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Abstract— In this paper, a generalization of the concept of 

electrical power for periodic current and voltage waveforms 
based on a new generalized complex geometric algebra (GCGA), 
is proposed. This powerful tool permits, in n-sinusoidal/ 
nonlinear situations, representing and calculating the voltage, 
current, and apparent power in a single-port electrical network 
in terms of multivectors. The new expressions result in a novel 
representation of the apparent power, similar to the Steinmetz’s 
phasor model, based on complex numbers, but limited to the 
purely sinusoidal case. The multivectorial approach presented is 
based on the frequency domain decomposition of the apparent 
power into three components: the real part and the imaginary 
part of the complex-scalar associated to active and reactive 
power respectively, and distortion power, associated to the 
complex-bivector.  
A geometrical interpretation of the multivectorial components of 
apparent power is discussed. Numerical examples illustrate the 
clear advantages of the suggested approach.  
 

Index Terms— Clifford algebra, vector-phasor, multivectorial 
apparent power, harmonics. 
 

I. INTRODUCTION 
HE application of Geometric Algebra (GA) [1-2] to 
electromagnetic theory, in which circuit analysis is a 

natural consequence, has a very short history. On the contrary, 
the classical power theory has been widely analyzed, but some 
fundamental concepts are still unsolved. In sinusoidal 
conditions, power equation is described by complex algebra 
and decomposed into apparent, active and reactive powers. 
For  
the n-sinusoidal case, research on power definitions [3]-[14] 
has been carried out with very different objectives as 
mathematical meaning, physical meaning, power factor 
improvement, distortionless conditions, etc.  Several recent 

papers have dealt with the definition and compensation of 
nonactive power [15]-[17], but the old contributions of 
Budeanu in frequency domain [3] and Fryze [4] in time 
domain remain essential. The large number of papers 
published motivated by these two classic theories suggest that 
the work has not been finished. Unfortunately, many 
contributions do not consider the multivectorial character of 
the apparent power components. Other authors [18],[19],[28], 
have proposed new power equations based in vector spaces 
representation. In particular [19] is concerned with a 
representation of power equation in the mathematical 
framework of Geometric Algebra. Nevertheless, this last 
reference only uses the information of impedance angles 
without including voltage phase angles. Therefore, it has been 
concluded that the typical nonlinear behaviour of the 
distribution systems require, for its complete analysis, a new 
mathematical structure that can guarantee the multivectorial 
character of different components. 
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In this sense, our work considers a new representation of 
power theory deduced from a generalized Geometric Algebra. 
It is based on a decomposition of apparent power into 
multivectorial components in the frequency domain. The 
apparent power multivector is derived in terms of the voltage 
and current vector-phasors, and contains all power 
information (magnitude, direction, and sense). Previously, the 
voltage and current waveforms have been transformed into the 
frequency domain via Clifford Fourier transform [20]. In 
particular, the phase shift of voltage vector-phasor is 
considered. 

The geometrical interpretation of power components is 
quite effective for clarifying their nature from a mathematical 
and physical viewpoint. Particularly, the new mathematical 
framework GCGA is aimed at yielding the following general 
contributions: 

• The introduction of a new mathematical structure for a 
clear definition of the concept of vector-phasor applied to 
algebraic and geometric representation of voltage and current 
signals in frequency domain analysis.   

  • A new frequency-domain analysis of the multivector 
quantities associated with complex geometric algebra, in order 
to explain the concept of instantaneous power. 

• Geometrical interpretation of Power Theory and the new 
features of electrical power decomposition into active, 
reactive, and distortion powers. 

• Definition of the distortion power in multivectorial form. 

T 
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• Operational facility for the analysis of the linear and 
nonlinear, and time-variant and time-invariant networks.  

• Reversibility frequency domain- time domain via Clifford 
Fourier transform [20]. 

• Finally, the possibility of extending to power multivector 
concept in poly-phase systems.  

In order to help the reader, the complete mathematical 
foundations have been shown in the Appendix.  

 

II. CLIFFORD SPACE-VECTOR THEORY: GENERALIZED 
COMPLEX GEOMETRIC ALGEBRA ( CCl ) n

A. Preliminaries: classic geometric product ( )g  

Geometric algebras can be defined simply by specifying 
appropriate rules for multiplying vectors. Thus, let  an n-
dimensional linear space over the real numbers. The geometric 
product of vectors  or  if  can be 
decomposed into a symmetric inner product 

nV

( )g ( )a b ab nV∈a,b

1 (
2

⋅ +a b = ab ba)        (1) 

and  an antisymmetric outer product  

 1 (
2

∧ −a b = ab ba)        (2) 

Therefore,  ab  has the canonical decomposition 
 

⋅ ∧ab = a b + a b         (3) 
 

The inner product  is a scalar and the outer product 
is called bivector (or 2-vector). Geometrically, it 

represents a directed plane segment, in much the same way as 
a vector represents a directed line segment, fig.1. We can 
regard  as a directed area with a magnitude 

