) (3.4.1)

The key is estimating the parameters of Naive Bayes: the prior class P (Y = y)
and the likelihood of each feature given the class P (Xj = xj|Y = y).
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The maximum likelihood of these estimates are:

P (Y = yi) =
count(yi)

n

P (Xj = k|Y = yi) =
count(Xji = k)

count(yi)

where count(Xji = k) refers to the number of instances that the attribute Xj takes
the value k and belong to the class yi. The problem is that this goes to 0 if it does
not exist such an instance. In this case, it would assign a probability 0, ignoring
the other attributes. To solve this issue, Laplace smoothing adds a pseudocount
parameter α > 0:

P (Xj = k|Y = yi) =
count(Xji = k) + α

count(yi) + α values(Xj)

where values(Xj) is the number of categories the attribute Xj has.

An alternative is to assume that continues values are distributed according to a
Gaussian distribution, and therefore, the probability can be computed plugging k
into normal density function:

P (Xj = k|Y = yi) =
1√
2πσji

e

(k−µji)
2

2σ2
ji (3.4.2)

where µji is the mean of the values in class i of attribute Xj and σji refers to the
variance.

3.4.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) was developed by Ronald Fisher to clas-
sify data. The key idea is to project data such that separation between classes is
achieved.

Assume binary classification with labels 1 and 2 and that there are p predictor
variables for each group:

xji ∈ Rp i ∈ {1, . . . , nj}, j ∈ {1, 2}
Then, the aim is to find a linear combination which maximises the ratio of varia-

bility between groups relative to the total variability.

Let v ∈ Rp. Note that v⊺xji is the projection of xji into a one dimensional
subspace, a line in direction v.

Now, we define some measure to proceed with the reasoning. Let xj be the mean
of class j and zj be the projected mean of class j. The relationship between them
is:

zj =
1

nj

nj∑
i=1

v⊺xji = v⊺

(
1

nj

nj∑
i=1

xji

)
= v⊺xj
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Figure 3.14: LDA maximising the component axes for class-separation. Source: [56]

One could think that |z1 − z2| is a good measure of separation, but the problem
relies that it does not consider the variance of the classes. This is the reason why
we consider the maximisation relative to the total variability.

To measure the spread around the mean, we consider the scatter or pooled
covariance matrix. The scatter for projected samples of group j is:

s2zj =

nj∑
i=1

(zji − zj)
2

Small s2zj means that projections of group j are closed to their projected mean
of the group. In the same way, we can also define the scatter matrices Sj for group
j before the projection and find the relationship with the projected one:

S2
j =

nj∑
i=1

(xji − xj)(xji − xj)
⊺

s2zj =

nj∑
i=1

(zji − zj)
2 =

nj∑
i=1

(v⊺(xji − xj))
⊺(v⊺(xji − xj))

=

nj∑
i=1

((xji − xj)
⊺v)(v⊺(xji − xj))

=

nj∑
i=1

v⊺(xji − xj)(xji − xj)
⊺)v = v⊺S2

jv

The within-class scatter matrix is defined as:

S2
W =

1

N −K

K∑
j=1

S2
j
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where N =
∑K

j=1 nj and K is the total number of groups that exists. For binary
classification, it would be:

S2
W =

1

n1 + n2 − 2
(S2

1 + S2
2)

Then, the relationship with projection is:

s2z =
1

N −K

K∑
j=1

s2zj =
1

N −K

K∑
j=1

v⊺S2
jv = v⊺S2

Wv

In the same way, the between-class scatter matrix is:

S2
B = (x1 − x2)(x1 − x2)

⊺

which measures the separation bwteen the means of two classes before projection.
The separation between the projected means can be rewritten as:

(z1 − z2)
2 = (v⊺x1 − v⊺x2)

2 = v⊺(x1 − x2)(x1 − x2)
⊺v = v⊺S2

Bv

Thus, our objective is to find v ∈ Rp such that zji = v⊺xji ∈ R maximises
the separation between projected classes relative to the the variance within each
projected class:

max
v∈Rp

(z1 − z2)
2

s2z
= max

v∈Rp

(v⊺(x1 − x2))
2

v⊺S2
Wv

= max
v∈Rp

v⊺S2
Bv

v⊺S2
Wv

(3.4.3)

Note that we need to assume that S2
W is symmetric positive definite or we cannot

apply LDA. This also implies that we need to have enough data points.

The rule for classification consists of assigning a new observation x∗ to class 1
when its projection is closer to the projected mean of class 1 z1 than to z2:

(v⊺x∗ − z1)
2 < (v⊺x∗ − z2)

2

⇔ z21 − 2z1v
⊺x∗ < z22 − 2z2v

⊺x∗

⇔ z21 − z22 < 2(z1 − z2)v
⊺x∗

(3.4.4)

Proposition 3.4.1. For any symmetric positive definite p×p matrix S and non-zero
u ∈ Rp. Then, for any non-zero v ∈ Rp

max
v ̸=0

(v⊺u)2

v⊺Sv
= u⊺S−1u

and the maximum is achieved for v = S−1u

Proof.

(v⊺u)2 = (v⊺S
1
2S− 1

2u)2 = ((S
1
2v)⊺(S− 1

2u))2
C-S

≤ (v⊺Sv)(u⊺S−1u)

By Cauchy-Schwartz (C-S), we also know that the equality is attained for v =
S−1u.
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Theorem 3.4.2 (Fisher’s Linear Discriminant Analysis). Assuming x1 ̸= x2 and
S2
W is symmetric positive definite. The maximiser of (3.4.3) is

v := S−1
W (x1 − x2)

Proof. The proof relies on applying the proposition (3.4.1) setting u = x1 − x2 so
that the maximiser is v = S−1

W (x1 − x2)

Since SW is positive definite, we can simplify the classification rule (3.4.4):

z1 − z2 = v⊺(x1 − x2) = (x1 − x2)
⊺S−1

W (x1 − x2) > 0

Then, the classification rule is simplified to

Assign to class 1 if
1

2
(z1 + z2) < v⊺x∗
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Chapter 4

Applications

Communication is an essential aspect of human life, as it allows us to convey in-
formation, express emotions and ideas. Language serves as a fundamental tool for
communication, providing a common ground for understanding between individuals.
However, when it comes to interacting with computer systems, the challenge of lan-
guage comprehension arises.

Fortunately, Artificial Intelligence (AI) provides a solution, specifically in the
form of Natural Language Processing (NLP), which empowers computer systems
to understand and interpret this information. NLP enables systems to grasp not
only the literal meaning of text but also to recognise sentiments, tones, opinions
and other elements that contribute to meaningful conversations, reducing the gap
between humans and machines.

Figure 4.1: NLP taks and applications. Source: [57].

This chapter aims to provide a comprehensive overview of the applications of
NLP. By leveraging NLP techniques, organizations can enhance communication,
improve information retrieval, conduct sentiment analysis and augment decision-
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making processes across diverse domains. As NLP continues to advance, it promises
to reshape industries, transform customer experiences and empower individuals and
organizations with valuable insights derived from the vast amount of textual data
available today. We will discuss the main core applications NLP has, but these have
a wide variety of purposes through different industries. Some of these applications
are shown in figure 4.2.

While the applications of NLP are vast and promising, the subsection (4.7) also
acknowledges the challenges and limitations associated with its implementation.
Ethical considerations such as privacy, bias and fairness in language processing sys-
tems need to be carefully addressed. Additionally, the scalability, accuracy and
robustness of NLP algorithms pose ongoing research and development challenges.

4.1 Text Classification

Text Classification (TC) is a core task of text-mining whose main goal is to as-
sign documents to one or even more categories in some cases. The most common
approach to building classifiers is through supervised machine learning whereby clas-
sification rules are learned from examples [1].

Text classification involves several steps, including document representation, fea-
ture selection, the application of a machine learning classifier and the evaluation of
classifier performance. Feature selection can utilise various representations, such as
morphological, lexical, syntactic or semantic features discussed earlier.

Given a set of n labelled documents, Dlabelled, the initial step is to construct
representations of these documents in a feature space. The typical approach is to
employ a bag-of-words technique with TF-IDF (Term Frequency-Inverse Document
Frequency) to create document vectors, denoted as xi, along with their correspond-
ing labelled categories, yi.

Several supervised machine models are trained and evaluated their performance
on unseen data following the procedure indicated in section (3.2.4). Some of these
machine learning algorithms used have been explained in section (3), but there are
also many others such as K-nearest neighbour, random forest and neural networks.

This process is summarised in Algorithm 5.

According to the number of labels, we can distinguish:

� Binary classification: there are only two distinct categories or labels taken
into account, where each element can be assigned exclusively to one category or
potentially belong to both categories simultaneously (overlapping or fuzzy
binary classification).

� Multiple classification: each item is classified into one of at least three
categories. It may be decomposed into binary classification tasks as many as
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Data: A set of documents Dlabelled

Result: A trained model h(x)
begin

Preprocess documents;
Create document representations xi;
Split into train, validation, test sets;
for xi ∈ X do

Train machine learning classifier model on train set;
Tune model on validation set;

end
Evaluate tuned model on test set;

end
Algorithm 5: Text Classification Pipeline. Source: [1]

Figure 4.2: Identification of spam emails by text classification. Source: [60].

categories [59].

According to the number of labels an item can be assigned, there are two types
of classification, which have been mentioned previously:

� Hard classification. There is no overlapping between the categories, mean-
ing that each element belongs exclusively to one category and does not share
any characteristics with other categories.

� Soft classification. There is overlapping between the categories, that is to
say, at least one item is classified into more than one category.

Depending on whether any nested category is allowed, we can distinguised:

� Flat classification: There is no inherent hierarchy among the potential ca-
tegories to which the data can be assigned.

� Hierarchical classification. Documents are organised in a hierarchical struc-
ture with multiple levels of categories. Due to nesting, the resulting final
classification will depend on the path and decisions made beforehand, which
makes this process more challenging.
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4.1.1 Sentiment Analysis

Textual data presents an opportunity to distinguish between objective and subjec-
tive documents. Objective documents primarily focus on describing specific facts
or situations, while subjective documents are driven by the feelings, opinions and
emotions expressed by the author regarding a particular issue.

The presence of subjective documents sparked the idea and subsequent necessity
to analyse the population’s reactions to a certain entity, subject or factor. This
analysis aims to gather valuable insights and inform decision-making processes. By
understanding the sentiments and emotions expressed by the population, it becomes
possible to make informed and appropriate decisions.

Sentiment analysis involves evaluating language to determine if expressions
are favorable, unfavorable or neutral, and to what degree. For this, both objective
and subjective aspects are considered, which include the impact emotions have on
our communication.

Sentiment analysis is heavily influenced by the predefined degrees or catego-
ries. As a result, subjectivity and the multitude of connotations associated with
these categories make this task highly complex. For instance, the Mehrabian and
Rusell model decomposes human emotions into 3 dimensions, which are part of
the PAD model:

� Pleasure-Displeasure Scale: refers to the level of enjoyment or positive expe-
rience. High pleasure signifies a state of positive emotions, contentment or joy,
while low pleasure indicates a lack of enjoyment or negative emotions.

� Arousal-Nonarousal Scale: represents the intensity of an emotional response
or the degree of alertness and excitement one feels. High arousal is associated
with heightened physiological responses, increased heart rate and a sense of
being energised or activated, while low arousal indicates a state of calmness
or relaxation.

� Dominance-Submissiveness Scale: measures the dominion of an emotion over
others. High dominance indicates a feeling of being in charge, while low dom-
inance suggests a sense of being vulnerable or controlled by others or circums-
tances.

The Affective Norms for English Words (ANEW) by Bradley and Lang are a
commonly used set of 1,034 words characterised on these dimensions.

By contrast, Robert Plutchik designed a wheel of emotions (see figure 4.3)
considering 8 primary bipolar emotions: joy versus sadness; anger versus fear; trust
versus disgust; and surprise versus anticipation. Like colors, primary emotions can
be expressed at different intensities and can mix with one another to form different
emotions [62]. The Plutchik Wheel also includes secondary emotions, which are
formed by combining the primary emotions. For example, blending joy and trust
can result in the secondary emotion of love. Similarly, blending fear and surprise

62



Chapter 4. Applications 4.2. Text Clustering

Figure 4.3: Plutchik’s wheel of emotions. Source: [62]

can lead to the secondary emotion of awe.

Sentiment analysis procedure is mainly based on a set of words that describe
emotional states and vectorise them with the dimensional values of the emotional
state model. When analysing a document, the frequency of these words associated
with specific emotional states are taken into account. By summing up the scores
of these words, an overall sentiment score is obtained, indicating the sentiment
expressed in the document.

4.2 Text Clustering

Text clustering is the most common application of unsupervised learning and it
is used to group similar textual documents together based on their content or other
features.

The procedure involves a data preprocessing step and text is vectorised as ex-
plained in section (2). Then, a selected clustering algorithm is applied to group
similar documents based on similarity or distance metrics. These algorithms can
be: Latent Dirichlet Allocation (LDA), k-means and hierarchical clustering.
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In case of using k-means clustering, it is important to determine the vale of k,
that is to say, the number of clusters exists within a corpus. For this purpose, the
elbow method is frequently used. In addition to this, the metric used is another de-
cision to make. Euclidean, Manhattan or Chebyshev distance are some posibilities
together with cosine similarity.

This methodology is summarised in Algorithm 6.

Data: A set of documents Dunlabelled

Result: k text clusters
begin

Preprocess documents;
Create document representations xi;
for values of k do

Apply k-means algorithm;
end
Choose best k-value;

end
Algorithm 6: k-means text clustering pipeline. Source: [1]

4.2.1 Topic Modelling

Topic modelling is a technique used to uncover latent topics or themes present in
a collection of documents. Intuitively, given a document about a specific topic, one
could expect particular words to appear in that document more or less frequently.
In the age of information, it is very helpful for organising, summarising and unders-
tanding large collections of text.

One of the most commonly used algorithms for topic modelling is Latent Di-
richlet Allocation (LDA), which assumes two principles:

� Every document is a mixture of topics.

� Every topic is a mixture of words. Note that some words may be shared
between topics due to polisemy.

LDA is a mathematical method for estimating both of these at the same time:
finding the mixture of words that is associated with each topic, while also determin-
ing the mixture of topics that describes each document (see [21], Chapter 6). For this
purpose, LDA decomposes a document-term matrix into a lower-order document-
topic matrix and topic-word matrix. The reason why LDA does better disambigua-
tion of words and identification of topics is a stochastic, generative model approach,
which assumes topics to have a sparse Dirichlet prior.

A k-dimensional Dirichlet random variable θ has the following probability dens-
ity:

P (θ|α) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

θα1−1
1 · · · θαk−1

k
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where α ≥ 0.

Another older technique is Latent Semantic Analysis (LSA). It is a mathem-
atical approach that applies Singular Value Decomposition (SVD) to a matrix
representing the term-document relationships to uncover the underlying semantic
structure. This dimensionality reduction helps to identify patterns, and similarity is
measured by the cosine distance. It is vital that SVD transforms the document-term
matrix into a document-topic matrix and a topic-word matrix.

4.3 Machine Translation

Machine translation (MT) refers to the process of translating text from a source
language to a different target language [1]. It aims to bridge language barriers and
facilitate communication between different language speakers. Machine translation
focus on preserving both the meaning of text and the natural sounding.

The evaluation of Machine Translation is commonly conducted using the BLEU
(BiLingual Evaluation Understudy) score. BLEU is a metric designed to automat-
ically assess the quality of machine-translated text. The score ranges from 0 to 1,
with a higher score indicating a better quality of machine translation. The BLEU
score is obtained by comparing machine-translated output against human-created
translations, enabling researchers and practitioners to gauge the accuracy and flu-
ency of the machine translation system.

As mentioned in section (1.2), the need for machine translation played a sig-
nificant role during World War II, which made NLP research arise. We can also
distinguish three periods, according to the history of NLP:

� Rule-based Machine Translation (RBMT): 1970-1990

� Statistical Machine Translation (SMT): 1990-2010

� Neural Machine Translation (NMT): 2010-Present

4.3.1 Rule-based Machine Translation

Rule-based Machine Translation stands out from other methods as it incorpor-
ates extensive linguistic information about both the source and target languages.
One of the first types RBMT was dictionary-based, which is a direct translation
of each word by a bilingual dictionary. This method could be improved by translat-
ing whole sentences instead of word-by-word to take into account the syntactic or
semantic context.

However, RBMT was improved by leveraging morphological and syntactic rules,
as well as semantic analysis, in order to achieve accurate translations. The funda-
mental approach of RBMT involves establishing a connection between the structure
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of the input sentence and the structure of the output sentence. This type of trans-
lation is used mostly in the creation of dictionaries and grammar programs

To accomplish this, RBMT utilises several components, including a parser and
analyser for the source language. These components analyse the grammatical struc-
ture of the input sentence, extracting relevant linguistic information. Additionally,
a generator for the target language is employed to construct the desired output sen-
tence based on the analysed structure. The transfer lexicon plays a crucial role in
the translation process, serving as a resource that maps words and phrases from the
source language to their appropriate translations in the target language.

