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 
Abstract— This paper presents an effective approach to identify 

power quality events based on IEEE Std 1159-2009 caused by 
intermittent power sources like those of renewable energy. An 
efficient characterization of these disturbances is granted by the 
use of two useful wavelet based indices. For this purpose, a 
wavelet-based Global Disturbance Ratio index (GDR), defined 
through its instantaneous precursor (Instantaneous Transient 
Disturbance index ITD(t)), is used in power distribution networks 
(PDN) under steady-state and/or transient conditions. An 
intelligent disturbance classification is done using a Support 
Vector Machine (SVM) with a minimum input vector based on the 
GDR index. The effectiveness of the proposed technique is 
validated using a real-time experimental system with single events 
and multi-events signals.  

Index Terms—IEEE Std 1159-2009, Power quality (PQ), single-
event and multi-event power quality, SVM, wavelet transform. 

I. INTRODUCTION 

OWADAYS the increasing feeder development and 
consumption of renewable energy as well as the extensive 

use of power-switching devices for source conditioning and 
motion control in modern industrial applications has increased 
the eventuality of unacceptable harmonic levels, poor power 
factor, and unbalanced currents and voltages in power 
distribution networks (PDN) [1]. In this power quality (PQ) 
panorama, the effective detection and identification of 
disturbances become the most important task for the protection 
and selection of effective mitigation techniques in PDN.  

In the area of PQ analysis, some advanced mathematical 
techniques such as short-time Fourier transform (STFT)[2]-[3], 
S-transform [4]-[6], wavelet transform (WT)[7]-[10], Hilbert-
Huang Transform[11], Kalman filter[12], strong trace filter 
(STF)[13], sparse signal decomposition (SSD)[14], Gabor-
Wigner transform [15] and empirical mode decomposition 
(EMD)[16]-[17] were used to extract the feature eigenvectors 

that enabled the disturbance identification. Despite these tools 
allowed a classification stage too, most of them were restricted 
mainly to single disturbances. To include multi-event signals 
improving the classification process, some artificial 
intelligence techniques such as artificial neural network 
(ANN)[18], support vector machines (SVM)[19]-[23], fuzzy 
expert systems and genetic algorithms (GA) were 
employed[12],[24].  

The neural tree based method presented in [17] classifies 
eight disturbances with a high accuracy and the work proposed 
in [18] uses neural networks to identify single and combined 
PQ events. However both of them require a high computational 
burden which causes relevant time delay in classification, and 
spend a lot of time in the training stage.   On the other hand, the 
SVM based methods offer a great potential to handle large 
features, provide stable solutions to quadratic optimization with 
high learning processes, but they present poor classification 
accuracy when training samples are minimum. In this way, the 
main advantage in [16] is the correlation preservation between 
different event types which improves the accuracy of the 
method. Nevertheless, the data set is high to include all 
characteristic of multi-event signals. Additionally, due to the 
complex classification scheme of Rank Wavelet SVM, signals 
may be identified to multiple classes. The algorithm presented 
in [23] uses a set of simple binary SVM classifier but requests 
31 parameters to characterize a disturbed signal. 

Most of the aforementioned analysis needs high processing 
speed to manage with large computational data within a smaller 
time. In paper [25] a stand-alone general purpose 
microcontroller is used to implement a classifier based on SVM 
but it needs a discriminant analysis to find out the smaller set of 
uncorrelated features from higher order statistical data.     

The work presented in this paper belongs to the actual 
trending focused on enabling the performance of sensing 
devices using fast and low-cost hardware able to be easily 
improved for real-life applications.  

The number of features required in the proposed approach is 
less than any of the precedent works cited above. It is due 
mainly to the proper choice of two selected PQ indices. A power 
quality index (PQI) is the summarization of waveform 
distortions in electrical signals from the perfect sinusoids. That 
is the comprehensive but expressive presentation of the impacts 
of the non-ideal waveforms to electric power systems and is 
extendable to accommodate wider application conditions. PQIs 
are employed to characterize the degree of the quality 
degradation in a quantitative manner. Other existing indices 
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such as those of Total Harmonic Distortion (THD),  Power 
factor, Flicker factor and so on, reflect the degree of power 
disturbance in each of these categories individually, but fail to 
assess most of the above mentioned phenomena together in a 
comprehensive and concise way by a single value [26]-[34]. 