⋅a b
∧a b

∧a b ∧a b  equal 
to the usual scalar area of the parallelogram in fig.1, with the 
direction of the plane in which the parallelogram lies, and 
with sense which can be assigned to the parallelogram in the 
plane. Then, just as a vector  represents (or is represented 
by) a directed line segment and a bivector  represents a 
directed plane segment, the trivector (3-vector) 

a
∧a b

∧ ∧a b c  
represents a directed space segment (the parallelepiped with 
edges a, b, c) 

 
 

B. Generalized Complex Geometric Algebra: new geometric 
product ( )ĝ  

Let us introduce vector- phasors (complex-vectors) in order 
to analyze circuit power theory in nonsinusoidal conditions. 
To define these new phasors, we start from an n-dimensional 
linear space , of elements that are termed vectors. If nV

{ }1 , 2 3 n, ,...σ σ σ σ  is an orthonormal basis of , (n is equal 
to the number of harmonic components in periodic non 
sinusoidal signals), the unit element of this algebra is denoted 
by . The vector basis for the Clifford algebra

nV

0σ { }nlC  is 
generated by  

k k h 1 2 3
scalar vectors bivectors pseudoscalar( k:1,...,n ) ( k ,h:1,...,n;k h )

1 , , ,..., .. nσ σ σ σ σ σ σ

≠

⎧ ⎫
⎪ ⎪

∧ ∧ ∧ ∧⎨ ⎬
⎪ ⎪
⎩ ⎭

  (4) 

where ∧  denotes the outer product and k h k h khσ σ σ σ σ∧ = = .   
Each coefficient of a basic vector jσ  replaces one of the 
orthonormal functions in the Fourier decomposition. The 
elements in this geometric algebra are termed multivectors [1-
2]. But the electrical quantities voltage and current have not 
easy interpretation in classic Clifford Algebra. For this reason 
we will define a new geometric algebra — a generalization of 
the classic Clifford Algebra [2] — which we have termed 
“Generalized Complex Geometric Algebra” (GCGA). Then, 
let C the complex vector space and Cln the Clifford algebra in 
n-dimensional real space V  and the following structure is 
defined  

n

{ }ˆ,nCCl g           (5) 
 

which coefficients 12...kz C∈   , the basis 12...k nClσ ∈  and 

( )ĝ g= ℜ can be seen in  (A1) and (B2-B5). It is trivial that 
 is a vector space over nCCl R . The generic 

element p p p nZ z CCσ= ∈ l  is a p-th complex-vector and it can 

be represented by pj
p pz e α σ , pα  is the phase angle of pz and 

pσ  is a basis vector. In this sense, the generic 

element pq pq pq nZ z CClσ= ∈  is a pq-th complex-bivector, and 

it can be represented by pqj
pq pqz e α σ , pqα  is the phase angle 

of pqz and pqσ  is a basis bivector.   
The objective is that, elements such as 

pj
p p p p pZ z z e ασ σ= =  will be used to represent voltage and 

current harmonic vector-phasors and elements of the 
form pqj

pq pq pq pq pZ z z e α

∧a b

∧ ∧a b c

 
Fig.1 Vector, bivector and trivector representation. 

qσ σ= =  will be used to analyze 

power components. A more complete information can be seen 
in [1-2-21-23] and   [Appendix A, B] 
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III. MULTIVECTORIAL  APPARENT POWER 

A. Multivectorial representation of  periodic signals. 
Suppose that a nonsinusoidal voltage 

 ( ) (p
p L N

u t 2 U sin p t )pω α
∈ ∪

= +∑     (6) 

 is applied to a nonlinear load, fig. 2, where p is the harmonic 
order of u(t). The resulting current has an instantaneous value 
given by 

( ) (q
q N M

i t 2 I sin q t )qω β
∈ ∪

= ∑ +

q

      (7) 

where q is the harmonic order of i(t).  It  is assumed that a 
group of voltage harmonics N exist that have corresponding 
current harmonics of the same frequencies, that components L 
of the supply voltage exist without corresponding current, and 
that components M of current exist without corresponding 
voltages. In linear operation, q qβ α ϕ= − , qϕ is the 

impedance phase angle and { } { },L Mφ φ= = . The capital 

 and  represent rms values of pU qI ( )pu t  and ( )qi .   t
   
In the { }n ˆCCl ,g  structure spanned by an orthonormal basis 

{ 1 , 2 3 n }, ,...σ σ σ σ , the associated p-th harmonic voltage  and 

q-th harmonic current can be represented by the vector-
phasors: 

pj
p p p pU U e Uα

pσ σ= =  

and                                                     
(8) 

 qj
q q q q qI I e Iβ σ σ= =  

 
where p pU U= , q qI I= . Then U U , p

p L N∈ ∪

= ∑ q
q N M

I I
∈ ∪

= ∑ .  

