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A B S T R A C T

Finite-element-models are usually employed to simulate the behaviour of historical constructions. However,
despite the high complexity of these numerical models, there are always discrepancies between the actual
behaviour of the structure and the numerical predictions obtained. In order to improve their performance,
an updating process can be implemented. According to this process, the value of the most relevant physical
parameters of the model is adjusted to better mimic the actual behaviour of the structure. For this purpose, the
actual structural behaviour is usually characterized via its experimental modal properties (natural frequencies
and associated vibration modes). For practical engineering applications, the maximum likelihood method is
normally considered to cope with this problem, due to its easy implementation together with an understandable
interpretation of the updating results. However, the complexity of these numerical models makes unfeasible
the practical implementation of the process due to the simulation time required for its computation. In order to
shed some light to this problem, a new combinative computational algorithm is proposed herein. Additionally,
the performance of the proposal has been assessed successfully via two applications: (i) a validation example,
the model updating of a laboratory footbridge, in which the practical implementation of the algorithm has been
described in detail; and (ii) a case-study, the model updating of a complex historical construction, in which
the main advantage of the proposal has been highlighted, a clear reduction of the simulation time required to
solve the updating problem without compromising the accuracy of the solution obtained.
1. Introduction

Finite element (FE) method is usually employed to simulate numer-
ically the structural behaviour of historical constructions [1]. However,
despite the great complexity of these models [2], there are always
differences between the predictions provided by these numerical tools
and the actual behaviour of the structure [3]. These differences are
normally originated by some of the following sources of errors and un-
certainty [4]: (i) the approximate solution of differential equations that
governs the dynamic behaviour of a structure (numerical uncertainty);
(ii) the imprecise value of the model input parameters (parameter
uncertainty); (iii) the incomplete definitions of underlying physics due
to assumptions and idealizations (bias error); and (iv) the variability in
measurements (experimental uncertainty).

In order to reduce the effect of these sources of uncertainty, the
FE model updating method is normally considered [5]. According to
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this method, some physical parameters of the FE model are modified
in order to better mimic the real behaviour of the structure. In the case
of complex historical construction, the updated FE model is usually
employed both to better assess the static or dynamic response of the
structure and to establish a damage detection application based on a
structural health monitoring strategy.

Different criteria can be considered for the classification of the FE
model updating methods. Regarding the time available for its computa-
tion, two types of methods can be considered: (i) off-line methods; and
(ii) on-line methods. Thus, under the off-line approach, the FE model
of the structure is directly updated via the modification of the value
of its most relevant physical parameters. A high computational time
is normally required to solve the updating problem according to his
approach. This method is usually used to improve the accuracy of FE
model when they are employed to assess the structural behaviour of
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civil engineering structures and historical constructions [2]. In addi-
tion, under the on-line approach, the FE model is approximated via a
subrogate model and subsequently this model is calibrated according
to some updating method. The use of this subrogate model allows
reducing the simulation time required to solve the updating problem.
This method is commonly used to damage detection under structural
health monitoring strategies [6]. In this manner, the main difference
between this two type of updating methods is related to the considered
numerical model. Therefore, the same process is commonly employed
to solve the updating problem for this two methods. This study is
focused on the off-line updating approach, but its results can be easily
extrapolated to the on-line approach.

Additionally, FE model updating problems can be classified, regard-
ing the parameter selection, in two main groups [7]: (i) direct methods
(non-iterative) and (ii) indirect methods (iterative).

On the one hand, according to the direct methods, the updating
parameters are directly the components of the matrices that constitute
the system equations considered to numerically mimic the behaviour
of the structures. The main advantage of these methods is its direct
and easy implementation but they present a clear drawback, the non-
physical meaning of the updated value of the parameters. On the other
hand, according to the indirect methods, the updating parameters are
some of the most relevant physical parameters of the structure (as for
instance, Young’s modulus of the materials, stiffness of the support . . . )
that are iteratively modified in order to adjust the predictions of the
numerical model to the actual response of the structure. In contrast to
the previous methods, the adjusting process is more complicated, being
necessary the use of complex computational tools, but they presents as
advantage an easy physical interpretation of the updated value of the
considered parameters. This advantage allows that the updating process
can be considered a system identification method and it has originated
that iterative methods have been widely used for the FE model updating
of building and civil engineering structures.