In this paper a recent wavelet-based power quality index, 
designated Global Disturbance Ratio (GDR) and obtained from 
its time-varying precursor named Instantaneous Transient 
Disturbance index (ITD), is used. They integrally assess the 
power transfer quality in steady-state and/or transient 
situations. The used ITD index shows instantly the PQ 
evolution. This has the advantage of evaluating the PQ in real-
time situations under whatever conditions, for any load in a 
PDN and extracting the disturbance characteristics. Moreover, 
the GDR has the benefit of assessing the PQ by means of a 
single value, and permits to distinguish between different 
events so the GDR can be used as a classifier input. They can 
also be further used to evaluate both the effectiveness and 
dynamic responses of PQ mitigation equipment in practical 
applications [42]. 

Measurement of the instantaneous power-system frequency 
[35]-[36] has been proposed to prevent the discrete Fourier 
transform (DFT) problems [37] and overcome the non-ideal 
dynamic response speed of discrete wavelet transform (DWT) 
[38]. Using a technique like this, it is possible to estimate 
fundamental voltage and current, their wavelet components as 
well as derived electrical parameters accurately with 
satisfactory dynamic, and free of system frequency fluctuation, 
even under asynchronous sampling. 

In this work, the GDR index and RMS value are used directly 
as inputs of a SVM based on the one versus one (OVO) 
multiclass method to classify disturbed signals of real power 
systems. It performs a fast, easy and low computational cost 
SVM classifier by using single-event as well as multi-event 
signals at the training and test stages. So, stationary and/or 
nonstationary disturbance effects are identified and quantified 
by means of this procedure. Moreover, feature data size is 
reduced to a simply two dimensional vector representing the 
characteristics of any disturbed electric signal. Real-time results 
have confirmed the high resolution and accuracy of this 
technique.   

Understanding of signal processing considerations, input 
vector based on PQ indices and classification using SVM are 
considered in Section II. The measurement process based on a 
specific developed system and the obtained results are 
presented in Section III. 

II. THEORETICAL CONCERNS 

A. Signal Processing Considerations 

1) Preprocessing stage: Frequency variation 
Fast and accurate system-frequency measurement is 

fundamental requisite to obtain with exactitude root-mean-
square (RMS), power and energy values. Under system 
frequency variation, the number of samples per period of the 
original signal do not equal an integral value, which must be a 
power of two in FFT and DWT calculation. Thus, an 

Instantaneous Frequency Calculation (IFC) is achieved as a first 
step of the GDR calculation to avoid errors due to lack of 
synchronization between the signal period and the sampling 
sequence.  

The IFC is based on the frequency estimation of the signal 
using three equidistant samples for a nominal frequency of 50 
Hz and an observation window of 10 cycles, corresponding to 
the IEC61000-4-30 standard window [45]. The corresponding 
algorithm diminishes the variance of the estimation [36]. By 
this procedure, single and three-phase networks are treated, and 
uncertainty in the frequency estimation under severe conditions 
of signal quality is obtained. 

Hence, samples of signal s(n) are processed, 

  s( ) sin Sn A n T             (1) 

where 2 f  ; TS is the sampling period, n the samples 

number, and  the phase angle. 
For single-phase systems, this expression can be evaluated 

from equidistant samples [.., s-1, s0, s1,..]. In the case of three 
samples, the following expression can be obtained [36]: 
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where  S
c cos T  and, therefore,  1 2( )/

S
f cos c T . 

Samples s'n  are supposed random variables, that is, they are the 

sum of true samples sn containing the theoretic value [36] and 
noise, which shows normal distribution, with zero mean and 
standard deviation.  

The error occurs, in general, when the interval between 
samples, TS, is different from 2π/N, where N is the number of 
data points per period. A process to adjust this interval, in all 
circumstances, is therefore necessary. In this case, to correct 
DWT errors, the constant sampling number in one period of the 
input signal is kept, and the sampling frequency according to 
the frequency of the input signal is modified by using the IFC 
information. Then, corrected samples are obtained to improve 
further digital processing based on the DWT and accurate RMS 
values. 

