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Learning algorithms for
oscillatory neural networks as
associative memory for pattern
recognition
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Alternative paradigms to the von Neumann computing scheme are currently

arousing huge interest. Oscillatory neural networks (ONNs) using emerging

phase-change materials like VO2 constitute an energy-efficient, massively

parallel, brain-inspired, in-memory computing approach. The encoding of

information in the phase pattern of frequency-locked, weakly coupled

oscillators makes it possible to exploit their rich non-linear dynamics and their

synchronization phenomena for computing. A single fully connected ONN layer

can implement an auto-associative memory comparable to that of a Hopfield

network, hence Hebbian learning rule is the most widely adopted method for

configuring ONNs for such applications, despite its well-known limitations. An

extensive amount of literature is available about learning in Hopfield networks,

with information regarding many different learning algorithms that perform better

than the Hebbian rule. However, not all of these algorithms are useful for ONN

training due to the constraints imposed by their physical implementation. This

paper evaluates different learning methods with respect to their suitability for

ONNs. It proposes a new approach, which is compared against previous works.

The proposed method has been shown to produce competitive results in terms

of pattern recognition accuracy with reduced precision in synaptic weights, and

to be suitable for online learning.

KEYWORDS

oscillatory neural networks (ONNs), associative memory, pattern recognition, character
recognition, machine learning algorithms, hopfield neural networks, oscillators, phase-
change material

1 Introduction

Today’s computing platforms face the challenge of having to handle a large amount of
information and complex operations. This has an impact on their power consumption, in
addition to the challenge of the so-called bottleneck in Von Neumann-type architectures. On
the other hand, conventional CMOS technology is physically limited by its energy efficiency,
as its continuous scaling results in higher losses due to leakage currents. There is therefore
growing interest in alternative computing paradigms such as in-memory computing or
oscillatory-based computing (OBC) (Hoppensteadt and Izhikevich, 2000; Csaba and Porod,
2020), capable of combining highly parallel information processing with the attraction
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of energy-efficient operation. OBC exploits the rich, non-linear,
oscillatory dynamics to implement mathematical functions that
link up a system’s output and input states.

Within OBC, there are different approaches depending on
how the oscillators interact. For example, they can have identical
frequency and encode information in their phase differences
(phase-shift keying, PSK) or they can work at different operating
frequencies (frequency-shift keying). Weakly coupled oscillators
and their synchronization phenomena stands for a promising way
of implementing OBC.

These coupled oscillators are implemented with novel emerging
devices that are potentially attractive due to their low area
requirement and their high capacity to operate with low power
consumption, as the result of their particular electrical operating
mechanisms. VO2 devices, in particular, stand out for their
hysteresis in the characteristic I-V curve, which makes it possible
to easily implement relaxation oscillators (Núñez et al., 2021).

The connection of a multitude of oscillator circuits by means
of electrical elements which act as synapses creates an intelligent
collective system called an oscillatory neural network (ONN).
PSK-based ONN encodes information in the relationship between
oscillator phases. The input presented to the ONN is applied
controlling the initial phase differences of the oscillators through
circuit polarization. Figure 1A shows an analog ONN design
using VO2-based nano-oscillators as neurons and resistively weak
couplings as synapses. ONNs mimic the functioning of certain
neurons in particular areas of the brain which, thanks to their
synchrony, are able to process and transmit information quickly
and efficiently. This processing by synchronism is not exclusive to
the human body and can be found elsewhere in nature: for example,
in the central pattern generators and synchronized locomotion of
animals (Dutta et al., 2019), in the flashing rhythms of fireflies, or
in the interaction between coupled pendulum clocks.

Structurally, the ONN illustrated resembles an artificial
network called the Hopfield Neural Network (HNN) (Hopfield,
1982), which has been studied in depth with regard to associative
memory (AM) and pattern recognition tasks. As can be seen in
Figure 1B, the HNN has a simple conceptual model comprising
a single, recurrent, fully connected layer of neurons with synaptic
weights trained to keep given network states as stable fixed points.

The HNN mathematical model can therefore be useful
when studying the behavior of the ONN and obtaining results
prior to electrical simulations or experimental evaluation. To
translate trained weights into feasible bidirectional ONN couplings,
however, the physical constraints of electrical synapses must be
considered (Hopfield, 1982; Corti et al., 2018; Corti et al., 2020;
Núñez et al., 2021; Shamsi et al., 2021). Suitable training solutions
and mathematical model parameters are limited by certain essential
design aspects, such as how many different coupling strengths can
be discerned, and it is therefore considered essential to study the
precision of discrete weights using the mathematical model.