Among the indirect methods, a new classification can be established
in terms of the quantification of the level of uncertainty. Two types of
methods can be considered [7]: (i) deterministic and (ii) stochastics
methods. Although, stochastics methods, as probabilistic [8] and fuzzy
approaches, allow the determination of the level of uncertainty of the
estimation of the updated values of the physical parameters [9], the
high simulation time required to solve the updating problem, according
to these approaches, have reduced, to date, their extensive practical im-
plementation. For robust FE models of complex historical construction,
deterministic methods are normally used.

Among the deterministic methods, the maximum likelihood method
has been widely employed due to its easy implementation. According
to this method, the updating problem can be formulated as either a
sensitivity-based weighted single-objective optimization problem or the
combination of a bi-objective optimization sub-problem and a decision-
making sub-problem. Some recent results, [10] about the performance
of both methods when they are implemented for the FE model updating
of civil engineering structures; have concluded that the second alter-
native allows obtaining a better adjustment since this second method
explores in detail all the domain space of the possible value of the
considered physical parameters.

Therefore, the updating problem, according to this second method,
is formulated considering a bi-objective function whose components
are defined in term of the relative differences (residuals) between the
experimental (actual) and numerical behaviour of the structure [11]. In
order to characterize the actual behaviour of the structure, its experi-
mental modal properties, identified considering either an experimental
(EMA) [12] or operational modal analysis (OMA), are usually consid-
ered [13]. In this manner, these residuals are usually defined in terms of
the relative differences between the experimental and numerical modal
properties (natural frequencies and associated vibration modes) of the
2

structure.
Additionally, as the relation between the updating parameters and
this bi-objective function is clearly nonlinear and, as a consequence,
multiple local minimums can be reached; global optimization algo-
rithms must be used to solve this problem [14]. As result of this
optimization process, a set of possible solutions is obtained, the so-
called Pareto front [12]. Finally, a subsequent decision-making problem
must be solved, the selection of the best balanced solution (the ‘‘knee’’
point) among the different elements of the Pareto front. For this pur-
pose, different methods have been considered [15] without existing to
date a unified criterion to cope with this problem.

In spite of all the advantages of the abovementioned method, when
it is implemented to solve the FE model updating of complex historical
construction structures, it presents a clear drawback, the high simula-
tion time required to solve the problem. In order to improve the perfor-
mance of this method, several numerical techniques can be adopted: (i)
to increase the search speed of the optimization algorithm combining
local and global computational optimization algorithms [16]; (ii) to
reduce the complexity of the FE model approximating its behaviour via
surrogate models [17]; (iii) to find the optimum selection of the phys-
ical parameters of the FE model; (iv) to use alternative mathematical
tools to solve the updating problem more efficiently [7]; and (v) to use
some clustering technique for the parallel computation of the updating
problem [18].

This research study focuses in the first alternative, the proposal of
a new combinative computational algorithm to reduce the simulation
time required to perform the FE model updating of historical con-
struction without compromising the accuracy of the solution obtained.
For this purpose, this proposal takes advantage of the virtues of two
previous algorithms [19,20], proposed by some of the authors of the
manuscript, and it combines them to improve the efficiency of the
updating process.

For this purpose, the proposed algorithm makes use of a local–
global optimization algorithm, the UKF-MHS algorithm [19], both to
increase the convergence speed of the searching algorithm and to re-
duce the uncertainty associated with the variability of the experimental
measurements, together with a collaborative algorithm [20], which
allows a robust estimation of the ‘‘knee’’ point via the linking of several
statistical learning techniques. The combination between these two
algorithms improves clearly the performance of the FE model updating
of complex historical constructions. Thus, it is necessary to highlight
that the main contribution of this paper is not only the combination of
two previously reported algorithms to obtain an efficient computational
tool that assists architects and structural engineers in the FE model
updating of historical constructions but also its practical implementa-
tion in two examples. These application examples try to highlight the
virtues of the proposal. First, this new algorithm has been implemented
for the off-line FE model updating of a laboratory footbridge. In this
manner, this first application example has been used as tutorial to
explain in detail the different steps of this computational algorithm.
Subsequently, the algorithm has been implemented for the off-line FE
model updating of a complex historical constructive. In this second
application example, the higher performance of the proposal in com-
parison with the abovementioned conventional bi-objective approach
has been remarked.