4.3.2 Statistical Machine Translation

Statistical Machine Translation (SMT) is characterised by its adoption of a
probabilistic approach to facilitate the mapping from one language (source) to an-
other (target). The underlying assumption in SMT is that each word in the target
language corresponds to a translation of the source language words, with certain
probabilities assigned to these mappings. By selecting the words with the highest
probabilities, the system aims to generate the most optimal translation.

Word alignment plays a crucial role in these statistical models and refers to
the task of mapping words between a source language sentence and its correspond-
ing translation in the target language.

The model can be formulated as an optimisation problem [65] applying Bayes’s
Rule (theorem (3.4.1)):

Ŷ = argmax
Y

P (Y | X) = argmax
Y

P (X | Y )P (Y ) (4.3.1)

where X refers to the source language and Y to the target language.

This decomposition allows to split the problem into subproblems:

� P (X | Y ) is the translation model (faithfulness), which defines a range of
potential translations for a given target sentence. Additionally, the model
assigns probabilities to these translations, reflecting their relative accuracy or
correctness compared to each other.

� P (Y ) is the language model (fluency), which reflects the model’s estimation
of how well each sentence captures the characteristics and fluency of the target
language.

� The argmax search process through the space of possible target translations
is known as decoding. Decoding for SMT is NP-hard1.

1NP-hard (nondeterministic polynomial-time hard) is a classification used in computational
complexity theory to describe problems that are at least as hard as the hardest problems in the
complexity class NP (nondeterministic polynomial-time). A problem is considered NP-hard if any
problem in NP can be reduced to it in polynomial time.

66



Chapter 4. Applications 4.3. Machine Translation

Online translation tools as Google Translate was primarily driven by the stat-
istical method, but now, it has transitioned to neural machine translation (see fig-
ure 4.4).

Figure 4.4: Human raters assess the quality of translations for a given source sen-
tence by comparing them. The raters assign scores ranging from 0 (nonsense) to 6
(perfect translation). Source: [66]

4.3.3 Neural Machine Translation

Despite these challenges, machine translation has made significant progress in re-
cent years, driven by advancements in deep learning and neural network encoder-
decoder architectures. Thus, Neural Machine Translation (NMT) employs arti-
ficial neural networks to predict the probability of a sequence of words. Unlike tra-
ditional methods that focus on individual words or phrases, NMT models consider
entire sentences as a whole in a unified framework. By utilising neural networks,
NMT systems aim to capture the context, grammar and semantic information of
the source language to generate accurate and fluent translations in the target lan-
guage. This integrated modelling approach enables NMT to produce more coherent
and contextually appropriate translations compared to previous machine translation
techniques.

Analysing sentence-level translation, NMT model can be viewed as a sequence-
to-sequencemodel. Let x = {x1, . . . , xS} be a source sentence and y = {y1, . . . , yT}
be a target sentence. By using the chain rule, the conditional distribution can be
factorised as [67]:

Pw(y = y|x = x) =
T∏
t=1

Pw(yt|y0, . . . , yt−1, x1, . . . , xS) (4.3.2)
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where each translated word yt depends on previous translated words y1, . . . , yt−1

from the source sentence x as well as the parameters w of the model.

As mentioned before, the encoder-decoder framework consits of four fundamental
elements:

� Embedding layers: transform input data, such as words, into continuous vector
representations called embeddings, which can be effectively processed by the
neural networks.

� Encoder networks: takes the source embeddings and encodes it into hidden
continuous representations or states. The encoder typically consists of recur-
rent neural network (RNN) layers:

ht = RNNENC(xt,ht−1)

which is iteratively applied until we obtain the final stage hS.

� Decoder networks: takes the encoded representation (final stage hS) from the
encoder and generates the translated target language sentence. It operates in
a sequential manner, generating one word at a time based on the previously
generated words and the encoded source sentence.

� Classification layer: predicts the distribution of target tokens. It is usually
a linear layer with softmax activation function to ensure that we obtain a
probability.

softmax(z) =
ez∑V
i=1 zi

where V is the size of the vocabulary of the target language.

Figure 4.5: An overview of the NMT architecture (encoder-decoder framework).
Source: [67]

An example of NMT is DeepL Translator, which is mainly based on Convolu-
tional Neural Networks (CNN).
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4.4 Question Answering

Question answering (QA) is the NLP task that focuses on developing systems
capable of automatically answering questions posed by users in natural language.
QA systems aim to understand the meaning and intent of the questions and provide
accurate and relevant answers.

Question answering is a complex procedure involving several steps. It begins
with retrieving relevant documents, followed by extracting valuable information from
these documents. Next, potential answers are suggested and evaluated based on sup-
porting evidence. Finally, a concise text response in natural language is generated
as the answer.

Figure 4.6: A natural language question answering system takes questions in natural
language and returns a concrete answer. Source: [69]

There are different approaches to question answering:

� Closed-domain QA: focuses on answering questions within a specific topic.
The system is designed to have in-depth knowledge about a limited set of
topics.

� Open-domain QA: aims to answer questions across a wide range of topics
and does not have a specific limitation to a predefined domain. These systems
are designed to understand and generate answers based on general knowledge
or information available on the web.

Regarding QA methodology, the first step corresponds to question decomposition
to form a query. This query formulation is a list of tokens or keywords that
are send to an expert system to produce answers. Another approach is query
reformulation, which consists of applying certain rules to rephrase the query so
that it may look like a substring of possible answers. Here are some examples from
[70]:

Wh-word did A verb B −→ A verb+ed B

Where is A −→ A is located in
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4.4.1 Information Retrieval Based

The objective of question answering using information retrieval is to respond to
a user’s question by locating brief text sections from the web or another large collec-
tion of documents. Web-based QA systems as Google Search use this methodology.

After having formulated the query, it is mapped into a bag-of-words or TF-IDF to
retrieve relevant documents and sections within them. Then, the system generates
the final answer which can be the most relevant sentence or a combination between
multiple passages.

4.4.2 Knowledge-Based QA

Knowledge-Based QA is an approach that relies on structured knowledge bases
to provide answers to user questions. Semantic parsing is employed to transform
questions into relational queries that can be executed on a comprehensive database.
These systems are known as semantic parsers and the database can be a full rela-
tional databse or knowledge base of RDF (Resource Description Framework) triples.
A semantic triple or RDF triple is a set of three entities that codifies data into the
form of subject-predicate-object.

DBpedia is an example of a free semantic relation database that contains over
9.5 billion RDF in multiple languages. The extraction of this content is made from
Wikipedia.

4.4.3 Automated Reasoning

Automatic reasoning question answering (QA) is an approach that focuses on
answering questions by performing logical inference and reasoning on structured
knowledge or information. Automatic reasoning is a field of artificial intelligence
that involves applying logical rules and inference mechanisms to derive answers
based on the given question and the available knowledge. QA systems can improve
their answer hypotheses by generating a collection of first-order logic clauses that
augment semantic relations and the retrieved evidence.

IBM Watson’s DeepQA is a QA system developed by IBM that incorporates all
these three methodologies: IR-based, knowledge-based and automated reasoning. It
gained significant attention when it competed and won against human contestants
on the quiz show Jeopardy! in 2011. DeepQA continues to evolve, with ongo-
ing research and development to enhance its capabilities in understanding complex
questions, handling ambiguity, and providing accurate and insightful answers.

Mean Reciprocal Rank (MRR) is a measure to evaluate question answering
performance. The MRR is calculated as the average reciprocal rank (RR) of the
first correct answer. The reciprocal rank of a query response is the multiplicative

70



Chapter 4. Applications 4.5. Summarisation

inverse of the rank of the first correct answer [71].

MRR =
1

N

N∑
i=1

1

ranki
(4.4.1)

where ranki refers to the rank position of the first relevant document for the i-th
query. If no correct answer was returned in the query, the reciprocal rank is 0. An
outstanding performance is set at exceeding MRR = 0.83.

4.5 Summarisation

Text Summarisation consists of identifying the most relevant information in a
document or group of documents and generating a concise and coherent summary.
Due to the exponential growth of textual content on the Internet and in various
archives such as news articles, scientific papers, and legal documents, Automatic
Text Summarisation (ATS) is gaining significant importance. The high volume of
textual content makes manual text summarisation a time-consuming, labor-intensive
and costly process. In fact, with such a vast amount of text, manual summarisation
often becomes impractical. Therefore, the need for ATS arises as an efficient and
effective solution to automatically summarise text, enabling users to extract key
information without the need for extensive human effort [72].

4.5.1 Extraction Based

Extraction-based summarisation involves selecting and extracting the most im-
portant sentences or phrases from a document to create a summary. It relies on
identifying key information and preserving the original wording of the source text.

Sentences are selected based on their relevance to the overall meaning of the
document. Various techniques can be used, such as ranking sentences based on their
frequency, presence of keywords, or similarity to the document’s main topic. One
approach to assessing significance is by quantifying informative words using lexical
measures such as TF-IDF. Another approach is TextRank algorithm [73], which is
a graph-based ranking model by considering lexical similarity between words. It is
based on the concept of PageRank, which is used by Google to rank web pages.
Once we get the scores, the sentences with the highest scores are reordered to form
a coherent and concise final summary.

4.5.2 Abstraction Based

Abstraction-based summarisation generates a summary by paraphrasing and re-
phrasing the content of the source text, rather than directly copying sentences as
extraction-based. It takes a semantic approach to identify relations.

It can be more challenging than extraction-based summarisation since it requires
advanced NLP techniques and a deep understanding of the source text to accurately
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paraphrase the content while preserving its original meaning. It can also be com-
putationally more demanding due to the need for sentence generation and linguistic
analysis.

4.6 Industrial applications

The progress in technology has brought a significant transformation to how humans
communicate and interact with computers. This revolution has not only impacted
individuals but also societies worldwide, providing them with communicative tools.
Communication and interaction play a vital role in various aspects of daily life,
including business, education, commerce, healthcare, politics, finance and socialising
[76].

4.6.1 Finance

Data has become crucial in the field of finance, with valuable information residing
in written documents and websites, among others. Finance professionals spend
considerable time reviewing financial reports. To enhance financial decision-making,
NLP and ML provide great solutions in the following areas:

� Risk assessment. It is based on assessing credit risk through credit scoring
models, which estimates payment capacity based on previous spendings and
history data. In addition to this, NLP can help fraud detection by identifying
patterns or anomalies.

� Acounting and Auditing. NLP analyses financial statements and audit
reports, extracting relevant information, identifying anomalies or errors, and
facilitating data analysis.

� Stock market predictions. By extracting sentiment and combining it with
other quantitative indicators, NLP can help investors and traders make more
informed decisions and predict potential market movements. Furthermore, it
can be really useful in constructing optimal investment portfolios that aim to
maximise returns and minimise risk based on textual and numerical data.

4.6.2 Business

Companies have the opportunity to expand their operations globally, leading to
improved trade relations and ultimately boosting international commerce. There is
a wide variety of NLP applications in this field, which can be summarised in the
following keys with special focus on the latter:

� Cibersecurity. A clear example would be spam detection, which allow to
mitigate risks and protect data.

� Recruiting and Hiring. Information extraction and named entity recogni-
tion are used to extract information about candidates, making resume screen-
ing easier and identifying the most suitable candidate for a position. Interview
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assessments and virtual interviews use NLP to summarise the information and
make a candidate report. Moreover, employees’ job satisfaction can be meas-
ured through sentiment analysis techniques.

� Market Intelligence2 (MI). Online assistants or chatbots can solve custom-
ers’ queries as well as to measure customer satisfaction and further areas of
improvement. They can also be an interative way of communicating important
information about the company to the customers such as new product release
or delays. Competitors websites and industry news can provide useful insights
so that NLP can identify new opportunities and strategies for the company to
stay competitive.

4.6.3 Healthcare

The applications of NLP in healthcare is one of the fastest growing and it is revolu-
tionasing the way we process and analyse text in the medical field. This subsection
explores these diverse applications:

� Clinical documentation. The vast amount of data collected in health-
care through electronic processes, particularly from Electronic Health Records
(EHRs), is predominantly unstructured and of poor quality, making it largely
unusable. Approximately 80% of healthcare data falls into this category. How-
ever, NLP offers a solution by extracting essential data elements from unstruc-
tured sources, restructuring it and making it more accessible and meaningful
for analysis and decision-making purposes [76].

� Clinical decision support. NLP techniques extract and analyse relevant
information from diverse sources, aiding in identifying potential diagnoses, re-
commending appropriate treatment options and predicting patient outcomes.
In addition to this, chatbots can provide immediate responses to patient in-
quiries, appointment scheduling, and basic healthcare information.

� Computer-Assisted Coding (CAC). NLP automates the process of assign-
ing medical codes to medical records. Although it has significantly expedited
the coding process, it has faced challenges in achieving optimal accuracy levels.

� Clinical trial matching. This is very similar to the HR process explained in
section (4.6.2) since it basically consists of a selection of suitable candidates
who meet the research criteria for the drug development process.

� Biological sequence analysis. This task aims to uncover patterns, relation-
ships and functional insights within DNA, RNA and protein sequences. For
instance, in the latter, n-grams can help identify functional domains, predict
protein structures or classify proteins into families.

2Market intelligence refers to the process of gathering and analysing relevant information about
market trends, customer behavior and competitor activities to make informed business decisions
and gain a competitive edge.
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4.6.4 Legal and Compliance

NLP applications in the field of legal and compliance play a crucial role in various
aspects:

� Criminal records. It becomes possible to extract key information from legal
documents, such as court records or criminal databases. This increases effi-
ciency search about individuals’ criminal histories, aiding in investigations and
the administration of justice.

� Identification of patterns and trends. By analysing large volumes of
legal texts, NLP can uncover patterns, anomalies and correlations that may
go unnoticed by manual analysis. This allows to gain insights into emerging
trends, potential risks and compliance violations.

� Extracting information from policy reports, which makes it easier to
keep up to date and avoids potential risks or compliance violations.

4.6.5 Education

NLP can enhance education by supporting the needs of students, teachers and re-
searchers. Appart from information extraction, these are some useful applications
in the field of education:

� Translation. NLP with machine translation help people to learn other lan-
guages together with a correct spelling and pronunciation. In addition to this,
there are some specific tools that allow to improve academic writing since they
provide immediate feedback.

� E-learning. It enables the development of intelligent virtual tutors and chat-
bots that can engage with learners providing personalised assistance, answering
questions and offering real-time feedback. Some e-learning platforms include
interactive games, making learning more enjoyable.

� Assessment. NLP can provide meaningful feedback to students and teachers
assessing essays and answers, even with automate scoring system. Moreover,
it is also able to generate quizzes to assess performance and identify areas of
improvement.
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4.7 Ethical Considerations

The widespread adoption of NLP technologies has raised important ethical consid-
erations that demand careful attention. One of the primary concerns is the privacy
and security of user data. NLP systems often rely on collecting and analysing sub-
stantial amounts of personal information, such as text messages, emails and social
media posts. It is essential to protect individuals’ privacy and handle their data
responsibly and transparently. Organizations should establish robust data protec-
tion measures, employ anonymisation techniques and secure storage systems while
adhering to relevant data protection regulations. Obtaining clear and informed con-
sent from users regarding the collection and use of their personal data is crucial to
build trust and uphold ethical standards.

Another critical ethical consideration in NLP is the presence of bias and fairness
issues in language processing systems. NLP algorithms are trained on vast amounts
of textual data, which may contain societal biases and prejudices. If left unad-
dressed, these biases can perpetuate discrimination and inequalities in automated
decision-making. It is crucial to mitigate bias in both the training data and the al-
gorithms themselves to ensure fairness and equitable treatment. Ethical guidelines
and practices should be implemented to promote diversity and inclusivity in NLP
systems. Ongoing monitoring and evaluation should be conducted to identify and
rectify biases that may emerge during the system’s usage. Furthermore, transpar-
ency in the decision-making process of NLP algorithms is essential, enabling users
and stakeholders to understand how decisions are made and holding the technology
accountable for any biases that may arise.

In conclusion, as NLP technologies continue to advance, it is vital to address
the ethical considerations associated with their use. Safeguarding privacy and data
security, tackling bias and fairness concerns, and promoting transparency and ac-
countability are crucial for responsible and ethical deployment of NLP systems. By
proactively addressing these ethical considerations, we can maximise the benefits of
NLP while protecting individuals’ rights and well-being and fostering trust in the
technology.
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Python

Figure 5.1: Python
logo. Source: [78]

Python is one of the youngest, fast-changing programming
language with a continuous and rapid increase in the num-
bers of users. It was created by Guido van Rossum and the
first version, version 0.9.0, was realeased in 1991. Guido’s
objectives for Python were to create an intuitive, powerful
language which was suitable for solving efficiently everyday
tasks. However, this first version was too simple, consider-
ing that it was one person’s work. Over the years, Python
started to evolve including many new features and combin-
ing different paradigms1. Then, Python 2.0 was released
in 2000 with these important changes, and, in 2008, Py-
thon 3.0 implemented some corrections and improvements
to make this language even easier. In twenty years, we can
confirm that Guido’s goals have been fulfilled.