The rest of the paper is organized as follows. Section “2.
Materials and methods” starts with a description of the Hopfield
model and highlights some important considerations regarding the
training process. It also presents the most important learning rules
for AM operation and introduces the iterative learning algorithm
developed by the authors. This Section describes, as well, the
pattern recognition experiment carried out as benchmark. Section
“3. Results” presents the results obtained for capacity and noise

robustness using our approach. The approach is also compared
with other well-known learning methods. Finally, section “4.
Discussion” summarizes the conclusions.

2 Materials and methods

2.1 Hopfield neural network and learning
rules

2.1.1 Hopfield model
The HNN topology is a special kind of recurrent neural network

in which all N neurons are interconnected with each other in a
single layer with given weights. wij denotes the weight associated
with the connection between neurons i and j. In the discrete,
synchronous version of the HNN, each neuron state, si, operates
with bipolar values {−1,+1} and is simultaneously updated as:

si = sign

 N∑
j=1

wijsj

 = sign
(
hi
)

(1)

The neuron’s hidden potential, hi, is defined as the internal
value within the activation sign function in Eq. (1). In this way, the
network behavior gradually transitions from an initial input state
to one of the previously stored states, determined by the synaptic
weights. After network training, the weight values are assigned in
such a way that the patterns to be stored are fixed as attractor states,
associated with local minimum energy points of the Hamiltonian
energy function:

E = −
1
2

N∑
i = 1

N∑
j = 1

wijsisj = −
1
2

N∑
i = 1

hisi (2)

Note that the transcribed equations deliberately omit the use of
bias parameters for the reasons discussed below.

The AM operation thus distinguishes between two different
steps: training (a.k.a. learning) and inference.

2.2.2 Learning considerations in ONNs
Learning is the process of obtaining appropriate values for

weights, thereby compressing the information to be stored in the
relationships between the weight values. The weights, which can
be grouped into a matrix, determine the synaptic strengths—and
therefore determine the interactions—between neurons.

Given that ONN synapses comprise electrical couplings, the
computed weights cannot be directly translated to electrical
conductance parameters: a mapping step is required (Delacour
and Todri-Sanial, 2021). Furthermore, physical implementation
imposes restrictions on the weight matrix: bidirectional coupling in
oscillator connections requires the matrix to be symmetric; weight
precision is limited by how many electrical strengths the system can
distinguish; and layout parasitics can impact the performance by
modifying the effective synaptic strength and operating frequency.
The original HNN also includes a bias parameter representing the
continuous contribution of one neuron with a fixed state. Since
the ONN architecture does not include such a contribution, this
parameter is not included in the model.
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FIGURE 1

(A) VO2-based ONN, coupled with memristors. Each circle represents the nano-oscillator/neuron circuit shown in the dotted view to the right. The
states are determined by the difference between their phases; (B) HNN topology, where each edge connection is assigned to the synaptic weight
(wij) between two neurons (ni and nj), marked as circles. Each neuron has a state value associated with its activation function, Eq. (1).

2.2.3 Training of associative memory neural
networks

Training algorithms found in Machine Learning are typically
classified as supervised or unsupervised, on the basis of whether
or not knowledge of the target output is used during learning.
Depending on the conditions in which the learning is executed,
distinctions can also be made between one-shot or iterative,
incremental or non-incremental, and local or non-local learning.
A learning method is incremental when it only uses information
from the new pattern to learn and the current weight matrix
to compute the new weight matrix, whereas it is iterative if
it makes several presentations of the same information to the
training algorithm until it is learned. Locality occurs if the
increment in the weight between two neurons only depends
on the desired state for those two neurons, or its hidden
potential. This is an attractive property because it makes learning
biologically plausible.

Depending on its implementation, learning can also be
considered offline or online on the basis of whether it needs to know
the network’s response before updating the weights.

Different learning algorithms have been reported in the past
to successfully address the problem of training HNNs to retain
different steady states.

The most widespread is the well-known Hebbian learning rule:
if neurons are activated together, the strength of their mutual
coupling will increase, while otherwise the connection will be
weaker (Hebb, 1949).