 
2) Feature extraction stage 

Due to their powerful features, the DWT and multiresolution 
analysis (WMRA) are chosen in this work for the joint analysis 
of the stationary and transient parts of electrical signals. These 
parts are extracted from a monitoring window to assure the 
correct use of the DWT. 

However, the DWT uncertain limitation may be a lack that 
can be minimized by an appropriate choice of the analyzing 
wavelet basic function [39]. In this paper, the Meyer wavelet 
offers the best results for the analyzed electrical signals present 
in PDN. 

The aim of WMRA is to develop representations of a 
complicated signal in terms of scaling and wavelet functions. 
The amount of WMRA decomposition levels is limited by the 
number of samples of the signal, which in turn must be a power 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIE.2016.2521615

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 3

of two. 
Thus, the signal s(n) can be presented in terms of its 

frequency components, i.e., coefficients aJ,k, k = 1,.., 2J, 
representing the smoothed version of signal s(n), and 

coefficients dj,k, 1, .., 2 Jk  , 1, ,j J   characterizing the 

detailed versions of s(n). They contain the lower and higher-
frequency components respectively [9]. So, the complete signal 
can be expressed as 

 
1

( ) ( ) ( )
J

jJ
j

s n a n d n


         (3) 

For extracting the fundamental component of a waveform by 
using WMRA, the sampling rate of the signal and, so, the 
number of WMRA steps, J, must be specified.  

In this work has been assumed that the most important 
transients occurring in actual situations of power systems are 
captured into a frequency band of 6400 Hz, for

1 / 12.8 
S

fs T kHz  . It assures accurate results with J = 6. 

B. Input indices vector 

Two parameters, named k1 and k2, are used as inputs in the 
classification state. This pair of feature parameters is made up 
of the RMS value and the GDR index. 

 
1) DWT-based RMS calculation 

Through WMRA decomposition (3), the RMS value of 
signal s(n), S, can be obtained   

 2 2
jJ

j J

S A D
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           (4) 

where AJ, is the rms value of  the N samples signal aJ(n) in the 
lowest frequency band J, in which the fundamental component 
of the signal is included. {Dj} is the set of rms values of dj(n) 
signal in the higher frequency band, or wavelet-level lower than 
or equal to the scaling level J. 

 
2) DWT-based GDR calculation 

The nonstationary events duration is a very relevant factor to 
be considered. It can be measured with high precision by the 
wavelet procedure used in this work. The GDR index is given 
by,   
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where T0 is the event duration of the transient disturbance, T is 
the time interval window used and AJ is the fundamental energy 
component defined as: 
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where the ratio ITD(n), is given in terms of the time-scale 
distribution of the WMRA components: 
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The selection of the time interval T0 can be determined by the 
time index of the first maximum peak value of the ITD(n), t0, 
and the time index of the last maximum peak value of the 
ITD(n), t0 + T0.  

The ITD(n) can be interpreted as a “time-varying” power 
quality evaluation determined by the time-frequency localized 
energy ratio of the disturbance to the fundamental frequency 
energy. 
Also,  
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where <ITD>, is a “transient-interval average” of the ITD(n), 
over a sample interval N as follows: 
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So the GDR index permits to quantify by a single number the 
time-varying signature as in the case of steady-state 
disturbances.  

A loaded power network with sinusoidal voltages return an 
ideal null GDR. On the other hand, a high value of GDR would 
indicate a high level of steady state and/or transient 
disturbances, with the contribution of each event aspect well 
defined and measured. Note that the used index GDR presents 
the advantage over the traditional THD of distinguishing both, 
transients and stationary events. It permits to give an important 
role to the disturbance duration. 

C. Classification Using SVM  

In this work, an optimal feature selection has been more 
important than the particular kind of classifier chosen, because 
often, a classification based on poor features almost never is 
saved by a good classifier. The proposed PQ classifier utilizes 
SVM to identify single and multiple-combined disturbances. 
SVM is a supervised learning tool applied for pattern 
recognition and classification. As the theory of SVM is well-
known and widely used, the details are obviated in this section. 
The specifics of SVM can be found in [40]-[41].   