Today, Python is one of the world’s most used programming languages, known
for its simplicity, readability and versatility. Developers use it for a wide range of
applications, including web development, data analysis, scientific computing, ma-
chine learning and artificial intelligence.

Python is an open-source programming language characterised by being:

� Interpreted. It requires to be executed directly by an interpreter program,
which reads the code line-by-line. This allows to see the results at once,
although the performance is slower than in compiled languages.

� Multi-paradigm. It supports different programming styles and techniques
depending on the requirements to solve a problem. The most remarkable
Python paradigms are:

– Object-oriented. It is organised as collections of cooperative, dynamic
“objects”, which can contain data and code to manipulate that data.

1Paradigms is a clasification of programming languages according to their features.
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Classes define the characteristics of an object, such as its attibutes and
methods. It is relevant to understand the latter concepts in Python:

* Attributes are used to store data within and object and can be
accessed using a dot notation, such as object.attribute

* Methods are functions that are defined within a class and can be
called on an object belonging to that class. They usually perform
actions using the data stored in the object as attributes. As attrib-
utes, they also use the dot notation, but it is followd by brackets:
object.method() .

– Functional. It is mainly based on functions and its composition, being
similar to mathematical notation. For this, Python has implemented:

* Higher-order functions that take other functions as arguments or re-
turn functions as their result, such as map and filter.

* Pure functions return the same output given the same input and they
can be constructed using lambda.

– Procedural. It focuses on dividing a program into more manageable
procedures, which are executed line-by-line.

� High-level. Python is close to human natural language, which eases read-
ing and writing code without dealing with machine code. A high-level lan-
guage allows the programmer to focus on planning the approach for solving
a problem using code instead of focusing on knowing how the machine works
to understand the code. In a nutshell, it is problem-oriented rather than
machine-oriented.

Although there are other suitable programming languages for natural language
processing, Python is the most used thanks to these properties and the diversity
of its libraries. The next section is focused on one of the most world-known NLP
libraries.
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5.1 Natural Language Toolkit

The Natural Language Toolkit, or commonly NLTK, is a set of libraries and
programmes to work with human language data in Python. It also contains a com-
prehensive collection of text corpora and lexical resources. Steven Bird and Edward
Loper developed this powerful tool at the University of Pennsylvania, and it was
realeased in 2001. They wrote a book, Natural Language Processing with Python
[79], to explain the concepts and how this tool supported NLP tasks. The toolkit
was implemented as a collection of independent modules, each of which defines a
specific data structure or task. It started linked to research and education, but its
extensive features and functionality made it one of the libraries with a large number
of learning resources.

One notable feature of NLTK is that its functions are executed in a sequential
manner. This implies that, in many instances, it is necessary to execute a series of
preceding functions before running a particular function (figure 5.2).

Figure 5.2: NLTK Architecture Pipeline. Source: [79], Chapter 7
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5.2 SpaCy

SpaCy is another popular powerful and open-source library for NLP in Python that
was developed by Ines Montani and Matthew Honnibal. SpaCy utilises Cython, a
programming language that combines the ease of Python with the speed of C, to
achieve excellent performance. This makes SpaCy suitable for real-time applications
where processing time is a critical factor.

Another notable feature of SpaCy is its pre-trained models in multiple languages
that have been trained on large corpora and can be directly used for various NLP
tasks. Furthermore, it also offers seamless integration with other popular Python
libraries such as NumPy, Pandas and scikit-learn for advanced data analysis and
machine learning tasks.

In contrast to NLTK’s sequential function execution, Spacy utilises an object
called nlp(), which leverages a pre-trained model to instantly retrieve a range of
attributes when texts are provided. This offers advantages such as simplified result
retrieval, but it implies a slower performance due to the computation of numerous
attributes that may not be used (figure 5.3).

Figure 5.3: SpaCy Processing Pipeline. Source: spacy.io/api

SpaCy’s architecture consists of three main components (see figure 5.4):

� The Language class initialises the processing pipeline and coordinates the
various processing steps such as tokenisation. It allows users to add or remove
pipeline components as needed, making it flexible and adaptable to different
requirements (see figure 5.3).

� The Vocab class contains the mapping of words to unique integer IDs and
provides access to word vectors, word frequencies and other lexical attributes.

� The Doc class represents a processed text document. It provides easy access
to the linguistic annotations and supports various operations and transforma-
tions, allowing users to manipulate and analyse the text data efficiently.
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Figure 5.4: SpaCy Architecture. Source: spacy.io/api
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5.3 Scikit-learn

As stated in the paper Scikit-learn: Machine Learning in Python [83]:

“Scikit-learn is a Python module integrating a wide range of state-of-
the-art machine learning algorithms for medium-scale supervised and un-
supervised problems. This package focuses on bringing machine learning
to non-specialists using a general-purpose high-level language. Emphasis
is put on ease of use, performance, documentation, and API consistency.”

The history of scikit-learn traces back to the early 2000s. It originated as a
Google Summer of Code project in 2007 and was initially developed by David
Cournapeau. In 2010, contributors Fabian Pedregosa, Gaël Varoquaux, Alexan-
dre Gramfort and Vincent Michel took leadership of the project and released the
first public version of this library.

Scikit-learn quickly gained traction within the Python community due to its sim-
plicity, well-documented API and extensive set of features. This API took a vital role
in this success since not only does it include an extensive documentation, but it also
has examples, tutorials and some featuring real-word applications. In addition to
this, they keep the balance between mathematical precision and easy-understanding
of the concepts explained, which makes it accessible to a wider audience and foster
a collaborative community.

Scikit-learn uses mainly Numpy and Scipy Python libraries to build their al-
gorithms, which some are written in Cython2 to improve performance. Numpy is
used for multi-dimensional arrays and matrices, together with functions for array
operations. In scikit-learn, numpy is used for the data structure and model paramet-
ers. On the other hand, Scipy allows sickit-learn to implement efficient algorithms
for linear algebra, sparse matrix representation, special functions and basic statist-
ical functions.

The scikit-learn library provides powerful tools for model selection, which is a
crucial aspect of Machine Learning. Model selection involves choosing the best model
or algorithm and its hyperparameters for a given task. For this purpose, scikit-learn
offers several modules and functions which have been specifically designed.

One of the primary tools for model selection is the model selection module.
This module provides functions for evaluating and comparing different models using
various techniques, such as cross-validation and grid search. For this, we use the
train test split to obtain train and test subsets to validate our models.

Cross-validation is a common technique for assessing the performance of a model
on unseen data. Scikit-learn offers functions like cross val score and cross validate

that facilitate cross-validation by splitting the data into multiple folds and evaluat-
ing the model on each fold.

Grid search is another essential technique in model selection, which involves sys-
tematically searching through a specified hyperparameter grid to find the best com-
bination of hyperparameters for a model. Scikit-learn provides the GridSearchCV

2Cython is a language for combining C in Python.
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Figure 5.5: Scikit-learn algorithm cheat-sheet. Source: Scikit-learn

class, which automates the process of grid search and cross-validation, enabling users
to efficiently explore different hyperparameter settings and identify the optimal con-
figuration.

In addition to grid search, scikit-learn also supports randomised search with the
RandomizedSearchCV class. Randomised search is useful when the hyperparameter
search space is large, as it allows for a more efficient exploration by sampling a
subset of the parameter grid.

Both the model and the hyperparameters are selected based on different evalu-
ation metrics. The metrics module in scikit-learn offers more than 40 metrics avail-
able to analyse the results of the models. Some metrics used for regression models are
mean square error (MSE), mean absolute error (MAE) or the coefficient of determin-
ation R2, which correspond to funtions mean squared error, mean absolute error

and r2 score, respectively. Others like confusion matrix, accuracy score and
classification report are used to evaluate and compare the results of classifica-
tion models.

Furthermore, scikit-learn pipeline is a powerful tool which makes it easier to
organise the code since it allows to combine data normalisation and machine learning
models into a single entity. Pipelines promote good coding practices, improve the
reproducibility of results, and allow for efficient preprocessing, model training, cross-
validation and hyperparameter tuning.
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Results

In this chapter, we will provide an overview of the Python code implemented for
machine learning techniques that gather the concepts and procedures that have been
explained along this work, together with a previous preprocessing step.

To analyse the different machine learning algorithms explained (section (3)) and
their performance, a binary text classification task is implemented. For this, a data-
set [84] from Kaggle has been used, whose main aim is to find the best classifier
(model) that distinguishes fake from real news. Kaggle is an online platform and
community that hosts data science competitions, provides datasets for practice and
offers a collaborative environment for data scientists, machine learning engineers
and researchers.

In addition to this, we are also going to perform a special case of text classific-
ation, sentiment analysis, which is based on distinguishing positive from negative
film reviews. For this, another dataset from Kaggle about IMDb (Internet Movie
Database) reviews has been used [85].
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Import Libraries

[1]: import matplotlib.pyplot as plt

import warnings

warnings.filterwarnings('ignore')

import numpy as np

import pandas as pd

import seaborn as sns

from nltk.corpus import stopwords

from sklearn.model_selection import StratifiedKFold, cross_val_score, 

↪→cross_val_predict

from sklearn.metrics import confusion_matrix, classification_report, 

↪→ConfusionMatrixDisplay

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.model_selection import train_test_split, GridSearchCV, KFold

Data Load

[2]: true = pd.read_csv("C:/Users/Amparo/OneDrive/Desktop/data/true.csv")

fake = pd.read_csv("C:/Users/Amparo/OneDrive/Desktop/data/fake.csv")

Preprocessing and Exploratory Data Analysis (EDA)

In this section, it is vital to deal with NA values and duplicates as a first step.

Remove NA values and add a target column indicating whether the news is true or fake.

[3]: true.dropna(inplace = True)

fake.dropna(inplace = True)

true['Labels'] = 0

fake['Labels'] = 1

Check for duplicated registers in the fake news dataset, and then, drop the occurrences except for
the first one.

[4]: fake.duplicated().sum()
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[4]: 3

[5]: fake.drop_duplicates(inplace=True)

The same procedure is applied to the real news dataset.

[6]: true.duplicated().sum()

[6]: 206

[7]: true.drop_duplicates(inplace=True)

Now, we can merge both datasets into a single labelled dataset to work with them.

[8]: train_data = pd.concat([true, fake], ignore_index = True)

[9]: print("We have a dataset with {} news".format(len(train_data)))

We have a dataset with 44689 news

Now, we count the number of documents per label to know if we have a balanced dataset.

[10]: train_data["Labels"].value_counts()

[10]: 1 23478

0 21211

Name: Labels, dtype: int64

[11]: train_data["subject"].value_counts()

[11]: politicsNews 11220

worldnews 9991

News 9050

politics 6838

left-news 4459

Government News 1570

US_News 783

Middle-east 778

Name: subject, dtype: int64

[12]: train_data.groupby(['Labels']).count()

[12]: title text subject date

Labels

0 21211 21211 21211 21211

1 23478 23478 23478 23478

[13]: np.sum(train_data.isnull())[2]

[13]: 0
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[14]: ax, fig = plt.subplots()

etiquetas = train_data.Labels.value_counts()

etiquetas.plot(kind= 'bar', color= ["red", "green"])

plt.title('Bar chart')

plt.ylabel("Frequency of Labels")

plt.xlabel("Labels")

plt.show()

[15]: import matplotlib.pyplot as plt

# Count the frequency of each sentiment category

etiquetas = train_data['Labels'].value_counts()

# Create a pie chart

fig, ax = plt.subplots()

ax.pie(etiquetas, labels=["Fake", "True"], colors=[ "red", "green"], autopct='%1.

↪→1f%%')

ax.set_title('Pie Chart of Labels')

# Display the pie chart

plt.show()
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Then, we can conclude that the dataset with 44689 documents is approximately balanced. There-
fore, there are approximately the same number of fake and true news.

To reduce the computational cost of this task, we are going to select 35000 news preserving this
representation of labels.

[16]: X = train_data[['title', 'text', 'subject']]

y = train_data['Labels']

# Use train_test_split for stratified sampling

X_sampled, _, y_sampled, _ = train_test_split(X, y, train_size=35000, 

↪→stratify=y, random_state=10)

# Combine the sampled features and target into a dataframe

data = pd.concat([X_sampled, y_sampled], axis=1)

data.head()

[16]: title \

33440 DAY 2 RESULTS Of Wisconsin Recount Are In...And ...

32308 CNN ANCHOR Piles On Bill O'Reilly With Silly S...

9966 Leak of Senate encryption bill prompts swift b...

15770 German railway under fire for proposal to name...

22037 Here Are 12 Tweets Trump DEFINITELY Regrets S...

text subject Labels

33440 The Wisconsin Election Commission posts recoun... politics 1

32308 The accusations surrounding Bill O Reilly have... politics 1

9966 WASHINGTON (Reuters) - Security researchers an... politicsNews 0

15770 BERLIN (Reuters) - German rail operator Deutsc... worldnews 0

22037 As you are probably aware, Donald Trump loves ... News 1

87



Chapter 6. Results Fake News Classifier

[17]: import matplotlib.pyplot as plt

# Count the frequency of each sentiment category

etiquetas = data['Labels'].value_counts()

# Create a pie chart

fig, ax = plt.subplots()

ax.pie(etiquetas, labels=["Fake", "True"], colors=[ "red", "green"], autopct='%1.

↪→1f%%')

ax.set_title('Pie Chart of Labels')

# Display the pie chart

plt.show()

Make an exploratory data analysis about the length of the characters for each class to know if this
can be used as a determining feature.

[18]: data["char_len"] = data["text"].apply(lambda x: len(x))

[19]: fig = plt.figure(figsize=(14,12))

sns.set_style("darkgrid")

plt0 = sns.distplot(data[data.Labels==0].char_len, hist=True, label="True")

plt1 = sns.distplot(data[data.Labels==1].char_len, hist=True, label="Fake")

plt.legend(labels=["True","Fake"], loc = 'center right', fontsize = "x-large")

# Axis labels

plt.xlabel('Characters', fontsize=16)

plt.ylabel('Density', fontsize=16)

plt.show()
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We can see that true news have a lower length of characters, although they are really similar and
this cannot be considered a determining factor to classify news.

Now, we will define functions that will be used to preprocess the text as explained in this work.

[20]: # Delete spaces

def delete_spaces(text):

return " ".join(text.split())

# To lower

def texto_to_lower(text):

return text.lower()

# Tokenisation

from nltk import word_tokenize

def tokenisation(text):

tokens = word_tokenize(text)

return tokens
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# Once text has been tokenised, we can create functions that take tokens as 

↪→inputs and apply further preprocessing.

# Remove stop words

def stopwords_removal(tokens):

stop_words = set(stopwords.words('english'))

filtered_sentence = [w for w in tokens if not w in stop_words]

return filtered_sentence

# Remove punctuation (only alphanumeric values are allowed)

def punctuation_removal(tokens):

words=[word for word in tokens if word.isalnum()]

return words

# Stemming

from nltk.stem import PorterStemmer

stemmer = PorterStemmer()

def stem(tokens):

tokens = [ stemmer.stem(token) for token in tokens]

return tokens

We create a function that implements all these functions that have been created so that we can
preprocess the text in just one step.

[21]: def preprocess(sentence):

sentence = delete_spaces(sentence)

sentence = texto_to_lower(sentence)

sentence = tokenisation(sentence)

sentence = stopwords_removal(sentence)

sentence = punctuation_removal(sentence)

sentence = stem(sentence)

return sentence

# Store in a new column "normalise" of the dataframe to keep the original data.

data["tokens_norm"] = data["text"].apply(lambda x: preprocess(x))

[22]: data.head()

[22]: title \

33440 DAY 2 RESULTS Of Wisconsin Recount Are In...And ...

32308 CNN ANCHOR Piles On Bill O'Reilly With Silly S...

9966 Leak of Senate encryption bill prompts swift b...

15770 German railway under fire for proposal to name...

22037 Here Are 12 Tweets Trump DEFINITELY Regrets S...

text subject \

33440 The Wisconsin Election Commission posts recoun... politics

32308 The accusations surrounding Bill O Reilly have... politics

9966 WASHINGTON (Reuters) - Security researchers an... politicsNews
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15770 BERLIN (Reuters) - German rail operator Deutsc... worldnews

22037 As you are probably aware, Donald Trump loves ... News

Labels char_len tokens_norm

33440 1 1980 [wisconsin, elect, commiss, post, recount, dat...

32308 1 2104 [accus, surround, bill, reilli, relentless, no...

9966 0 4158 [washington, reuter, secur, research, civil, l...

15770 0 1460 [berlin, reuter, german, rail, oper, deutsch, ...

22037 1 5205 [probabl, awar, donald, trump, love, tweet, lo...

Since we have obtained a list of normalised tokens, we just have to join them with a whitespace to
obtain the normalised text.