Thus, for a set of target P patterns of length N, ξ k
∈

{−1,+1}N , to be stored, the coupling strength between neurons
corresponds to the correlation of their state values and can be
determined as:

wij =

P∑
k = 1

ξ k
i ξ

k
j (3)

where component ξ k
i represents the desired state of neuron i when

pattern k shall be retrieved.
Memory capacity limitations (Folli et al., 2017) storing highly

correlated patterns stimulated further research into learning
mechanisms. Storkey (1997) proposed an alternative rule that
considers current knowledge of the network during the training

steps. That is to say, the weight updates are obtained considering
the previous weights.

wk
ij = wk−1

ij +
ξ k

i ξ
k
j

N − 1

(
ξ k

i hk
ji + hk

ijξ
k
j

)
hk

ij =

N∑
l = 1,l 6=i,j

wk−1
il ξ k

l

(4)
This algorithm serves to remove lower-order noise associated with
the interaction of the different attractors, where subtraction is
applied by computing pre-synaptic and post-synaptic forms of
the local field: hk

ji and hk
ij. It has been demonstrated (Storkey,

1997; Storkey and Valabregue, 1997; Folli et al., 2017), that while
the absolute capacity of the Hebbian algorithm (no retrieval
errors allowed) is given by Cabs =

N
2ln(N) , Storkey’s rule achieves

Cabs =
N√

2ln(N)
.

Both learning rules feature a one-shot, local, incremental,
unsupervised training method. However, a most recent work
(Jiménez-Través et al., 2022) shows that Storkey’s learning rule can
be improved as AM by adopting a few-shot approach and training
the network with more than one repetition of the training set to be
stored.

Other authors (Diederich and Opper, 1987) have analyzed
pattern embedding conditions during training to solve the problem
of weight assignment. A set of patterns constitutes fixed points in
the neural network if the following set of conditions is satisfied:

N∑
j = 1

wijξ
k
j ξ

k
i = hk

i ξ
k
i > 0

∀ i ∈ 1, ...,N
∀ k ∈ 1, ..., P

(5)

Thus, weights (wij) are obtained by solving this system of N·P
constraints. Note that the pattern-embedding conditions are
satisfied when each neuron potential (hk

i ) is aligned with the target
state value, ξ k

i , for each pattern. Alignment requires that both
have the same sign. Derivation of equation (5) is described in
Supplementary material.

In this training algorithm, a threshold value T can also be
applied substituting 0 in (5). It is employed to increase the basins of
attraction associated to the stored patterns, which are fixed points
of the network. If T = 1, for example, the solution to (5) is the
orthogonal projection matrix of the network’s state space over the
set of training patterns (Personnaz et al., 1986). This matrix has
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good properties to function as an associative memory, even with
correlated patterns (Personnaz et al., 1986).

Personnaz et al. (1985) developed a direct analytical method to
obtain the orthogonal projection matrix. However, this method was
computationally intense and posed serious challenges for hardware
implementation.

A wide variety of solutions to the weight assignment problem
also resort to optimization solvers (Tolmachev and Manton, 2020).
Algorithms using this approach define an objective function to
minimize, such as different distance metrics, and iteratively solve
the optimization problem with the gradient descent error. Again,
however, these solutions have similar disadvantages regarding
hardware implementation.

Two simple iterative methods for solving the pattern-
embedding problem were presented in Diederich and Opper
(1987). The first is called D&O’s Rule I (flow diagram of this rule is
shown in Supplementary material). Here, for each pattern k, neuron
responses are checked sequentially one by one to assess whether
the current weights require updating following a failure to satisfy
the alignment condition (5) with a threshold value T. A larger T-
value implies more training iterations, as long as higher weights are
required to accomplish condition (5). Rule I algorithm performs the
weights update applying Hebb’s rule scaled by (N-1) and focused
on T = 1. This process is repeated until the algorithm converges
to a solution that satisfies condition (5) for all NP constraints. This
solution is mathematically demonstrated in Diederich and Opper
(1987) for an asymmetric weight matrix since it does not couple
different rows, that is, weights are not bidirectional. This learning
rule can be summarized using the Heaviside function, θ, as follows:

4wij =
ξ k

j ξ
k
i

N − 1
θ
(

T − hk
i ξ

k
i

)
∀ i ∈ 1, ...,N
∀ k ∈ 1, ..., P

(6)