Particularly, an OVO approach based SVM is used to process 
the multiple classifications of PQ disturbances. This method 

needs to build  1 / 2k k   classifiers where each one is trained 

using data only from two classes of the k possible and a pair 
wise competition between all of them is performed. The SVM 
classifies the feature vector obtained Vn(k1,k2) into the class that 
yields the final winner. 

III. DESIGN OF THE EXPERIMENTAL SYSTEM AND RESULTS 

The proposed classification plan of disturbance is shown in 
Fig. 1, and the main steps described in previous sections have 
been marked in dot line. The first one is the preprocessing stage, 
and then a fast DWT-based component calculation step is 
followed allowing the extraction of the feature vectors. The last 
stage consists in classification involving determination of PQ 
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multi-event by using SVM.  

Next, the measurement process, the experimental test and 
results are detailed. 

 

A. Measurement Process  

Fig 2 illustrates the complete bench; it is the experimental 
setup used to test the effectiveness of the proposed method 
under common real time working conditions. This procedure 
permits the emulation of actual power systems and can be 
modeled by hardware and software components. 

The hardware block contains a programmable AC power 
supply (Pacific Power Source 320-AMX), a specific-designed 
signal conditioner, a NI USB-6259 DAQ, typical loads and a 
personal computer (PC). The power supply is programmed to 
generate single or three-phase voltage patterns based on the 
parameters defined by the user; thus, steady-state and/or 

transient-state disturbances are modeled following the IEEE 
standard 1159-09 for monitoring electric power quality [46]. 
The host PC is equipped with the NI USB-6259; it is a High-
Speed M Series Multifunction DAQ for USB 16 bits. It acquires 
eight differential inputs. Analog inputs are converted with 16 
bits of resolution sampled at 1.25 MS/s. Voltage and current 
sensors are built with Hall Effect voltage and current 
transducers, type LV25-P and LA25-NP respectively. Low-
level voltage signals proportional to the phase-neutral voltages 
are available. The power supply used fulfills all the proposed 
requirements: 

1) output voltage up to ±600 peak volts; 
2) maximum output power: 1.2 kVA; 
3) bandwidth (30–5 kHz) at full power; 
4) THD < 0.2%. 
Disturbed voltage signals at grid level are generated for 

studying PQ events in several types of loads and the currents 
are available for evaluating the behavior from the consumer 
point of view. 

The generated voltage signals are used to simulate a power 
system with typical voltage sources and arbitrary loads. This 
method permits to process polyphase sinusoidal voltages added 
with simple or multiple disturbances. 

Matlab software has been used to build a Graphical User 
Interface that acts as a virtual device that processes the signal 
data file from the A/D converted connected to the signal 
conditioner (Fig. 2). This control program diagnoses quality 
aspects of the input signals, such as frequency stability, 
distortion level, symmetry of three-phase signals (balance 
between phases R, S and T), and others that can be inferred from 
the graphical user interface of Fig. 3. 

In order to carry out this diagnosis, the system can measure 
and present/display the graphs (with its time evolution): 
 Instantaneous frequency of the network, following its 

changes at intervals of measurement of one cycle, 
considering signals deformed and with noise.  

 Harmonics, represented in phasor form using two bar 
charts, one for magnitudes and another for phases.  

 Instantaneous PQI and coefficients of power quality 
indices (percent), with presentation of the data 
corresponding to the signals. 

 DWT coefficients with signal representation of the wavelet 
level selected by the user. 

 SVM-based disturbance classifier. 
Furthermore, the PQ System analyzer computes power  

quantities in wavelet and Fourier domain specified by IEEE 
standard 1459-2010 [43]. 

The proposed structure can be further used in real-time for 
both, monitoring and detecting faults in power networks [48] 
and electrical machinery [49]. By means of a signal-based fault 
diagnosis method, the used indices can be applied to loads such 
as induction motors, power converters and mechanical 
components. 

 
 
Fig. 1. Flowchart of the proposed methodology. 

 

 
Fig. 2. Laboratory setup for real time experiments. 
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B. Experimental test and Results 

The fundamental component of the grid voltage presented in 
all the used test signals is distorted by harmonics and/or 
nonstationary events, in accordance with both, the IEEE 
standard 1159-2009 and the European standard EN-50160 [46]-
[47]. 