[23]: data["text_normalised"] = data["tokens_norm"].apply(lambda x: " ".join(x))

data.head()

[23]: title \

33440 DAY 2 RESULTS Of Wisconsin Recount Are In...And ...

32308 CNN ANCHOR Piles On Bill O'Reilly With Silly S...

9966 Leak of Senate encryption bill prompts swift b...

15770 German railway under fire for proposal to name...

22037 Here Are 12 Tweets Trump DEFINITELY Regrets S...

text subject \

33440 The Wisconsin Election Commission posts recoun... politics

32308 The accusations surrounding Bill O Reilly have... politics

9966 WASHINGTON (Reuters) - Security researchers an... politicsNews

15770 BERLIN (Reuters) - German rail operator Deutsc... worldnews

22037 As you are probably aware, Donald Trump loves ... News

Labels char_len tokens_norm \

33440 1 1980 [wisconsin, elect, commiss, post, recount, dat...

32308 1 2104 [accus, surround, bill, reilli, relentless, no...

9966 0 4158 [washington, reuter, secur, research, civil, l...

15770 0 1460 [berlin, reuter, german, rail, oper, deutsch, ...

22037 1 5205 [probabl, awar, donald, trump, love, tweet, lo...

text_normalised

33440 wisconsin elect commiss post recount data spre...

32308 accus surround bill reilli relentless noth pro...

9966 washington reuter secur research civil liberti...

15770 berlin reuter german rail oper deutsch bahn fa...

22037 probabl awar donald trump love tweet love love...

Vectorisation of text

Given a collection of documents, the TfidfVectorizer() method computes the TF-IDF scores for all
terms in the corpus. Then, the selection of the features to include in the vocabulary is based on
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their importance, which is determined by their TF-IDF scores.

The TF-IDF scores reflect the relevance of a term or n-gram in a document relative to the entire
corpus. The higher the TF-IDF score, the more important the term is considered. The selection of
the most frequent n-grams is also influenced by other parameters as well, such as min_df (min-
imum document frequency) and ngram_range, whose lower and upper boundary indicates the
range of n for different n-grams.

In this case, we consider 25 features and unigrams, bigrams and trigrams.

[24]: vectoriser = TfidfVectorizer(max_features=25,

ngram_range=(1,3),

min_df=0.05,

lowercase=False)

matrix_data = vectoriser.fit_transform(data["text_normalised"]) #matriz sparse

print(matrix_data)

(0, 18) 0.07724912803551612

(0, 7) 0.13068983007332996

(0, 23) 0.09827319441059361

(0, 19) 0.10609218237363716

(0, 1) 0.49374962028672537

(0, 22) 0.6995224644593263

(0, 15) 0.12297343518398293

(0, 20) 0.20338226618527075

(0, 5) 0.4079612614655374

(1, 0) 0.11742321363250119

(1, 24) 0.24389823948901312

(1, 12) 0.1127623909559013

(1, 8) 0.4996658918934008

(1, 18) 0.7411060178571649

(1, 19) 0.33927267445898496

(2, 21) 0.11826806424907833

(2, 2) 0.27047024568571026

(2, 16) 0.12923509778257514

(2, 10) 0.12029481812184485

(2, 6) 0.26005609361758514

(2, 11) 0.14710864447705083

(2, 14) 0.1933634827065666

(2, 17) 0.10167117541472286

(2, 0) 0.1103051557960119

(2, 24) 0.11455670677438416

: :

(34998, 9) 0.08910903765375215

(34998, 3) 0.7234644136270463

(34998, 13) 0.07880099111087438

(34998, 21) 0.1718323711997319

(34998, 10) 0.17477705390851672
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(34998, 6) 0.18891851953008254

(34998, 0) 0.24039452150074767

(34998, 24) 0.16644011793765556

(34998, 12) 0.2308526583334894

(34998, 8) 0.4262251449128839

(34998, 18) 0.05619364192162943

(34998, 23) 0.07148726254443444

(34998, 19) 0.07717506020582411

(34998, 15) 0.1789101148021851

(34999, 9) 0.20233588907103997

(34999, 13) 0.17892987081795192

(34999, 10) 0.19842920271010098

(34999, 6) 0.21448439809008712

(34999, 11) 0.4853185114886348

(34999, 14) 0.47843658986020143

(34999, 0) 0.18195101386035034

(34999, 24) 0.1889640497008905

(34999, 12) 0.17472892050081437

(34999, 15) 0.4062431611366153

(34999, 20) 0.335937003835908

[25]: matrix_data

[25]: <35000x25 sparse matrix of type '<class 'numpy.float64'>'

with 339229 stored elements in Compressed Sparse Row format>

We have obtained a 35000 × 25 matrix, which corresponds to the number of documents and the
number of features allowed in the vectoriser. In addition to this, the element (i, j) of this matrix
corresponds to the TD-IDF score of the j-th feature in the i-th document. As we can appreciate, it
is an sparse matrix since there are only 339229 stored elements out of 875000 elements.

We can also obtain the normalised tokens or n-grams which have been selected as features by the
TD-IDF.

[26]: feature_names = vectoriser.get_feature_names_out()

print(feature_names)

['also' 'clinton' 'democrat' 'donald' 'donald trump' 'elect' 'govern'

'hous' 'like' 'nation' 'new' 'obama' 'one' 'peopl' 'presid' 'report'

'republican' 'reuter' 'said' 'say' 'state' 'time' 'trump' 'would' 'year']

[27]: # Define categorical variable of the labels

y = data["Labels"].values.astype(np.float32)

print(y.shape)

(35000,)

Machine Learning

Split the dataset into a training and test sets (70%-30% respectively).
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[28]: X_train, X_test, y_train, y_test = train_test_split(matrix_data, y, test_size = 

↪→0.3, random_state=10)

print(X_train.shape)

print(X_test.shape)

(24500, 25)

(10500, 25)

We have obtained a training sample of 24500 news and a test set of 10500 news.

We define a function to perform cross validation with 10 folds across different models, which
returns the final confusion matrix and the results for the given metrics. In this case, we have
considered StratifiedKFold to preserve class representation within each sample, although it would
not be strictly necessary since we have a balanced dataset.

[29]: def model_evaluation(models, scores, X, y):

global results

global names

results = {}

names = []

# For each model

for name, model in models:

SKF = StratifiedKFold(n_splits=10, shuffle=True, random_state=98)

model_results = {}

# Cross-validation

for score in scores:

cv_results = cross_val_score(model, X, y, cv=SKF, scoring=score, 

↪→verbose=False)

model_results[score] = cv_results

y_pred = cross_val_predict(model, X, y, cv=SKF)

print(name)

print(confusion_matrix(y, y_pred))

print(classification_report(y, y_pred, digits=4))

# Store results

results[name] = model_results

names.append(name)

[30]: # Load the models

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
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from sklearn.svm import SVC

from xgboost import XGBClassifier

The toarray() method converts this sparse matrix into a dense array, where all elements are explic-
itly stored in memory.

[31]: # Define the models

models = [

("Logistic", LogisticRegression()),

("GaussianNB",GaussianNB()),

("Tree", DecisionTreeClassifier()),

("XGBoost", XGBClassifier()),

("Gradient Boosting", GradientBoostingClassifier()),

("LDA", LinearDiscriminantAnalysis()),

("SVC", SVC())

]

scores = ["accuracy", "roc_auc"]

model_evaluation(models, scores, X_train.toarray(), y_train)

Logistic

[[11308 322]

[ 215 12655]]

precision recall f1-score support

0.0 0.9813 0.9723 0.9768 11630

1.0 0.9752 0.9833 0.9792 12870

accuracy 0.9781 24500

macro avg 0.9783 0.9778 0.9780 24500

weighted avg 0.9781 0.9781 0.9781 24500

GaussianNB

[[11071 559]

[ 1434 11436]]

precision recall f1-score support

0.0 0.8853 0.9519 0.9174 11630

1.0 0.9534 0.8886 0.9198 12870

accuracy 0.9187 24500

macro avg 0.9194 0.9203 0.9186 24500

weighted avg 0.9211 0.9187 0.9187 24500

Tree

[[11508 122]

[ 109 12761]]
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precision recall f1-score support

0.0 0.9906 0.9895 0.9901 11630

1.0 0.9905 0.9915 0.9910 12870

accuracy 0.9906 24500

macro avg 0.9906 0.9905 0.9905 24500

weighted avg 0.9906 0.9906 0.9906 24500

XGBoost

[[11596 34]

[ 91 12779]]

precision recall f1-score support

0.0 0.9922 0.9971 0.9946 11630

1.0 0.9973 0.9929 0.9951 12870

accuracy 0.9949 24500

macro avg 0.9948 0.9950 0.9949 24500

weighted avg 0.9949 0.9949 0.9949 24500

Gradient Boosting

[[11592 38]

[ 133 12737]]

precision recall f1-score support

0.0 0.9887 0.9967 0.9927 11630

1.0 0.9970 0.9897 0.9933 12870

accuracy 0.9930 24500

macro avg 0.9928 0.9932 0.9930 24500

weighted avg 0.9931 0.9930 0.9930 24500

LDA

[[10842 788]

[ 512 12358]]

precision recall f1-score support

0.0 0.9549 0.9322 0.9434 11630

1.0 0.9401 0.9602 0.9500 12870

accuracy 0.9469 24500

macro avg 0.9475 0.9462 0.9467 24500

weighted avg 0.9471 0.9469 0.9469 24500

SVC

[[11534 96]

[ 136 12734]]

96



Chapter 6. Results Fake News Classifier

precision recall f1-score support

0.0 0.9883 0.9917 0.9900 11630

1.0 0.9925 0.9894 0.9910 12870

accuracy 0.9905 24500

macro avg 0.9904 0.9906 0.9905 24500

weighted avg 0.9905 0.9905 0.9905 24500

By definition, a confusion matrix C is such that Ci,j is equal to the number of observations known
to be in group i and predicted to be in group j.

Thus, in binary classification, the count of true positives is C0,0, false positives is C1,0, true negatives
is C1,1 and false negatives is C0,1.

In this case, the positive class refers to true news and the negative class are the fake news.

For a better understanding, we are going to check the classification report results to know how
they have been calculated and put the theoretical concepts preivously explained into practice.

Let select GaussianNB confussion matrix to perform these calculations.

First, we calculate the precision or positive predictive value (PPV).

Precision0 =
TP

TP + FP
=

11071
11071 + 1434

= 0.885325

Since we are calculating precision for each class, we have to consider positive to be the class Python
is calculating. This is equivalent to the negative predictive value (NPV).

Precision1 =
TN

TN + FN
=

11436
11436 + 559

= 0.9533972

Another important metric is the recall, which is also known as sensitivity or true positive rate
(TPR).

Recall0 =
TP

TP + FN
=

11071
11071 + 559

= 0.95193465

The same reasoning as before is applied for the other class, where we would calculate the speci-
ficity or true negative rate (TNR).

Recall1 =
TN

TN + FP
=

11436
11436 + 1434

= 0.888578

Finally, F1 score is a harmonic mean of precision and recall:

F1 =
2Precision × Recall
Precision + Recall

F0
1 =

2 × 0.8853 × 0.9519
0.8853 + 0.9519

= 0.9173928
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F1
1 =

2 × 0.9534 × 0.8886
0.9534 + 0.8886

= 0.9198

Support represents the number of instances in each class: 11630 true and 12870 fake news.

The accuracy is proportion of the samples correctly classified.

Accurary =
TN + TP

TP + FN + FP + TN
=

11071 + 11436
24500

= 0.918653

Macro average for a given metric is an arithmetic (unweighted) mean.

Macro avg metric =
1
N ∑

i
metrici

where N is the number of classes.

For instance, we can calculate the macro average precision:

Macro avg precision =
precision0 + precision1

2
=

0.8853 + 0.9534
2

= 0.91935

On the other hand, weighted average for a given metric is a weighted mean with support as
weights.

Weighted avg metric =
support0 × metric0 + · · ·+ supportN−1 × metricN−1

support0 + · · ·+ supportN−1

where the denominator is the number of total instances.

For the precision, we would obtain:

Weighted avg precision =
11630 × 0.8853 + 12870 × 0.9534

24500
= 0.921073

For each model, we would obtain the mean and standard deviation of the 10 folds for each metric.
In addition to this, the results would be visualised as a boxplot.

[32]: def display_results(results, names, scores):

# Create a DataFrame with mean and std for each score

df_results = pd.DataFrame()

df_results['Model'] = names

for score in scores:

df_results['Mean ' + score] = [result[score].mean() for result in 

↪→results.values()]

df_results['Std ' + score] = [result[score].std() for result in results.

↪→values()]

display(df_results)
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# Plot boxplot with means

fig, axes = plt.subplots(len(scores), figsize=(10, 8 * len(scores)))

for i, score in enumerate(scores):

axes[i].set_title(score)

axes[i].boxplot([result[score] for result in results.values()], 

↪→labels=names, showmeans=True)

plt.show()

# Example usage

display_results(results, names, ['accuracy', 'roc_auc'])

Model Mean accuracy Std accuracy Mean roc_auc Std roc_auc

0 Logistic 0.978082 0.003401 0.995008 0.001195

1 GaussianNB 0.918653 0.006893 0.973839 0.003292

2 Tree 0.991224 0.001186 0.990618 0.001406

3 XGBoost 0.994898 0.000899 0.998566 0.000335

4 Gradient Boosting 0.992939 0.001211 0.997783 0.001095

5 LDA 0.946939 0.004829 0.988385 0.001780

6 SVC 0.990531 0.001869 0.996192 0.001168
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From each fold, we obtain the accuracy, which is the percentage of well-classified news. Thus, we
obtain the accuracy calculated 10 times and the accuracy associated with the model is the mean
of these values, together with a measure of standard deviation. The latter allow us to know if the
metric, accuracy in this case, has variability and relies on the sample.

In general, all the models have a great performance in terms of accuracy (more than 90%). The
“worst” performance is related with the generative classifiers: LDA and GaussianNB. As a winner
in many Kaggle competitions, XGBoost has the best performance with almost 100% of accuracy,
followed closely by Gradient Boosting. In addition to this, the accuracy across cross-validation
has the lowest variance.

It is true that XGBoost can be difficult to apply in real practice due to the high computational
cost. This is why it can be better sometimes to consider other models that perform well, with less
accuracy than XGBoost, but not so expensive computationally.

Regarding the area under the characteristic curve, we still have very similar results to the accuracy
with XGBoost and Gradient Boosting as best models. However, there are some differences in the
ranking regarding Tree, SVC and Logistic Regression compared to accuracy. There are different
explanations such as dealing with imbalanced dataset (not this case), predicting the majority class
correctly, or model’s difficulty to separate labels.

In this case, Tree has a higher accuracy but a lower ROC AUC than Logistic, which indicates
that Tree performs better in terms of overall correctness or accuracy in predicting the class labels.
However, when it comes to the ability to distinguish between the positive and negative classes,
Logistic outperforms Tree.

Hyperparameters search

Once we have selected the best model, XGBoost, for our machine learning task, it becomes crucial
to fine-tune its performance by optimising its hyperparameters. Performing a hyperparameter
search involves systematically exploring different combinations of hyperparameters to find the
optimal configuration that maximises the model’s performance on the given dataset.

[33]: from sklearn.model_selection import KFold

from sklearn.model_selection import GridSearchCV

# define models and parameters

model = XGBClassifier()

lr = [0.1, 0.01]

md = [2, 3, 5]

mcw = [1, 5]

g = [0.5, 0.1, 0.01]

l = ["reg:squarederror", "reg:squaredlogerror"]

Some XGBoost() hyperparameters we can tune are:

• learning_rate: It controls the step size shrinkage during each boosting iteration.

• max_depth: It specifies the maximum depth of a tree.
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• min_child_weight: It defines the minimum sum of instance weight needed in a child node.

• gamma: It specifies the minimum loss reduction required to split a node further.

• objective: It determines the loss function to be optimised during training.

[34]: grid = dict(min_child_weight= mcw, max_depth = md, learning_rate=lr, gamma = g, 

↪→objective = l)

cv = KFold(n_splits=5)

grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, 

↪→scoring='roc_auc',error_score=0)

[35]: grid_result = grid_search.fit(X_train, y_train)

# summarise results

print("Best ROC AUC: %f with parameters %s" % (grid_result.best_score_, 

↪→grid_result.best_params_))

Best ROC AUC: 0.998508 with parameters {'gamma': 0.1, 'learning_rate': 0.1,

'max_depth': 5, 'min_child_weight': 1, 'objective': 'reg:squaredlogerror'}

The probability that the model will assign a larger probability to a random true new than a random
fake new is 0.998508, which is as an extraordinary value.

