
ALGEBRAIC TOOLS IN QUANTUM

COMPUTING ALGORITHMS

(Universal Quantum Gates)

Lucía Absalom Bautista

ALGEBRAIC TOOLS IN QUANTUM COMPUTING

ALGORITHMS

(Universal Quantum Gates)

Lucía Absalom Bautista

Memoria presentada como parte de los requisitos

para la obtención del título de Grado en Matemá-

ticas por la Universidad de Sevilla.

Tutorizada por

José M. Tornero Sánchez

Índice general

Abstract / Resumen 1

1. Introduction 3

2. Basic concepts of quantum computing 5

2.1. Why is algebra important for quantum computing . 5

2.2. A first word on unitary operators . 6

2.3. Qubits . 8

2.4. Single qubit gates . 11

2.5. Tensor product . 20

2.6. Quantum entanglement . 25

2.7. Multiple qubit gates . 26

3. Universal quantum gates 31

3.1. First steps . 32

3.2. Exact quantum gates . 33

3.2.1. 2–level unitary matrices . 34

ii algebraic tools in qantum computing algorithms

3.2.2. 2–level unitary matrices can be used to factorize any unitary matrix 35

3.2.3. 𝐂𝐍𝐎𝐓 gates and single qubit gates are universal 39

3.3. A finite universal gate set . 46

3.3.1. Approximating unitary operators . 46

3.3.2. Finding a finite universal set for 1-qubit operations 48

3.4. A note about complexity . 52

Abstract / Resumen

Abstract

Universal quantum gates play a crucial role in quantum computing as they form the building blocks

for quantum circuits. Unlike classical circuits which are made up of classical gates such as AND, OR, and

NOT gates, quantum circuits are composed of quantum gates that operate on qubits instead of classical

bits. These gates can be used to perform various operations on qubits such as rotations, phase shifts,

and entanglement, allowing for the execution of quantum algorithms.

In this dissertation, we will explore the fundamental principles behind universal quantum gates and

their significance in quantum computing.Wewill examine the various types of quantum gates including

the single-qubit gates such as the Hadamard gate, Pauli gates, and phase gates, as well as the multi-qubit

gates such as the 𝐂𝐍𝐎𝐓 gate.

This work aims to provide an introductory overview of universal quantum gates and their appli-

cations in quantum computing, leaving aside the current state of the art in research and development

of quantum gate technology. We hope that this dissertation will shed some light on the ongoing effort

to build more powerful and reliable quantum computers that will pave the way for groundbreaking

advances in a variety of fields, including cryptography, chemistry, and optimization.

2 algebraic tools in qantum computing algorithms

Resumen

Las puertas cuánticas universales desempeñan un papel crucial en la computación cuántica, ya que

forman los bloques de construcción de los circuitos cuánticos. A diferencia de los circuitos clásicos,

formados por compuertas clásicas como AND, OR y NOT, los circuitos cuánticos se componen de com-

puertas cuánticas que operan con qubits en lugar de con bits clásicos. Estas puertas pueden utilizarse

para realizar diversas operaciones sobre los qubits, como rotaciones, cambios de fase y entrelazamiento,

lo que permite la ejecución de algoritmos cuánticos.

En esta memoria exploraremos los principios fundamentales de las puertas cuánticas universales

y su importancia en la computación cuántica. Examinaremos los distintos tipos de puertas cuánticas,

incluidas las puertas de un solo qubit, como la puerta de Hadamard, las puertas de Pauli y las puertas

de fase, así como las puertas multiqubit, como la puerta 𝐂𝐍𝐎𝐓.

El objetivo de este trabajo es proporcionar una visión introductoria de las puertas cuánticas univer-

sales y sus aplicaciones en la computación cuántica, sin entrar en el estado actual de la investigación y

el desarrollo de la tecnología de puertas cuánticas. Esperamos que esta memoria arroje algo de luz sobre

el esfuerzo en curso para construir ordenadores cuánticos más potentes y fiables que allanen el camino

para avances revolucionarios en diversos campos, como la criptografía, la química y la optimización.

1 Introduction

Quantum computing is a rapidly advancing field of research that has the potential to revolutionize

computing as we know it. While traditional computing uses binary digits, or bits, to represent data

as either 0 or 1, quantum computing uses quantum bits, or qubits, that can exist in multiple states

simultaneously, allowing for vastly more complex calculations to be performed.

So, at least theoretically, quantum computers will be able to solve certain problems much faster than

classical computers, including factoring large numbers and searching through large amounts of data.

One could think of it as a library, with traditional computers searching for books one by one, while a

quantum computer can search through all the books at once.

Quantum computing also has the potential to improve our understanding of fundamental physics,

enable more secure communication through quantum cryptography, and accelerate the development of

new materials and drugs through quantum simulations.

As a result, quantum computing is an area of growing interest for researchers, with major tech

companies and governments investing significant resources into its development. However, there are

still significant technical and practical challenges that need to be overcome before quantum computing

can become a practical technology for widespread use.

Observation 1.1. As a general rule, when we cite or use linear algebra results without further details,

they will be part of the syllabus of Álgebra Lineal y Geometría I. As for quantum computing definitions

and results, two sources have been used the most: [7, 4]. Although there are no new results in this

memoir, some of the results in these references have incomplete or imprecise proofs (in line with the

rigour standard of the subject). We have consistently tried to overcome this, for most of the work.

Two exceptions to this rule are the Gottesman–Knill (section 3.1) and the Sovolay–Kitaev (section

3.4) theorems which are prominent results in this field, but their proofs fall well outside the scope of

this memoir.

2 Basic concepts of quantum computing

This chapter introduces the main actors at play: qubits and (quantum) gates. The target is giving a

rigorous mathematical structure to the different aspects of quantum computing. Most of the definitions

come from [8, 6].

2.1 Why is algebra important for quantum computing

Algebra is essential for quantum computing because it provides the mathematical framework ne-

cessary to understand and manipulate the behaviour of quantum systems. Quantum computing relies

heavily on linear algebra, which is the branch of algebra that deals with vector spaces and linear trans-

formations.

In particular, the following algebraic concepts are central for quantum computing:

1. Complex numbers: Quantum mechanics is built upon complex numbers. In quantum compu-

ting, complex numbers are used to represent the states of qubits, which can be in a superposition

(which are, essentially, certain linear combinations) of multiple states simultaneously.

2. Vectors and matrices: In quantum mechanics, the state of a system is represented by a vector

in a complex vector space. These vectors can be manipulated using matrices, which represent

quantum gates and operations on qubits.

3. Inner product and unitary transformations: The inner product is a way of measuring the

similarity between two vectors in a vector space. In quantum computing, the inner product is used

to calculate the probability of measuring a particular state of a qubit. Unitary transformations,

6 algebraic tools in qantum computing algorithms

which are used to represent quantum gates, are linear transformations that preserve the inner

product.

4. Tensor products: Quantum systems can be composed of multiple qubits, and the state of the

entire system is represented by a tensor product of the states of each qubit. Tensor products are

also able to represent entanglement, which is a phenomenon where the states of two or more

qubits become correlated.

2.2 A first word on unitary operators

In classical computing, we can represent the state of a system as a binary number which can be mo-

dified using logical gates. Similarly, in probabilistic computing states are depicted as classical probability

distributions and the operations that we perform on the system are represented as classical stochastic

matrices. However, in quantum computing, the state of a system is represented by a superposition of

quantum states (which is nothing more than a linear combination of vectors), and the operations that

we perform on the system are represented by unitary operators.

A unitary operator is a linear transformation that preserves the inner product between vectors, and

it does therefore preserves the norms of vectors. This property will be vital because unitary vectors will

define a discrete probability distribution which will be a most interesting object related to this set–up.

Furthermore, unitary operators are reversible, meaning that they can be undone by applying their

inverse. This is crucial feature, because quantum circuits are composed of a sequence of unitary ope-

rators that must be applied in a specific order to perform a desired computation. So we will be able to

undo the computation and recover the initial state, as each unitary operator must have an inverse that

can be applied in the reverse order.

Overall, unitary operators are essential in quantum computing because they enable the manipula-

tion of quantum states and the implementation of quantum algorithms. They ensure that the proba-

bilities associated with each quantum state are consistent during the computation, and they allow the

computation to be reversed if necessary.

Definition 2.1. Let 𝐻 be a finite-dimensional Hilbert space. A unitary operator is a linear operator
𝑈 ∶ 𝐻 → 𝐻 which preserves the inner product of the Hilbert space, 𝐻 . In other words, for all vectors 𝑥
and 𝑦 in𝐻 we have: ⟨𝑈𝑥,𝑈𝑦⟩𝐻 = ⟨𝑥, 𝑦⟩𝐻 .

2. basic concepts of qantum computing 7

Example 2.1. On finite-dimensional complex Hilbert spaces we can represent unitary operators by

unitary matrices. In the case of ℝ𝑛
these matrices are called orthogonal matrices.

As we know from linear algebra, equivalently we have:

Definition 2.2. A unitary operator is a linear operator𝐻 → 𝐻 on a finite-dimensional (real or com-
plex) Hilbert space 𝐻 given by a mtrix 𝑈 that satisfies 𝑈 ∗𝑈 = 𝑈𝑈 ∗ = 𝐼 , where 𝑈 ∗ is the conjugate
transpose of 𝑈 , and 𝐼 is the identity matrix.

Example 2.2. An example of unitary operator are rotations in ℝ2
or ℝ3

. It is easy to see that these do

not change the length of a vector or the angle between two vectors.

Example 2.3. Let us consider a unitary matrix

𝑈 =
[

𝑎 𝑏
𝑐 𝑑

]

with 𝑎, 𝑏, 𝑐, 𝑑 in ℂ.

We know from basic linear algebra that this matrix is unitary if and only if 𝑈−1 = 𝑈 ∗
or, expressed

in another way:

𝑈𝑈 ∗ = 𝑈 ∗𝑈 = 𝐼

This implies in particular

1 = det (𝑈) ⋅ det (𝑈 ∗) = det (𝑈) ⋅ det (𝑈) ⇐⇒ | det(𝑈)| = 1,

that is, det(𝑈) = 𝑒𝑖𝜃 , for some 𝜃 ∈ [0, 2𝜋). Imposing this condition and equating 𝑈 ∗
and 𝑈−1

term to

term we find that 𝑈 has to be:

𝑈 =
[

𝑎 𝑏
−𝑒𝑖𝜃𝑏 𝑒𝑖𝜃𝑎

]

We also have the condition |𝑎|2 + |𝑏|2 = 1 (from 𝑈𝑈 ∗ = 𝐼). This means

𝑎 = 𝑒𝑖𝛼 cos 𝜉, 𝑏 = 𝑒𝑖𝛽 sin 𝜉,

for some 𝛼, 𝛽, 𝜉 ∈ [0, 2𝜋) and we can express our matrix as:

𝑈 =
[

𝑒𝑖𝛼 cos 𝜉 𝑒𝑖𝛽 sin 𝜉
−𝑒𝑖(𝜃−𝛽) sin 𝜉 𝑒𝑖(𝜃−𝛼) cos 𝜉

]

8 algebraic tools in qantum computing algorithms

2.3 Qubits

A qubit (short for quantum bit) is the basic unit of quantum information in quantum computing. It

is similar to the classical bit used in classical computing, but unlike a classical bit, which can only take

on a value of either 0 or 1, a qubit can be in a superposition of both 0 and 1 at the same time.

A qubit can be represented by a two-dimensional vector in a complex vector space, known as a

quantum state. Let us introduce these concepts formally.

We will work in the Hilbert space ℂ2
, with the usual scalar product. In the quantum computing

context it is customary to write the vector in Dirac notation:

𝑢 ←→ |𝑢⟩, 𝑣∗ ←→ ⟨𝑣|.

In particular, the usual scalar product of 𝑢 and 𝑣 becomes ⟨𝑣|𝑢⟩.

Definition 2.3. The vectors:

|0⟩ =
[

1
0

]

and |1⟩ =
[

0
1

]

are called the basis states of a quantum bit.

In linear algebra {|0⟩, |1⟩} is called the usual / standard basis, but in the context of quantum computing
they might be also called the computational basis.

In addition to these two states, qubits can be in a state of quantum superposition (again, this can

be considered just argot for unitary linear combination), combining these two states in what is called a

pure qubit state.

Definition 2.4. A (pure) qubit state |𝜓⟩ is a unit vector in ℂ2. When written as a linear combination
of the basis

|𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ =
[

𝛼
𝛽

]

,

the coefficients 𝛼, 𝛽 ∈ ℂ are called the amplitudes of the state. Note that they must satisfy |𝛼|2 + |𝛽|2 = 1.

Essentially |𝛼|2 and |𝛽|2 determine a Bernoulli probability distribution interpreted as

𝑃
(

|0⟩
)

= 𝑃
(

observing the qubit and getting the state |0⟩
)

= |𝛼|2,

𝑃
(

|1⟩
)

= 𝑃
(

observing the qubit and getting the state |1⟩
)

= |𝛽|2,

2. basic concepts of qantum computing 9

where we should note |𝛼|2 = 𝛼 ⋅ 𝛼 = ⟨𝜓|0⟩ ⋅ ⟨0|𝜓⟩ (and similarly for 𝛽).