In addition to this introductory section, the remaining paper is
organized as follows. Section 2 describes both the basics of the FE
model updating, according to the maximum likelihood method, and
the formulation of the proposed new combinative algorithm. Section 3
focuses on the detailed description of the proposal via a validation
example, the practical implementation of the algorithm for the FE
model updating of a laboratory footbridge. Section 4 presents the
performance assessment of this proposal when it is implemented for
the FE model updating of a historical construction. For this purpose, the
model updating of the church of the Royal Monastery of San Jerónimo
(Granada, Spain) is developed in detail. Finally, Section 5 summarizes

the main conclusions that can be drawn from the work.
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2. Solving the maximum likelihood FE model updating problem
via a new combinative computational algorithm

2.1. Basics of FE model updating according to the maximum likelihood
method

The goal of FE model updating is to acquire a precise numerical FE
model that corresponds to the experimental dynamic properties of the
analysed civil or building engineering structure. This objective can be
accomplished by approximating the most significant physical parame-
ters of the model that reduce the differences between the numerical and
experimental data (residuals). Consequently, the FE model updating
issue can be interpreted as a parameter identification problem.

In this regard, the maximum likelihood method is the most com-
monly utilized estimator for civil or building engineering applications.
Assuming that the residuals follow a normal distribution, the maximum
likelihood method is analogous to the ordinary least squares method.
Hence, the model updating can be converted into an optimization prob-
lem, whose primary goal is to reduce the total of the relative deviations
between the experimental and numerical modal properties. Thus, the
updating problem can be formulated alternatively as two different opti-
mization problems [7]: (i) a sensitivity-based weighted single-objective
optimization problem; or (ii) a combination of a bi-objective opti-
mization sub-problem together with a decision-making sub-problem.
Due to the higher efficiency of the second formulation [10] to cope
with this problem, the multi-objective approach has been considered
herein. The relevant physical parameters of the model are taken as
the design variables for this purpose. Therefore, the formulation of the
FE model updating issue considering the bi-objective approach can be
represented as:

min [𝑓1(𝜽) 𝑓2(𝜽)] = min [ 1
2

𝑚𝑓
∑

𝑗=1
𝑟𝑓𝑗 (𝜽)

2 1
2

𝑚𝑚
∑

𝑗=1
𝑟𝑚𝑗 (𝜽)

2]

𝜽𝑙 ≤ 𝜽 ≤ 𝜽𝑢

(1)

where 𝑟𝑓𝑗 (𝜽) and rmj 𝑟𝑚𝑗 (𝜽) refer to the discrepancies between the
𝑗th natural frequency and mode shapes of the structure and their the-
oretical counterparts; 𝑚𝑓 represents the quantity of considered natural
frequencies; 𝑚𝑚 represents the quantity of considered mode shape; 𝜽 is
a vector comprising the updating parameters of the FE model; and 𝜽𝑙
and 𝜽𝑢 denote the lower and upper limits of the exploration range for
these physical parameters, respectively.

The residuals may be defined as:

𝑟𝑓𝑗 (𝜽) =
𝑓𝑛𝑢𝑚,𝑗 (𝜽) − 𝑓𝑒𝑥𝑝,𝑗

𝑓𝑒𝑥𝑝,𝑗
𝑗 = 1, 2,… , 𝑚𝑓 (2)

𝑟𝑚𝑗 (𝜽) =

√

√

√

√

√

⎛

⎜
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⎝

(

1 −
√

𝑀𝐴𝐶,𝑗 (𝜽)
)2

𝑀𝐴𝐶,𝑗 (𝜽)

⎞

⎟

⎟

⎠

𝑗 = 1, 2,… , 𝑚𝑚 (3)

onsidering the numerical natural frequency 𝑗 as 𝑓𝑛𝑢𝑚,𝑗 (𝜽), the ex-
erimental natural frequency 𝑗 as 𝑓𝑒𝑥𝑝,𝑗 (𝜽), and the Modal Assurance

Criterion value 𝑀𝐴𝐶,𝑗 (𝜽) [21] as a measure used to assess the similarity
between the mode shapes of the numerical vibration mode 𝑗, 𝜑𝑛𝑢𝑚,𝑗 (𝜽)
and the experimental vibration mode 𝑗, 𝜑𝑒𝑥𝑝,𝑗 (𝜽). As the accuracy
of the 𝑀𝐴𝐶,𝑗 (𝜽) ratio depends on the geometrical definition of the
mode shapes, a sufficient refined gridline is needed to characterize the
value of this magnitude [10]. For this purpose, a sensitivity analysis
can be performed. In this study, the variation of the 𝑀𝐴𝐶,𝑗 (𝜽) ratio
in term of the number of coordinates that defined the gridline (of
the experimental identification test) is analysed in detail. A balanced
value between the complexity of the gridline and the accuracy of the
𝑀𝐴𝐶,𝑗 (𝜽) ratio is taken into account.