[36]: model=XGBClassifier(min_child_weight= 1, max_depth = 5, learning_rate=0.1, gamma 

↪→= 0.1, objective = "reg:squaredlogerror")

model.fit(X_train,y_train)

[36]: XGBClassifier(base_score=None, booster=None, callbacks=None,

colsample_bylevel=None, colsample_bynode=None,

colsample_bytree=None, early_stopping_rounds=None,

enable_categorical=False, eval_metric=None, feature_types=None,

gamma=0.1, gpu_id=None, grow_policy=None, importance_type=None,

interaction_constraints=None, learning_rate=0.1, max_bin=None,

max_cat_threshold=None, max_cat_to_onehot=None,

max_delta_step=None, max_depth=5, max_leaves=None,

min_child_weight=1, missing=nan, monotone_constraints=None,

n_estimators=100, n_jobs=None, num_parallel_tree=None,

objective='reg:squaredlogerror', predictor=None, ...)

[37]: y_pred = model.predict(X_test)

[38]: cm=confusion_matrix(y_test,y_pred)

print(cm)

print(classification_report(y_test,y_pred, digits=4))

[[4978 4]

[ 52 5466]]

precision recall f1-score support

0.0 0.9897 0.9992 0.9944 4982
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1.0 0.9993 0.9906 0.9949 5518

accuracy 0.9947 10500

macro avg 0.9945 0.9949 0.9947 10500

weighted avg 0.9947 0.9947 0.9947 10500

Interpretation

Precision refers to the proportion of correctly predicted positive instances among all the positive
predictions. It can be seen as a normalisation of the confusion matrix by columns.

• Out of all the news that the model predicted to be true, “only” 98.97% actually were.

• Out of all the news that the model predicted to be fake, “only” 99.93% actually were.

Recall refers to the proportion of correctly predicted positive instances among all the actual posi-
tive instances. It can be seen as a normalisation of the confusion matrix by rows.

• Out of all the news that actually were true, the model predicted this outcome correctly for
99.92% of those news.

• Out of all the news that actually were fake, the model predicted this outcome correctly for
99.06% of those news.

Accuracy refers to the proportion of correct predictions compared to the total number of predic-
tions.

We can conclude that the model correctly predicted the outcome for approximately 99.47% of the
instances.

[39]: plt = ConfusionMatrixDisplay(cm)

# Show the plot

plt.plot()

[39]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x2187b0d18b0>
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We can visualise that 4978 were correctly classified as true out of 4982 actual true news and that
5466 were correctly classified as fake news out of 5518 actual fake news.

Another insight is that 4978 were actual true news out of 5030 news classified as true and that 5466
were actual fake news out of 5470 reviews classified as fake.

[40]: cmn = confusion_matrix(y_test, y_pred, normalize = "true")

plt = ConfusionMatrixDisplay(cmn)

# if 'true', the confusion matrix is normalized over the true conditions (e.g. 

↪→rows);

# Show the plot

plt.plot()

[40]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x2181feaaaf0>

This matrix shows the recall for each class since the confusion matrix has been normalised by rows
(true).

[41]: cmn = confusion_matrix(y_test, y_pred, normalize = "pred")

plt = ConfusionMatrixDisplay(cmn)

# if 'pred', the confusion matrix is normalized over the predicted conditions (e.

↪→g. columns);

# Show the plot

plt.plot()

[41]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x2181feaa0d0>
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This matrix shows the precision for each class since the confusion matrix has been normalised by
columns (predictions).

We obtained a classifier really accurate for both classes and thus, it can distinguish fake from real
news.

Alternative

As mentioned previously, in practice, it can be difficult to use XGBoost due to the high computa-
tional cost. In this case, we could choose Logisitic Regression since the performance is really good
and it is an easy algorithm to interpret the data.

[42]: # define models and parameters

model = LogisticRegression()

solvers = ['newton-cg', 'liblinear']

penalty = ['l1','l2']

c_values = [100, 10, 1, 0.1]

Some LogisticRegression() hyperparameters we can tune are:

• solver: The solver determines the optimisation algorithm to be used in fitting the logistic
regression model.

• penalty: This hyperparameter specifies the type of regularisation to be applied to the mode.

• C: controls the amount of regularisation applied.

[43]: grid = dict(solver=solvers,penalty=penalty,C=c_values)

cv = KFold(n_splits=5)

grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, 

↪→scoring='roc_auc',error_score=0)

[44]: grid_result = grid_search.fit(X_train, y_train)

# summarize results
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print("Best ROC AUC: %f with parameters %s" % (grid_result.best_score_, 

↪→grid_result.best_params_))

Best ROC AUC: 0.995253 with parameters {'C': 10, 'penalty': 'l2', 'solver':

'liblinear'}

The probability that the model will assign a larger probability to a random true new than a random
fake new is 0.995253, which is as an extraordinary value.

[45]: model=LogisticRegression(C=10,penalty="l2",solver="liblinear")

model.fit(X_train,y_train)

[45]: LogisticRegression(C=10, solver='liblinear')

[46]: y_pred = model.predict(X_test)

[47]: cm = confusion_matrix(y_test,y_pred)

print(cm)

print(classification_report(y_test,y_pred, digits = 4))

[[4909 73]

[ 55 5463]]

precision recall f1-score support

0.0 0.9889 0.9853 0.9871 4982

1.0 0.9868 0.9900 0.9884 5518

accuracy 0.9878 10500

macro avg 0.9879 0.9877 0.9878 10500

weighted avg 0.9878 0.9878 0.9878 10500

Interpretations

Precision

• Out of all the news that the model predicted to be true, “only” 98.89% actually were.

• Out of all the news that the model predicted to be fake, “only” 98.68% actually were.

Recall

• Out of all the news that actually were positive, the model predicted this outcome correctly
for 98.53% of those news.

• Out of all the news that actually were fake, the model predicted this outcome correctly for
99% of those news.

Accuracy

• We can conclude that the model correctly predicted the outcome for approximately 98.78%
of the reviews.
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[48]: plt = ConfusionMatrixDisplay(cm)

# Show the plot

plt.plot()

[48]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x21864a9e5e0>

We can visualise that 4909 were correctly classified as true out of 4982 actual true news and that
5463 were correctly classified as fake news out of 5518 actual fake news.

Another insight is that 4909 were actual true news out of 4964 news classified as true and that 5463
were actual fake news out of 5536 reviews classified as fake.

[49]: cmn = confusion_matrix(y_test, y_pred, normalize = "true")

plt = ConfusionMatrixDisplay(cmn)

# if 'true', the confusion matrix is normalized over the true conditions (e.g. 

↪→rows);

# Show the plot

plt.plot()

[49]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x21812d081f0>
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This matrix shows the recall for each class since the confusion matrix has been normalised by rows
(true).

[50]: cmn = confusion_matrix(y_test, y_pred, normalize = "pred")

plt = ConfusionMatrixDisplay(cmn)

# if 'true', the confusion matrix is normalized over the true conditions (e.g. 

↪→rows);

# Show the plot

plt.plot()

[50]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x218641313a0>

This matrix shows the precision for each class since the confusion matrix has been normalised by
columns (predictions).
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Conclusion

This Logistic Regression model also achieves extraordinary results and it is not as computationally
expensive as XGBoost. Therefore, it can be selected as a final model to perform big data analysis.

Logistic Regression model performed exceptionally well and yielded highly accurate results
(98.78%) on unseen data. In addition to this, both precision and recall are 0.99 for each class.
Thereore, F1 score shows a robust classification performance.

Furthermore, ROC AUC value of 0.995253 indicates that the model exhibited excellent discrimi-
native ability, effectively distinguishing between true and fake news with high confidence.

Note that in other practical examples, it can be more important to be more accurate for a certain
label, and this can influence the metric to use and thus, the choice of the final model. It would
depend on the objective of the task we are performing.
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Import Libraries

[1]: import matplotlib.pyplot as plt

import warnings

warnings.filterwarnings('ignore')

import numpy as np

import pandas as pd

import seaborn as sns

import scipy as sp

from nltk.corpus import stopwords, wordnet

from nltk.stem import WordNetLemmatizer

from nltk.tokenize import word_tokenize, sent_tokenize

from wordcloud import WordCloud

from sklearn.model_selection import train_test_split, KFold, StratifiedKFold

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

from sklearn.svm import SVC

from xgboost import XGBClassifier

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.model_selection import cross_val_score, cross_val_predict, 

↪→GridSearchCV

from sklearn.metrics import confusion_matrix, classification_report, 

↪→ConfusionMatrixDisplay

Load data

[2]: dataO = pd.read_csv('C:/Users/Amparo/OneDrive/Desktop/data/IMDB.csv')

dataO.head()

[2]: review sentiment

0 One of the other reviewers has mentioned that ... positive

1 A wonderful little production. <br /><br />The... positive

2 I thought this was a wonderful way to spend ti... positive

3 Basically there's a family where a little boy ... negative

4 Petter Mattei's "Love in the Time of Money" is... positive
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Preprocessing and Exploratory Data Analysis (EDA)

Remove NA values and check for duplicated news.

[3]: dataO.dropna(inplace = True)

[4]: dataO.duplicated().sum()

[4]: 418

There are 418 duplicated registers. Thus, delete all occurrences except the first.

[5]: dataO.drop_duplicates(inplace=True)

[6]: print("We have a dataset with {} films reviews.".format(len(dataO)))

We have a dataset with 49582 films reviews.

[7]: print(dataO["sentiment"].value_counts())

positive 24884

negative 24698

Name: sentiment, dtype: int64

We have a dataset with 49582 films reviews, whose sentiments are 24884 positive and 24698 nega-
tive.

[8]: ax, fig = plt.subplots()

etiquetas = dataO.sentiment.value_counts()

etiquetas.plot(kind= 'bar', color= ["green", "red"])

plt.title('Bar chart')

plt.ylabel("Frequency of Sentiments")

plt.xlabel("Sentiments")

plt.show()
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[9]: import matplotlib.pyplot as plt

# Count the frequency of each sentiment category

etiquetas = dataO['sentiment'].value_counts()

# Create a pie chart

fig, ax = plt.subplots()

ax.pie(etiquetas, labels=etiquetas.index, colors=[ "green", "red"], autopct='%1.

↪→1f%%')

ax.set_title('Pie Chart of Sentiments')

# Display the pie chart

plt.show()
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We are working with a balanced dataset since there are approximately the same number of positive
and negative reviews.

To reduce the computational cost of this task, we are going to select 40000 films reviews preserving
this representation to work with a balanced dataset.

[10]: X = dataO['review']

y = dataO['sentiment']

# Use train_test_split for stratified sampling

X_sampled, _, y_sampled, _ = train_test_split(X, y, train_size=40000, 

↪→stratify=y, random_state=42)

# Combine the sampled features and target into a dataframe

data = pd.DataFrame({'review': X_sampled, 'sentiment': y_sampled})

data.head()

[10]: review sentiment

512 If I had known this movie was filmed in the ex... negative

2729 The cinema of the 60s was as much as time of r... positive

40138 Las Vegas is very funny and focuses on the sub... positive

6465 This musical has a deep meaning which is appre... positive

12190 Delightful Disney film with Angela Lansbury in... positive

[11]: print(data["sentiment"].value_counts())

positive 20075

negative 19925

Name: sentiment, dtype: int64

[12]: import matplotlib.pyplot as plt

# Count the frequency of each sentiment category

etiquetas = data['sentiment'].value_counts()

# Create a pie chart

fig, ax = plt.subplots()

ax.pie(etiquetas, labels=etiquetas.index, colors=[ "green", "red"], autopct='%1.

↪→1f%%')

ax.set_title('Pie Chart of Sentiments')

# Display the pie chart

plt.show()
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In this practical example, we are working with subjective opinions which have been extracted
from IMDb website. This is the reason why it is vital to add some preprocessing step first. Here
we have a list of abbreviatios that are commonly used in an informal text.

[13]: # Thanks to https://www.kaggle.com/rftexas/text-only-kfold-bert

abbreviations = {

"$" : " dollar ",

"¿" : " euro ",

"4ao" : "for adults only",

"a.m" : "before midday",

"a3" : "anytime anywhere anyplace",

"aamof" : "as a matter of fact",

"acct" : "account",

"adih" : "another day in hell",

"afaic" : "as far as i am concerned",

"afaict" : "as far as i can tell",

"afaik" : "as far as i know",

"afair" : "as far as i remember",

"afk" : "away from keyboard",

"app" : "application",

"approx" : "approximately",

"apps" : "applications",

"asap" : "as soon as possible",

"asl" : "age, sex, location",

"atk" : "at the keyboard",

"ave." : "avenue",

"aymm" : "are you my mother",

"ayor" : "at your own risk",

"b&b" : "bed and breakfast",

"b+b" : "bed and breakfast",

"b.c" : "before christ",
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"b2b" : "business to business",

"b2c" : "business to customer",

"b4" : "before",

"b4n" : "bye for now",

"b@u" : "back at you",

"bae" : "before anyone else",

"bak" : "back at keyboard",

"bbbg" : "bye bye be good",

"bbc" : "british broadcasting corporation",

"bbias" : "be back in a second",

"bbl" : "be back later",

"bbs" : "be back soon",

"be4" : "before",

"bfn" : "bye for now",

"blvd" : "boulevard",

"bout" : "about",

"brb" : "be right back",

"bros" : "brothers",

"brt" : "be right there",

"bsaaw" : "big smile and a wink",

"btw" : "by the way",

"bwl" : "bursting with laughter",

"c/o" : "care of",

"cet" : "central european time",

"cf" : "compare",

"cia" : "central intelligence agency",

"csl" : "can not stop laughing",

"cu" : "see you",

"cul8r" : "see you later",

"cv" : "curriculum vitae",

"cwot" : "complete waste of time",

"cya" : "see you",

"cyt" : "see you tomorrow",

"dae" : "does anyone else",

"dbmib" : "do not bother me i am busy",

"diy" : "do it yourself",

"dm" : "direct message",

"dwh" : "during work hours",

"e123" : "easy as one two three",

"eet" : "eastern european time",

"eg" : "example",

"embm" : "early morning business meeting",

"encl" : "enclosed",

"encl." : "enclosed",

"etc" : "and so on",

"faq" : "frequently asked questions",

"fawc" : "for anyone who cares",
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"fb" : "facebook",

"fc" : "fingers crossed",

"fig" : "figure",

"fimh" : "forever in my heart",

"ft." : "feet",

"ft" : "featuring",

"ftl" : "for the loss",

"ftw" : "for the win",

"fwiw" : "for what it is worth",

"fyi" : "for your information",

"g9" : "genius",

"gahoy" : "get a hold of yourself",

"gal" : "get a life",

"gcse" : "general certificate of secondary education",

"gfn" : "gone for now",

"gg" : "good game",

"gl" : "good luck",

"glhf" : "good luck have fun",

"gmt" : "greenwich mean time",

"gmta" : "great minds think alike",

"gn" : "good night",

"g.o.a.t" : "greatest of all time",

"goat" : "greatest of all time",

"goi" : "get over it",

"gps" : "global positioning system",

"gr8" : "great",

"gratz" : "congratulations",

"gyal" : "girl",

"h&c" : "hot and cold",

"hp" : "horsepower",

"hr" : "hour",

"hrh" : "his royal highness",

"ht" : "height",

"ibrb" : "i will be right back",

"ic" : "i see",

"icq" : "i seek you",

"icymi" : "in case you missed it",

"idc" : "i do not care",

"idgadf" : "i do not give a damn fuck",

"idgaf" : "i do not give a fuck",

"idk" : "i do not know",

"ie" : "that is",

"i.e" : "that is",

"ifyp" : "i feel your pain",

"IG" : "instagram",

"iirc" : "if i remember correctly",

"ilu" : "i love you",
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"ily" : "i love you",

"imho" : "in my humble opinion",

"imo" : "in my opinion",

"imu" : "i miss you",

"iow" : "in other words",

"irl" : "in real life",

"j4f" : "just for fun",

"jic" : "just in case",

"jk" : "just kidding",

"jsyk" : "just so you know",

"l8r" : "later",

"lb" : "pound",

"lbs" : "pounds",

"ldr" : "long distance relationship",

"lmao" : "laugh my ass off",

"lmfao" : "laugh my fucking ass off",

"lol" : "laughing out loud",

"ltd" : "limited",

"ltns" : "long time no see",

"m8" : "mate",

"mf" : "motherfucker",

"mfs" : "motherfuckers",

"mfw" : "my face when",

"mofo" : "motherfucker",

"mph" : "miles per hour",

"mr" : "mister",

"mrw" : "my reaction when",

"ms" : "miss",

"mte" : "my thoughts exactly",

"nagi" : "not a good idea",

"nbc" : "national broadcasting company",

"nbd" : "not big deal",

"nfs" : "not for sale",

"ngl" : "not going to lie",

"nhs" : "national health service",

"nrn" : "no reply necessary",

"nsfl" : "not safe for life",

"nsfw" : "not safe for work",

"nth" : "nice to have",

"nvr" : "never",

"nyc" : "new york city",

"oc" : "original content",

"og" : "original",

"ohp" : "overhead projector",

"oic" : "oh i see",

"omdb" : "over my dead body",

"omg" : "oh my god",
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"omw" : "on my way",

"p.a" : "per annum",

"p.m" : "after midday",

"pm" : "prime minister",

"poc" : "people of color",

"pov" : "point of view",

"pp" : "pages",

"ppl" : "people",

"prw" : "parents are watching",

"ps" : "postscript",

"pt" : "point",

"ptb" : "please text back",

"pto" : "please turn over",

"qpsa" : "what happens",

"ratchet" : "rude",

"rbtl" : "read between the lines",

"rlrt" : "real life retweet",

"rofl" : "rolling on the floor laughing",

"roflol" : "rolling on the floor laughing out loud",

"rotflmao" : "rolling on the floor laughing my ass off",

"rt" : "retweet",

"ruok" : "are you ok",

"sfw" : "safe for work",

"sk8" : "skate",

"smh" : "shake my head",

"sq" : "square",

"srsly" : "seriously",

"ssdd" : "same stuff different day",

"tbh" : "to be honest",

"tbs" : "tablespooful",

"tbsp" : "tablespooful",

"tfw" : "that feeling when",

"thks" : "thank you",

"tho" : "though",

"thx" : "thank you",

"tia" : "thanks in advance",

"til" : "today i learned",

"tl;dr" : "too long i did not read",

"tldr" : "too long i did not read",

"tmb" : "tweet me back",

"tntl" : "trying not to laugh",

"ttyl" : "talk to you later",

"u" : "you",

"u2" : "you too",

"u4e" : "yours for ever",

"utc" : "coordinated universal time",

"w/" : "with",
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"w/o" : "without",

"w8" : "wait",

"wassup" : "what is up",

"wb" : "welcome back",

"wtf" : "what the fuck",

"wtg" : "way to go",

"wtpa" : "where the party at",

"wuf" : "where are you from",

"wuzup" : "what is up",

"wywh" : "wish you were here",

"yd" : "yard",

"ygtr" : "you got that right",

"ynk" : "you never know",

"zzz" : "sleeping bored and tired"

}

[14]: # Thanks to https://www.kaggle.com/rftexas/text-only-kfold-bert

def convert_abbrev(word):

return abbreviations[word.lower()] if word.lower() in abbreviations.keys() 

↪→else word

def convert_abbrev_in_text(text):

tokens = word_tokenize(text)

tokens = [convert_abbrev(word) for word in tokens]

text = ' '.join(tokens)

return text

# convert abbreviations

data['review'] = data['review'].apply(lambda x: convert_abbrev_in_text(x))

In addition to this abbreviation conversion, we have noticed visualising the dataframe that there
are html break tags since these reviews have been extracted from a website. Therefore, it is conve-
nient to remove them.