This distribution is the real object we are concerned about, as the qubits, at the end of all manipu-

lations must be measured (that is, observed) and this forces them to collapse to a basis state, according

to the probability distribution above.

The most interesting quantum algorithms take advantage of the qubit ability to exist in multiple

states simultaneously, thus performing certain computations much faster than classical computers. Ho-

wever, qubits are also very delicate and susceptible to decoherence, which is the tendency to change of

a quantum state due to environmental noise. This is one of the major challenges in building practical

quantum computers.

The Bloch sphere

We already know that a pure qubit state can be expressed as a linear combination of the basis states

|0⟩ and |1⟩, where the coefficients in front of the basis states determine the probability amplitudes

of measuring the qubit in either state. These coefficients are complex numbers that can be written in

polar form, where the modulus represents the probability amplitude and the argument represents the

so-called relative phase between the states.

Observation 2.1. It could be the case that different qubits, say |𝜓⟩ and |𝜉⟩might in fact give rise to the

same probability distribution. For example, we can immediately deduce that this is the case if we take

a 𝜃 ∈ [0, 2𝜋) and define

|𝜓⟩ = 𝑒𝑖𝜃|𝜉⟩.

This phenomenon is usually called change of phase. As the probability distribution associated to

both states is the same, which is all we actually care about, we will generally consider these qubit states

as the same. This phenomenon will also arise later when we describe the equivalence of quantum gates.

If we allow ourselves to change the phase of a given qubit freely, then we can choose the first

coordinate to be a non–negative real number and write the state of a pure qubit as

|𝜓⟩ =
[

cos(𝜃∕2)
𝑒𝑖𝜑 sin(𝜃∕2)

]

where 𝜃 ∈ [0, 𝜋), 𝜑 ∈ [0, 2𝜋).

The complex numbers cos(𝜃∕2) and 𝑒𝑖𝜑 sin(𝜃∕2) are the coefficients associated with the basis states

|0⟩ and |1⟩, respectively. Here, 𝜃 is the polar angle that determines the relative weight between the |0⟩

10 algebraic tools in qantum computing algorithms

and |1⟩ states, and 𝜑 is the azimuthal angle that specifies the phase difference between them. The 1∕2
factor is introduced to arrange the interval as spherical coordinates.

The Bloch sphere is a unit sphere where the north pole represents the state |0⟩ and the south pole

represents the state |1⟩ and, as, wewill see, any other state of the qubit can also be represented. Precisely,
to determine the Cartesian coordinates of the point on the Bloch sphere, we use the following formulas:

⎧

⎪

⎨

⎪

⎩

𝑥 = sin 𝜃 cos𝜑

𝑦 = sin 𝜃 sin𝜑

𝑧 = cos 𝜃

Therefore, to visualize a qubit on the Bloch sphere, we need to know the amplitudes of the qubit

(that is, the coordinates with respect to {|0⟩, |1⟩}) and then find 𝜑 and 𝜃 from them. Then we can map

the probability amplitudes into coordinates on the sphere.

Figura 2.1: The Bloch sphere

The Bloch sphere allows us to intuitively understand various properties of the qubit. For example,

if the point is located near the north pole, it indicates a high probability of measuring the qubit in the

state |0⟩, whereas if it is near the south pole, it indicates a high probability of measuring the qubit in

the state |1⟩.

We will now introduce a couple of states that, apart for being widely used, are very easy to visualize

in the Bloch sphere:

2. basic concepts of qantum computing 11

The so called + state is defined by

|+⟩ = 1
√

2
|0⟩ + 1

√

2
|1⟩ = 1

√

2

[

1
1

]

,

and its representation in the Bloch sphere is the point (1, 0, 0), located along the equator, in the positive

part of the 𝑥-axis.

On the other side , the - state, given by

|−⟩ = 1
√

2
|0⟩ − 1

√

2
|1⟩ = 1

√

2

[

1
−1

]

,

is represented by the point (−1, 0, 0), also located along the equator but at an opposite point from the

representation of the + state.

The set

{

|+⟩, |−⟩
}

is called the Hadamard basis and is, in fact, an orthonormal basis of ℂ2
.

In the following section, we will explore how we can alter a qubit. We will see that the Bloch sphere

is a valuable tool for understanding and visualizing these single qubit operations, such as rotations and

manipulations of the qubit state.

2.4 Single qubit gates

As we are working with unitary vectors in ℂ2
, if we want to preserve both the algebraic structure

(essentially linear combinations) and the unitary character of our main objects we are bound to use

unitary matrices, as we know from basic linear algebra.

Definition 2.5. A 1-qubit quantum gate is a unitary matrix in2(ℂ).

We will usually refer to gates when they are operating on a quantum state, whereas we will use

matrices for the purely mathematical object. They can be loosely assumed to be equivalent, though, and

both will usually be written in boldface, as in 𝐀,𝐁,𝐂…

For the rest of the section we will introduce some important gates which will play a significant role

in the sequel.

Definition 2.6. Two unitary matrices, 𝐀 and 𝐁 are considered to be equivalent when 𝐀 = 𝑧𝐁, where
𝑧 is a complex number of module 1.

12 algebraic tools in qantum computing algorithms

Unitary equivalent matrices represent gates that perform the same quantum operation up to a chan-

ge of phase. This means that although the gate may have a different matrix representation, its effect on

the quantum states is identical, and which basically means that they affect the probability distribution

associated with the qubits in the same way.

Definition 2.7. The Pauli gates (noted as (𝐗, 𝐘, 𝐙) or (𝜎1, 𝜎2, 𝜎3)) are the three matrices acting on a
single qubit which correspond, respectively, to a rotation around the 𝑥, 𝑦 and 𝑧 axes of the Bloch sphere by
𝜋 radians (also called axial symmetry).

𝐗 =
[

0 1
1 0

]

, 𝐘 =
[

0 −𝑖
𝑖 0

]

, 𝐙 =
[

1 0
0 −1

]

.

Proposition 2.1. The set of the Pauli matrices, together with 𝐈2, the 2 × 2 identity matrix, form a basis

of the 2(ℂ) space.

Proof. It is an easy exercise in linear algebra, as {𝐈2,𝐗,𝐘,𝐙} are linearly independent (meaning no

matrix in the set can be expressed as a linear combination of the others), and dim2(ℂ) = 4.

Example 2.4. We already said that, mathematically, the Pauli gate can be represented as:

𝐗 =
[

0 1
1 0

]

.

Let us consider an example where we apply the Pauli 𝐗 gate to an initial qubit state |𝜓⟩ = 0.6|0⟩+
0.8|1⟩.

Applying the Pauli𝐗 gate to this initial state, we just multiply the state vector by the Pauli𝐗matrix:

[

0 1
1 0

]

⋅
[

0.6
0.8

]

=
[

0.8
0.6

]

.

Thus, the resulting state after applying the Pauli 𝐗 gate is 𝐗|𝜓⟩ = 0.8|0⟩ + 0.6|1⟩.

2. basic concepts of qantum computing 13

Figura 2.2: 𝐗 rotation

This shows how the Pauli 𝐗 gate flips the amplitudes of the |0⟩ and |1⟩ basis states. The resulting
state is a superposition of |0⟩ and |1⟩, but with their amplitudes swapped, equivalent to the classical

𝐍𝐎𝐓 gate.

Example 2.5. In this example we want to show graphically how the 𝐘 gate works by taking the state

|0⟩ and applying the gate to it.

Figura 2.3: 𝐘 rotation

As we know

𝐘|0⟩ =
[

0 −𝑖
𝑖 0

]

⋅
[

1
0

]

=
[

0
𝑖

]

.

Mind that this vector is equivalent (up to a change of phase) to |1⟩.

14 algebraic tools in qantum computing algorithms

Proposition 2.2. The Pauli matrices verify the anticommutation relations:

𝜎𝑖𝜎𝑗 = −𝜎𝑗𝜎𝑖, with 𝑖 ≠ 𝑗; 𝜎2
𝑖 = 𝐈.

The proof is direct. Written in gate terms the anticommutations go as follows:

𝐗𝐘 = −𝐘𝐗, 𝐗𝐙 = −𝐙𝐗 𝐘𝐙 = −𝐙𝐘.

Observation 2.2. From these relations many others can be derived. Let us show, for instance, that

𝐗𝐘𝐗 = −𝐘. We know that 𝐗𝐘 = −𝐘𝐗 and 𝐗2 = 𝐈. Then,

𝐗𝐘𝐗 = −𝐘𝐗𝐗 = −𝐘𝐈 = −𝐘

Definition 2.8. The Hadamard gate, usually noted as 𝐇, maps the basis states in the following way:

|0⟩ ←→
1
√

2

(

|0⟩ + |1⟩
)

= |+⟩, |1⟩ ←→
1
√

2

(

|0⟩ − |1⟩
)

= |−⟩.

It has, therefore, the following matrix representation:

𝐇 = 1
√

2

[

1 1
1 −1

]

The Hadamard gate can also be expressed as a 𝜋∕2–rotation around the 𝑦-axis, followed by a 𝜋–
rotation around the 𝑥-axis. So, 𝐇 = 𝐗𝐘1∕2

.

One useful property of the Hadamard gate is that it is self-inverse, meaning 𝐇 = 𝐇−1
, and so

𝐇
(

|0⟩ + |1⟩
√

2

)

= |0⟩, 𝐇
(

|0⟩ − |1⟩
√

2

)

= |1⟩.

Example 2.6. The Hadamard gate in action:

Figura 2.4: 𝐇 rotation

2. basic concepts of qantum computing 15

Observation 2.3. We have the following three useful identities:

𝐇𝐗𝐇 = 𝐙; 𝐇𝐘𝐇 = −𝐘; 𝐇𝐙𝐇 = 𝐗.

These expressions can be obtained by direct computation:

𝐇𝐗𝐇 =1
2

[

1 1
1 −1

] [

0 1
1 0

] [

1 1
1 −1

]

= 1
2

[

2 0
0 −2

]

=
[

1 0
0 −1

]

= 𝐙. (2.1)

𝐇𝐘𝐇 =1
2

[

1 1
1 −1

] [

0 −𝑖
𝑖 0

] [

1 1
1 −1

]

= 1
2

[

0 2𝑖
−2𝑖 0

]

= −
[

0 −𝑖
𝑖 0

]

= −𝐘. (2.2)

𝐇𝐙𝐇 =1
2

[

1 1
1 −1

] [

1 0
0 −1

] [

1 1
1 −1

]

= 1
2

[

0 2
2 0

]

= −
[

0 1
1 0

]

= 𝐗. (2.3)

The above can also be calculated in a different way. We should also explain how, as it will be useful

in further computations. Let us bear in mind that, from direct calculation,

𝐇 = 1
√

2
(𝐗 + 𝐙).

Thus,

𝐇𝐗𝐇 =1
2
(𝐗 + 𝐙)𝐗(𝐗 + 𝐙) = 1

2
(𝐈 + 𝐙𝐗)(𝐗 + 𝐙) = 1

2
(𝐗 + 𝐙 + 𝐙 + 𝐗𝐙𝐗) = 𝐙.

𝐇𝐘𝐇 =1
2
(𝐗 + 𝐙)𝐘(𝐗 + 𝐙) = 1

2
(𝐗𝐘 + 𝐙𝐘)(𝐗 + 𝐙) = (𝐗𝐘𝐗 + 𝐙𝐗𝐘 + 𝐙𝐘𝐗 + 𝐙𝐘𝐙) = −𝐘.

Once we know that 𝐇𝐗𝐇 = 𝐙 it is easy to see that

𝐇𝐙𝐇 = 𝐇 ⋅ (𝐇𝐗𝐇) ⋅𝐇 = 𝐗,

as 𝐇2 = 𝐈.

Definition 2.9. The phase gate 𝐒 and the 𝜋∕8–gate 𝐓 are defined by

𝐒 =
[

1 0
0 𝑖

]

, 𝐓 =

[

1 0
0 𝑒

𝑖𝜋
4

]

.

16 algebraic tools in qantum computing algorithms

The 𝐓-gate (as it is also known) introduces a phase shift of 𝜋∕4 to the |1⟩ state:

𝐓|1⟩ =
[

1 0
0 𝑒𝑖

𝜋
4

] [

0
1

]

=
[

0
𝑒𝑖

𝜋
4

]

= 𝑒𝑖
𝜋
4
|1⟩

When applied to a qubit on the |0⟩, the 𝐓–gate has no effect on it:

𝐓|0⟩ =
[

1 0
0 𝑒𝑖

𝜋
4

] [

1
0

]

=
[

1
0

]

= |0⟩

Its alternative name (the 𝜋∕8–gate) is due to the fact that 𝐓 is equivalent to

[

𝑒
−𝑖𝜋
8 0
0 𝑒

𝑖𝜋
8

]

.