Due to the orthonormal character of the Clifford basis, the 
magnitude of the vector-phasors coincides with the rms value 
or norm (D1) of u(t) and i(t) signals. The rms values are given 
by 

2 2

p
p L N

U U
∈ ∪

= ∑   and  
2 2

q
q N M

I I
∈ ∪

= ∑  

         

B. Apparent power multivector 
 According to (B2-B6), the  apparent power at the 

nonlinear load, fig. 2, can be obtained as a multivector  in 

 generated by the geometric product ”

S

nV ĝ ” of the voltage 
and conjugate current vector-phasors   

{ ( ) )}

0

( )

,

( )

,
,

ˆ cos sin

q p p q

p q

p q p p p p p p
p N L p q p q
q N M

j j j
p q q p pq

p q
p q N

j
p q pq

p L N q M
p L q N

S U g I U I j U I

U I e U I e e

U I e P jQ D

ϕ ϕ α α

α β

ϕ ϕ

σ

σ

∗

∈ ∪ = =
∈ ∪

−

<
∈

−

∈ ∪ ∈
∈ ∈

⎛ ⎞
σ= = +⎜ ⎟

⎝ ⎠

+ − +

+ = + +

∑ ∑ ∑

∑

∑

+

        (9) 

which consist of a complex-scalar and a complex-bivector. In 
eqn. (9), “ ” is the new “generalized complex geometric 
product” (B2), and 

ĝ
( )∗  is the standard “complex conjugate” 

operation (C2).  Clearly, cosp p
p N

P U I pϕ
∈

= ∑  is the active 

power or average value of the instantaneous power in the time 
domain. cosp p

p N
Q U I pϕ

∈

= ∑ is the called reactive power and is 

not a real physical quantity. It is merely the geometric 
complement of active component. Note from eqn. (9) that 
( ) 0P jQ σ+  is the complex-scalar. The complex-bivector 
associated to multivectorial distortion power, is given by 

{ ( ) )}( )

,

( )

,
,

q p p q

p q

j j j
p q q p pq

p q
p q N

j
p q pq Lin Nonlin

p L N q M
p L q N

D U I e U I e e

U I e D D

ϕ ϕ α α

α β

σ

σ

−

<
∈

−

∈ ∪ ∈
∈ ∈

= − +

+ =

∑

∑ +
         (10) 

 
Fig. 2. Generic nonlinear circuit 

 

This complex-bivector D  is an entirely fictitious 
component and non physical variable. The components Q  and 

D  have a non independent physical nature and they constitute 
the nonactive power. 

Note that, consistent with (G1), the squared value 
2

S in 

eqn. (9), may be represented as  
 

2 2 2
ˆS U g I U I∗= =

2
      (11) 

and 
2 2 2S P Q D= + + 2

q

        (12) 

 
This expression is identical to the classic squared value of 

the apparent power. 
In linear operation and pα α= , eqn.(9) becomes 

simplified and is now given by 

     
( )

0

,

cos sin

q p

p q p p p p p p
p N p q p q
q N

j j
p q q p pq Lin

p q
p q N

S U g I U I j U I

U I e U I e P jQ Dϕ ϕ

ϕ ϕ

σ

∗

∈ = =
∈

<
∈

⎛ ⎞
σ= = +⎜ ⎟

⎝ ⎠

+ − = + +

∑ ∑ ∑

∑

+

      (13) 

From (B6), note that now “g” is the classic geometric 
product (3). 

The multivectorial apparent power S~ , can be given not 
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only as in (9), but also in the form 
 

NonactiveNonlinearLinear SPSSS ~~~~~
+=+= ,           (14) 

where 

Linear LinS P j Q D= + +

D

                (15) 
           

,
,

Nonlinear Nonlin pq
p L N q M
p L q N

S D
∈ ∪ ∈
∈ ∈

= = ∑            (16) 

                          (17)  Nonactive Lin NonlinS jQ D D= + +
 
In  sinusoidal case,  eqns. (8) can be expressed by 

  
1j α

1 1 1U = U e σ = U σ1  

and                                                
(18) 

1jβ
1 1 1I = I e σ = I σ1  

 
where and are now the Steinmetz classic phasors. The 
complex apparent power is defined by 

1U 1I

 
0ˆ ( )S UgI P jQ σ∗= = +              (19) 

where   
1 1 1P = U I cosφ                   (20) 

and   
                         (21) 1 1 1Q = U I sinφ

 are active and reactive powers respectively.       
                   

From the viewpoint of the power factor improvement, the 
suggested decomposition, eqn. (9), can be particularly useful. 
Thus, a multivectorial relative quality index (RQI) is defined 
by 

S Q1 j
P P

δ = = + +
D
P

       (22) 

and the power factor (PF) can be written as 
1PF
δ

=         (23) 

where  
2 2

2

Q D
1

P P
δ = + + 2        (24) 

 
Eqn. (24) shows that on this decomposition, all the 

components with its direction and sense are accessible in 
order to improve the power factor.     