[15]: # remove html tags

data['review'] = data['review'].apply(lambda x: x.replace('< br / >', ''))

We can calculate some extra features such as the number of words and number of characters per
review to do some exploratory data analysis.

[16]: data['word_count'] = data['review'].apply(lambda x: len(str(x).split()))

data["char_len"] = data["review"].apply(lambda x: len(x))

[17]: fig = plt.figure(figsize=(14,12))

sns.set_style("darkgrid")

plt0 = sns.distplot(data[data.sentiment=="positive"].char_len, hist=True, 

↪→label="Positive")
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plt1 = sns.distplot(data[data.sentiment=="negative"].char_len, hist=True, 

↪→label="Negative")

plt.legend(labels=["Positive","Negative"], loc = 'center right', fontsize = 

↪→"x-large")

# Axis labels

plt.xlabel('Characters', fontsize=16)

plt.ylabel('Density', fontsize=16)

plt.show()

All the classes are right skewed around 1000 characters. Since they are very similar, we have to
consider extra features.

[18]: fig = plt.figure(figsize=(14,12))

sns.set_style("darkgrid")

120



Chapter 6. Results IMDb Reviews: Sentiment Analysis

plt0 = sns.distplot(data[data.sentiment=="positive"].word_count, hist=True, 

↪→label="Positive")

plt1 = sns.distplot(data[data.sentiment=="negative"].word_count, hist=True, 

↪→label="Negative")

plt.legend(labels=["Positive","Negative"], loc = 'center right', fontsize = 

↪→"x-large")

# Axis labels

plt.xlabel('Words', fontsize=16)

plt.ylabel('Density', fontsize=16)

plt.show()

Both the number of words and the number of characters are distributed approximately equal
across the positive and negative reviews. Therefore, these cannot be considered a determining
feature.

WordCloud provides a quick and intuitive way to identify the most frequent terms within a text.
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In this case, we are going to construct a WordCloud for both the positive and negative reviews to
visualise simmilarities and differences.

[19]: plt.figure(figsize = (18,24)) # Text Reviews with positive sentiment

wordcloud = WordCloud(min_font_size = 3, max_words = 2500 , width = 1200 ,

height = 800).generate(" ".join(data[data['sentiment'] == 

↪→'positive']['review']))

plt.imshow(wordcloud,interpolation = 'bilinear')

[19]: <matplotlib.image.AxesImage at 0x1bb9be0d910>

[20]: plt.figure(figsize = (18,24)) # Text Reviews with negative sentiment

wordcloud = WordCloud(min_font_size = 3, max_words = 2500 , width = 1200 ,

height = 800).generate(" ".join(data[data['sentiment'] == 

↪→'negative']['review']))

plt.imshow(wordcloud,interpolation = 'bilinear')

[20]: <matplotlib.image.AxesImage at 0x1bb9bde3430>
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Both WordCloud share common words such as film, movie, time and character among others,
which are frequent words in the cinema world. Regarding subjective connotations, we can appre-
ciate funny, good and great, in contrast to bad and terrible in the negative side.

Next, we continue with the preprocessing step: space, punctuation and stopwords removal, low-
ercasing, tokenisation and stemming.

[21]: # Delete spaces

def delete_spaces(text):

return " ".join(text.split())

# To lower

def texto_to_lower(text):

return text.lower()

# Tokenisation

from nltk import word_tokenize

def tokenisation(text):

tokens = word_tokenize(text)

return tokens

# Once text has been tokenised, we can create functions that take tokens as 

↪→inputs and apply further preprocessing.
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# Remove stop words

from nltk.corpus import stopwords

def stopwords_removal(tokens):

stop_words = set(stopwords.words('english'))

filtered_sentence = [w for w in tokens if not w in stop_words]

return filtered_sentence

# Remove punctuation (only alphanumeric values are allowed)

def punctuation_removal(tokens):

words=[word for word in tokens if word.isalnum()]

return words

# Stemming

import string

from nltk.stem import PorterStemmer

stemmer = PorterStemmer()

def stem(tokens):

tokens = [stemmer.stem(token) for token in tokens]

return tokens

We define preprocessing functions to be applied to the text: lowercasing, tokenisation, stopwords
and punctuation removal, and stemming.

[22]: def preprocess(sentence):

sentence = delete_spaces(sentence)

sentence = texto_to_lower(sentence)

sentence = tokenisation(sentence)

sentence = stopwords_removal(sentence)

sentence = punctuation_removal(sentence)

sentence = stem(sentence)

return sentence

# Store in a new column "normalise" of the dataframe to keep the original data 

↪→too.

data["tokens_norm"] = data["review"].apply(lambda x: preprocess(x))

[23]: data.head()

[23]: review sentiment \

512 If I had known this movie was filmed in the ex... negative

2729 The cinema of the 60s was as much as time of r... positive

40138 Las Vegas is very funny and focuses on the sub... positive

6465 This musical has a deep meaning which is appre... positive

12190 Delightful Disney film with Angela Lansbury in... positive

word_count char_len tokens_norm

512 154 759 [known, movi, film, exasper, dogm, 95, style, ...

2729 327 1737 [cinema, 60, much, time, revolut, polit, music...
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40138 117 614 [la, vega, funni, focus, substanc, set, amaz, ...

6465 214 1089 [music, deep, mean, appreci, wise, see, wisdom...

12190 187 986 [delight, disney, film, angela, lansburi, fine...

[24]: data["text_normalised"] = data["tokens_norm"].apply(lambda x: " ".join(x))

data.head()

[24]: review sentiment \

512 If I had known this movie was filmed in the ex... negative

2729 The cinema of the 60s was as much as time of r... positive

40138 Las Vegas is very funny and focuses on the sub... positive

6465 This musical has a deep meaning which is appre... positive

12190 Delightful Disney film with Angela Lansbury in... positive

word_count char_len \

512 154 759

2729 327 1737

40138 117 614

6465 214 1089

12190 187 986

tokens_norm \

512 [known, movi, film, exasper, dogm, 95, style, ...

2729 [cinema, 60, much, time, revolut, polit, music...

40138 [la, vega, funni, focus, substanc, set, amaz, ...

6465 [music, deep, mean, appreci, wise, see, wisdom...

12190 [delight, disney, film, angela, lansburi, fine...

text_normalised

512 known movi film exasper dogm 95 style would ne...

2729 cinema 60 much time revolut polit music filmma...

40138 la vega funni focus substanc set amaz scene ou...

6465 music deep mean appreci wise see wisdom contai...

12190 delight disney film angela lansburi fine form ...

TextBlob is a library that provides a simple and intuitive API for NLP tasks built on top of NLTK.
One of its key features is sentiment analysis capability.

The sentiment property returns a namedtuple of the form Sentiment(polarity, subjectivity). The
polarity score ranges from −1 to 1, where −1 indicates a highly negative sentiment, 1 indicates a
highly positive sentiment and 0 a neutral sentiment.

The subjectivity is a float within the range [0, 1] where 0 is very objective and 1 is very subjective.

This is very useful for sentiment analysis.

[25]: # pip install textblob

from textblob import TextBlob
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data["sent_subjectivity"] = data["text_normalised"].apply(lambda x: TextBlob(x).

↪→sentiment.subjectivity)

data["sent_polarity"] = data["text_normalised"].apply(lambda x: TextBlob(x).

↪→sentiment.polarity)

[26]: data["sent_polarity"].hist(bins=50)

[26]: <AxesSubplot:>

Sentiment polarity seems to have a symmetric distribution around 0.15, whose frequency is the
highest in this point and then, it decreases along the tails (similar to the shape of a normal distri-
bution). This reflects that only some reviews have extreme sentiments, with positive sentiment as
the most extreme one (0.75).

Vectorisation of text

GloVe, short for Global Vectors, is a word representation model that aims to capture distributed
representations of words. It is an unsupervised learning algorithm designed to assign vector rep-
resentations to words. The model maps words into a meaningful space, where the proximity
between words reflects their semantic similarity.

To perform sentiment analysis on film reviews, we used the pre-trained word embeddings from
the GloVe Twitter 25-dimensional model. This was achieved by importing the gensim.downloader
module and using the load function from the api submodule.

The GloVe embeddings are powerful representations that capture the semantic meaning of words
based on their contextual usage in a large corpus of Twitter text. Each word is transformed into
a dense numerical vector of 25 dimensions, allowing us to analyse the sentiment expressed in the
film reviews.

By loading the glove-twitter-25 model using api.load(‘glove-twitter-25’), we obtain access to the
pre-trained word embeddings. These embeddings can then be used to represent the words in
the film reviews as numerical vectors. This numerical representation enables us to apply various
machine learning techniques to classify the sentiment of the reviews accurately.
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The usage of pre-trained word embeddings saves us the time and computational resources re-
quired to train our own embeddings from scratch. It also benefits from the vast amount of data
and context captured in the GloVe Twitter model, which makes it well-suited for sentiment anal-
ysis in the film review domain.

[27]: import gensim.downloader as api

glove_emb = api.load('glove-twitter-25')

This get_average_vector() function allows us to compute the average vector representation for a
given list of tokens. This way, we obtain a 25 dimensional vector representation for each review.

[28]: def get_average_vector(tokens):

l = list()

for i in tokens:

try:

l.append(glove_emb.get_vector(i))

except:

continue

try:

result = np.mean(l, axis=0)

except:

result = np.zeros(25)

return result

[29]: data["embeddings"] = data["tokens_norm"].apply(lambda x: get_average_vector(x))

[30]: data.head()

[30]: review sentiment \

512 If I had known this movie was filmed in the ex... negative

2729 The cinema of the 60s was as much as time of r... positive

40138 Las Vegas is very funny and focuses on the sub... positive

6465 This musical has a deep meaning which is appre... positive

12190 Delightful Disney film with Angela Lansbury in... positive

word_count char_len \

512 154 759

2729 327 1737

40138 117 614

6465 214 1089

12190 187 986

tokens_norm \

512 [known, movi, film, exasper, dogm, 95, style, ...

2729 [cinema, 60, much, time, revolut, polit, music...

40138 [la, vega, funni, focus, substanc, set, amaz, ...

6465 [music, deep, mean, appreci, wise, see, wisdom...

12190 [delight, disney, film, angela, lansburi, fine...
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text_normalised sent_subjectivity \

512 known movi film exasper dogm 95 style would ne... 0.241667

2729 cinema 60 much time revolut polit music filmma... 0.329634

40138 la vega funni focus substanc set amaz scene ou... 0.524286

6465 music deep mean appreci wise see wisdom contai... 0.563393

12190 delight disney film angela lansburi fine form ... 0.548512

sent_polarity embeddings

512 0.031250 [-0.23297037, 0.24585672, 0.090983965, -0.1447...

2729 0.030716 [-0.20859282, 0.171421, -0.007602942, -0.12960...

40138 0.161429 [-0.24537817, 0.21428183, 0.14903583, -0.08302...

6465 0.211445 [-0.14868726, 0.16624884, -0.1804222, 0.009106...

12190 0.189665 [-0.21085294, 0.12334834, -0.008020849, -0.081...

[31]: vector_data = pd.concat([data.embeddings.apply(pd.Series),

data[["sent_polarity","sent_subjectivity"]]], axis=1)

We have transformed text to a numerical representation with 27 features, which corresponds to
word embeddings and sentiment polarity and subjectivity, for the 40000 sampled reviews.

[32]: vector_data.shape

[32]: (40000, 27)

[33]: vector_data.head()

[33]: 0 1 2 3 4 5 6 \

512 -0.232970 0.245857 0.090984 -0.144705 0.002647 0.000857 0.482371

2729 -0.208593 0.171421 -0.007603 -0.129600 0.110268 -0.023035 0.636843

40138 -0.245378 0.214282 0.149036 -0.083023 0.009157 -0.034927 0.397359

6465 -0.148687 0.166249 -0.180422 0.009106 0.051586 0.000221 0.664426

12190 -0.210853 0.123348 -0.008021 -0.081537 -0.124037 -0.165585 0.529820

7 8 9 ... 17 18 19 \

512 -0.420550 0.034915 -0.096237 ... -0.147742 0.012249 -0.025490

2729 -0.443005 0.059925 -0.331034 ... -0.092161 0.067579 -0.143954

40138 -0.172392 0.002778 -0.344967 ... -0.335653 -0.066072 0.041860

6465 -0.308628 0.023470 -0.235530 ... -0.042695 0.336808 -0.323844

12190 -0.316194 0.119807 -0.311201 ... -0.039619 -0.059760 0.021153

20 21 22 23 24 sent_polarity \

512 -0.152912 0.348241 0.240295 -0.099608 -0.409727 0.031250

2729 -0.150108 0.188386 -0.174485 -0.064974 -0.320691 0.030716

40138 0.200282 0.115927 0.072215 0.059028 -0.308877 0.161429

6465 -0.166169 0.004295 -0.113732 0.017440 -0.232162 0.211445

12190 -0.168560 0.223524 -0.462363 -0.261190 -0.234969 0.189665
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sent_subjectivity

512 0.241667

2729 0.329634

40138 0.524286

6465 0.563393

12190 0.548512

[5 rows x 27 columns]

[34]: vector_data = vector_data.fillna(0)

Now, we define a function to map the sentiments into numeric values.

[35]: def map_sentiment(sentiment):

if sentiment == "positive":

return 0

elif sentiment == "negative":

return 1

else:

return None # Handle any other cases if necessary

# Apply the function to create the numeric_sentiment column

data['numeric_sentiment'] = data['sentiment'].apply(lambda x: map_sentiment(x))

[36]: X = sp.sparse.csc_matrix(vector_data)

y = data["numeric_sentiment"]

Machine Learning

Split the dataset into a training and test sets (70%-30% respectively).

[37]: X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=27, 

↪→test_size= 0.3)

print(X_train.shape)

print(X_test.shape)

(28000, 27)

(12000, 27)

We have obtained a training sample of 28000 film reviews and a test set of 12000 film reviews.

We define a function to perform cross validation with 10 folds across different models, which
returns the final confusion matrix and the results for the given metrics.