The second rule, D&O’s Rule II, implements a similar process,
but the weights are incremented as:

4wij =
ξ k

j ξ
k
i

N − 1

(
T − hk

i ξ
k
i

)
∀ i ∈ 1, ...,N
∀ k ∈ 1, ..., P

(7)

This is the distinct of what happens in Rule I, where constant
increments/decrements are applied. In Rule II, the weight
increment is also proportional to Hebb’s update rule scaled by
(N-1). When the product of the neuron potential, hk

i , and the
target value to store, ξ k

i , approaches T (coinciding in sign), the
weight increment is progressively reduced to zero. Another rule,
analogous to D&O’s Rule II, is the Widrow and Hoff (1960) and
Johannet et al. (1992), an iterative rule based on gradient descent
for obtaining the orthogonal projection matrix. The application
of non-uniform increments in the weights, however, makes the
hardware implementation of these rules more difficult.

Inspired by such iterative prescriptions, other works have
been published describing methods for satisfying (5). Krauth
and Mezard (1987) proposed the weakest-pattern first-update
strategy, considering that the network should be trained focusing
directly on the pattern with the worst alignment, which has the
minimum value of

∑N
i hk

i ξ
k
i . Meanwhile, Gardner (1988) reported

an identical implementation of the above-described Rule I, but this
time resorting to alignment normalization. This normalization was
achieved by using the root sum squared of the weights (that is to

say, each weight matrix row was scaled using its norm). Both rules
applied Hebbian weight updates.

In Tanaka et al. (2020), D&O’s Rule I was applied to the training
of networks with specific interconnection architectures by forcing
missing interconnections to have assigned weights equal to zero.
The authors also explored how to derive networks minimizing the
number of connections.

The problem is that, in general, these previous approaches
lead to asymmetric weight matrices, containing widely dispersed
floating-point (FP) values. Since the aim in our study was to
obtain synaptic weight values that are physically implemented in
the ONN, such solutions were of no interest. The proposed ONN-
compatible learning rule is described in the section “2.2. Proposed
learning rule: iterative random partial update symmetric hebbian
(IRPUSH).”

2.2 Proposed learning rule: Iterative
Random Partial Update Symmetric
Hebbian (IRPUSH)

Our proposed rule is based on D&O’s Rule I, described in
the section “2.1. Hopfield neural network and learning rules,”
and henceforth referred to as the Iterative Hebbian (IH) rule.
Figure 2 shows the flow chart of the novel learning algorithm:
Iterative Random Partial Update Symmetric Hebbian (IRPUSH). It
consists of two nested loops, which are repeated until the algorithm
converges to a solution that satisfies condition (5) (upd_flag = 0) or
until a limit number of iterations is reached. The external loop is for
patterns and the inner loop for neurons. This is exactly the same as
in the IH rule. The key difference is the weight updating procedure.

First, in order to force symmetry in D&O’s algorithm, it is
imposed that the new algorithm must have wij = wji. In the
IH rule, weight updates caused by neuron i not satisfying (5)
have no impact on the compliance or non-compliance status of
the remaining neurons because only wij ∀ j ∈ 1, ...,N / j 6= i are
modified. Due to the symmetry constraint, however, modification
of wij implies modification of wji, and so other neurons are also
affected. From a different point of view, IH does not modify weights
wji if neuron j satisfies (5) (for a given pattern), but this is not
the case when symmetry is forced. This could negatively impact
the performance of the learning rule since some neurons which
already satisfied (5) might not fulfill it after the weight update
forced by the symmetry constraint. In order to somehow counteract
this effect, we propose that only a randomly selected fraction of
the weights be updated at each step. This is motivated by Tanaka
et al. (2020) which it states that a reduced number of connections
while applying the iterative learning leads to a redistribution of the
lost information to the remnant connections. We believe this can
contribute to the resulting weight matrix being more suitable for
the quantization.

The partial factor (PF) determines the number of connections
that are randomly selected from the index update set. After the
update step, the chosen indexes (candidatePF) are removed from the
update set. All the indexes are restored back in the update set once
it gets a lower number than the candidate length, imposed by the
partial factor. The algorithm terminates when the NP inequalities
are satisfied or a maximum number of training iterations is reached.
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FIGURE 2

Proposed IRPUSH learning rule. It is based on Diederich and Opper (1987) but it enforces symmetry in the weight matrix and adds the partiality
mechanism in the update step. Similarly, the synaptic weights of the evaluated neuron are partially adjusted whenever the corresponding NP
embedding condition is not met. The number of modified weights (candidatePF) is determined by the partial factor (PF). The candidate weights are
selected randomly from a set of indexes (update set).