The suggested apparent power multivector, eqn. (9), is very 
important and represents a new concept of apparent power. 
The eqn. (11) is the squared value of S~ , for linear and 
nonlinear networks under nonsinusoidal conditions. This 
value S , is a consequence only of the multivector S~ and is 

one of this paper’s main contribution. In particular, 
2

S is the 

sum of the squared values of the components of S~ . It should 
be noted that whereas S  is a simple value, the multivector S~  

has magnitude, direction, and sense. 

IV. COMPUTATIONAL ADVANTAGES  
Standard mathematical software is not well suited for 

working with multivectors. In particular, the standard cross 
product does not work in spaces with dimension greater than 
3. Therefore, its use is difficult for analyzing nonsinusoidal 
circuits, since it is actually necessary to carry out calculations 
for this generalized multivectors product. The MATHCAD 
program is very suitable, however, due to its operating 
procedure symbolic matrix algebra. Using the symbolic 
method, apparent power in multivectorial form, (9), can be 
calculated easily if we define the complex coefficients matrix 
H.  

2 ( ) ,p qj
p q

p q

U I e p q p q N
U I otherwise

α α− −∗

∗

⎧ ⎫⋅ ⋅ > ∀ ∈⎪ ⎪= ⎨ ⎬
⋅⎪ ⎪⎩ ⎭

H    (25) 

Thus,  ( )

1

2
1 2 n

m

ˆS U g I , ,

σ
σ

σ σ σ

σ

∗

⎛ ⎞
⎜ ⎟
⎜= =
⎜
⎜ ⎟
⎝ ⎠

H ⎟
⎟

. More easily, 

H is given by 
 

2 1

1 2

1 1 1 2 1 1
2 ( )

2 1 2 2 2 2

2 ( ) 2 ( )
1 2

1 2

0
0

0 0 0
0

n n

n m
j

n m

j j
n n n n n m

m

U I U I U I U I
U I e U I U I U I

U I e U I e U I U I

U I U I U I

α α

α α α α

∗ ∗ ∗

− −∗ ∗ ∗

− − − −∗ ∗ ∗

∗ ∗

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

H

l l l

0

∗

∗

∗

∗

 

 (26) 
 
where the diagonal includes all elements of the inner product 
and the trace of H returns the value of  directly. On 
the other hand, the cross elements are used to characterize 
straightforwardly the new outer product and, hence, the 
different components of distortion: 

jQP +

p q p q q pD H H= − . 
Note that linear elements conform a submatrix with non 

zero elements that are affected by phase correction for p>q. 
Moreover, a nonlinear element introduces a null row (or 
column) when a voltage (or current) harmonic is not present. 
In this case, it is not necessary to correct the phase angles. The 
apparent complexity of the mathematical structure { }ˆ,nCCl g  
is explained by the operative facility from computational 
advantages and intuitive geometrical interpretation of the 
power theory. 

According to (B6), if p qα α=  for all linear elements, a 

simplified expression for  multivector and H matrix are S
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given by  
 
 

S U g I ∗=  
and                                                    (27) 

{ },p qU I p q∗= ⋅ ∀H  

 

V. GEOMETRICAL INTERPRETATION 

In the ( )n ˆCCl ,g  algebraic structure, voltage and current 
vector-phasors (8) must be considered complex-vectors, and 
the multivectorial apparent power (9) is a complex-multivector 
which components can be associated to active, reactive, and 
distortion powers. The active and reactive powers result in 
real and imaginary part respectively within the 0σ -plane in 
which all products of the same frequency are 
contained . The distortion power is a sum of complex 
bivectors in different

( p q= )

pqσ -planes involving cross-frequency 

products ( ). qp ≠
For a pair of generic indexes, , (fig. 3), we 

represented the position of the bivectors involving like-
frequency geometric products in the 

qp =

0σ -plane. The sum of 

these products is a complex-scalar 0
~A , and their components 

are the active power P , and the reactive power  Q.  
 

p
p

P P= ∑

p
p

Q Q= ∑

0A

0σ - plane 

 
Fig. 3. 0

~A  decomposition into active power P  and reactive power Q. 

If  and , bivectors from cross-frequency 
geometric products are represented in Fig.4. The difference of 
these products is a 

qp ≠ Nqp ∈,

pqD~ complex-bivector into the pqσ - plane 

and is associated to linear distortion power. 
 

p qα α−

pqD

ˆp qU gI

pq planeσ −

pφqφ

ˆq pU gI

 
Fig. 4.  Representation of the linear  multivector distortion: pqD~  

Additionally, if ,and  andqp ≠ p L N ,q M∈ ∪ ∈ ,p L q N∈ ∈ , 

bivectors involving cross-frequency geometric products are 
associated to non-linear distortion power. 

It can be seen from figs. 3 and 4, that the geometric 
interpretation of eqn. (9) (Budeanu´s multivectorial power 
equation) is based on the association of complex planes ( )C to 
each multivectorial element of Clifford basis . nCl

VI. NUMERICAL EXAMPLES 
In this section, two numerical examples are developed. Units 
of physical quantities are the standard ones of the MKSA 
system, and are thus omitted everywhere. 