For the signal quality assessment, instantaneous frequency 
measurement is performed first, which enables synchronization 
between the signal period and the sampling sequence. For the 
considered voltage and current windows specified by IEC 
standard 61000-4-30 [45], time-frequency-based quality 
aspects are calculated by the DWT. For the case of the selected 
12.8-kHz sampling rate, Table I gives the frequency band 
information for different levels of the wavelet analysis. In this 
paper, discrete Meyer wavelet (dmey) is chosen as the wavelet 
of Mallat decomposition and reconstruction for 6 layers MRA 
of the voltage and current signals [50]. 

TABLE I 
 FREQUENCY BANDS AND HARMONICS OF SIX LEVELS OF THE DWT   

Level Freq. Band(Hz) Odd Band Harmonics 

7 (d1) 3200-6400 63rd-127rd (odd num.) 

6 (d2) 1600-3200 33rd-63rd (odd num.) 

5 (d3) 800-1600 17th–31st (odd num.) 

4 (d4) 400-800 9th, 11th, 13th, 15th 

3 (d5) 200-400 5th, 7th 

2 (d6) 100-200 3rd 

1 (a6) DC-100 1st 

According to equations (4), (5) and (10) the PQIs are 
computed. The PQ indices have been obtained from a variety of 
single-phase signals that includes the training signals set. In all 
of them, the grid voltage waveform contains a fundamental 
component of 230 V, 50 Hz of nominal frequency, and 
stationary and/or transient disturbances. 

Furthermore, as the noise is ever-present in PDN, the 
proposed methodology is also checked in noisy situations. 

 
1) Training stage 

In this step, 100 patterns of each different single and 
multiple-combined power quality disturbances are applied to 

linear and nonlinear loads. The following ten classes are tested: 
 Harmonics (C0); 
 Sags (C1) 
 Swells (C2) 
 Oscillatory transients (C3); 
 Flicker voltage fluctuations (C4); 
 Harmonics and sag (C5); 
 Harmonics and swell (C6); 
 Oscillatory transient and sag (C7); 
 Oscillatory transient and swell (C8); 
 Oscillatory transient and harmonics (C9); 

Fig. 4 shows the different paired confrontation options for the 
selected disturbances classes in the one-versus-one training 
scheme. Here, nonstationary voltage variations corresponding 
to classes C1 and C2 are grouped only for graphic simplicity 
purposes. Fig. 6 depicts a 2-dimensional multiclass 
representation of each one of the classes used for the 
classification. 

 
2) Noise conditions and Results 

It is well stablished the adverse effect of noise over the 
performance of wavelet based event detection, the time 
localization and the classification schemes, due to the 
difficulties of separating noise and disturbances at higher 
frequencies bands [17], [18], [25]. In these cases, by using a 
suitable de-noising performance at the preprocessing stage, or 
at the featuring extraction stage, this limitation can be solved. 

The nature of ITD(t) index establishes an instantaneous ratio 
between the disturbance energy and the fundamental signal 
energy. In most of cases the event energy is higher than those 
corresponding to noise, consequently the ITD(t) permits to 
detect the event and to measure its duration even in noisy signal 
corresponding to real-life situations. Fig. 5(a) depicts a 
disturbed signal generated in the programmable source and its 
ITD(t) is shown in Fig. 5(c). A noisy version of this signal is 
measured in a load of the laboratory setup for testing 
experiments, and it is depicted in Fig. 5(b), where a high 
accuracy in the event duration calculation over ITD(t) is 
possible yet as it can be seen in Fig. 5(d). 

To test the manner in which the proposed method works 
under distinct noisy situations, different levels of Gaussian 

Fig. 3 Graphical User Interface of the PQ System Analyzer. 

 

Fig. 4. One-versus-one training scheme for the selected disturbances classes.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIE.2016.2521615

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 6

white noises with the signal to noise ratio (SNR) values from 
30 to 50 dB have been considered. In these noisy conditions, 
the method works properly until the minimum value of 34 dB 
for the SNR. It corresponds to the limit case in which noise 
shows peak noise magnitude nearly 2% of the original input 
signal. Under this value, the compromised results correspond, 
first, to those events having a high sensibility to the To 
parameter, and second, to those ones with a soft amplitude 
variation.  