It is interesting to point out that the obtained matrix solution
is always the same, in case of null partiality during the update
step. With the partiality approach, a random fraction of the
weights associated to the current evaluated neuron is modified with
Hebbian learning. The randomness in this procedure allows to
explore further different solutions in the weights assignment that
totally complies with the embedding conditions of the training set
when the algorithm converges.

2.3 Pattern recognition using associative
memory

One of the most common AM tasks is pattern recognition.
A network trained as an AM can recall stored patterns even
when the network state is initialized with corrupted versions of

them. A pattern is successfully retrieved when the closest one
is retrieved, determined by the Hamming distance metric (HD).
The Hamming distance metric (HD) measures the number of
differing elements between two equal-length vectors, representing
the minimum number of substitutions needed to transform one
vector into the other. It can be defined as:

HD
(
ξµ, ξρ

)
=

N − (ξµ
· ξρ)

2
(8)

The algorithmic model used follows a synchronous update
scheme during a specific number of iterations. Depending on
the initial input state, the output state may be: (a) the desired
retrieved pattern, (b) an incorrect but stored pattern, (c) a spurious
state pattern (a stable but undesired state), or (d) a limit cycle
between two states.

The inferred steady state is considered correct when the HD
is zero with the expected pattern. This criterion could be relaxed
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FIGURE 3

Training set with 12 × 8 patterns representing A–J characters.

by allowing certain bit errors which could be tolerated without
problems in some applications. In this study, however, success cases
were considered exclusively using zero HD.

To evaluate the performance of the HNN trained with IRPUSH
in the pattern recognition task, a set of P = 10 correlated patterns
of N = 96 (12 × 8) pixels representing characters A through J
was chosen (see Figure 3). Table 1 shows the Hamming distances
between the patterns from the training set, indicating their degree
of correlation. Note that there are small HD values between some
pairs of patterns (B-D, E-F, and C-G, marked in red), which make
them harder to store in the AM.

The capacity and noise robustness of different trained 96-
neuron networks were evaluated using several of the learning
rule algorithms previously mentioned. Capacity was evaluated by
training networks with an increasing number of patterns and
moving in alphabetical order from character A to character J. Each
network therefore had to show stability upon presentation of their
stored patterns as the initial state and, likewise, upon presentation
of their corresponding inverted versions, which also became fixed
points or attractors in the network.

The noise robustness analysis used a test set of 8,000 patterns. It
was generated by randomly adding an increasing number of noisy
pixels (that is, pixels with flipped value) to the 10 training patterns
and their inverted versions. More specifically, 10 test patterns were
generated for each training pattern and each noise level, which
it is swept from “1 pixel to 40 flipped pixels.” There are 10 test
patterns for each of the 10 training patterns and their inverted
version, and these test patterns are generated at varying noise levels
from 1 pixel to 40 flipped pixels. The total number of test patterns
is 10 (test patterns per training pattern) × 20 (training patterns
plus their inverted version) × 40 (different noise levels) = 8,000
test patterns. Note that this was also a difficult test set because
of the high number of noisy pixels (40 out of 96) considered.
Examples of test patterns with different numbers of noisy pixels are
shown in Figure 4. Accuracy was measured in terms of how many
test patterns returned a steady, successful inference of the nearest
training pattern as indicated by the HD.

3 Results

3.1 Capacity evaluation

Different 96-neuron networks trained with our IRPUSH
algorithm and using different values for parameter T were

evaluated for storing the proposed set of 10 characters. The partial
factor, which corresponds to the number of weights that are
modified when a neuron is updated, was constrained to 100%:
i.e., all 95 weights associated with one neuron being changed.
Table 2 summarizes the capacity results obtained in this analysis
and assesses the use of weights with reduced precision.