 
A. Example 1. 

A periodical nonsinusoidal voltage with instantaneous value 
given by 

A

200sinωt + 200sin(2ωt - 30º )
u(t) = 2

+100sin(4ωt +30º )
⎡ ⎤
⎢ ⎥
⎣ ⎦

   (28) 

is applied to a nonlinear load. The resulting current has an 
instantaneous value given by 

A

20sin(ωt +30º )+10sin(2ωt - 60º )
i(t) = 2

+10sin(3ωt +60º )
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (29) 

Corresponding harmonic vector-phasor expressions of the 
voltage and conjugated current are given by 

j0 j30 j30
A 1 2U 200 e 200 e 100e 4σ σ σ−= + +   

                                   (30) 
       j30 j60 j60

A 1 2I 20 e 10 e 10 e 3σ σ σ∗ − −= + +  
 Active, reactive, and distortion powers components can 

now be obtained from (26) as    
 

A

3464.1- j2000 1000+ j1732.05 1000- j1732.05 0
4000 1732.05+ j1000 -j2000 0

H =
0 0 0

2000 j1000 866.03- j500 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

0
 

 
 This example states that  

1A 0P 3464.1σ= , 2 A 0P 1732.05σ= , 

1A 0Q j2000σ= − , 2 A 0Q j1000σ= , 

( )
A12 12D 3000 j1732 σ= − + , ( )

A13 13D 1000 j1732 σ= − , 

( )
A23 23D j2000 σ= − ,

A41 41D 2000σ= . ( )
A42 42D j1000 σ= ,  

( )
A43 43D 866.03 j500 σ= −  

For { }p,q 1,2∈ , the active and reactive powers 

1A 2 A 1A 2 AP , P , Q , Q  respectively are associated to fig. 3. The 

linear distortion component  as well as the nonlinear 

distortion components , , ,  and  with 

their corresponding direction and sense can be associated to 
fig.4.  The values of

A12D

A13D
A23D

A41D
A42D

A43D

A A AP , Q , D are 
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AP 5196.15=  AQ 1000= AD 5099=  
The rms values of voltage and current respectively are 

given by  
2 2 2 2

AU 200 200 100 9 10= + + = ⋅ 4

2 2 2 2 2
AI 20 10 10 6 10= + + = ⋅  

The values of  are found to sum to 2 2
A AP ,Q ,D2

A

2
S , in 

accordance with eqn. (12) 
2 2 2 2 6

A A A AS P Q D 54 10= + + = ⋅  

Therefore, apparent volt-amperes AS  at the terminals are 

found from the relation
2 2 2 6

A A AS U I 54 10= = ⋅ . 

If 2α  is changed to 2 0α =  in eqn. (28), the instantaneous 
voltage is modified into  

B

200sinωt +200sin(2ωt)
u(t) = 2

+100sin(4ωt +30º )
⎡
⎢ ⎥
⎣ ⎦

⎤      (31) 

In this case, equal load is presumed, and the resulting 
instantaneous current is given by 

B

20sin(ωt +30º )+10sin(2ωt - 30º )
i(t) = 2

+10sin(3ωt +60º )
⎡ ⎤
⎢ ⎥
⎣ ⎦

   (32) 

Applying (27), H matrix is now given by  
 

B

3464.1- j2000 1732.05+ j1000 1000- j1732.05 0
3464.1- j2000 1732.05+ j1000 1000- j1732.05 0

H =
0 0 0

2000 500+ j866.03 866.03- j500 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

0  

 
In both cases, the rms values of the voltage and current are 

respectively
2 2 49 10A BU U= = ⋅

2 2 26 10A BI I= = ⋅ . The 

values of P, Q, D are the same:  
A B A B A BP P 5196.15, Q Q 1000, D D 5099= = = = = =  

and the apparent volt-amperes are 

 
2 2 2 2 6

A B
S S U I 54 10= = = ⋅  

It should be noted that the new complex-bivector distortion 
components  

( )
B12 12D 1732 j3000 σ= − + , ( )

B23 23D 1000 j1732 σ= −   

B42 42D ( 500 j866.03 )σ= +  

are now different to bivectors
A A A12 23 42D D ,D , and do not equal 

geometrical representation. Consequently, the above 
components are sensitive to a change of voltage phase-angles, 
and the waveform distortion affects the distortion power 
bivector.  In other words, the bivector distortion depends on 
voltage phase-angles, although its magnitude is invariant. 
These two cases could not be differentiated in terms of 
Budeanu’s equation power, since all their components are 
identical. Component identification can be made only through 
the multivectorial apparent power presented. In general, it can 

be verified that the power multivector concept detects the 
direction and sense, not only of multivectorial reactive and 
distortion components but also of active power components. 
Thus, the possible reverse sense of any harmonic of active 
power is very important for a correct identification of 
harmonic source locations [24], [25], and for determining the 
responsibility of the utility side (generator) and the consumer 
side (load). 
 