On the other hand, gate 𝐒 applies a phase shift of 𝜋∕2 to the qubit state |1⟩, while leaving the qubit
state |0⟩ unchanged. This is similar to the 𝐓–gate, when applied to the |0⟩ state, 𝐒 has no effect:

𝐒|0⟩ =
[

1 0
0 𝑖

] [

1
0

]

=
[

1
0

]

= |0⟩.

Finally, it is interesting to note that the 𝐒–gate is related to the 𝐓–gate, as 𝐒 = 𝐓2
.

Example 2.7. In this example, the 𝐓–gate is applied on a qubit in the state |+⟩. We can calculate the

result after applying the gate by simply doing the following:

𝐓|+⟩ = 𝐓
[

1∕
√

2
1∕

√

2

]

=
[

1 0
0 𝑒𝑖𝜋∕4

]

[

1∕
√

2
1∕

√

2

]

=

[

1∕
√

2
(1 + 𝑖)∕2

]

Figura 2.5: 𝐓 gate

2. basic concepts of qantum computing 17

Example 2.8. In this example, the 𝐒 gate involves a qubit state |+⟩ as was the case,

𝐒|+⟩ = 𝐒
[

1∕
√

2
1∕

√

2

]

=
[

1 0
0 𝑖

]

[

1∕
√

2
1∕

√

2

]

=

[

1∕
√

2
𝑖∕
√

2

]

Figura 2.6: 𝐒 gate

Definition 2.10. The rotation operators appear as a result of exponentiating the Pauli matrices. They
are the following:

𝐑𝑖(𝜃) ≡ 𝑒−𝑖𝜃𝜎𝑖∕2 = cos
(𝜃
2

)

𝐈2 − 𝑖 sin
(𝜃
2

)

𝜎𝑖, for 𝑖 = 𝑥, 𝑦, 𝑧.

Explicitely,

𝐑𝑥(𝜃) ≡ 𝑒−𝑖𝜃𝐗∕2 = cos
(𝜃
2

)

𝐈2 − 𝑖 sin
(𝜃
2

)

𝐗 =
[

cos(𝜃∕2) −𝑖 sin(𝜃∕2)
−𝑖 sin(𝜃∕2) cos(𝜃∕2)

]

.

𝐑𝑦(𝜃) ≡ 𝑒−𝑖𝜃𝐘∕2 = cos
(𝜃
2

)

𝐈2 − 𝑖 sin
(𝜃
2

)

𝐘 =
[

cos(𝜃∕2) − sin(𝜃∕2)
sin(𝜃∕2) cos(𝜃∕2)

]

.

𝐑𝑧(𝜃) ≡ 𝑒−𝑖𝜃𝐙∕2 = cos
(𝜃
2

)

𝐈2 − 𝑖 sin
(𝜃
2

)

𝐙 =
[

𝑒−𝑖𝜃∕2 0
0 𝑒𝑖𝜃∕2

]

.

Note that when we perform them we are basically performing rotations around the 𝑥, 𝑦, 𝑧 axes of
the Bloch sphere. These rotation gate operators will be important because they help us to decompose

any 2 × 2 unitary matrices.

If we want to perform a general rotation of a qubit about an axis 𝑛 = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) we can use the

following proposition:

18 algebraic tools in qantum computing algorithms

Proposition 2.3. A rotation of an angle 𝜃 about a general axis 𝑛 = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) (normalized to 1) of the

Bloch sphere can be expressed as:

𝐑𝑛(𝜃) ≡ 𝑒−𝑖𝜃(𝑛𝑥𝐗+𝑛𝑦𝐘+𝑛𝑧𝐙)∕2 = cos
(𝜃
2

)

𝐈 − 𝑖 sin
(𝜃
2

)

(

𝑛𝑥𝐗 + 𝑛𝑦𝐘 + 𝑛𝑧𝐙
)

,

where

(

𝑛𝑥𝐗 + 𝑛𝑦𝐘 + 𝑛𝑧𝐙
)2 = 𝐈.

Proof. It follows from the definition by direct calculation. See [7] for the details.

Proposition 2.4. Any unitary 2 × 2 matrix 𝐔 can be written in the form below:

𝐔 = 𝑒𝑖𝛿 𝐑𝑧(𝛾)𝐑𝑦(𝛽)𝐑𝑧(𝛼),

where 𝛼, 𝛽, 𝛾, 𝛿 ∈ [0, 2𝜋).

Proof. As 𝐔 is a unitary matrix we already know we can write it as

𝐔 =
[

𝑒𝑖𝜔 cos 𝜉 𝑒𝑖𝜙 sin 𝜉
−𝑒𝑖(𝜃−𝜙) sin 𝜉 𝑒𝑖(𝜃−𝜔) cos 𝜉

]

.

Let us now compute 𝑒𝑖𝛿 𝐑𝑧(𝛾)𝐑𝑦(𝛽)𝐑𝑧(𝛼). Remember that

𝐑𝑧(𝛾) =
[

𝑒−𝑖𝛾∕2 0
0 𝑒𝑖𝛾∕2

]

, 𝐑𝑦(𝛽) =
[

cos(𝛽∕2) − sin(𝛽∕2)
sin(𝛽∕2) cos(𝛽∕2)

]

.

So we have

𝐑𝑦(𝛽) ⋅ 𝐑𝑧(𝛼) =
[

cos(𝛽∕2) − sin(𝛽∕2)
sin(𝛽∕2) cos(𝛽∕2)

]

⋅
[

𝑒−𝑖𝛼∕2 0
0 𝑒𝑖𝛼∕2

]

=
[

𝑒−𝑖𝛼∕2 cos 𝛽∕2 −𝑒𝑖𝛼∕2 sin 𝛽∕2
𝑒−𝑖𝛼∕2 sin 𝛽∕2 𝑒𝑖𝛼∕2 cos 𝛽∕2

]

,

and then,

𝑒𝑖𝛿 𝐑𝑧(𝛾)𝐑𝑦(𝛽)𝐑𝑧(𝛼) = 𝑒𝑖𝛿
[

𝑒−𝑖𝛾∕2 0
0 𝑒𝑖𝛾∕2

]

⋅
[

𝑒−𝑖𝛼∕2 cos 𝛽∕2 −𝑒𝑖𝛼∕2 sin 𝛽∕2
𝑒−𝑖𝛼∕2 sin 𝛽∕2 𝑒𝑖𝛼∕2 cos 𝛽∕2

]

=
[

𝑒𝑖(2𝛿−𝛼−𝛾)∕2 cos 𝛽∕2 −𝑒𝑖(2𝛿+𝛼−𝛾)∕2 sin 𝛽∕2
𝑒𝑖(2𝛿−𝛼+𝛾)∕2 sin 𝛽∕2 𝑒𝑖(2𝛿+𝛼+𝛾)∕2 cos 𝛽∕2

]

.

So, if we say

𝛼 = 𝜙 − 𝜔, 𝛽 = −2𝜉, 𝛾 = 𝜃 − 𝜙 − 𝜔, 𝛿 = 1
2
𝜔

we get the desired description for 𝐔.

2. basic concepts of qantum computing 19

There aremany otherways to represent a unitarymatrix𝐔 in terms of a product of rotationmatrices,

as there is nothing particularly special about the 𝑦 and 𝑧–axis and we can actually generalise regarding

the above statement with the following proposition whose proof can be found in [7]:

Proposition 2.5. Let 𝑚 and 𝑛 be non-parallel real unit vectors of ℝ3
. For any quantum gate 𝐔 acting on

a single qubit there exist real numbers 𝛼, 𝛽, 𝛾 and 𝛿 so that

𝐔 = 𝑒𝑖𝛼𝐑𝑛(𝛽)𝐑𝑚(𝛾)𝐑𝑛(𝛿).

Observation 2.4. We can express the 𝐓–gate as

𝐓 = 𝑒𝑖𝜋∕8𝐑𝑧

(𝜋
4

)

.

It is an immediate result arising from the definition of 𝐓.

Observation 2.5. The following expression will become useful in some later demonstrations:

𝐑𝑥

(𝜋
4

)

= 𝑒−𝑖𝜋∕8𝐇𝐓𝐇.

We know that 𝐓 = 𝐑𝑧(𝜋∕4) up to a global phase, 𝑒−𝑖𝜋∕8. We can therefore say that:

𝐇𝐓𝐇 = 𝑒−𝑖𝜋∕8𝐇𝐑𝑥(𝜋∕4)𝐇 = 𝑒−𝑖𝜋∕8𝐇
(

cos(𝜋∕8)𝐈 − 𝑖 sin(𝜋∕8)𝐙
)

𝐇
= 𝑒−𝑖𝜋∕8

(

cos(𝜋∕8)𝐈 − 𝑖 sin(𝜋∕8)𝐗
)

= 𝑒−𝑖𝜋∕8𝐑𝑥(𝜋∕4),

where we have used 𝐇𝐙𝐇 = 𝐗 and 𝐇𝐈𝐇 = 𝐇2 = 𝐈.

Lema 2.1. It is also possible to express the Hadamard gate with 𝐑𝑧 and 𝐑𝑥 rotations. In particular,

𝐇 = 𝑒𝑖
𝜋
2 𝐑𝑧

(𝜋
2

)

𝐑𝑥

(𝜋
2

)

𝐑𝑧

(𝜋
2

)

.

Proof. We start with the product of:

20 algebraic tools in qantum computing algorithms

𝐑𝑧

(𝜋
2

)

𝐑𝑥

(𝜋
2

)

𝐑𝑧

(𝜋
2

)

= 𝐑𝑧

(𝜋
2

)

(
√

2
2

𝐈 − 𝑖
√

2
2

𝐗
)(

√

2
2

𝐈 − 𝑖
√

2
2

𝐙
)

= 𝐑𝑧

(𝜋
2

)(1
2
𝐈2 − 𝑖

2
𝐙 − 𝑖

2
𝐗 − 1

2
𝐗𝐙

)

=

(
√

2
2

𝐈 − 𝑖
√

2
2

𝐙
)

(1
2
𝐈2 − 𝑖

2
𝐙 − 𝑖

2
𝐗 − 1

2
𝐗𝐙

)

=

√

2
4

𝐈 −
√

2
4
𝑖𝐙 −

√

2
4
𝑖𝐗 −

√

2
4

𝐗𝐙 −

√

2
4
𝑖𝐙

−

√

2
4

𝐙2 −

√

2
4

𝐙𝐗 +

√

2
4
𝑖𝐙𝐗𝐙

= −

√

2
2
𝑖𝐙 −

√

2
4
𝑖𝐗 +

√

2
4
𝑖𝐙𝐗𝐙

= −

√

2
2
𝑖𝐙 −

√

4
4
𝑖𝐗 −

√

2
4
𝑖𝐗

= −

√

2
2
𝑖(𝐙 + 𝐗) = −𝑖𝐇.

2.5 Tensor product

In quantum computing, the tensor product is used to combine quantum states of multiple quantum

systems, such as qubits, into a joint state that represents the combined system.

The importance of the tensor product in quantum computing arises from the fact that quantum

mechanics is fundamentally different from classical mechanics as a theory. In classical mechanics, the

state of a system can be described by a set of classical variables, such as position and momentum, which

can be combined by using simple addition or multiplication. However, in quantum mechanics, the state

2. basic concepts of qantum computing 21

of a system is described by a complex vector in a higher-dimensional Hilbert space by using the tensor

product, which has some interesting nuances, as we will see shortly.

Definition 2.11. Let 𝑉 and𝑊 be complex vector spaces of dimensions 𝑛 and𝑚, respectively. The tensor
product of 𝑉 and𝑊 , denoted by 𝑉 ⊗𝑊 , is an (𝑛𝑚)-dimensional vector space whose elements are linear
combinations of the symbols 𝑣 ⊗ 𝑤 that satisfy the subsequent properties:

𝛼(𝑣 ⊗ 𝑤) = (𝛼𝑣)⊗𝑤 = 𝑣 ⊗ (𝛼𝑤),
(𝑣1 + 𝑣2)⊗𝑤 = (𝑣1 ⊗𝑤) + (𝑣2 ⊗𝑤),
𝑣 ⊗ (𝑤1 +𝑤2) = (𝑣 ⊗ 𝑤1) + (𝑣 ⊗ 𝑤2),

where 𝛼 ∈ ℂ, 𝑣, 𝑣1, 𝑣2 ∈ 𝑉 and 𝑤,𝑤1, 𝑤2 ∈ 𝑊 .

Note that the elements of the form 𝑣 ⊗ 𝑤 generate 𝑉 ⊗𝑊 but not all elements of 𝑉 ⊗𝑊 can be

written as 𝑣 ⊗ 𝑤. On the other hand, if

𝑉 = {𝑣1,… , 𝑣𝑛}, 𝑊 = {𝑤1,… , 𝑤𝑚},

are bases of 𝑉 and𝑊 (respectively), it is easy to see that, in fact, the set

{

𝑣𝑖 ⊗𝑤𝑗 | 𝑖 = 1,… , 𝑛; 𝑗 = 1,… , 𝑚
}

is a basis of 𝑉 ⊗𝑊 .