The applied quantization method is based on: (1) normalization
with respect to the maximum absolute weight value to obtain∣∣wij

∣∣ ≤ 1. (2) Scaling by the largest absolute value which can be
represented with the target number of bits (nbit) and (3) rounding.
Note that the MSB bit is dedicated to the sign, while the remaining
number of bits indicate the maximum integer value that can be
represented:

(
2nbit−1

− 1
)

.

wnbit
ij = round


(

2nbit−1
− 1

)
wij

max
(
abs (W)

)
 (9)

For purposes of comparison with a competitive candidate, the
IH algorithm was also evaluated under similar conditions. Since
update increments are not scaled by N, large T-values were chosen.
Thus, case T = 1 in the original work corresponds to T = N in
our implementation.

As can be seen in Table 2, every network retained the 10
patterns using FP weights. However, IRPUSH outperformed the IH
capacity with 3-bit precision, being able to store the 10 patterns for
largest values of T. IRPUSH also found solutions at lowest values of
T with 5-bit and 4-bit precision.

A larger example with N = 1024 and P = 26 is evaluated in the
Supplementary material.

3.2 Noise robustness results

As described in section “2.3. Pattern recognition using
associative memory,” the benchmark for the noise robustness
experiment consisted of 8,000 test patterns that were generated
by applying increasing noise levels from 1 to 40 flipped
pixels from the original training set. Each noise level had 200
associated test patterns.

Noise robustness was evaluated for those weight matrixes
that store the 10 training patterns (shaded cells in Table 2). As
previously described, the retrieval accuracy for this experiment was
measured as the percentage of test patterns which HNN evaluation
was correctly inferred. That is, the percentage of cases where the
closest training pattern, indicated by the minimum HD, is retrieved
Figure 5 shows the retrieval accuracy of networks trained with
IRPUSH vs. noise level. It is evident that increasing the value of T
produced larger basins of attraction, pushing forward the number
of noisy pixels that the network could tolerate before the number
of erroneous inferences began to rise. However, the benefits of
increasing T were quickly reduced for T > 50, as intuitively
observed in Figure 5.

The accuracy results obtained with IRPUSH and IH and
different T-values are reported in Table 3, together with their
performance with limited precision. The advantages of IRPUSH
were greatly reduced as T increased, displaying very similar
performance as IH. IRPUSH accuracy loss at 4-bit precision
remained under 3% with respect to FP, while accuracy in 3-bit cases
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TABLE 1 Hamming distances –12 × 8 characters.

A B C D E F G H I J

A 44 36 36 56 57 24 46 68 56

B 44 34 10 20 27 32 24 58 50

C 36 34 28 42 45 16 54 48 46

D 36 10 28 26 33 30 34 60 56

E 56 20 42 26 13 46 24 50 48

F 57 27 45 33 13 53 27 49 43

G 24 32 16 30 46 53 48 56 50

H 46 24 54 34 24 27 48 66 52

I 68 58 48 60 50 49 56 66 28

J 56 50 46 56 48 43 50 52 28

FIGURE 4

Noisy A–J patterns from the noise test set with (A) 10, (B) 20, (C) 30, and (D) 40 corrupted pixels. Beyond a noise level of 30 pixels, patterns are
totally indistinguishable to the human eye.

TABLE 2 Capacity with different T-values and weight precision.

IRPUSH, capacity (#) IH, capacity (#)
T

FP 5-bit 4-bit 3-bit FP 5-bit 4-bit 3-bit

0 10 10 9 6 10 8 7 0

10 10 10 10 5 10 10 9 7

50 10 10 10 8 10 10 10 8

110 10 10 10 9 10 10 10 9

150 10 10 10 10 10 10 10 9

200 10 10 10 10 10 10 10 9

400 10 10 10 10 10 10 10 8

was degraded by around 20%. On the other hand, the 4-bit IH
presented accuracy degradation of up to 6% with respect to FP.

Keeping in mind that IRPUSH was used with a partial
factor equal to 100%, the only difference with respect to IH was
that IRPUSH constrained the weight matrix to be symmetric.
The results show that imposing symmetry did not penalize the
accuracy obtained obtained, as indicated in section “2.2. Proposed
learning rule: iterative random partial update symmetric hebbian

(IRPUSH),” where the enforcement of symmetry was observed
to potentially hinder the performance of IRPUSH. In fact, our
approach obtained better results for lower T-values. The better
accuracy results described above were probably a side effect of
the larger number of update operations resulting from having
imposed symmetry. Unlike the original asymmetric update in
IH, wij (and wji) could both be modified when processing
neuron i or neuron j. Of even greater interest, however, was
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FIGURE 5

Retrieval accuracy vs. noise level for networks trained with the IRPUSH algorithm and different values of T.