B. Example 2 

Fig. 5 represents a linear load with a compensator to 
minimize the nonactive power/current. The compensator is 
assumed to consist only of passive components (inductors and 
capacitors).  The voltage at point A is given by 

A

200sinωt + 200sin(2ωt - 30º )
u(t) = 2

+100sin(3ωt +30º )
⎡ ⎤
⎢ ⎥
⎣ ⎦

            (33) 

and the resulting current before compensation is given by 

 A

20sin(ωt - 45º )+10sin(2ωt - 60º )
i(t) = 2

+10sin(3ωt +60º )
⎡ ⎤
⎢ ⎥
⎣ ⎦

   (34) 

where rad100
s

ω π= .  

 

 
 

Fig. 5. Shunt compensator configuration 

 
To improve the power factor, let us consider first a shunt 

capacitor optC 36.53 Fμ=  and next a shunt LC-branches 
compensator [26]. In this sense, to obtain a set of parallel 
branches  and , the fixed-pole condition is iL iC

1p 1.2ω= , 2p 2.5ω= and 3p 4.5ω= . The simulation 
results are 

 
1L 121mH=  2L 69mH=  3L 81mH=  

1C 58.29 Fμ= 2C 23.35 Fμ=  3C 6.18 Fμ=
 

In accordance with (9), and applying (26), apparent power 
multivector before compensation is given by 

( )
( ) ( )
= + + − −

+ − − + − −
0 1

13 23

S ( 5426.5 j3328.43 ) 35.28 j2131.65

931.85 j2249.69 866.03 j1500

σ σ

σ σ

+2  

and after compensation with LC-branches  becomes S
( )

( ) ( )
= + + − −

+ − + −
LC 0 12

13 23

S ( 5426.5 j0 ) 949.51 j548.2

275.22 j158.9 433 j749.98

σ σ

σ σ

+
 

A qualitative representation of these power multivectors is 
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depicted in figures (6) and (7).  
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Fig. 6. S components before compensation 
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Fig. 7. components after LC compensation SLC

 
According to (24) and applying (26), multivectorial relative 

quality indexes ( )δ  and power factors (PF) are achieved. 

First, they are calculated prior to compensation ( ),PFδ , 

second for an optimal capacitive (Copt) 

compensator, , and finally for LC-branches 

compensator 

( Copt Copt,PFδ )
( )LC LC, PFδ . 

( ) (
( )

)= + + − − + − − +

+ − − ⇒ = ⇒ =

0 12

23

(1 j0.61) 0.007 j0.39 0.17 j0.42

0.16 j0.28 1.35 PF 0.74

δ σ σ

σ δ
13σ

 
( ) ( )

( )
Copt 0 12 13

23 Copt Copt

(1 j0.30 ) 0.04 j0.47 0.21 j0.49

0.20 j0.30 1.31 PF 0.76

δ σ σ

σ δ

= + + − + − − +

+ − − ⇒ = ⇒ =

( ) ( )
( )

= + + − − + −

+ − ⇒ = ⇒ =

LC 0 12 13

23 LC LC

(1 j0 ) 0.18 j0.10 0.05 j0.03

0.08 j0.14 1.03 PF 0.97

δ σ σ

σ δ

+σ
 

 
TABLE  I 

 - Copt LC  
ILoad 24.5 23.702 18.708 

P 5426.50 5426.5 5426 
Q 3328.43 1606.83 0 

D12 2131.94 2536.73 1096.36 
D13 2435.05 2890.84 316.23 
D23 1732.05 1934.25 866.02 

S 7348.47 7110.69 5612 
δ  1.35 1.31 1.03 

PF 0.74 0.76 0.97 
 

σ

 

The compensation results listed in Table I show that the LC 
compensator is much more effective in each of the scalar and 
bivector components than is capacitive compensation (Copt). 

Optimal compensation of nonactive power could require 
suitable power decompositions. In this sense, the new 
suggested multivectorial apparent power S~  possesses clear 
advantages from the viewpoint of nonactive minimization. 
The principal advantage is that S~  is decomposed into 
complex-scalar and complex-bivectors with direction and 
sense. These components provide detailed information for 
minimization of each power term by means of new devices, 
strategies, and algorithms. The accomplishment of such 
compensating methods and devices is a problem that warrants 
further research. 

VII. CONCLUSIONS  
In this paper, a new multivectorial representation to the 

apparent power under periodic n-sinusoidal/ linear- nonlinear 
operation has been presented. It is based on an appropriate 
mathematical tool (Generalized Complex Geometric Algebra) 
to define the power multivector concept in frequency domain. 
In this mathematical environment, the apparent power 
multivector  S~  is defined without arbitrariness, it is uniquely 
determined in a natural way from a new generalized geometric 
product of voltage and conjugated current vector-phasors. 
This original quantiy condenses all the information needed to 
solve future problems on power theory and plays a similar role 
to the Steinmetz phasor model in sinusoidal case.  