[38]: def model_evaluation(models, scores, X, y):

global results

global names

results = {}

names = []
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# For each model

for name, model in models:

KF = KFold(n_splits=10, shuffle=True, random_state=98)

model_results = {}

# Cross-validation

for score in scores:

cv_results = cross_val_score(model, X, y, cv=KF, scoring=score, 

↪→verbose=False)

model_results[score] = cv_results

y_pred = cross_val_predict(model, X, y, cv=KF)

print(name)

print(confusion_matrix(y, y_pred))

print(classification_report(y, y_pred, digits=4))

# Store results

results[name] = model_results

names.append(name)

[39]: ## Define the models

models = [

("Logistic", LogisticRegression()),

("GaussianNB",GaussianNB()),

("Tree", DecisionTreeClassifier()),

("XGBoost", XGBClassifier()),

("Gradient Boosting", GradientBoostingClassifier()),

("LDA", LinearDiscriminantAnalysis()),

("SVC", SVC())

]

scores = ["accuracy", "roc_auc"]

model_evaluation(models, scores, X_train.toarray(), y_train)

Logistic

[[10468 3542]

[ 3608 10382]]

precision recall f1-score support

0 0.7437 0.7472 0.7454 14010

1 0.7456 0.7421 0.7439 13990

accuracy 0.7446 28000

macro avg 0.7446 0.7446 0.7446 28000

weighted avg 0.7446 0.7446 0.7446 28000
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GaussianNB

[[ 9595 4415]

[ 3862 10128]]

precision recall f1-score support

0 0.7130 0.6849 0.6987 14010

1 0.6964 0.7239 0.7099 13990

accuracy 0.7044 28000

macro avg 0.7047 0.7044 0.7043 28000

weighted avg 0.7047 0.7044 0.7043 28000

Tree

[[8970 5040]

[4978 9012]]

precision recall f1-score support

0 0.6431 0.6403 0.6417 14010

1 0.6413 0.6442 0.6428 13990

accuracy 0.6422 28000

macro avg 0.6422 0.6422 0.6422 28000

weighted avg 0.6422 0.6422 0.6422 28000

XGBoost

[[10398 3612]

[ 3782 10208]]

precision recall f1-score support

0 0.7333 0.7422 0.7377 14010

1 0.7386 0.7297 0.7341 13990

accuracy 0.7359 28000

macro avg 0.7360 0.7359 0.7359 28000

weighted avg 0.7360 0.7359 0.7359 28000

Gradient Boosting

[[10556 3454]

[ 3812 10178]]

precision recall f1-score support

0 0.7347 0.7535 0.7440 14010

1 0.7466 0.7275 0.7369 13990

accuracy 0.7405 28000

macro avg 0.7407 0.7405 0.7405 28000

weighted avg 0.7407 0.7405 0.7405 28000
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LDA

[[10498 3512]

[ 3639 10351]]

precision recall f1-score support

0 0.7426 0.7493 0.7459 14010

1 0.7467 0.7399 0.7433 13990

accuracy 0.7446 28000

macro avg 0.7446 0.7446 0.7446 28000

weighted avg 0.7446 0.7446 0.7446 28000

SVC

[[10532 3478]

[ 3632 10358]]

precision recall f1-score support

0 0.7436 0.7517 0.7476 14010

1 0.7486 0.7404 0.7445 13990

accuracy 0.7461 28000

macro avg 0.7461 0.7461 0.7461 28000

weighted avg 0.7461 0.7461 0.7461 28000

[40]: def display_results(results, names, scores):

# Create a DataFrame with mean and std for each score

df_results = pd.DataFrame()

df_results['Model'] = names

for score in scores:

df_results['Mean ' + score] = [result[score].mean() for result in 

↪→results.values()]

df_results['Std ' + score] = [result[score].std() for result in results.

↪→values()]

display(df_results)

# Plot boxplot with means

fig, axes = plt.subplots(len(scores), figsize=(10, 8 * len(scores)))

for i, score in enumerate(scores):

axes[i].set_title(score)

axes[i].boxplot([result[score] for result in results.values()], 

↪→labels=names, showmeans=True)

plt.show()
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# Example usage

display_results(results, names, ['accuracy', 'roc_auc'])

Model Mean accuracy Std accuracy Mean roc_auc Std roc_auc

0 Logistic 0.744643 0.009736 0.821323 0.009627

1 GaussianNB 0.704393 0.008310 0.775218 0.007537

2 Tree 0.642214 0.012242 0.642671 0.010289

3 XGBoost 0.735929 0.008710 0.810930 0.006704

4 Gradient Boosting 0.740500 0.009874 0.820305 0.008585

5 LDA 0.744607 0.010446 0.820955 0.009815

6 SVC 0.746071 0.009812 0.824763 0.009767
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For each model and from each fold, we obtain the accuracy and the roc auc, whose ditributions
and means are visualised. In general, the majority of models (except GaussianNB and Tree) have
good accuracy (around 75% on average) as well as good auc results (more than 0.8 over 1).

The best models are Support Vector Machines (Classifier), Logistic Regression and LDA, which
have a similar performance, although it is true that SVM has achieved a slightly better perfor-
mance on average. Therefore, the best sentiment review analyser is SVC().

Hyperparameter search

Once we have selected the best model, SVC, for our machine learning task, it becomes crucial
to fine-tune its performance by optimising its hyperparameters. Performing a hyperparameter
search involves systematically exploring different combinations of hyperparameters to find the
optimal configuration that maximises the model’s performance (regarding roc auc) on the given
dataset. Since we have a balanced dataset, we could have used accuracy as metric instead.

Some SVC() hyperparameters we can tune are:

• C: it is known as the regularisation parameter, which determines the trade-off between
achieving a low training error and having a simpler decision boundary. It controls the
penalty for misclassifying training examples.

• gamma: defines the influence of each training example on the decision boundary. It controls
the shape of the decision boundary and the flexibility of the model.

• kernel: determines the type of decision boundary that the SVM algorithm will learn. It
specifies the function used to transform the input features into higher-dimensional space,
where a linear decision boundary can be more effectively found.

[41]: model = SVC()

grid = {'C':[1,10],'gamma':[1,0.1], 'kernel':['linear','rbf']}

cv = StratifiedKFold(n_splits=5)

grid_search = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1, cv=cv, 

↪→scoring='roc_auc',error_score=0)

[42]: grid_result = grid_search.fit(X_train, y_train)

# summarise results

print("Best ROC AUC: %f with parameters %s" % (grid_result.best_score_, 

↪→grid_result.best_params_))

Best ROC AUC: 0.831763 with parameters {'C': 1, 'gamma': 1, 'kernel': 'rbf'}

The probability that the model will assign a larger probability to a random positive review than a
random negative review is 0.831763, which is as a good value.

The kernel selected is the Gaussian Radial Basis Function (RBF). Mathematically:

k(x, y) = e−
||x−y||2

2σ2
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[43]: # define models and parameters

model = SVC(C = 1, gamma = 1, kernel = "rbf")

model.fit(X_train,y_train)

[43]: SVC(C=1, gamma=1)

[44]: y_pred = model.predict(X_test)

cm = confusion_matrix(y_test, y_pred)

print(cm)

print(classification_report(y_test,y_pred, digits = 4))

[[4649 1416]

[1525 4410]]

precision recall f1-score support

0 0.7530 0.7665 0.7597 6065

1 0.7570 0.7430 0.7499 5935

accuracy 0.7549 12000

macro avg 0.7550 0.7548 0.7548 12000

weighted avg 0.7550 0.7549 0.7549 12000

Interpretations

Precision + Out of all the reviews that the model predicted to be positive, “only” 75.3% actually
were.

• Out of all the reviews that the model predicted to be negative, “only” 75.7% actually were.

Recall + Out of all the reviews that actually were positive, the model predicted this outcome cor-
rectly for 76.65% of those reviews.

• Out of all the reviews that actually were negative, the model predicted this outcome correctly
for 74.3% of those reviews.

Accuracy

• We can conclude that the model correctly predicted the outcome for approximately 75.49%
of the reviews.

[45]: plt = ConfusionMatrixDisplay(cm)

# Show the plot

plt.plot()

[45]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1bbd4f9eac0>
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We can visualise that 4649 were correctly classified as true out of 6065 actual positive reviews and
that 4410 were correctly classified as negative reviews out of 5935 actual negative reviews.

Another insight is that 4649 were actual positive reviews out of 6174 reviews classified as positive
and that 4410 were actual negative reviews out of 5826 reviews classified as negative.

[46]: cmn = confusion_matrix(y_test, y_pred, normalize = "true")

plt = ConfusionMatrixDisplay(cmn)

# if 'true', the confusion matrix is normalized over the true conditions (e.g. 

↪→rows);

# Show the plot

plt.plot()

[46]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1bbd4f8ffd0>
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This matrix shows the recall for each class since it has been normalised by rows (true).

[47]: cmn = confusion_matrix(y_test, y_pred, normalize = "pred")

plt = ConfusionMatrixDisplay(cmn)

# if 'pred', the confusion matrix is normalized over the predicted conditions (e.

↪→g. columns);

# Show the plot

plt.plot()

[47]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1bbd4ecc520>

This matrix shows the precision for each class since it has been normalised by columns (predic-
tions).

Conclusion

Based on the findings, we can conclude that the Support Vector Classifier (SVC) performed as the
best model for our task with approximately 75.49% correct predictions on unseen data. Addition-
ally, the ROC AUC value of 0.831763 demonstrates that the model exhibits good discriminatory
power in distinguishing between the positive and negative reviews.

Moreover, our SVC model showed promising performance in terms of precision, recall and F1-
score (around 75%). These results suggest that the SVC model is effective for our sentiment anal-
ysis task.
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Appendix

In this section, we will provide an overview of the Python code implemented for text
preprocessing that gathers the concepts and procedures that have been explained
along this work.

Firstly, we will dive into the morphological analysis explained in section (2.1),
specifically in analysis stemming (section (2.1.1)) and lemmatisation (section (2.1.2)).
In addition to this, we will look into the different modules WordNet have (sec-
tion (2.1.2.1)) and how this information is presented. Then, different ways of token-
isation are shown together with their advantages and disadvantages (section (2.2.1)).

Brown corpus from NLTK will be preprocessed to check Zipf’s Law hypothesis
as it was mentioned in section (2.2.2). This justifies the removal of stopwords in the
preprocess step.
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Stemming

Initialise the following stemming algorithms.

[1]: import nltk

from nltk.stem import PorterStemmer, SnowballStemmer, LancasterStemmer

# nltk.download("punkt")

# Initialise Porter stemmer

ps = PorterStemmer()

# Initialise Snowball stemmer

ss = SnowballStemmer("english")

# Initialise Lancaster stemmer

ls = LancasterStemmer()

[2]: # Example inflections to reduce

examples = ["program","programming","programer","programs","programmed", 

↪→"people", "procedure", "successful",

"photographers", "photographs", "protographed", "unacceptable", 

↪→"fairly", "sportingly",

"universal", "university", "data", "datum" ,"ultimately", "ultimatum"]

It is shown the following stemmisation of these words through Porter, Snowball and Lancaster
Stemmer, which allow us to compare the differences between them.

[3]: # Perform stemming

print("{0:15}{1:15}{2:15}{3:15}".format("--Word--","--PStem--", "--SStem--", 

↪→"--LStem"))

for example in examples:

print ("{0:15}{1:15}{2:15}{3:15}".format(example, ps.stem(example), ss.

↪→stem(example), ls.stem(example)))

--Word-- --PStem-- --SStem-- --LStem

program program program program

programming program program program

programer program program program

programs program program program

programmed program program program
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people peopl peopl peopl

procedure procedur procedur proc

successful success success success

photographers photograph photograph photograph

photographs photograph photograph photograph

protographed protograph protograph protograph

unacceptable unaccept unaccept unacceiv

fairly fairli fair fair

sportingly sportingli sport sport

universal univers univers univers

university univers univers univers

data data data dat

datum datum datum dat

ultimately ultim ultim ultim

ultimatum ultimatum ultimatum ultimat

Snowball Stemmer also is available in other languages such as Spanish. Here you can find an
example.

[4]: ss = SnowballStemmer("spanish")

examplesSpanish = ["niños", "trabajando", "trabajadores", "educación", "ciudad", 

↪→"persona"]

print("{0:15}{1:15}".format("--Word--", "--SStem--"))

for example in examplesSpanish:

print ("{0:15}{1:15}".format(example, ss.stem(example)))

--Word-- --SStem--

niños niñ

trabajando trabaj

trabajadores trabaj

educación educ

ciudad ciud

persona person

Lemmatisation

Lemmatisation relies on the part-of-speech tag indicated and the result is an actual word.

[5]: from nltk.stem import WordNetLemmatizer

# nltk.download("wordnet")

# nltk.download("omw-1.4")

# Initialise wordnet lemmatiser

wnl = WordNetLemmatizer()

[6]: nouns = ["program", "programer", "people", "procedure", "photographers", 

↪→"photographs", "university", "data",

"datum", "ultimatum"]
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print("{0:15}{1:15}".format("--Word--","--Stem--"))

for example in nouns:

print ("{0:15}{1:15}".format(example, wnl.lemmatize(example, pos="n")))

--Word-- --Stem--

program program

programer programer

people people

procedure procedure

photographers photographer

photographs photograph

university university

data data

datum datum

ultimatum ultimatum

[7]: verbs = ["programming", "programs", "programmed", "photographed"]

print("{0:15}{1:15}".format("--Word--","--Stem--"))

for example in verbs:

print ("{0:15}{1:15}".format(example, wnl.lemmatize(example, pos="v")))

--Word-- --Stem--

programming program

programs program

programmed program

photographed photograph

[8]: adjectives = ["successfull", "unaceptable", "universal"]

print("{0:15}{1:15}".format("--Word--","--Stem--"))

for example in adjectives:

print ("{0:15}{1:15}".format(example, wnl.lemmatize(example, pos="a")))

--Word-- --Stem--

successfull successfull

unaceptable unaceptable

universal universal

[9]: adverbs = ["fairly", "sportingly"]

print("{0:15}{1:15}".format("--Word--","--Stem--"))

for example in adverbs:

print ("{0:15}{1:15}".format(example, wnl.lemmatize(example, pos="r")))

--Word-- --Stem--

fairly fairly

sportingly sportingly
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WordNet

Bank synsets

Now, we retrieve the synsets (sets of synonymous words) associated with the word “bank” from
WordNet. The output is a list of Synset objects from WordNet.

[10]: from nltk.corpus import wordnet

syn = wordnet.synsets("bank")

print(syn)

[Synset('bank.n.01'), Synset('depository_financial_institution.n.01'),

Synset('bank.n.03'), Synset('bank.n.04'), Synset('bank.n.05'),

Synset('bank.n.06'), Synset('bank.n.07'), Synset('savings_bank.n.02'),

Synset('bank.n.09'), Synset('bank.n.10'), Synset('bank.v.01'),

Synset('bank.v.02'), Synset('bank.v.03'), Synset('bank.v.04'),

Synset('bank.v.05'), Synset('deposit.v.02'), Synset('bank.v.07'),

Synset('trust.v.01')]

We choose the object synset refering to a depository financial institution to better understand the
concepts stored in it. First, we can know the definition of the words that from part of these synset
(share semantic relation) and examples for illustration.

[11]: print("depository_financial_institution.n.01 definition: " + syn[1].definition())

print(syn[1].examples())

depository_financial_institution.n.01 definition: a financial institution that

accepts deposits and channels the money into lending activities

['he cashed a check at the bank', 'that bank holds the mortgage on my home']

The lemmas represent the different forms of the words in this synset: depository financial institu-
tion, bank, banking concern, and banking company.

[12]: print("depository_financial_institution.n.01 lemmas:")

print(syn[1].lemmas())

for lemma in syn[1].lemmas():

print(lemma.name())

depository_financial_institution.n.01 lemmas:

[Lemma('depository_financial_institution.n.01.depository_financial_institution')

, Lemma('depository_financial_institution.n.01.bank'),

Lemma('depository_financial_institution.n.01.banking_concern'),

Lemma('depository_financial_institution.n.01.banking_company')]

depository_financial_institution

bank

banking_concern

banking_company

The hypernym of this synset (a term that includes the concept of depository financial institution)
is financial institution.
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[13]: print("depository_financial_institution.n.01 hypernyms:")

print(syn[1].hypernyms())

depository_financial_institution.n.01 hypernyms:

[Synset('financial_institution.n.01')]

The terms that are encompassed (hyponyms) within a depository financial institution are: ac-
quirer, agent bank, commercial bank, credit union, federal reserve bank, home loan bank, lead
bank, member bank, merchant bank, state bank and thrift institution.

[14]: print("depository_financial_institution.n.01 hyponyms:")

print(syn[1].hyponyms())

for hyponym in syn[1].hyponyms():

print(hyponym.name())

depository_financial_institution.n.01 hyponyms:

[Synset('acquirer.n.02'), Synset('agent_bank.n.02'),

Synset('commercial_bank.n.01'), Synset('credit_union.n.01'),

Synset('federal_reserve_bank.n.01'), Synset('home_loan_bank.n.01'),

Synset('lead_bank.n.01'), Synset('member_bank.n.01'),

Synset('merchant_bank.n.01'), Synset('state_bank.n.01'),

Synset('thrift_institution.n.01')]

acquirer.n.02

agent_bank.n.02

commercial_bank.n.01

credit_union.n.01

federal_reserve_bank.n.01

home_loan_bank.n.01

lead_bank.n.01

member_bank.n.01

merchant_bank.n.01

state_bank.n.01

thrift_institution.n.01

For a better understanding, we repeat the procedure with another synset of bank, which refers to
the verb trust in this case.