Definition 2.12. Let 𝐴 and 𝐵 be linear operators defined on 𝑉 and 𝑊 respectively, then the linear
operator 𝐴⊗ 𝐵 operating on 𝑉 ⊗𝑊 is defined by

(𝐴⊗ 𝐵)(𝑣 ⊗ 𝑤) = 𝐴𝑣 ⊗ 𝐵𝑤,

with 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝑊 .

If𝐴 and𝐵 are 𝑛×𝑛 and𝑚×𝑚matrices respectively, which correspond to the matrix representations

of the linear operators 𝐴 and 𝐵 with respect to the canonical base, then the linear operator 𝐶 = 𝐴⊗𝐵
(called the tensor product, or the Kronecker product of 𝐴 and 𝐵) can be built in the following way:

𝑐𝑖,𝑗 = 𝑎𝑞1,𝑞2𝑏𝑟1,𝑟2

where the indices are numbered from 0 and we have the Euclidean divisions

𝑖 = 𝑛 ⋅ 𝑞1 + 𝑟1, 𝑗 = 𝑚 ⋅ 𝑞2 + 𝑟2.

22 algebraic tools in qantum computing algorithms

A more illustrative (and easy) way of producing 𝐶 = 𝐴⊗ 𝐵 is the following:

𝐶 = 𝐴⊗ 𝐵 =
⎡

⎢

⎢

⎣

𝑎11𝐵 ⋯ 𝑎1𝑛𝐵
⋮ ⋮

𝑎𝑛1𝐵 ⋯ 𝑎𝑛𝑛𝐵

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑎11𝑏11 ⋯ 𝑎11𝑏1𝑚 𝑎1𝑛𝑏11 ⋯ 𝑎1𝑛𝑏1𝑚
⋮ ⋮ ⋯ ⋮ ⋮

𝑎11𝑏𝑛1 ⋯ 𝑎11𝑏𝑚𝑚 𝑎1𝑛𝑏𝑚1 ⋯ 𝑎1𝑛𝑏𝑚𝑚

⋮ ⋮

𝑎𝑛1𝑏11 ⋯ 𝑎𝑛1𝑏1𝑚 𝑎𝑛𝑛𝑏11 ⋯ 𝑎𝑛𝑛𝑏1𝑚
⋮ ⋮ ⋯ ⋮ ⋮

𝑎𝑛1𝑏𝑚1 ⋯ 𝑎𝑛1𝑏𝑚𝑚 𝑎𝑛𝑛𝑏𝑚1 ⋯ 𝑎𝑛𝑛𝑏𝑚𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

In quantum computing, the tensor product arises when we want to manipulate multi-qubit systems.

Let us say we have an 𝑛 system with individual quantum states:

|𝜓0⟩, |𝜓1⟩, |𝜓2⟩,… , |𝜓𝑛−1⟩.

The way to combine these systems as a whole quantum state would be:

|𝜙⟩𝑛 = |𝜓0⟩⊗ |𝜓1⟩⊗ |𝜓2⟩⊗⋯⊗ |𝜓𝑛−1⟩ ∶= |𝜓0𝜓1𝜓2 ⋯𝜓𝑛−1⟩.

What we are doing by considering tensor products (as opposed to a direct product) is somehow

capturing every possible combination of these systems.

Example 2.9. If we consider the two basic qubit states |0⟩ and |1⟩ we get:

|𝜓⟩2 = |0⟩⊗ |1⟩ = |01⟩ =
[

1
0

]

⊗
[

0
1

]

=

⎡

⎢

⎢

⎢

⎢

⎣

0
1
0
0

⎤

⎥

⎥

⎥

⎥

⎦

.

And it actually makes sense that this system is described with a 4-dimensional basis because if we

want to show all the possible combinations of both states we will have a basis formed by |00⟩, |01⟩,
|10⟩ and |11⟩.

Definition 2.13. An 𝑛–qubit is a unit element of
(

ℂ2
)⊗𝑛

.

2. basic concepts of qantum computing 23

That is, an 𝑛–qubit is a linear combination of modulus 1 in the following vectors

{

|𝑥𝑛−1⟩⊗⋯⊗ |𝑥1⟩⊗ |𝑥0⟩ ∶= |𝑥𝑛−1⋯ 𝑥1𝑥0⟩ | 𝑥𝑖 ∈ {0, 1} for 𝑖 = 0,… , 𝑛 − 1
}

,

which we will also call computational basis, as in the 𝑛 = 1 case. Moreover, if we consider 𝑗 ∈ ℤ to be

the integer with binary expression (𝑗)2 = 𝑥𝑛−1 … 𝑥1𝑥0, this is usually written as

|𝑥𝑛−1⋯ 𝑥1𝑥0⟩ = |𝑗⟩𝑛,

where the 𝑛 subscript is compulsory to avoiding ambiguity. The computational basis is hence written

as
{

|0⟩𝑛, |1⟩𝑛,… , |2𝑛 − 1⟩𝑛
}

,

Furthermore, if we write an 𝑛–qubit |𝜓⟩𝑛 as a superposition of the basis states we get:

|𝜓⟩𝑛 =
2𝑛−1
∑

𝑗=0
𝛼𝑗|𝑗⟩𝑛,

with the amplitudes 𝛼𝑗 ∈ ℂ verifying

2𝑛−1
∑

𝑗=0
|𝛼𝑗|

2 = 1.

As in the 1–qubit case, this should be interpreted as a probability distribution. The probability of

obtaining |𝑗⟩𝑛 after measuring |𝜓⟩𝑛 is, in fact, given by |𝛼𝑗|2.

What if we wanted to apply gates to our multiqubit system? Let us consider our above system and

imagine we only want to apply an 𝐗 gate to the first qubit. We can do this by using the definition of

the⊗ linear operator and model in our example as follows:

(

𝐗|𝜓1⟩
)

⊗
(

𝐈|𝜓2⟩
)

= (𝐗⊗ 𝐈)
(

|𝜓1⟩⊗ |𝜓2⟩
)

where

𝐗⊗ 𝐈 =
[

0 1
1 0

]

⋅
[

1 0
0 1

]

=
[

0 ⋅ 𝐈 1 ⋅ 𝐈
1 ⋅ 𝐈 0 ⋅ 𝐈

]

=

⎡

⎢

⎢

⎢

⎢

⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎦

as the identity 𝐈 simply models the do nothing result we want on the second qubit.

24 algebraic tools in qantum computing algorithms

Observation 2.6. If we have two separate qubits:

|𝑎⟩ =
[

𝑎0
𝑎1

]

|𝑏⟩ =
[

𝑏0
𝑏1

]

We can describe their combined state by using the Kronecker product:

|𝑏𝑎⟩ = |𝑏⟩⊗ |𝑎⟩ =

⎡

⎢

⎢

⎢

⎢

⎣

𝑏0 ⋅
[

𝑎0
𝑎1

]

𝑏1 ⋅
[

𝑎0
𝑎1

]

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑏0𝑎0
𝑏0𝑎1
𝑏1𝑎0
𝑏1𝑎1

⎤

⎥

⎥

⎥

⎥

⎦

As we can see in this simple example, the 2–qubits arising as tensor products of two 1–qubits are
a very special case: they always verify the equation 𝑥0𝑥3 = 𝑥1𝑥2. It is clear that not all the elements in

our space have to verify this.

In particular, this shows that there are more 2–qubit states than those arising from the product of

two 1–qubit states. We will give specific examples in the sequel.

Definition 2.14. We can say that a state (or an 𝑛–qubit, more generally) is separable if it can be written
as the tensor product of 1–qubit states.

The elements of the computational basis are clearly separable states. But there are also examples of

this phenomenon which are not easily detected at plain sight.

Example 2.10. Let

|𝜓⟩ =
[

−4∕5
3∕5

]

, |𝜙⟩ =

[

1∕2
√

3∕2

]

.

If we compute the tensor product of both states we get a separable state:

|𝜓⟩|𝜙⟩ = |𝜓⟩⊗ |𝜙⟩ = |𝜓𝜙⟩ =
[

−4∕5
3∕5

]

⊗

[

1∕2
√

3∕2

]

=

⎡

⎢

⎢

⎢

⎢

⎣

−2∕5
−2

√

3∕5
3∕10

3
√

3∕10

⎤

⎥

⎥

⎥

⎥

⎦

,

2. basic concepts of qantum computing 25

and then

|𝜓𝜙⟩ = −2
5
|00⟩ −

2
√

3
5

|01⟩ + 3
10

|10⟩ +
3
√

3
10

|11⟩.

Our next section will refer to those states that are not separable, that is, those that do not come from

the tensor product of two elements. We call these entangled states.

2.6 Quantum entanglement

Quantum entanglement is a phenomenon in which the state of a composite quantum system cannot

be expressed as a product of the individual states of its subsystems. In other words, the quantum state

of the composite system is a highly correlated joint state that cannot be factorized into separate states

of the individual subsystems.

Definition 2.15. An 𝑛–qubit general state |𝜓⟩𝑛 is called mixed or entangled if it is not separable, that
is, if no 1–qubit states |𝜓1⟩,… , |𝜓𝑛⟩ exist so that

|𝜓⟩𝑛 = |𝜓1⟩⊗⋯⊗ |𝜓𝑛⟩.

Definition 2.16. The Bell states are specific quantum states of two qubits that represent the simplest
examples of quantum entanglement. They can be represented as follows

|𝛽(𝑥, 𝑦)⟩ =
|0𝑦⟩ + (−1)𝑥|1𝑦⟩

√

2
,

where 𝑥, 𝑦 ∈ {0, 1} and 𝑦 is the negation of y.

Therefore, the four Bell states can be explicetely described as:

|Φ+
⟩ = 1

√

2

(

|00⟩ + |11⟩
)

, |Φ−
⟩ = 1

√

2

(

|00⟩ − |11⟩
)

,

|Ψ+
⟩ = 1

√

2

(

|01⟩ + |10⟩
)

, |Ψ−
⟩ = 1

√

2

(

|01⟩ − |10⟩
)

.

Example 2.11. Let us consider a Bell state, say

|Φ+
⟩ =

|00⟩ + |11⟩
√

2
,

26 algebraic tools in qantum computing algorithms

and let us prove that there are no single qubit states |𝑎⟩ and |𝑏⟩ so that |Φ+
⟩ = |𝑎⟩|𝑏⟩.

Suppose, for the sake of contradiction, that |Φ+
⟩ = |𝑎⟩|𝑏⟩ for some single qubit states |𝑎⟩ and |𝑏⟩.

Then, we have that

|𝑎⟩ = 𝛼|0⟩ + 𝛽|1⟩, |𝑏⟩ = 𝛾|0⟩ + 𝛿|1⟩; for some 𝛼, 𝛽, 𝛾, 𝛿 ∈ ℂ,

so that |𝛼|2 + |𝛽|2 = 1 and |𝛾|2 + |𝛿|2 = 1. Therefore,

|𝑎⟩|𝑏⟩ =
(

𝛼|0⟩ + 𝛽|1⟩
) (

𝛾|0⟩ + 𝛿|1⟩
)

= 𝛼𝛾|00⟩ + 𝛼𝛿|01⟩ + 𝛽𝛾|10⟩ + 𝛽𝛿|11⟩,

where we have used the linearity of the tensor product (though we supress the⊗ symbols in the above

expression). Hence,

|𝜓⟩ =
|00⟩ + |11⟩

√

2
= 𝛼𝛾|00⟩ + 𝛼𝛿|01⟩ + 𝛽𝛾|10⟩ + 𝛽𝛿|11⟩,

which forces 𝛼𝛿 = 0 and 𝛽𝛾 = 0. However, then we have the situation that at least one of 𝛼𝛾 or 𝛽𝛿 is
also zero, and we thus reach a contradiction.

Observation 2.7. The four Bell states for an orthonormal basis for the two qubit state space.

Proposition 2.6. A quantum computer that does not use entangled qubits has the same computational

power as a classical one.

Although the detailed proof of this result goes beyond the scope of this dissertation we can give a

sketch of the main argument. If there is no entanglement, then an 𝑛–qubit state is separable into tensorReferencia

products of 𝑛 1–qubit states. Thus, a classical computer simply has to retain the 2𝑛 complex amplitudes

in its memory to simulate the quantum computer, which can be done efficiently (in polynomial time,

to be precise). So, whatever the quantum computer solves, the classical computer can also solve it with

the same complexity (roughly) if the qubits are in a pure state.

2.7 Multiple qubit gates

As we are now working now with unit vectors in ℂ(2𝑛) = ⊗𝑛ℂ2
, the definitions match the respective

ones for the case of 𝑛 = 1, as one should expect.

Definition 2.17. An 𝑛-qubit quantum gate is a unitary matrix in2𝑛(ℂ).