TABLE 3 Retrieval accuracy with different T values and weight precision.

IRPUSH, accuracy (%) IH, accuracy (%)
T

FP 5-bit 4-bit 3-bit FP 5-bit 4-bit 3-bit

0 63.4 57.7 – – 37.1 – – –

10 76.2 70.5 77.1 – 57.8 53.4 – –

50 87.8 86.9 85.6 – 83.6 83.0 80.5 –

110 89.7 89.6 87.9 – 89.5 87.7 86.7 –

150 90.6 90.2 88.3 67.0 90.1 89.0 84.6 –

200 91.2 90.4 89.2 71.3 91.0 90.9 86.3 –

400 91.5 90.3 89.5 72.0 91.6 91.1 89.3 –

FIGURE 6

Partial factor evaluation of IRPUSH (T = 95).

the success of our approach in storing the ten patterns with
3-bit weights, as pointed out in the capacity evaluation, for
T ≥ 150.

The next step was to evaluate IRPUSH for partial factors below
100% so that the proposed random partial update mechanism was
actually applied.

3.3 Impact of random partial update
mechanism

The networks were also evaluated by applying the philosophy
of updating a reduced number of weights, each time an update
step took place. They had a common T-value of 95 (corresponding
to set Rule I’s threshold to unity). The partial factor was
reduced from 100% to 1% in steps of 25%, plus the selected
factors of 33% and 10%.

All the networks stored the training set perfectly. Moreover, the
lower the partial factor, the larger the number of training iterations
that was required to satisfy the embedding of the patterns.

It is interesting to note that the algorithm returns a different
weight matrix solution each time it is run, because the connections
to be updated are selected randomly. A battery of 100 experiments
for each case was therefore carried out. Figure 6 reports their
respective maximum, average, and standard deviation values. Note
that the case in which all neurons were updated (100%), an
identical solution was therefore returned every time. It was found
that reducing the number of updated connections resulted in an
increase in accuracy with regard to IRPUSH with a partial factor of
100%.
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TABLE 4 Accuracy of IRPUSH vs. T with partial update.

Accuracy, 33% factor (%) Accuracy, 25% factor (%)
T

FP 5-bit 4-bit 3-bit FP 5-bit 4-bit 3-bit

0 39.0 40.4 35.0 – 30.5 30.5 – –

10 80.7 82.0 80.9 – 82.4 81.0 78.2 –

50 91.7 91.4 90.8 84.4 90.8 90.9 89.5 84.0

110 92.6 92.4 91.9 90.2 93.1 92.7 91.9 87.5

150 92.7 93.0 92.5 90.9 92.8 92.4 93.5 75.0

200 93.2 93.0 92.2 83.3 92.9 92.7 92.2 84.6

400 93.4 93.2 93.3 – 92.3 92.5 93.3 82.6

FIGURE 7

(A) Retrieval accuracy vs. noise level using IRPUSH with partial
factors of 100% and 33% and T = 150. (B) Maximum noise level
tolerated keeping retrieval accuracy above 95% using IH and
IRPUSH with partial factors of 100% and 33%. Considered T-value
was the one providing the best result for each case.

The impact of T was also explored for two particular cases:
partial factors of 33% and 25%. Table 4 shows the accuracy results
for different T-values and weight precisions. It is worth noting
that IRPUSH with the random partial update mechanism was quite
satisfying: not only in the number of cases storing the 10 patterns,
but also in improving accuracy when comparing with Table 3, even
with 3-bit precision. With the 33% (25%) partial factor at T = 150
(T = 110), a best record value of 90.9% (87.5%) was achieved for this
precision. This best value for IRPUSH without the partial update
mechanism and 3-bit precision is only 72%. Solutions using 4-bit

weights with a partial update factor of 33% experienced accuracy
degradation of less than 1% with respect to FP.

Comparing the results obtained for the most reduced numbers
of bits with partial update (Table 4) and without (Table 3), it can be
observed that much better results are achieved with partial update.
For example, accuracy up to 90.9% with 33% of partial factor and
three bits is obtained while the best results without partial update
and that precision is only 72%. That is, the results support our
hypothesis concerning the benefits of the partial update procedure.