The physical parameters of the updating process must be selected
carefully since they condition the accuracy and reliability of the so-
lution. Based on a FE model, a different updating problem can be
3

formulated depending on the relation between the residuals and the
considered updating parameters. For the parameter selection purpose,
different criteria can be considered [7]. Among the different criteria,
a sensitivity analysis is commonly employed. According to this study,
the variation of the natural frequencies and mode shapes in term of
the considered physical parameters is computed. As this variation is
proportional to the modal strain energy this magnitude is considered to
perform the sensitivity analysis. The physical parameters, which reflect
a higher variation, are selected as updating parameters [10].

The resolution of this bi-objective optimization problem generates a
set of parameter vectors, each representing a potential solution. These
parameters can be visually represented by forming a curve known
as the Pareto front. Each point along the Pareto front represents an
optimal updated model where improving one objective would require
sacrificing another. Consequently, selecting the best solution from the
Pareto front requires a decision-making process. Several methods have
been proposed in literature to tackle this challenge by balancing the
different terms of the Pareto front. Generally, these methods identify
the best solution on the Pareto front as the point where a slight
improvement in one objective would significantly deteriorate the other
objective. This particular point on the Pareto front is often referred to as
the ‘‘knee’’ point, and each method suggests a slightly different criterion
for its determination.

Following the above approach and under the maximum likelihood
method, the FE model updating is usually addressed by implementing
computational intelligence algorithms [22]. For this purpose, a FE
analysis package is commonly linked to an optimization package. As
illustration of this connectivity, Fig. 1 shows the flowchart of the
updating process giving a special emphasis to the linking between
the two abovementioned packages together with the flow of data.
During the updating process, a pairing problem can be solved. The
numerical and experimental mode shapes must be matched. For this
purpose, the 𝑀𝐴𝐶𝑗 (𝜽) ratio is commonly considered. For this purpose,
the 𝑀𝐴𝐶𝑗 (𝜽) ratio among all the numerical and experimental mode
shape is computed and organized in a matrix. The rows of this matrix
are associated with the numerical mode shapes and the columns with
the experimental mode shapes. The component of the matrix with
a higher value allows determining the linking among numerical and
experimental vibration modes.

Although computational algorithms have been used extensively to
cope with this updating problem, they present two clear limitations.
First, they elapse a high simulation time when the complexity of the
FE model increases. As it is the case of robust FE models. Second, they
are not able to deal with uncertainties associated with the experimental
modal properties of the system.

To tackle these two issues, a hybrid local–global algorithm com-
bined with a predictive model is used in this paper. In particular, the
hybrid Unscented Kalman Filter (UKF)-Harmony Search (HS) algorithm
is used to obtain the Pareto front of the bi-optimization problem [19,
23]. This algorithm allows considering the uncertainties of both the
measurements and the estimation process and takes advantage of the
acceleration scheme provided by the UKF and the global character of
the HS. Once the Pareto front is obtained, a decision-making problem
must be solved to select the best solution. To cope with this, the Pareto
front is processed through a PC analysis and an artificial neural net-
work (ANN) is designed to map the relationship between the physical
parameters of the model and the bi-objective function. Finally, the best
solution is determined from a local minimization problem. In this sense,
the ANN defines a continuous predictive model that allows reducing
the number of iterations, thus, the simulation time of the optimization
algorithm [20].

In this section, the multi-objective HS, the UKF algorithm and the

post-process of the Pareto front are detailed.
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Fig. 1. Flowchart representing the linking between the FE analysis package and the mathematical software for the FE model updating implementation.
2.2. MHS algorithm

The global metaheuristic HS algorithm [24] is inspired in the mental
process carried out by musicians when they improvise searching for
harmony according to aesthetic requirements. The goal of this algo-
rithm is to find the global minimum of an objective function via the
iterative modification of a set of physical parameters of the model.
When compared to Genetic Algorithm, the complexity of the mathe-
matical operations implemented in the HS algorithm to monitor the
evolution of the population are designed to improve its performance.