[15]: print("trust.v.01 definition: " + syn[17].definition())

print(syn[17].examples())

trust.v.01 definition: have confidence or faith in

['We can trust in God', 'Rely on your friends', 'bank on your good education',

"I swear by my grandmother's recipes"]

The lemmas represent the different forms of the words in this synset: trust, swear, rely and bank.

[16]: print("trust.v.01 lemmas:")

print(syn[17].lemmas())

for lemma in syn[17].lemmas():

print(lemma.name())
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trust.v.01 lemmas:

[Lemma('trust.v.01.trust'), Lemma('trust.v.01.swear'), Lemma('trust.v.01.rely'),

Lemma('trust.v.01.bank')]

trust

swear

rely

bank

The hypernym of this synset (a term that includes the verb trust) is the verb believe.

[17]: print("trust.v.01 hypernyms:")

print(syn[17].hypernyms())

trust.v.01 hypernyms:

[Synset('believe.v.01')]

The terms that are encompassed (hyponyms) within trust are: count, credit and lean.

[18]: print("trust.v.01 hyponyms:")

print(syn[17].hyponyms())

for hyponym in syn[17].hyponyms():

print(hyponym.name())

trust.v.01 hyponyms:

[Synset('count.v.08'), Synset('credit.v.04'), Synset('lean.v.04')]

count.v.08

credit.v.04

lean.v.04

Siren synsets

[19]: syn = wordnet.synsets("siren")

print(syn)

[Synset('siren.n.01'), Synset('enchantress.n.01'), Synset('siren.n.03'),

Synset('siren.n.04'), Synset('siren.n.05')]

[20]: for i in range(0, len(syn)-1):

print(syn[i], "definition: " + syn[i].definition())

if (syn[i].examples() != []):

print("Example:", syn[i].examples())

Synset('siren.n.01') definition: a sea nymph (part woman and part bird) supposed

to lure sailors to destruction on the rocks where the nymphs lived

Example: ["Odysseus ordered his crew to plug their ears so they would not hear

the Siren's fatal song"]

Synset('enchantress.n.01') definition: a woman who is considered to be

dangerously seductive

Synset('siren.n.03') definition: a warning signal that is a loud wailing sound

Synset('siren.n.04') definition: an acoustic device producing a loud often

wailing sound as a signal or warning
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Path similarity

Since WordNet is a DAG, we can calculate the similarity between two synsets using the distace of
the shortest path between them.

The value will be between 0 and 1, where 0 indicates no similarity and 1 indicates the highest
similarity.

[21]: dog = wordnet.synset('dog.n.01')

cat = wordnet.synset('cat.n.01')

similarity = dog.path_similarity(cat)

print(f"Path Similarity between 'dog.n.01' and 'cat.n.01': {similarity}")

Path Similarity between 'dog.n.01' and 'cat.n.01': 0.2

To obtain further information, we can dive into the hypernyms that these two synsets share.

[22]: common_hypernyms = dog.common_hypernyms(cat)

print(f"Common Hypernyms between 'dog.n.01' and 'cat.n.01': {common_hypernyms}")

Common Hypernyms between 'dog.n.01' and 'cat.n.01': [Synset('mammal.n.01'),

Synset('animal.n.01'), Synset('living_thing.n.01'), Synset('chordate.n.01'),

Synset('object.n.01'), Synset('physical_entity.n.01'), Synset('placental.n.01'),

Synset('carnivore.n.01'), Synset('vertebrate.n.01'), Synset('whole.n.02'),

Synset('organism.n.01'), Synset('entity.n.01')]

[23]: depository_financial_institution = wordnet.

↪→synset('depository_financial_institution.n.01')

trust = wordnet.synset('trust.v.01')

similarity = trust.path_similarity(depository_financial_institution)

print(f"Path Similarity between 'depository_financial_institution.n.01' and 

↪→'trust.v.01': {similarity}")

Path Similarity between 'depository_financial_institution.n.01' and

'trust.v.01': 0.07142857142857142
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Tokenisation

Regular Expressions

Word Tokenisation

Simple word tokenisation based on words boundaries.

[1]: import re

textW = "There are different ways we can tokenise depending not only on the 

↪→language, but also on the technique."

[2]: tokens = re.findall("[\w]+", textW)

print(tokens)

['There', 'are', 'different', 'ways', 'we', 'can', 'tokenise', 'depending',

'not', 'only', 'on', 'the', 'language', 'but', 'also', 'on', 'the', 'technique']

Tokenisation using regular expressions.

• + [] : A set of characters.

• \w : Returns a match where the string contains any word characters (characters from a to Z,
digits from 0-9, and the underscore _ character).

• + : One or more occurrences.

Sentence tokenisation

Simple sentence tokenisationn based on punctuation marks, which does not distinguish other uses
of punctuation marks such as abreviations and decimals.

[3]: textS = "Dr. Henry drinks 2.5 litres of water per day. He also likes to drink 

↪→tea."

tokens_sent = re.compile('[.!?] ').split(textS) # Using compile method to 

↪→combine RegEx patterns

tokens_sent

[3]: ['Dr',

'Henry drinks 2.5 litres of water per day',

'He also likes to drink tea.']
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NLTK

Word tokenisation

[4]: import nltk

from nltk.tokenize import word_tokenize

# nltk.download('punkt')

tokens = word_tokenize(textW)

print(tokens)

['There', 'are', 'different', 'ways', 'we', 'can', 'tokenise', 'depending',

'not', 'only', 'on', 'the', 'language', ',', 'but', 'also', 'on', 'the',

'technique', '.']

Since punctuation marks are considered as tokens, we can then add another preprocess step to
remove them and only consider alphanumeric values.

[5]: textW.split()

[5]: ['There',

'are',

'different',

'ways',

'we',

'can',

'tokenise',

'depending',

'not',

'only',

'on',

'the',

'language,',

'but',

'also',

'on',

'the',

'technique.']

Sentenece tokenisation

Sentence tokenisation based on NLTK module can make a distinction between the different uses
of punctuation marks.

[6]: from nltk.tokenize import sent_tokenize

text = """Characters like periods, exclamation point and newline char are used 

↪→to separate the sentences.

But one drawback with split() method, that we can only use one separator at a 

↪→time!
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So sentence tonenization wont be foolproof with split() method."""

sent_tokenize(text)

[6]: ['Characters like periods, exclamation point and newline char are used to

separate the sentences.',

'But one drawback with split() method, that we can only use one separator at a

time!',

'So sentence tonenization wont be foolproof with split() method.']

[7]: text = "Dr. Henry drinks 2.5 litres of water per day. He also likes to drink tea.

↪→"

sent_tokenize(text)

[7]: ['Dr. Henry drinks 2.5 litres of water per day.',

'He also likes to drink tea.']

Spacy

[8]: import spacy

First, we have to load a pre-trained language model specifically designed for English text process-
ing. Then, a Doc object is created and then, we can use the attribute and methods to obtain further
information.

[9]: # Load the small English model

nlp = spacy.load("en_core_web_sm")

# Create a Doc object

doc = nlp(textW)

# Iterate over the tokens in the Doc object

for token in doc:

print(token.text)

There

are

different

ways

we

can

tokenise

depending

not

only

on

the

language

,
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but

also

on

the

technique

.

Bag-of-Words

This section includes a simple example to understand bag-of-words from a collection of three
documents, which are opinions regarding a TV show.

[10]: import pandas as pd

import numpy as np

doc1 = 'Got Talent is an awesome tv show!'

doc2 = 'Got Talent is the best tv show! The best ever'

doc3 = 'Got Talent is so boring.'

[11]: from sklearn.feature_extraction.text import CountVectorizer

vectoriser = CountVectorizer()

[12]: X = vectoriser.fit_transform([doc1,doc2,doc3])

df_bow_sklearn = pd.DataFrame(X.toarray(),columns=vectoriser.

↪→get_feature_names_out())

df_bow_sklearn.head()

[12]: an awesome best boring ever got is show so talent the tv

0 1 1 0 0 0 1 1 1 0 1 0 1

1 0 0 2 0 1 1 1 1 0 1 2 1

2 0 0 0 1 0 1 1 0 1 1 0 0

For BoW implementation, CountVectorizer() is used to count the frequency of each word per doc-
ument. We obtain a matrix where the element (i, j) refers to the number of times the word that
represents column j apprears in the i-th document.

As mentioned in Bag-of-Words section, it is useful to remove stopwors before constructing the
bag-of-words representation. This is the reason why CountVectorizer allows to remove them eas-
ily.

[13]: vectoriser = CountVectorizer(stop_words='english')

X = vectoriser.fit_transform([doc1,doc2,doc3])

df_bow_sklearn = pd.DataFrame(X.toarray(),columns=vectoriser.

↪→get_feature_names_out())

df_bow_sklearn.head()

[13]: awesome best boring got talent tv

0 1 0 0 1 1 1

1 0 2 0 1 1 1
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2 0 0 1 1 1 0

In addition to this, CountVectorizer() can also consider n-grams to construct the bag-of-words and
its representation. In this case, we are going to focus only on bigrams, but it allows for different
ranges of n-grams.

[14]: vectoriser = CountVectorizer(stop_words='english', ngram_range=(2,2))

X = vectoriser.fit_transform([doc1,doc2,doc3])

df_bow_sklearn = pd.DataFrame(X.toarray(),columns=vectoriser.

↪→get_feature_names_out())

df_bow_sklearn.head()

[14]: awesome tv best tv got talent talent awesome talent best \

0 1 0 1 1 0

1 0 1 1 0 1

2 0 0 1 0 0

talent boring tv best

0 0 0

1 0 1

2 1 0

TF-IDF

Now, we are going to implement TF-IDF to compare the results with the previous and illustrate
this process with a simple example. For this purpose, we are going to use TfidVectorizer(), which
has common arguments with CountVectorizer().

[15]: from sklearn.feature_extraction.text import TfidfVectorizer

vectoriserTF = TfidfVectorizer()

[16]: X = vectoriserTF.fit_transform([doc1,doc2,doc3])

df_bow_sklearn = pd.DataFrame(X.toarray(),columns=vectoriserTF.

↪→get_feature_names_out())

df_bow_sklearn.head()

[16]: an awesome best boring ever got is \

0 0.48776 0.48776 0.000000 0.000000 0.000000 0.288079 0.288079

1 0.00000 0.00000 0.597527 0.000000 0.298763 0.176454 0.176454

2 0.00000 0.00000 0.000000 0.572929 0.000000 0.338381 0.338381

show so talent the tv

0 0.370954 0.000000 0.288079 0.000000 0.370954

1 0.227217 0.000000 0.176454 0.597527 0.227217

2 0.000000 0.572929 0.338381 0.000000 0.000000
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[17]: vectoriserTF = TfidfVectorizer(stop_words='english')

X = vectoriserTF.fit_transform([doc1,doc2,doc3])

df_bow_sklearn = pd.DataFrame(X.toarray(),columns=vectoriserTF.

↪→get_feature_names_out())

df_bow_sklearn.head()

[17]: awesome best boring got talent tv

0 0.66284 0.000000 0.000000 0.391484 0.391484 0.504107

1 0.00000 0.870714 0.000000 0.257129 0.257129 0.331100

2 0.00000 0.000000 0.767495 0.453295 0.453295 0.000000

In this case, common words between different documents such as got and talent have the lowest
not-null weight since they are not a key identifying feature to draw specific conclusions for that
document.

[18]: vectoriserTF = TfidfVectorizer(stop_words='english', ngram_range=(2,2))

X = vectoriserTF.fit_transform([doc1,doc2,doc3])

df_bow_sklearn = pd.DataFrame(X.toarray(),columns=vectoriserTF.

↪→get_feature_names_out())

df_bow_sklearn.head()

[18]: awesome tv best tv got talent talent awesome talent best \

0 0.652491 0.000000 0.385372 0.652491 0.000000

1 0.000000 0.546454 0.322745 0.000000 0.546454

2 0.000000 0.000000 0.508542 0.000000 0.000000

talent boring tv best

0 0.000000 0.000000

1 0.000000 0.546454

2 0.861037 0.000000

In contrast to bag-of-words representation, which only considers the frecuency per document, TF-
IDF reflects the importance a word has not only in a document but also within the whole corpus.
This gives a more representative insight for each document.
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We are going to analyse evidence of Zipf’s Law in the Brown corpus.

[1]: import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import string

from math import log

import numpy as np

from nltk import FreqDist

from nltk.corpus import brown

[2]: punctuations = list(string.punctuation)

print(punctuations)

['!', '"', '#', '$', '%', '&', "'", '(', ')', '*', '+', ',', '-', '.', '/', ':',

';', '<', '=', '>', '?', '@', '[', '\\', ']', '�', '_', '`', '{', '|', '}', '~']

In this case, the preprocessing step involves tokenisation, lowercasing and punctuation removal.

[3]: tokens = [word.lower() for word in brown.words() if not all(char in punctuations 

↪→for char in word)]

# in this case, words are splitted

# lowercase and remove punctuation marks

# We are only interested in words, not in punctuation marks

print(tokens[:10])

['the', 'fulton', 'county', 'grand', 'jury', 'said', 'friday', 'an',

'investigation', 'of']

FreqDist tells us the frequency of each item in the text. In general, it could count any kind of
observable event. It is a distribution because it tells us how the total number of word tokens in
the text are distributed across the vocabulary items. The output is a dictionary whose values are
sorted in decrease order.

[4]: word_freq = FreqDist(tokens)

word_freq
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[4]: FreqDist({'the': 69971, 'of': 36412, 'and': 28853, 'to': 26158, 'a': 23195,

'in': 21337, 'that': 10594, 'is': 10109, 'was': 9815, 'he': 9548, ...})

[13]: print(f"The number of tokens in the Brown Corpus is {len(word_freq)}.")

The number of tokens in the Brown Corpus is 49796.

We define a function that plot the distribution of the 10 most frequent words by default, although
we can change this argument.

[14]: def ZipLaw(n=10):

words_labels = [label[0] for label in word_freq.most_common(n)]

words_freqs = [count[1] for count in word_freq.most_common(n)]

plt.figure(figsize=(12,6))

plt.title(str(n) + " most common words")

plt.ylabel("Frequency")

plt.xlabel("Word")

plot = sns.barplot(x=words_labels,y=words_freqs)

return plot

[15]: ZipLaw(6)

[15]: <AxesSubplot:title={'center':'6 most common words'}, xlabel='Word',

ylabel='Frequency'>

[16]: ZipLaw(30)

# plt.savefig("ZipLaw30.jpg")
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[16]: <AxesSubplot:title={'center':'30 most common words'}, xlabel='Word',

ylabel='Frequency'>

[17]: data = pd.DataFrame.from_dict(word_freq, orient="index", columns=["Frequency"])

total_words = data["Frequency"].sum()

total_words

data = data.sort_values(by = "Frequency", ascending=False)

data["% of total words"] = data["Frequency"]/total_words*100

data["Rank"] = range(1, len(data)+1)

[18]: data.head(3)

[18]: Frequency % of total words Rank

the 69971 6.905131 1

of 36412 3.593340 2

and 28853 2.847376 3

In this dataframe, we can visualise the frequency and cumulative frequency together with their
percentages and the rank of each token.

[19]: data["Cumulative frequency"]=np.cumsum(data["Frequency"])

data["Cumulative %"]= data["Cumulative frequency"]/total_words*100

data.head(135)

[19]: Frequency % of total words Rank Cumulative frequency Cumulative %

the 69971 6.905131 1 69971 6.905131

of 36412 3.593340 2 106383 10.498471

and 28853 2.847376 3 135236 13.345847
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to 26158 2.581418 4 161394 15.927265

a 23195 2.289013 5 184589 18.216277

... ... ... ... ... ...

day 687 0.067797 131 505471 49.882712

same 686 0.067698 132 506157 49.950410

another 684 0.067501 133 506841 50.017911

know 683 0.067402 134 507524 50.085314

while 680 0.067106 135 508204 50.152420

[135 rows x 5 columns]

Log-log plot

[20]: def logZipLaw(n=5000):

ranks_labels = list(map(np.log, np.arange(1,n+1)))

words_freqs = [log(count[1]) for count in word_freq.most_common(n)]

plt.figure(figsize=(8,6))

plt.title(str(n) + " most frequent words (log-log scale)")

plt.ylabel("log(frequency)")

plt.xlabel("log(rank word)")

plot = sns.lineplot(x=ranks_labels,y=words_freqs)

return plot

[23]: logZipLaw(20000)

# plt.savefig("LogZipLaw20000.jpg")

[23]: <AxesSubplot:title={'center':'20000 most frequent words (log-log scale)'},

xlabel='log(rank word)', ylabel='log(frequency)'>
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(eds) Advanced Lectures on Machine Learning. ML 2003. Lecture Notes in
Computer Science(), vol 3176. Springer, Berlin, Heidelberg. https://doi.org/
10.1007/978-3-540-28650-9_8

[25] What Is Overfitting? MathWorks. Retrieved in: https://ch.mathworks.com/
discovery/overfitting.html
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