The proposed representation is unified and internally 
consistent with existing power equations. The application of 
these new concepts to the electric circuit theory should make 
significant improvements possible in compensating devices, 
new optimization algorithms and effective power quality 
indexes.  

At last, the opportunity of extending power multivector 
concept in polyphase systems is entirely possible. 
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APPENDIX: GENERALIZED COMPLEX GEOMETRIC ALGEBRA 

A. Generalized complex geometric product: Introduction 
We define as  the complex-vector space and ClC n the 

Clifford algebra on n-dimensional real space . We define 
the set  

nV

1,2...
n 1...k 1...k

k n
CCl z σ

=

⎧ ⎫
= ⎨

⎩ ⎭
∑ ⎬       (A1) 

where the coefficients 1...kz C∈   and the basis 1...k nClσ ∈ . It 

is trivial that is a vector space over nCCl R . According to 
(A1) definition, in complex-vectors case we obtain the vector 

subspace [ ]
n

n p1
p 1

CCl z pσ
=

= ∑ , where C  pz ∈ and nClpσ ∈ . 

The generic element p pz σ , is a p-th complex-vector, and it can 

be represented by ( )p p pa j b σ+ . In complex-bivectors case, 

we obtain the vector subspace [ ]n pq2
p q

CCl z pqσ
≠

= ∑ . The 

generic element pq pqz σ , is a pq-th complex-bivector, and it 

can be represented by ( )pq pqa j b pqσ+ . In the most general 
form, complex-multivectors, we obtain the vector subspace 
[ ]n 12...k 12...kk
CCl z σ= ∑ . The element 12...k 12...kz σ , is the 12 -

th complex-multivector, and it may be represented by 
. Therefore,  equation (A1), also 

can be represented as 

...k

( )12...k 12...k 12...ka jb σ+ nCCl

 
[ ] [ ] [ ]n n n1 2

complex
complex complex complexscalar
vectors bivectors

n n

pseudoscalar

CCl C CCl CCl CCl= ⊕ ⊕ ⊕ ⋅⋅⋅⊕  

The structure {  is a complex geometric algebra 
because the following properties are fulfilled: associative, 
distributive with respect to the sum and contraction. 

}

}

n ˆCCl ,g

 

B. Generalized complex geometric product for vectors. 
Let { 1,..., nσ σ a vector basis of . For two vectors nCCl

p pZ z pσ=   and ( p ∈Ω) q q qZ z σ′ ′=  ( )q ∈ Ψ  where 

, and complex numbers associated to each 
vector are  

{Ω,Ψ 1,2,...,n⊆ }

p

p

j
pz z e α=    

    (B1) 
q q qj j( )

q q qz z e z eβ α −′ ′ ′= = ϕ  

 
we define a new geometric product termed “generalized 
complex geometric product”, : ĝ
 

( )p q,ĝ : gα αℜ              (B2)  

                             

The letter “g” represents the usual geometric product and 

p q,α αℜ is an application in the complex planes associated to 

any multivector product when p qα α≠ and  it is given by 
 

( )
( )

otherwise and/or

q p

p q

2 j

, p q
e if p q, p,q Nz ,z
1 , p q

α α

α α

− −⎧⎪ > ∈′ℜ = ⎨
∉⎪⎩ N

      (B3) 

where N = Ω ∩ Ψ . 
This new product for vectors pZ  and qZ  is given by 

p p q q p q pqˆz g z z zσ σ σ′ ′=        (B4) 
and the basis transposition holds that  
 

( ) , ( 1)
p qq p q p p q pqz z z zα ασ σ′ ′= − ℜ       (B5) 

 
Note that the transposition operation is involutive.  
If p q p,q Nα α= ∀ ∈ , then  

p p, Idα α Cℜ =          (B6)  

and “ ”, (B2), will then become the classic geometric 
product “g” (3).  It should be noted that when  is restricted 
to real numbers, the classic Clifford Algebra is obtained.  

ĝ
C

In particular, for  two complex-vectors 
 

pj
p

p

Z z e α
pσ= ∑  and  ( )q qj

q q
q

Z z e α ϕ σ− +′ ′= ∑ , 

where the angles pα and ( )q qα ϕ− +  identify the phase of the 

p-th and q-th harmonics respectively, the generalized complex 
geometric product in linear operation ( ,p q N∈ ), can be 
written 

( )

( )

( ) ( ){ }

p qp q

q p p p

p q q pq p

p q

jj j
p p p q pq

p p q

j j j
q p q p p p

q p p

j jj j
p q , q p pq

p q

ˆZ g Z z z e e z z e

e z z e z z e

e z z e e z z e

α αϕ ϕ

α α ϕ ϕ

α α α αϕ ϕ
α α

σ

σ

σ

−

<

−

<

− −

<

′ ′ ′= +

′ ′+ =

′ ′+ −ℜ

∑ ∑

∑ ∑

∑

+

+
(B7) 

where    
( ) ( )q p p qp p

p q

j jj j
, q p q p q p qe z z e e z z eα α α αϕ ϕ

α α pσ σ− −′ ′ℜ =  

 

C. Reverse and conjugated operations 
We define the  bivector reverse element as 

 

( ) ( 1)
†

q p q p pq pqz zσ σ= −        (C1) 

where ( is the “reverse” operation. )†
 The “conjugated” operation ( ) is given by ∗

 

( )p pz z pσ σ
∗ ∗=          (C2) 
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D. Norm definition. 