The HS algorithm has been implemented successfully for several
practical engineering applications [25]. This algorithm has shown a
great effectiveness when compared with other conventional meta-
heuristic algorithms to solve the FE model updating problem of com-
plex civil engineering structures [10].

The HS algorithm consists of the following steps [10]. First, the
harmony matrix, H, that stores the initial candidate solutions is created.
After that, for each candidate solution the objective function is assessed.
The new harmonies are generated using three mechanisms (memory
consideration, pitch adjustment and randomization) and the objective
function is evaluated again. Finally, the harmony matrix, H, is updated
with the best harmonies and the steps are repeated until a convergence
criterion is reached.

The MHS is an extension of the above described algorithm which
allows minimizing multi-objective functions. When a new harmony is
generated, each element of a new candidate vector can be defined in
terms of either a previous value stored in the harmony matrix, H, or
adopting a new random value. This fact is controlled by the harmony
memory consideration rate, HMCR, Thus, for each parameter,a random
number, between 0 and 1, is generated and if this number is lower than
or equal to HMCR, the parameter is chosen randomly from the matrix
H. Otherwise, a random value among the possible values of the search
domain is assigned to the parameter. Additionally, when some elements
adopts the value of a previous one, it can be mutated according to the
pitch adjustment rate, PAR. This parameter works in the same way
as the previous one. In case the parameter must be adjusted, this is
based on an additional parameter, the so-called bandwidth, b𝑤, which
is added or subtracted to mutate the considered candidate vector. The
classification of the non-dominated solutions is performed using both
the non-dominated sorting method and the crowding distance [26].
Finally, in order to restore the initial size of the harmony matrix, H,
the worst solutions, according to a crowding distance criterion, are
removed. When the convergence criterion is met, the so-called Pareto
front is obtained in terms of the non-dominated solutions.
4

2.3. Unscented Kalman filter

The Unscented Kalman Filter (UKF) is framed within the family of
sigma-points Kalman filters [27]. This local algorithm is a derivative
free estimator, i.e., no Jacobians or Hessians need to be calculated,
broadly employed for nonlinear dynamic systems. The formulation for
a parameter estimation problem is represented as [28]:

𝜽𝑘 = 𝜽𝑘−1 + 𝐰𝑘−1 (4)

𝐳𝑘 = ℎ(𝜽𝑘) + 𝐯𝑘 (5)

being 𝜽 the parameter vector; ℎ the nonlinear modelling function,
𝐳 the outputs of the dynamic system; 𝐰 the statistical noise of the
identification process; and 𝐯 the statistical noise of observation process.
Both type of noise are assumed to be uncorrelated and white Gaussian
noise with zero-mean and covariance matrices 𝑸 and 𝑹 respectively.
The matrix 𝑹 may be computed by means of two terms [29]: (i) the
measurement noise; and (ii) the modelling noise. If the same FE model
is considered for each step, the first component of the matrix 𝑹 can be
neglected [16].

This algorithm performs the nonlinear estimation through the def-
inition of 2𝑛 + 1 (being 𝑛 the number of parameters) deterministic
sampling points (sigma points). Their propagation through the non-
linear function, ℎ, leads to the true posterior mean and covariance of
the estimated parameters up to the second order of the Taylor series
expansion of the nonlinear function (third order of the Taylor series
expansion for a Gaussian inputs). Hence, it is an extension of the
unscented transformation [30]. The main computational effort of this
algorithm is the computation of the new sigma points which is based
on the square-root decomposition of the posterior covariance matrix,
𝐏. Thus, this matrix must be positive semidefinite at each step. To
employ the Cholesky factorization (𝐀 =

√

𝐏 = 𝑐ℎ𝑜𝑙(𝐏) being 𝐏 = 𝐀𝐀𝑇 )
may provide an efficient decomposition but the matrix 𝐏 needs to
be updated at each iteration and numerical errors can give a non-
positive semidefinite matrix. To overcome this issue, the square-root
UKF [31] propagates directly the matrix 𝐴 avoiding the factorization
and ensuring that the matrix is positive semi-definite. These sigma
points and their associated weights are calculated as:

(𝝌𝑘−1)0 = 𝜽̂𝑘−1|𝑘−1 (6)

(𝝌 ) = 𝜽̂ +
√

(𝑛 + 𝜆)(𝐀𝜃 ) 𝑖 = 1, 2,… , 𝑛 (7)
𝑘−1 𝑖 𝑘−1|𝑘−1 𝑘−1|𝑘−1 𝑖
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(𝝌𝑘−1)𝑖+𝑛 = 𝜽̂𝑘−1|𝑘−1 −
√

(𝑛 + 𝜆)(𝐀𝜃
𝑘−1|𝑘−1)𝑖 𝑖 = 1, 2,… , 𝑛 (8)

0 =
𝜆

𝑛 + 𝜆
(9)

𝑊𝑖 = 𝑊𝑖+𝑛 =
1

2(𝑛𝑑 + 𝜆)
𝑖 = 1, 2,… , 𝑛 (10)

where 𝜃𝑘−1|𝑘−1 are the posterior parameters estimated at the previous
tep and 𝜆 is a scaling parameter.

As an algorithm belonging to the Kalman Filter family, the square-
oot UKF has also two steps: prediction and correction. The former
onsiders the prior model to assess the sigma points, predict the es-
imation error covariance, 𝐀𝜃 , the model outputs error covariance, 𝐒𝑧,
nd the cross covariance between the estimation error and the model
utputs error covariances, 𝐏𝜃𝑧.

The estimation error covariance is given by 𝐀𝜃
𝑘 = 𝛾−1∕2𝐀𝜃

𝑘−1, where
𝛾 is a scalar factor slightly less than the unit [31]. Since 𝑊𝑖 > 0 for all
≥ 1, the model output error covariance, 𝐒z, can be expressed as [32]:

𝐒z
𝑘 =

2𝑛𝑑
∑

0
𝑊𝑖[[(𝑧𝑖𝑘|𝑘−1 − ẑ𝑘|𝑘−1)] ⋅ (𝑧𝑖𝑘|𝑘−1 − ẑ𝑘|𝑘−1)𝑇 ] + 𝐑

= [
√

𝑊𝑖(𝑧𝑖𝑘|𝑘−1 − ẑ𝑘|𝑘−1),
√

𝐑]

⋅[
√

𝑊𝑖(𝑧𝑖𝑘|𝑘−1 − ẑ𝑘|𝑘−1)𝑇 ,
√

𝐑
𝑇
]𝑇

+𝑊0[(𝑧0𝑘|𝑘−1 − ẑ𝑘|𝑘−1) ⋅ (𝑧0𝑘|𝑘−1 − ẑ𝑘|𝑘−1)𝑇 ] 𝑓𝑜𝑟 𝑖 = 1 ∶ 𝑛𝑑(11)

The first term can be expressed by means of a QR factorization. The
last term, can be taken into account performing a rank 1 update to
Cholesky factorization. The cross covariance is then calculated as:

𝐏𝜃z
𝑘|𝑘−1 =

2𝑛𝑑
∑

0

(

𝑊𝑖[(𝝌𝑘−1)𝑖 − 𝜽̂𝑘|𝑘−1] ⋅ [(𝑧𝑘|𝑘−1)𝑖 − ẑ𝑘|𝑘−1]𝑇
)

(12)

Finally, the correction step uses both the measurements, z𝑜𝑏𝑠, and
the model outputs to determine the posterior mean and covariance of
the parameter estimation by considering the Kalman’’s gain matrix, 𝐊.

𝐊𝑘 = (𝐏𝜃z
𝑘|𝑘−1∕𝐒

z
𝑘|𝑘−1

𝑇 )∕𝐒z
𝑘|𝑘−1 (13)

𝜽̂𝑘|𝑘 = 𝜽̂𝑘|𝑘−1 +𝐊𝑘(z𝑜𝑏𝑠 − ẑ𝑘|𝑘−1) (14)

2.4. Post-process of the pareto front

The Pareto front is projected from the functional space to the
principal component (PC) space by performing a principal component
analysis (PCA) of the constituent points. PCA is a statistical tool to
extract patterns from correlated variables following the next steps [33]:
first, the data are normalized and their covariance matrix is computed;
subsequently, the eigenvalues and eigenvectors of this matrix are cal-
culated, and finally, the PC scores are determined. It is worth pointing
out that the eigenvector associated to the highest eigenvalue is the
first PC and so on and that the scores represent the projection of the
data in the PC space. The resulting Pareto front exhibits a clear convex
character which eases the determination of the best solution among
all the possible ones as this is addressed solving a local minimization
problem.