To further compare the inference robustness of the IRPUSH
algorithm against noise, Figure 7A depicts the retrieval
performance of IRPUSH with partial factors of 100% and
33% against different noise levels for the same T-value of 150.
Similar results were obtained with FP and a partial factor of
100% and with 3-bit precision and a partial factor of 33%. Both
outperform 3-bit precision with a partial factor of 100%. This
clearly illustrates the advantage of the random partial update
mechanism using limited precision and demonstrates its ability
to avoid serious degradation of the retrieval capabilities under
low weight precision, when compared with the FP precision case.
Figure 7B compares the maximum number of noisy pixels for
which the evaluated networks achieved an accuracy greater than
95%. It shows the best result obtained among different T-values in
each case. The partial update strategy for 3-bit weights had a major
impact, raising this figure of merit from 7 to 27.

3.4 Comparison of learning rules

Other learning rules that managed to store the complete set
of training patterns have been studied in the noise robustness
experiment. One-shot Hebbian and Storkey learning rules, for
example, were only able to store up to 3 and 4 patterns, respectively.
Both were therefore discarded, along with other one-shot rules.
In contrast, the few-shot training approach with the Storkey
rule successfully embedded the 10 training patterns as attractors,
reinforcing the assumption that repetitive learning enhances
memory capabilities. The pseudoinverse rule also produced perfect
results in terms of capacity. In the same manner, asymmetric
solutions based on the Krauth and Mezard (1987) algorithm
with Gardner normalization (Gardner, 1988) (GKM) and on an
optimization solver with Descent Exponential Barrier (DEB) as the
target objective function were also evaluated. All of them could
store the 10-pattern set with FP, 5-bit, and 4-bit precision. The only
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FIGURE 8

Retrieval accuracy comparison with other learning rules.

rule capable of storing 10 patterns with 3-bit precision, however,
was the one proposed in this work.

Figure 8 summarizes the accuracy results obtained with
different weight precisions. With FP weights, the network
using Storkey weights with two repetitions of the training set
achieved almost 80% accuracy, similar to that obtained with
the pseudoinverse solution. Both of these rules, however, were
outperformed by the Storkey solution with three repetitions,
which achieved an accuracy of up to 85%. As expected, accuracy
decreased when these rules were applied with 5-bit and 4-bit weight
precisions, although it is worth noting that the loss of accuracy was
less than 6% when 4-bit precision was used instead of FP precision
with the three mentioned solutions. For FP and 5-bit precision,
the rule based on the optimization solver, DEB, proved to be more
accurate than the other rules from literature included in the study,
while for 4-bit precision it was narrowly surpassed only by the
iterative solution based on GKM. Both of these solutions showed
a reduced loss of accuracy in comparison with their respective
FP results: the 4-bit DEB experienced a degradation of 4.5% and
the 4-bit GKM one of 0.8%. Clearly, the best results (green color
in Figure 8) for each precision were obtained with the solution
proposed in this paper: IRPUSH.

4 Discussion

Despite the affinity of single-layer ONNs with HNNs, many
learning rules reported in the extensive HNN learning literature
for associative memory operation are not compatible with the
constraints imposed by analog ONN implementations. This study
therefore proposed and evaluated a novel algorithm, IRPUSH,
suitable for training such analog ONNs. The new algorithm was

developed on the basis of an iterative approach to solving the
set of inequalities that define the pattern embedding condition,
and works by imposing the required symmetry condition on the
weight matrix. The distribution of information along synapses
was improved by adopting a random partial update strategy. The
proposed algorithm was evaluated together with well-known HNN
learning rules on a pattern recognition task involving a 12 × 8 “A-
J” character set. Storing a set of this type is much harder than using
non-correlated random patterns. As previously mentioned, the
implementation of analog ONN synapses is electrically constrained,
and the evaluated solutions were therefore assessed under reduced
precision. Of all the rules analyzed, IRPUSH was the only one
capable of providing a solution with 3-bit weight precision.
Furthermore, this solution has a remarkably low accuracy loss
of 2% to 5% with respect to FP. The best accuracy obtained
with 3-bit precision was 91% for IRPUSH with a 33% update
factor. This retrieval accuracy is 8% higher than that of a 4-bit
solution produced by the original iterative approach. IRPUSH
also has attractive features for online learning, such as fixed
weight increments.
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