The norm, value or magnitude, of a multivector Z  is a 
unique scalar Z  calculated by  

 
2 †

0Z Z( Z )∗= 〈 〉                          (D1) 

where we apply  in , and (  in Cl( )∗ C )† n. 

 
E. Clifford Fourier transform 
Let a continue signal  k kj( t )

k k kf : R C, f ( t ) X e ω θ+→ = . The 

Fourier transform (  of )FΓ kf  is given by 

{ } 1( ) ( ) ( ) kj t j
F k k k

T

kf t f t e dt X
T

eω θω −Γ = =∫    (E1) 

where . 2 1j = −
Let  : nf R CCl→  a real-valued multivectorial function. 

Then 
{ }( 1,..., ) 0

( ) ( )  A A
A P n

f t f t σ
∈ ∪

= ∑ with ( )( ) A Aj t
A Af t X e ω θ+= , 

where  is the set of the all subsets of {{( 1, ..., )P n} }1,...,n .   
According to the linearity of the Clifford Fourier transform 

( )C FΓ − , we get: 

{ } { }
{ }( 1,..., ) 0

( ) ( ) ( )C F F A A
A P n

f t f tω σ−
∈ ∪

Γ = Γ∑    (E2) 

and  

{ }
{ }( 1,..., ) 0

( ) ( ) ( )Aj
C F A A

A P n
f t X e Fθω σ−

∈ ∪

Γ = =∑ ω   (E3) 

where ( )F ω  is a multivector phasor. 
 
F. Directed Fourier series associated to voltage and 

current elements. 
We define directed Fourier series associated to  and ( )u t

( )i t  voltage and current nonsinusoidal functions as 
 

( )( ) p pj t
p p

p
U t U e ω α σ+= ∑  

                                                        (F1) 
( )( ) q q qj t

q q
q

I t I e ω α φ σ+ −= ∑  

respectively. Applying the Clifford Fourier transform (E2), we 
obtain  

pj
p

p
U U e α

pσ= ∑  and  ( )q qj
q

q
I I e α φ

qσ−= ∑   (F2) 

where U and  are the voltage and current vector-phasors in 
 respectively. 

I

nCCl
 

G. Squared value of apparent power 
2 2

ˆS U g I ∗= =   

( ) ( )2 2

,

ˆ ˆ ˆ ˆp p q q p q q p
p q p q

U g I U g I U g I U g I∗ ∗ ∗ ∗

≠

= + + −∑ ∑ =

   2 2
p q

p N L q N M
U I

∈ ∪ ∈ ∪

= ∑ ∑
                      (G1)   

 
List of symbols 

 
n-sinusoidal = non sinusoidal or multi-sinusoidal. 

nV    = linear space over real numbers 
1...kσ   = basis of the Clifford algebra 

1...kz   = complex numbers C∈  or Clifford´s coefficients. 

0A    = complex-scalar 

pZ    = harmonic vector-phasor (complex-vector) 

pqZ    = complex-bivector 

Z    = multivector 
p q( , )α αℜ = (associated rotation to multivectorial planes) 

ĝ     = geometric product with associated rotation  

pZ , pZ   = magnitude of p-th multivector-phasor  

Z    = norm 

( )†
Z   =  (reverse element) ( 1) / 2( 1)k k C−−

a b⋅    = inner product 
a b∧   = outer product or bivector 

pU    = p-th harmonic voltage vector-phasor  

pI    = p-th harmonic current vector-phasor  

S     = multivectorial apparent power 

LinD    = linear distortion power bivector 

NonlinD   = nonlinear distortion power bivector 

D    = distortion power bivector 
D ,D   = magnitude of distortion power bivector 

0 planeσ  = scalar plane 

pq planeσ = bivectorial plane 
R    = real  numbers 
C    = complex vector space 
Cln   = Clifford algebra in n-dimensional real space 

pα    = phase angle of p-th.voltage vector-phasor  

qα    = phase angle of q-th current vector-phasor  

qϕ   = phase angle between q-th voltage vector-phasor 
angle and q-th current vector-phasor angle. 

∗      = conjugated operation     
FΓ      = Fourier transform 
C F−Γ   = Clifford Fourier transform 

H          = complex coefficients matrix for representing the 
                 geometric product. 
δ         = relative quality index multivector (RQI) 
PF    = power factor 
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