2. basic concepts of qantum computing 27

Of course one can construct 𝑛–qubit quantum gates by using tensor products of 1–qubit quantum
gates but, in the same way as with 𝑛–qubits, there are many gates which can not be written like that.

Let us begin our first approach to the multiple qubit gates through one of these cases: (probably) the

most important example (we will see why in the next chapter).

Definition 2.18. The 𝐂𝐍𝐎𝐓 gate is a conditional 4 × 4 quantum gate, that is, it acts on 2–qubit states,
performing an 𝐗 gate on the second qubit (target), if the state of the first qubit (control) is |1⟩.

The gate is drawn on a circuit like this, with |𝑞0⟩ as the control and |𝑞1⟩ as the target:

|𝑞0⟩ 𝐂𝐍𝐎𝐓
|𝑞0⟩

|𝑞1⟩ |𝑞0 ⊕ 𝑞1⟩

or, more commonly,

|𝑞0⟩ ∙ |𝑞0⟩

|𝑞1⟩ |𝑞0 ⊕ 𝑞1⟩

When our 1–qubits are not a proper superposition of |0⟩ and |1⟩ (thus behaving as classical bits),

this gate is very simple and intuitive to understand. We can use the classical truth table (mind that, in

quantum as in classical computation, the first qubit is the one of the right):

Input Output

00 00

01 11

10 10

11 01

And acting on our 4-dimensional vector, it is represented by the matrix:

𝐂𝐍𝐎𝐓 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎦

,

28 algebraic tools in qantum computing algorithms

If it acts on the first qubit, using the second one as a control then the matrix representation is

𝐂𝐍𝐎𝐓 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎦

,

which is probably the most common one in the literature.

Example 2.12. Let us apply the first instance of 𝐂𝐍𝐎𝐓 to an element outside the computational basis.

Consider the state |0⟩⊗ |+⟩ = |0+⟩,

|0+⟩ = 1
√

2
(|00⟩ + |01⟩),

and let us apply a 𝐂𝐍𝐎𝐓 gate:

𝐂𝐍𝐎𝐓|0+⟩ =
1
√

2
(|00⟩ + |11⟩) .

This state is an old acquaintance of ours (the first Bell state) and is, interestingly enough, entangled,

although it is the image of a pure state.

Observation 2.8. Abusing notation, we will use the notation 𝐂𝐍𝐎𝐓 for any gate acting on an 𝑛–qubit
state (for 𝑛 ≥ 2) in an similar way to the examples above. That is, any gate which swaps one qubit (the
𝐍𝐎𝐓 operation) if and only if certain requirements on the states of the other ones (the control qubits)

are met.

Observation 2.9. There is nothing particularly relevant about the𝐍𝐎𝐓 operation (or the𝐗 gate, which

is the same). Given a 1–qubit gate 𝐔 we can, in fact, define a controlled–𝐔 gate in a certain bit, which

will mean that the gate operates (as𝐔) over this particular bit if and only if the control bits verify certain
conditions.

Observation 2.10 (Permutation notation). From the Dirac notation it is straightforward that a gate

performing the permutation of the basis states |𝑎⟩𝑛 and |𝑏⟩𝑛 can be written as:

|𝑎⟩𝑛 𝑛⟨𝑏| + |𝑏⟩𝑛 𝑛⟨𝑎| +
2𝑛−1
∑

𝑖=0
𝑖≠𝑎,𝑏

|𝑖⟩𝑛 𝑛⟨𝑖|.

2. basic concepts of qantum computing 29

This way of writing the gates is called permutation notation in quantum computing and it is widely

used because it is quite compact, and it is most used for swapping elements of the computational basis

or, more generally, for matrices similar to 𝐈𝑛.

Clearly, it is nothing more than writing gates as a set of pairs of the form

(

|image⟩ ⟨basis element|

)

,

where the images might be a linear combination of the computational basis, of course.

For example, the second 𝐂𝐍𝐎𝐓 gate above can be represented as:

𝐂𝐍𝐎𝐓 = |00⟩⟨00| + |01⟩⟨01| + |10⟩⟨11| + |11⟩⟨10|.

3 Universal quantum gates

Any quantum algorithms that are of general interest are complex sequences of unitary transfor-

mations that act on 𝑛 qubits. The question of a universal set of gates arises on its own: Is it possible

to decompose these complex operations into much simpler ones? Is it possible that this set is made of

elementary gates, whatever that might mean?

In this section, using the tools acquired in the previous sections, we will explore how to find univer-

sal gate sets: i.e., roughly speaking, sets of gates which allow us to create any possible quantum circuit.

In order to do so, we have to take into account several drawbacks and limitations that will increase the

complexity of the process. On the one hand one should have to deal with one of the biggest handicaps

of quantum computing: errors that occur in a quantum system, which affect the accuracy of the cal-

culations, so that instead of perfectly recreating a given unitary operator, we will get a good enough

approximations of it. These issues are beyond the scope of our study and concern big sections of quan-

tum computing related to error correction and fault tolerance that help us to achieve more accurate

results.

We might on the other hand we might be able to find methods that approximate unitary matrices.

But some further problems might appear. Maybe it will turn out that we need to use a huge amount

of gates, deeming the method unpractical. Maybe, because of the amount of operations we need to

make, the complexity of the algorithm will make our approach unfeasible. Bear in mind that there

are uncountably many unitary transformations, but with our set of gates we can only build a countably

infinite number of quantum circuits, meaning that wemust compromise in the approximation (arbitrary

precision, ideally).

So our task is to find a set of elementary gates that approximate any unitary operator and that, at

the same time, are efficient. In the following section we will give an intuitive idea of the conditions that

a set of quantum gates must fulfil in order to be universal.

32 algebraic tools in qantum computing algorithms

The next sections draw on the arguments provided by [7, 4].

3.1 First steps

Definition 3.1. A set of gates is said to be universal if for any integer 𝑛 ≥ 1, any 𝑛-qubit unitary
operator can be approximated to arbitrary precision by a quantum circuit using only gates from that set.

A natural question that arises from this definition is what does a set of quantum gates need to have

in order to be universal. We will start discussing four ways where a gate set fails to be universal. Of

course, a potential gate set must be able to reach all the states in which a qubit can be found in order to

be universal. Hence:

A) We must be able to create a superposition.

Example 3.1. We have studied the {𝐂𝐍𝐎𝐓} gate and we have seen that it maps computational basis

states like |10⟩, to other computational basis states, like |11⟩, so it cannot create essentially superpositon
states but only permute the amplitudes that already exist. A gate set consisting only of a 𝐂𝐍𝐎𝐓 gate can

never be universal.

B) We must be able to create entanglement.

Example 3.2. Let us take a gate now that is able to create superposition states like the Hadamard

gate. Can we achieve entanglement with it? Well, because it only acts on one qubit, the answer is no.

Furthermore, as we mentioned earlier, one can see that because it acts only on one qubit it will be

rather easy to replicate on a classical computer. A set of gates made up of just 1–qubit gates can never

be universal.

C) We must be able to reproduce gates with complex entries.

Example 3.3. This statement is pretty logical, unitary transformations exist with complex entries, so

if we want to be able to approximate them we need to have a matrix with complex entries in our set.

The set of gates consisting of {𝐂𝐍𝐎𝐓,𝐇} meets conditions A) and B) but its elements only consist of

real entries so it cannot generate matrices with complex values.

3. universal qantum gates 33

For our last condition wewill introduce a definition of a gate set widely used in quantum computing:

the Clifford gate set.

Definition 3.2. We will call the Clifford gate set  = {𝐇,𝐂𝐍𝐎𝐓,𝐒}.

Why have we specified this set? One very important result in quantum computing is the Gottesman-

Knill theorem, which tells us the following [2]:

Theorem 3.1 (Gottesman-Knill). A quantum circuit using only the following elements can be simu-
lated efficiently on a classical computer:

Preparation of qubits in computational basis states,
Clifford gates, and
Measurements in the computational basis.

Hence,

D) We must be able to operate outside the Clifford group gate set.

Because of the Gottesman-Knill theorem, if a set of gates is contained in the Clifford group, any

algorithm that we perform with them can be efficiently simulated on a classical computer and these

algorithms will not be enough to realize exponential quantum speed–ups and therefore this set of gates

cannot be universal.

It is therefore natural to look for sets of gates to achieve universality. And a number of interesting

questions might also appear in this context, like trying to find a set which is minimal (in the cardinal

sense) or which is the most efficient (insofar as it achieves the shortest gate factorization).

In the following sections we will tackle the problem with different approaches and we will try to

provide some understanding of the conditions these sets of gates need to meet as well as some examples

of universal gate sets.

3.2 Exact quantum gates

In this section we will forget about some efficiency issues and we will allow our algorithms to use

uncountable gate sets. This way we will build any unitary transformation we want in an exact way.

34 algebraic tools in qantum computing algorithms

First of all we will study how to decompose any unitary transformation into the product of a particular

type of gate that will be introduced next.

3.2.1 2–level unitary matrices

Definition 3.3 (2–level unitary matrices). A 2–level matrix is a matrix which act non–trivially
only on two or fewer vector components.

In other words, if we fix our standard computational basis |0⟩𝑛, |1⟩𝑛, |2⟩𝑛, ⟩|2𝑛 − 1⟩𝑛, we can say that

𝐀 is a 2–level matrix if it acts nontrivially only in the two-dimensional subspace spanned by two basis

elements |𝑖⟩𝑛 and |𝑗⟩𝑛; i.e., 𝐀 decomposes (as an operator) as a direct sum:

𝐀 = 𝐀(2) ⊕ 𝐈(2𝑛−2),

where 𝐀(2)
is a 2 × 2 operator acting on the span of |𝑖⟩𝑛 and |𝑗⟩𝑛, and 𝐈(2𝑛−2) is the identity operator

acting on the complementary (2𝑛 − 2)–dimensional subspace given by ⟨|𝑖⟩𝑛, |𝑗⟩𝑛⟩⟂.

Example 3.4. Consider a 3 × 3 matrix (acting on a 3–dimensional vector space)

𝐀 =
⎡

⎢

⎢

⎣

𝑎 0 𝑏
0 1 0
𝑐 0 𝑑

⎤

⎥

⎥

⎦

If we apply this matrix to an arbitrary vector (𝑥, 𝑦, 𝑧),

⎡

⎢

⎢

⎣

𝑎 0 𝑏
0 1 0
𝑐 0 𝑑

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑥
𝑦
𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑎𝑥 + 𝑏𝑧
𝑦

𝑐𝑥 + 𝑑𝑧

⎤

⎥

⎥

⎦

,

is therefore 𝐀 a 2–level matrix, as only the first and third component were altered.

Example 3.5. From the classical Gaussian algorithm we are already familiar with the so–called ele-

mentary matrices, all of which are 2–level matrices:

𝐄𝑖𝑗 matrices, which consist of identity matrices with the 𝑖–th and 𝑗–th columns swapped.

𝐄𝑖(𝛼) matrices, which consist of identity matrices with the 𝑖–th column multiplied by 𝛼 ∈ ℂ.
𝐄𝑖𝑗(𝛼) matrices, which consist of identity matrices where the 𝑗–th column multiplied by 𝛼 ∈ ℂ
has been added to the 𝑖–th column.

3. universal qantum gates 35

Note that 𝐄𝑖𝑗 matrices are always unitary, while 𝐄𝑖(𝛼) matrices are unitary if and only if |𝛼| = 1.
𝐄𝑖𝑗(𝛼) type matrices, on the other hand, are never unitary (except for the trivial case of 𝛼 = 0).

3.2.2 2–level unitary matrices can be used to factorize any unitary matrix

Our goal in this section is to decompose a unitary matrix,𝐔, which acts on a 𝑑–dimensional Hilbert

space, into the product of 2–level unitary matrices.

Let us suppose 𝐔 is:

⎡

⎢

⎢

⎢

⎢

⎣

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑑1 𝑎𝑑2 ⋯ 𝑎𝑑𝑑

⎤

⎥

⎥

⎥

⎥

⎦

In order to achieve our purpose we will slightly modify the Gaussian elimination. Remember that

this process essentially consist in two phases. The first one takes our matrix to row–echelon form by

iterating the following process:

Step 0) Move every null row to the lower end of the matrix. This step uses 𝑑 −1matrices at most 𝐄𝑖𝑗 and
it only has to be performed once.

Step 1) Locate a pivot (i.e., a non–zero element) in the leftmost available column and move it upwards

as far as possible. If there are none, move it to the next column. This step uses one 𝐄𝑖𝑗 matrix at

most.

Step 2) Cancel out all elements below the pivot. This step uses 𝑑 − 𝑖 matrices 𝐄𝑖𝑗(𝛼) at most (with 𝑖 < 𝑗)
if we are in the 𝑖–th row.

Step 3) Consider the submatrix comprising the rows below and the columns at the right of the pivot and

go back to Step 1.

The second phase gives us the reduced row–echelon form, using matrices 𝐄𝑖(𝛼) and 𝐄𝑖𝑗(𝛼), but we
are not interested in that, as we can use the properties of the unitary matrices to avoid this part.