 
In particular, because of noise, 10% of transient-sag events 

(C7) result in misclassified due to the similar features between 
C1-C7 classes. One of this case is shown in Fig. 5(a) and Fig. 
5(b), where the input vectors (k1, k2) are (175.20, 2.58) and 
(175.46, 6.53) respectively. Observe that the increase of GDR 
parameter, k2, in the second case delivers to confusion with the 
C7 zone class. 

 
Fig. 6(a) shows the plot of the 2D-feature vectors, which has 

to be classified by the SVM, and the different classes 
constrained to different zones. The details of two unclear 

classification regions can be seen in Fig. 6(b) and Fig. 6(c).  
Analogously, swell events with added noise in C2 class are 
sometimes confused with those of C8 class. On the other hand, 
the rest of the classes are accurately classified. 

Table II summarizes the classification results based on a total 
of 1000 test event signals (100 per class), some of them with 
added noise and SNR upper or equal to 34 dB. Here, the 
successful classification results are tabulated at diagonal 
elements. On the contrary, the misclassification results are 
shown at non-diagonal elements. All these results reveal the 
robustness of the proposed method. 

TABLE II 
 CLASSIFICATION RESULTS OF DISTURBED SIGNALS 

True Possible classes Accuracy

class C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 (%)

C0 97 0 0 1 0 0 0 0 0 2 97 

C1 0 89 0 0 0 0 0 11 0 0 89 

C2 0 0 89 0 0 0 0 0 11 0 89 

C3 2 0 0 98 0 0 0 0 0 0 98 

C4 0 0 0 0 100 0 0 0 0 0 100 

C5 0 0 0 0 0 97 0 3 0 0 97 

C6 0 0 0 0 0 0 98 0 0 2 98 

C7 0 3 0 0 0 3 0 94 0 0 94 

C8 0 0 3 0 0 0 3 0 94 0 94 

C9 2 0 0 0 0 0 2 0 0 96 96 

   Overall Success rate (%)   94.2

IV. CONCLUSION  

An integral assessment of the electrical network PQ by 
means of the wavelet-based global disturbance ratio indicator 
(GDR) and the well-known RMS value of the signal is 
proposed. The GDR index is based on the instantaneous index 
ITD(t), which considers two PQ aspects: steady-state PQ 
relative to harmonic level, and the non-stationary PQ relative to 
oscillatory transients or sudden amplitude changes of the signal.  

The possible DWT errors due to possible system frequency 
variation was performed as a pre-processing step. Ten complete 
periods of the signal under study are contained in the 
observation window using the IFC. Then, the number of stages 
of DWT is guaranteed to be a power of two. 

The developed PQ System Classifier, based on wavelet 
techniques and SVM, is an effective device for detecting, 
monitoring and classifying stationary and nonstationary multi-
event signals, even in three-phase systems. It is essentially a 
low-cost method of classification, and it evaluates on-line the 
signal quality by identifying single or multiple-combined 
disturbances in a PDN.  

The low computational cost is due mainly to both, the choice 
of only six wavelet decomposition levels at the feature 
extraction stage, and the simplicity of the double-indices-based 
training process in the classification stage. 

Therefore, a method like this, based on SVM and WMRA, 
gives computation simplicity, accuracy and shows a good 
compromise of speed, adaptability, and size of the time-
frequency window. Moreover, a low-cost hardware prototyping 

Fig. 5. a) Programed sag signal by the power supply. b) Sag with added noise
signal measured in the load. c) ITD(t) of sag signal. d) ITD(t) of noisy sag
signal. 

Fig. 6. a) 2D-feature vectors plot of the selected disturbances classes.  
b) Zoom over lower central area of Fig. 6(a). c) Zoom over upper central area.
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based on the proposed method is possible and would add to the 
mentioned advantages, a great potential in the implementation 
of smart monitoring systems with on-line classification options. 
The results show that the proposed methodology is highly 
reliable and efficient. 
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