So, from the remarks above, in order to achieve a row–echelon form using unitary matrices, the

main obstruction is the need for 𝐄𝑖𝑗(𝛼) matrices, which allow us to cancel terms below a given pivot,

because they are not unitary. However, this can be corrected.

36 algebraic tools in qantum computing algorithms

Imagine we have a 2 × 2 matrix

𝐀 =
[

𝛼 ∗
𝛽 ∗

]

,

with 𝛼, 𝛽 ∈ ℂ∗
. We can then consider the following matrix:

𝐔12(𝛼, 𝛽) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛼
√

|𝛼|2 + |𝛽|2
𝛽

√

|𝛼|2 + |𝛽|2

−𝛽
√

|𝛼|2 + |𝛽|2
𝛼

√

|𝛼|2 + |𝛽|2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

= 1
√

|𝛼|2 + |𝛽|2

[

𝛼 𝛽
−𝛽 𝛼

]

,

which can be easily checked to ensure it is unitary. We therefore have:

𝐔12(𝛼, 𝛽)𝐀 =
[

𝛾 ∗
0 ∗

]

where 𝛾 =
√

|𝛼|2 + |𝛽|2 ≠ 0.

So we can adapt the Gaussian algorithm in order to use only unitary transformations. The process is

exactly the same except that, instead of using 𝐄𝑖𝑗(𝛼) matrices we have to use 𝐔𝑖𝑗(𝛼, 𝛽) matrices, which

are identity matrices 𝐈𝑑 except for the following elements:

(𝑖, 𝑖) ∶= 𝛼
√

|𝛼|2 + |𝛽|2
; (𝑖, 𝑗) ∶=

𝛽
√

|𝛼|2 + |𝛽|2
; (𝑗, 𝑖) ∶=

−𝛽
√

|𝛼|2 + |𝛽|2
; (𝑗, 𝑗) ∶= 𝛼

√

|𝛼|2 + |𝛽|2
.

These matrices, as the original 𝐄𝑖𝑗(𝛼), cancel out the element in the 𝑗–th row lying below the pivot

(which is in the 𝑖–th row) and depend on both the pivot and the element to be cancelled. These new

matrices are also unitary.

Observation 3.1. A major difference, besides the unitary character of 𝐔𝑖𝑗(𝛼, 𝛽) and 𝐄𝑖𝑗(𝛼) is that the
latter only modify the 𝑗–th row, while the former modify both the 𝑖–th and the 𝑗–th row. And it does

have to be this way because they do in fact achieve more than predicted.

The following result is a very well–known lemma frequently used with Schur’s Lemma, to charac-

terise normal matrices as those which are diagonalizable using orthonormal bases (as in Álgebra Lineal
y Geometría I, for instance).

Proposition 3.1. A normal matrix which is upper triangular must in fact be diagonal.

3. universal qantum gates 37

Therefore, as unitary matrices are normal, if we start with a unitary 𝐔 and apply the modified

version of the Gaussian algorithm we will get the following expression:

𝐔𝑚⋯𝐔1 ⋅ 𝐔 =

⎡

⎢

⎢

⎢

⎢

⎣

𝛾1
𝛾2

⋱
𝛾𝑑

⎤

⎥

⎥

⎥

⎥

⎦

= 𝐄1(𝛾1)𝐄2(𝛾2)⋯𝐄𝑑(𝛾𝑑),

where the matrices 𝐔𝑖 are unitary, either of the 𝐄𝑖𝑗–type or of the 𝐔𝑖𝑗(𝛼, 𝛽)–type. And, as the resultant
diagonal matrix must also be unitary, |𝛾𝑖| = 1, for 𝑖 = 1,… , 𝑑. That is, the matrices 𝐄𝑖(𝛾𝑖) are as well
unitary.

From this expression it is clear that

𝐔 = 𝐔∗
1 ⋯𝐔∗

𝑚 ⋅ 𝐄1(𝛾1)⋯𝐄𝑑(𝛾𝑑),

which is a factorization in 2–level unitary matrices.

Example 3.6. Let us try to decompose the followingmatrix into the product of 2–level unitarymatrices:

𝐔 = 1
2

⎡

⎢

⎢

⎢

⎢

⎣

1 1 1 1
1 𝑖 −1 −𝑖
1 −1 1 −1
1 −𝑖 −1 𝑖

⎤

⎥

⎥

⎥

⎥

⎦

.

We must first compute the matrix noted above as 𝐔12(1, 1),

𝐔1 = 𝐔12(1, 1) =

⎡

⎢

⎢

⎢

⎢

⎣

√

2∕2
√

2∕2 0 0
−
√

2∕2
√

2∕2 0 0
0 0 1 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

and

𝐔1 ⋅ 𝐔 = 1
2

⎡

⎢

⎢

⎢

⎢

⎣

√

2
√

2∕2 +
√

2𝑖∕2 0
√

2∕2 −
√

2𝑖∕2
0 −

√

2∕2 +
√

2𝑖∕2 −
√

2 −
√

2∕2 −
√

2𝑖∕2
1 −1 1 −1
1 −𝑖 −1 𝑖

⎤

⎥

⎥

⎥

⎥

⎦

,

38 algebraic tools in qantum computing algorithms

where, as we remarked above, both the first and the second row have been altered. So in order to make

another 0 in the (3, 1) position we need the matrix 𝐔13

(
√

2, 1
)

:

𝐔2 = 𝐔13

(
√

2, 1
)

=

⎡

⎢

⎢

⎢

⎢

⎣

√

2∕3 0 1∕
√

3 0
0 1 0 0

−1∕
√

3 0
√

2∕3 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

.

We now compute this and get:

𝐔2𝐔1𝐔 = 1
2

⎡

⎢

⎢

⎢

⎢

⎣

√

3
√

3𝑖∕3
√

3∕3 −
√

3𝑖∕3
0 −

√

2∕2 +
√

2𝑖∕2 −
√

2 −
√

2∕2 −
√

2𝑖∕2
0 −

√

6∕2 −
√

6𝑖∕6
√

6∕3 −
√

6∕2 +
√

6𝑖∕6
1 −𝑖 −1 𝑖

⎤

⎥

⎥

⎥

⎥

⎦

.

As one might notice, the computations quickly become cumbersome (at least, to be done by hand).

Observation 3.2. From the description of the procedure it is not complicated to bound the number

of matrices we need. Step 0 is in fact not necessary as 𝐔 is unitary. So, for the 𝑖–th column (where

𝑖 = 1,… , 𝑑) we need (𝑑 − 𝑖 + 1) 2–level matrices at most, as explained in the step description. That is,

the full diagonalization takes, at most,

𝑑 + (𝑑 − 1) +⋯ + 1 = 1
2
𝑑(𝑑 + 1) 2–level unitary matrices.

Once we have a diagonal matrix we might need 𝑑 matrices 𝐄𝑖(⋅) (we maight take two at a time, but

there is no substantial difference), so an upper bound for the number of factors in this decomposition

is 𝑑(𝑑 + 3)∕2.

As for lower bounds in the number of factors, we will mention a result which needs some technical

adjustments beyond outside the scope of this work. So we are not giving a full proof, but rather an

extensive road map. A fully detailed account can be found in [9].

Lema 3.1. There exists a 𝑑×𝑑 unitary matrix𝐔which cannot be decomposed as a product of less than

(𝑑 − 1) unitary 2–level matrices.

Proof. (Outline) Suppose 𝐔 is a 𝑑 ×𝑑 unitary matrix which can be decomposed using less than (𝑑 −1)
unitary 2–level matrices.

3. universal qantum gates 39

Every time we multiply using one of these 2–level matrices we arrive at a new matrix. These new

matrices can be seen as vertices of a graph and the 2–level matrices as the connections or the edges

connecting these nodes of the graph. Our hypothesis is that we are actually using less than (𝑑−1) edges
in our decomposition.

If we had a graph with 𝑑 vertices and there were no connection matrices or edges then we would

have 𝑑 different components in the graph. If our graph had 𝑘 components and we added a new edge,

then the least number of components that we could have is (𝑘 − 1). That is, we can add an edge that

connects two different components (having (𝑘 − 1) components) or an edge that links vertices of the

same components (resulting in 𝑘 components).

Taking these two statements into account, it is easy to see that if a graph has 𝑛 nodes and 𝑚 edges,

we thus have at least 𝑛 − 𝑚 components so if in our case we have 𝑑 vertices and (𝑑 − 2) edges we will
have at least 2 components.

It is not complicated to show that, if we want to have only (𝑑 − 2) links, then the graph is not

connected because it has at least two different components. That is, we can get 𝐷1 and 𝐷2 subsets of

our graph that are not connected by any edges. So until we rearrange this we can write 𝐔 as 𝐔1 ⊕ 𝐔2
where 𝐔1 and 𝐔2 are two unitary matrices that can be identified with the two graphs,𝐷1 and𝐷2 stated

above.

If𝐔 can be decomposed into this form it means that𝐔 has to be block-diagonal in the computational

basis and clearly not all matrices can be written like this. One example of this is the matrix of the

Quantum Fourier Transform, which is the matrix in the above Example 3.6.

3.2.3 𝐂𝐍𝐎𝐓 gates and single qubit gates are universal

We have just shown that an arbitrary unitary matrix acting on a 𝑑–dimensional Hilbert space may

be written as a product of 2–level unitary matrices. Now we will show that single qubit and 𝐂𝐍𝐎𝐓
gates can be used together to implement an arbitrary 2–level unitary operation on the state space of 𝑛
qubits. By combining these results we see that single qubit and𝐂𝐍𝐎𝐓 gates can be used to implement an

arbitrary unitary operation on 𝑛 qubits, and are therefore a universal gate set for quantum computation.

Theorem 3.2. The set of single qubit gates and the 𝐂𝐍𝐎𝐓 gates are universal.

We have already proved that we could write any unitary transformation as the product of 2–level
matrices, so, in particular, it suffices for us to assume that the matrix we want to implement is 2–level.

40 algebraic tools in qantum computing algorithms

Now let us assumewe have a gate given by 2–level unitarymatrix𝐔 on a 𝑛–qubit quantum computer

and 𝐔̃ is the non-trivial 2 × 2 submatrix of 𝐔. Let us write |𝑠⟩𝑛 and |𝑡⟩𝑛 as the two qubits from the

computational basis where our matrix acts in a non-trivial way and take their binary expansions as

𝑠1 … 𝑠𝑛 and 𝑡1 … 𝑡𝑛.

Example (Theorem 3.2)

In order to illustrate this process we will simultaneously tackle the following example:

𝐔 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0
0 𝑎 0 0 0 0 𝑐 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 𝑏 0 0 0 0 𝑑 0
0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐔̃ =
[

𝑎 𝑐
𝑏 𝑑

]

.

This is a 2–level matrix, acting non-trivially only on states |𝑠⟩ = |001⟩3 and |𝑡⟩ = |110⟩3.

Our main objective is to bring together the two qubits where 𝐔 acts in a non-trivial way, so we can

apply the submatrix 𝐔̃. In order to do this we will introduce the Gray codes.

Definition 3.4. Given two binary numbers 𝑠 and 𝑡, the Gray code connecting 𝑠 and 𝑡 is a sequence of
binary numbers, starting with 𝑠 and concluding with 𝑡, such that any adjacent members on the list differ
by exactly one bit.

Example 3.7. For instance, with 𝑠 = 100101 and 𝑡 = 010111 we have the Gray code

1 0 0 1 0 1
1 0 0 1 1 1
1 1 0 1 1 1
0 1 0 1 1 1

Let us denote 𝑔1,… , 𝑔𝑚 as the elements of a Gray code that connect 𝑠 and 𝑡, where 𝑠 = 𝑔1 and 𝑡 = 𝑔𝑚.
Because we are using an 𝑛–qubit quantum computer, 𝑠 and 𝑡 can only differ at most in 𝑛 locations so
we can assume 𝑚 ≤ 𝑛 + 1.

3. universal qantum gates 41

Example (Theorem 3.2)

As our matrix acted non-trivially only on the states |001⟩ and |110⟩we can write our Gray code

connecting these states as:

0 0 1 → 𝑔1
0 0 0 → 𝑔2
0 1 0 → 𝑔3
1 1 0 → 𝑔4

In this example we have a maximal length Gray code (for 𝑛 = 3).

As a sum up we will begin by describing the implementation of the factoring algorithm on three

steps as follows:

Step 1) We want to swap states |𝑔1⟩ with |𝑔2⟩, |𝑔2⟩ with |𝑔3⟩ and so on until we reach |𝑔𝑚−1⟩, following
our Gray code.

For every switch, from |𝑔𝑖⟩ to |𝑔𝑖+1⟩ let us say that both states differ in the 𝑗–th qubit, so we

perform a controlled bit flip on this qubit which is conditional on the other qubits being identical

to those in both |𝑔𝑖⟩ and |𝑔𝑖+1⟩. This sequence that can be represented as follows:

|𝑔1⟩ ←→ |𝑔2⟩ ←→ ⋯ ←→ |𝑔𝑚−2⟩ ←→ |𝑔𝑚−1⟩,

and the effect of all the swaps in the sequence is given by:

|𝑔1⟩ ←→ |𝑔𝑚−1⟩, |𝑔2⟩ ←→ |𝑔1⟩, |𝑔3⟩ ←→ |𝑔2⟩, … , |𝑔𝑚−1⟩ ←→ |𝑔𝑚−2⟩

But bear in mind that, as we fixed (𝑛 − 1) control bits, each step swaps only the two relevant

elements of the computational basis, all the other states are not involved and subsequently are

left unchanged.

Step 2) Now we apply a controlled-𝑈̃ operation on the qubit where |𝑔𝑚−1⟩ and |𝑔𝑚⟩ differ, being condi-

tional on all the other qubits having the same values as |𝑔𝑚⟩ and |𝑔𝑚−1⟩.
Step 3) The third and last step is to revert all the operations from Step 1.

It is easy to check that these steps do precisely the same as the gate 𝐔 given. Let us inspect more

closely each step, applying them to our example.

42 algebraic tools in qantum computing algorithms

Step 1

Since adjacent elements in the Gray code differ by only one bit, as we have seen, the swaps of Step

1 (and Step 3, for that matter) can be described by 𝐂𝐍𝐎𝐓 operations: flipping a particular bit only if all

of the other bits are as given.

As these gates only swap two elements of the computational basis they can be realized as𝐄𝑖𝑗 matrices

as well, where |𝑖⟩𝑛 and |𝑗⟩𝑛 are the elements of the computational basis swapped by the 𝐂𝐍𝐎𝐓 gate.

Example (Theorem 3.2)

In our example, if we have to begin the algorithm doing a double swap:

|001⟩ = |𝑔1⟩ ←→ |000⟩ = |𝑔2⟩ ←→ |010⟩ = |𝑔3⟩.

If want to represent the permutation from state |001⟩ to state |000⟩, as they are the first two

vectors of the computational basis, we can do it with the matrix:

𝐄12 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Mind that, as explained above, this is indeed a 𝐂𝐍𝐎𝐓 gate acting on 3 qubits, if the 2 last qubits

are 0 then the first qubit is turned to the opposite state.

Now, if we want to go from state |000⟩ to state |010⟩ we have to use a different 𝐂𝐍𝐎𝐓 gate,

which is also a permutation. In particular we need a gate acting on two qubits: it will change the

second qubit if the first and third qubit are 0. As it interchanges the first and third elements of the

▶

3. universal qantum gates 43

Example (Theorem 3.2) (cont)

computational basis, the matrix we need is

𝐄13 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Step 2

Now we must apply the controlled–𝐔̃ gate acting on the qubit, which is the different one between

|𝑔𝑚−1⟩ and |𝑔𝑚⟩. That is, we have to perform

𝐔̂ = 𝐔̃⊗ 𝐈

where 𝐔̃ acts on {|𝑔𝑚−1⟩, |𝑔𝑚⟩} and 𝐈 on its orthogonal space (with dimension 2𝑛 − 2).

Example (Theorem 3.2)

In our working example we have

|𝑔𝑚−1⟩ = |𝑔3⟩ = |010⟩; |𝑔𝑚⟩ = |𝑔4⟩ = |110⟩

So our controlled–𝐔̃ gate acts in the following way:

|010⟩ →
(

𝑎|0⟩ + 𝑏|1⟩
)

|10⟩ = 𝑎|010⟩ + 𝑏|110⟩
|110⟩ →

(

𝑐|0⟩ + 𝑑|1⟩
)

|10⟩ = 𝑐|010⟩ + 𝑑|110⟩

▶

44 algebraic tools in qantum computing algorithms

Example (Theorem 3.2) (cont)

while the rest of the elements of the computational basis does not vary. That is,

𝐔̂ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 𝑎 0 0 0 𝑐 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 𝑏 0 0 0 𝑑 0
0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Step 3

As noted, this step only consist of undoing the 𝐂𝐍𝐎𝐓 gates of Step 1 in reverse order.

Example (Theorem 3.2)

In our working example, this last step will involve the 𝐂𝐍𝐎𝐓 gates given by 𝐄13 and 𝐄12 (in this

order).

Example 3.8. Inspired by the comment section in the post [10] we have also seen how we can imple-

ment this whole procedure in our previous example, this time using the permutation notation.

Step 1: The unitary operator can be described in the following way:

𝐒 = |010⟩⟨001| + |001⟩⟨000| + |000⟩⟨010|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

permutations of Gray codes

+

+ |011⟩⟨011| + |100⟩⟨100| + |101⟩⟨101| + |110⟩⟨110| + |111⟩⟨111|
⏟⏞⏞⏟⏞⏞⏟

trivial action

3. universal qantum gates 45

The matrix expression is

𝐒 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Step 2:Aswe saw above, the single-qubit operation on the first qubit acts on these states in the following

way:

|010⟩ →
(

𝑎|0⟩ + 𝑏|1⟩
)

|10⟩ = 𝑎|010⟩ + 𝑏|110⟩
|110⟩ →

(

𝑐|0⟩ + 𝑑|1⟩
)

|10⟩ = 𝑐|010⟩ + 𝑑|110⟩

None of the other states are affected so we can write the full action of this single qubit gate as:

𝐔̂ = (𝑎|010⟩ + 𝑏|110⟩)⟨010| + (𝑐|010⟩ + 𝑑|110⟩)⟨110|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Action of single qubit gate

+

+|000⟩⟨000| + |001⟩⟨001| + |011⟩⟨011| + |100⟩⟨100| + |101⟩⟨101| + |111⟩⟨111|
⏟⏞⏞⏟⏞⏞⏟

trivial action

And, as noted, the matrix is given by

𝐔̂ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 𝑎 0 0 0 𝑐 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 𝑏 0 0 0 𝑑 0
0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Step 3:Now is the part where we need to undo all the transformations we did in Step 1 and this basically

46 algebraic tools in qantum computing algorithms

means taking 𝐒∗
, as 𝐒 is a unitary matrix:

𝐒∗ = |001⟩⟨010| + |000⟩⟨001| + |010⟩⟨000|
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

undoing permutations of Gray codes

+

+ |010⟩⟨010| + |100⟩⟨100| + |101⟩⟨101| + |110⟩⟨110| + |111⟩⟨111|
⏟⏞⏞⏟⏞⏞⏟

trivial action

𝐒∗ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Now one can check (with a little time and patience) 𝐒∗𝐔̂𝐒 = 𝐔, as expected.

3.3 A finite universal gate set

3.3.1 Approximating unitary operators

In this section we will address the issue of quantum gate universality with a different approach.

Instead of implementing the unitary operators exactly, we will seek to obtain an approximation of

them, but still we need to measure how good that approximation is. To do this we will give some idea

about errors between unitary operators in order to see that for any tolerance we may require, we can

find a set of gates that approximate to any unitary operator.

In order to be able to talk about distances between operators we will use the common norm,

|

|

|

|

|

|

|𝜓⟩||
|

|

|

|

=
√

⟨𝜓|𝜓⟩

3. universal qantum gates 47

Suppose we approximate a given unitary transformation 𝐔 by some other unitary transformation

𝐕. The error in the approximation is defined as

𝐸(𝐔,𝐕) = máx
|𝜓⟩

|

|

|

|

|

|

(𝐔 − 𝐕)|𝜓⟩||
|

|

|

|

,

where the maximum is above all normalized quantum states |𝜓⟩ in the state space. When we say that

we approximate the unitary operator, we mean of course that we are trying to make this error smaller

than a certain tolerance (𝜀 > 0).

Proposition 3.2. For unitary transformations 𝐔1, 𝐔2, 𝐕1 and 𝐕2 we have

𝐸(𝐔2𝐔1,𝐕2𝐕1) ≤ 𝐸(𝐔2,𝐕2) + 𝐸(𝐔1,𝐕1).

Proof. From the definition, there must be a state |𝜓⟩ so that

𝐸(𝐔2𝐔1,𝐕2𝐕1) =
|

|

|

|

|

|

(𝐔2𝐔1 − 𝐕2𝐕1)|𝜓⟩
|

|

|

|

|

|

= |

|

|

|

|

|

(𝐔2𝐔1 − 𝐕2𝐔1)|𝜓⟩ + (𝐕2𝐔1 − 𝐕2𝐕1)|𝜓⟩
|

|

|

|

|

|

,

and using the triangular inequality,

𝐸(𝐔2𝐔1,𝐕2𝐕1) ≤
|

|

|

|

|

|

(𝐔2 − 𝐕2)𝐔1|𝜓⟩
|

|

|

|

|

|

+ |

|

|

|

|

|

𝐕2(𝐔1 − 𝐕1)|𝜓⟩
|

|

|

|

|

|

≤ 𝐸(𝐔2,𝐕2) + 𝐸(𝐔1,𝐕1).

Corolary 3.1. For unitary transformations 𝐔1,… ,𝐔𝑚 and 𝐕1,… ,𝐕𝑚 we have

𝐸(𝐔𝑚𝐔𝑚−1⋯𝐔1,𝐕𝑚𝐕𝑚−1 ⋯𝐕1) ≤
𝑚
∑

𝑗=1
𝐸(𝐔𝑗 ,𝐕𝑗).

Proof. This follows from the previous proposition by induction.

Instead of having to measure the 𝜀 > 0 tolerance mentioned above for the whole problem approxi-

mation, this result allows us to divide our problem into several instances andmeasure the total tolerance

as the sum of the partial errors. This will be useful in the sequel.

48 algebraic tools in qantum computing algorithms

3.3.2 Finding a finite universal set for 1-qubit operations

In this section we are going to prove that in order to find a universal quantum set we just need to

focus on finding a set that generates some rotations of an irrational multiple of 𝜋. This statement is

based on the fact that any unitary transformation in a quantum system can be represented by only this

type of rotation.

We will first introduce a small technical proposition in order to help us provide the main result of

the section.

Proposition 3.3. For arbitrary 𝛼, 𝛽 ∈ [0, 2𝜋), 𝑛 a unitary vector,

𝐸
(

𝐑𝑛(𝛼),𝐑𝑛(𝛼 + 𝛽)
)

= |

|

|

1 − 𝑒𝑖𝛽∕2||
|

.

Proof. We need to compute, for all |𝜓⟩,

|

|

|

|

|

|

(

𝐑𝑛(𝛼) − 𝐑𝑛(𝛼 + 𝛽)
)

|𝜓⟩||
|

|

|

|

= |

|

|

|

|

|

(

𝐑𝑛(𝛼) − 𝐑𝑛(𝛼)𝐑𝑛(𝛽)
)

|𝜓⟩||
|

|

|

|

= |

|

|

|

|

|

𝐑𝑛(𝛼) ⋅
(

𝐈 − 𝐑𝑛(𝛽)
)

|𝜓⟩||
|

|

|

|

= |

|

|

|

|

|

(

𝐈 − 𝐑𝑛(𝛽)
)

|𝜓⟩||
|

|

|

|

,

as 𝐑𝑛(𝛼) is unitary. If we then write, as in Proposition 2.3,

𝐑𝑛(𝛽) = cos
(

𝛽
2

)

𝐈 − 𝑖 sin
(

𝛽
2

)

(

𝑛𝑥𝐗 + 𝑛𝑦𝐘 + 𝑛𝑧𝐙
)

,

we can see that 𝐈 − 𝐑𝑛(𝛽) can be written in matrix form as

𝐌 =
⎡

⎢

⎢

⎣

1 − cos(𝛽∕2) + 𝑖𝑛𝑧 sin(𝛽∕2) − sin(𝛽∕2)(𝑛𝑦 + 𝑖𝑛𝑥)

sin(𝛽∕2)(𝑛𝑦 − 𝑖𝑛𝑥) 1 − cos(𝛽∕2) − 𝑖𝑛𝑧 sin(𝛽∕2)

⎤

⎥

⎥

⎦

,

where 𝑛 = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧). This gives us, by an easy calculation,

𝐌∗ ⋅𝐌 =
(

2 − 2 cos
(

𝛽
2

))

𝐈

and therefore

|

|

|

|

|

|

(

𝐑𝑛(𝛼) − 𝐑𝑛(𝛼 + 𝛽)
)

|𝜓⟩||
|

|

|

|

2
= |

|

|

|

|

|

(

𝐈 − 𝐑𝑛(𝛽)
)

|𝜓⟩||
|

|

|

|

2
= |

|

|

⟨𝜓|𝐌∗ ⋅𝐌|𝜓⟩||
|

= 2 − 2 cos
(

𝛽
2

)

,

3. universal qantum gates 49

which does not depend on |𝜓⟩, and the result follows from

|

|

|

1 − 𝑒𝑖𝛽∕2||
|

=

√

2 − 2 cos
(

𝛽
2

)

.

Theorem 3.3. A single qubit operation may be approximated to arbitrary accuracy using the Hada-
mard gate 𝐇 and the 𝜋∕8 gate 𝐓.
Proof. Let us say that 𝜀 > 0. Using Proposition 2.5, any quantum gate 𝐔 action on a single qubit may

be written (up to a phase change, which will not concern us for this matter) as

𝐔 = 𝐑𝑛(𝛼)𝐑𝑚(𝛽)𝐑𝑛(𝛾),

where 𝑚 and 𝑛 are non–parallel vectors of ℝ3
that can be chosen and 𝛼, 𝛽, 𝛾 ∈ [0, 2𝜋) are then deter-

mined by 𝐔. We will approximate each rotation factor separately and then apply Corollary 3.1.

Consider then a given angle 𝛼 ∈ [0, 2𝜋) and the gates 𝐓 and 𝐇𝐓𝐇. We are going to show that

a successive product of these gates can be used to approximate 𝐑𝑛(𝛼), for a certain vector 𝑛, with an

arbitrary accuracy. Note that

𝐓𝐇𝐓𝐇 = 𝐑𝑧

(𝜋
4

)

𝐑𝑥

(𝜋
4

)

=
(

cos 𝜋
8
𝐈 − 𝑖 sin 𝜋

8
𝐙
)(

cos 𝜋
8
𝐈 − 𝑖 sin 𝜋

8
𝐗
)

= cos2 𝜋
8
𝐈 − 𝑖

(

cos 𝜋
8
(𝐗 + 𝐙) + sin 𝜋

8
𝐘
)

sin 𝜋
8
,

= cos2 𝜋
8
𝐈 − 𝑖 sin 𝜋

8

(

cos 𝜋
8
𝐗 + sin 𝜋

8
𝐘 + cos 𝜋

8
𝐙
)

,

where we have used that 𝐘 = −𝑖𝐙𝐗.

If we look at the form of this expression, we find that it is quite similar to a rotation around the

Bloch sphere (Proposition 2.3), where we can see that in this case it takes place around the axis

𝑛 =
(

cos 𝜋
8
, sin 𝜋

8
, cos 𝜋

8

)

.

The difference lies in the fact that this vector 𝑛 is not normalized. If we do normalize it so that it is

written exactly as in Proposition 2.3, we get

cos
(𝜃
2

)

𝐈 − 𝑖 sin
(𝜃
2

)

(

𝑛𝑥𝐗 + 𝑛𝑦𝐘 + 𝑛𝑧𝐙
)

,

50 algebraic tools in qantum computing algorithms

where

cos
(𝜃
2

)

= cos2
(𝜋
8

)

, (𝑛𝑥, 𝑛𝑦, 𝑛𝑧) ||
(

cos 𝜋
8
, sin 𝜋

8
, cos 𝜋

8

)

, 𝑛2𝑥 + 𝑛
2
𝑦 + 𝑛

2
𝑧 = 1.

and so we have a rotation around an axis collinear to 𝑛 and through an angle 𝜃, verifying

𝜃 = 2 arc cos
(

cos2 𝜋
8

)

∼ 1.09605682 rad.

This angle 𝜃 is not a rational multiple of 𝜋 but we will not prove this (the proof can be found in [1]).

We will call this rotation (as usual) 𝐑𝑛(𝜃).

Now we will show that by iterating 𝐑𝑛(𝜃) we will be able to approximate any rotation 𝐑𝑛(𝛼) up to

arbitrary accuracy. In order to see this let 𝛿 > 0 be the desired accuracy, and 𝑁 an integer larger than

2𝜋∕𝛿. Define 𝜃𝑘 the angle that we achieve after we apply 𝑘 times the rotation so that 𝜃𝑘 ∈ [0, 2𝜋) and

𝜃𝑘 = 𝑘𝜃 mód 2𝜋.

Due to irrationality, we will never hit 2𝜋 for any 𝜃𝑗 with 1 ≤ 𝑗 ≤ 𝑁 , so there will be no repeats in the

𝜃𝑗 values. Using the pigeonhole principle, 𝜃𝑗 split the unit circle into𝑁 subintervals whose boundaries

are the 𝜃𝑗 values. They would be most spread apart if they were equally distributed in the circle. Thus

at least two elements 𝜃𝑖, 𝜃𝑗 are at most 2𝜋∕𝑁 radians apart in absolute difference, at the two endpoints

of the shortest interval. This then implies that there are different 𝑗 and 𝑘 in range 1,… , 𝑁 such that

|𝜃𝑘 − 𝜃𝑗| ≤ 2𝜋∕𝑁 . If we assume without loss of generality 𝑘 > 𝑗 we then have

|

|

|

𝜃𝑘−𝑗
|

|

|

< 2𝜋
𝑁

< 𝛿.

This, in turn, means that the sequence

{

𝜃𝑖(𝑘−𝑗)
}

𝑖∈ℕ

will approximate any given angle with accuracy better than 𝛿. In particular there exists some 𝑟 ∈ ℕ
such that |𝛼 − 𝜃𝑟| < 𝛿. From Proposition 3.3 we get that

𝐸
(

𝐑𝑛(𝛼), (𝐓𝐇𝐓𝐇)𝑟
)

= 𝐸
(

𝐑𝑛(𝛼),𝐑𝑛 (𝜃)
𝑟) = 𝐸

(

𝐑𝑛(𝛼),𝐑𝑛
(

𝜃𝑟
))

= |

|

|

1 − 𝑒𝑖|𝛼−𝜃𝑟|∕2||
|

< |

|

|

1 − 𝑒𝑖𝛿∕2||
|

.

So, taking an appropriate 𝛿 (precisely, one such that

√

2 − 2 cos(𝛿∕2) < 𝜀∕3), we get

𝐸
(

𝐑𝑛(𝛼), (𝐓𝐇𝐓𝐇)𝑟
)

< 𝜀
3
.

3. universal qantum gates 51

We need now a non–parallel axis 𝑚 in order to fully factor 𝐔. In order to do that, we can simply

notice that, with the notations above, for every angle 𝛽 we have,

𝐇𝐑𝑛(𝛽)𝐇 = 𝐑𝑚(𝛽),

with,

𝑚 =
(

cos 𝜋
8
,− sin 𝜋

8
, cos 𝜋

8

)

;

where we have used 𝐇𝐗𝐇 = 𝐙, 𝐇𝐙𝐇 = 𝐗 and 𝐇𝐘𝐇 = −𝐘 and 𝐇2 = 𝐈.

So, using the same argument as above for 𝐑𝑛(𝛼), we can find some 𝑠 ∈ ℕ so that |𝛽 − 𝜃𝑠| < 𝛿 (same

𝛿 actually) and

𝐸
(

𝐑𝑚(𝛽),𝐇 ⋅ (𝐓𝐇𝐓𝐇)𝑠 ⋅𝐇
)

= 𝐸
(

𝐇 ⋅ 𝐑𝑛(𝛽) ⋅𝐇,𝐇 ⋅ (𝐓𝐇𝐓𝐇)𝑠 ⋅𝐇
)

= 𝐸
(

𝐑𝑛(𝛽), (𝐓𝐇𝐓𝐇)𝑠
)

< 𝜀
3
.

Of course the same goes for 𝐑𝑛(𝛾) and we get

𝐸
(

𝐑𝑛(𝛾), (𝐓𝐇𝐓𝐇)𝑡
)

< 𝜀
3
,

for a certain 𝑡 ∈ ℕ.

So as we factor 𝐔 as

𝐔 = 𝐑𝑛(𝛼)𝐑𝑚(𝛽)𝐑𝑛(𝛾),

we obtain have that there are 𝑟, 𝑠, 𝑡 ∈ ℕ such that

𝐸
(

𝐔, (𝐓𝐇𝐓𝐇)𝑟 ⋅𝐇(𝐓𝐇𝐓𝐇)𝑠𝐇 ⋅ (𝐓𝐇𝐓𝐇)𝑡
)

< 𝜀,

using Corollary 3.1. This finishes the proof.

This proof not only helps us to prove the proposed theorem but also gives us a guideline for cons-

tructing a set of universal gates as we explained in the introduction to the section.

Finally if we want to implement any circuit containing 𝑚 gates we just need to use the result given

in the previous section by, using 1-qubit gates and𝐂𝐍𝐎𝐓 gates, and where we replace the first ones with

Hadamard and 𝐓 gates. If the desired accuracy or the whole circuit is 𝜀, we will have to approximate

each 1-qubit gate to a tolerance of 𝜀∕𝑚 and, using Proposition 3.2, we obtain the result.

52 algebraic tools in qantum computing algorithms

3.4 A note about complexity

The methods for approximating unitary transformations that we explained above appears to be

pretty inefficient. Let us check the different stages of our decomposition for an 𝑛–qubit gate, which is

realized as a (2𝑛) × (2𝑛) complex matrix:

1) Factoring our unitary matrix into a product of 2–level unitary gates needs 𝑂
(

(2𝑛)2
)

matrices, as

seen in section 3.2.2.

2) Every 2–level unitary matrix might need up to 2𝑛 𝐂𝐍𝐎𝐓 gates (for both uses of the Gray codes)

and a 1–qubit gate, as shown in section 3.2.3.

3) The approximation a 1–qubit gate with 𝐇 and 𝐓 transformations with a tolerance 𝜀 > 0 needs

𝑂(21∕𝜀) factors. This can be shown from the explicit computation of 𝜃 given in the proof of Theo-

rem 3.3 [7].

Therefore a full approximation of a given unitary matrix in terms of the universal set {𝐂𝐍𝐎𝐓, 𝐇, 𝐓}
needs, at least theoretically, 𝑂

(

4𝑛
(

2𝑛 + 21∕𝜀
))

gates.

This does not look practical at all. Fortunately, there is a powerful result called the Solovay–Kitaev

theorem, that shows us that it is in fact possible to approximate any 1–qubit gate with an accuracy of 𝜀
with 𝑂

(

log𝑐(1∕𝜀)
)

factors 𝐇 and 𝐓. The proof of this result goes far beyond the scope of this memoir,

the first proof can be found in [5].

The 𝑐–constant appearing in the original statement can be shown to be 𝑐 ∼ 3 for any set of 1–qubit
matrices which generate a dense subset in the special unitary group (that is, the unitary matrices with

determinant 1). For some specific cases, 𝑐 can achieve a value of 1 as shown in [3] although achieving

this value seems rather difficult for the general case.

The Solovay–Kitaev implied a dramatic reduction in the expected number of gates a quantum com-

puter needs in order to recreate a certain circuit, effectively establishing the feasibility of quantum

computing as a valid and practical computation framework.

Bibliografía

[1] P.O. Boykin, T. Mor, M. Pulver, V. Roychowdhury and F. Vatan:On universal and fault-tolerant quan-
tum computing: a novel basis and a new constructive proof of universality for Shor’s basis. 40th Annual
Symposium on Foundations of Computer Science (Cat. No.99CB37039) (1999) 486–494.

[2] D. Gottesman: The Heisenberg representation of quantum computers. International Conference on

Group Theoretic Methods in Physics (1998), arXiv:quant-ph/9807006.

[3] A.W. Harrow, B. Recht, and I.L. Chuang: Efficient Discrete Approximations of Quantum Gates. Journal
of Mathematical Physics 43 (2002) 4445–4451.

[4] P. Kaye, R. Laflamme, and M. Mosca: An Introduction to Quantum Computing, Oxford University

Press (2006).

[5] A.Y. Kitaev: Quantum computations: algorithms and error correction. Russian Mathematical Surveys

52 (1997) 1191–1249.

[6] J. Lumbreras Zarapico: Efficient unitary approximations in quantum computing: the Solovay-Kitaev
Theorem. Trabajo Fin de Grado, Universitat de Barcelona (2018).

[7] M.A. Nielsen, and I.L. Chuang: Quantum Computation and Quantum Information 10th Anniversary

Edition, Cambridge University Press (2011).

[8] J. Ossorio-Castillo, and J.M. Tornero: Quantum computing from a mathematical perspective: a des-
cription of the quantum circuit model (2018), https://arxiv.org/abs/1810.08277.

[9] Mathematics Stack Exchange: Prove that to fully connect 𝑛 nodes we need at least 𝑛−1 pairwise links,
https://math.stackexchange.com/q/4027846.

54 algebraic tools in qantum computing algorithms

[10] Mathematics Stack Exchange:Decomposition of any 2–level matrix into single qubit and CNOT gates,
https://quantumcomputing.stackexchange.com/a/14314.

	Abstract / Resumen
	Introduction
	Basic concepts of quantum computing
	Why is algebra important for quantum computing
	A first word on unitary operators
	Qubits
	Single qubit gates
	Tensor product
	Quantum entanglement
	Multiple qubit gates

	Universal quantum gates
	First steps
	Exact quantum gates
	2–level unitary matrices
	2–level unitary matrices can be used to factorize any unitary matrix
	CNOT gates and single qubit gates are universal

	A finite universal gate set
	Approximating unitary operators
	Finding a finite universal set for 1-qubit operations

	A note about complexity