The approximation of the previous Pareto front to a continuous
predictive model is achieved employing an artificial neural network
(ANN). This is a supervised machine learning technique that maps
nonlinear and coupled relationships between a set of inputs and out-
puts. The multilayer perceptron (MLP) is the most widely used network
topology and consists of an input layer, an output layer and one
or several hidden layers, which are interconnected in a feed-forward
5

manner: one neuron sends information to the subsequent layer but does
not receive from them. The number of hidden layer can be assumed
to be equal to one as it has been demonstrated that only a single
hidden layer may approximate any continuous function [34,35]. A
trial and error procedure or empirical relationships may me employed
to determine the number of neurons. The application of the ANN to
the Pareto front allows mapping the relationship between the physical
parameters of the model and the multi-objective function playing the
role of a convex function. The relationship needs to be trained and
tested on the basis of a backpropagation training algorithm that adjusts
the weights among the neurons’ connection by minimizing the error
between the estimated output and the desired output propagated in a
backward direction [36].

Taking advantage of the convex character of the continuous func-
tion, the decision-making problem to obtain the best solution is trans-
formed into a local minimization problem due to its convergence speed
and good accuracy. The solution obtained is the knee-point of the
original Pareto front. As local optimization algorithm, the Active-Set
(A-S) is hereby adopted [37]. Under this approach, the decision-making
problem may be formulated as:

minimize𝑔(𝜃) = 𝑦(𝜃) (15)

Subjectedto ∶

⎧

⎪

⎨

⎪

⎩

𝜃𝑙 ≤ 𝜃 ≤ 𝜃𝑢
𝑥(𝜃) ≥ 𝑥𝑚𝑖𝑛
𝑦(𝜃) ≥ 𝑦𝑚𝑖𝑛

(16)

being 𝑔(𝜃) the objective function, 𝜃𝑙 and 𝜃𝑢 are respectively the mini-
mum and maximum values of the physical parameters which form the
Pareto front, (𝑥(𝜃), 𝑦(𝜃)) are the ANN outputs in the PC space, and 𝑥𝑚𝑖𝑛
and 𝑦𝑚𝑖𝑛 are the minimum values of the ANN outputs in the PC space.

2.5. Proposed algorithm

The implemented algorithm combines the main virtues of the two
described algorithms (MHS and UKF) and the techniques employed to
post-process the Pareto front. First, the uncertainties are considered
and, second, the computational cost is reduced due two reasons. The
first one is the acceleration scheme of the hybrid algorithm itself. The
second one lies in the ANN which allows reducing the iterations and
the population to obtain a non-crowded Pareto front as this is then
simulated by the ANN. Finally, the PCA improves the efficiency of the
decision-making problem since it provides a convex representation of
the Pareto front which is further employed by the A-S algorithm to
obtain the best solution in a straightforward manner (Fig. 2).

3. Validation example: FE model updating of a laboratory foot-
bridge

A real laboratory footbridge is considered as benchmark structure
to validate the proposed hybrid-collaborative algorithm. Section 3.1
describes the geometry and main constitutive elements of the structure.
Section 3.2 introduces the initial FE model of the footbridge. Then,
Section 3.3 presents the dynamic characterization of this structure
via a forced vibration test (FVT) together with an EMA algorithm.
Subsequently, Section 3.4 details the parameter selection of for the
updating process. Finally, Section 3.5 describes in detail the updating
process under the maximum likelihood method.

3.1. Geometrical configuration

This benchmark structure is a reconfigurable steel footbridge from
the Vibration Engineering Section of the University of Exeter (Fig. 3).
The footbridge is a frame structure with a length of 15 m. The structure
is comprised of two lateral steel beams separated transversally 2.5 m.
Rectangular plates of 200 × 12 mm spaced 1.25 m brace these two
beams. Steel bolts connect the deck, made of composite SPS pan-
els [38], with both the longitudinal beams and transversal plates. Four
columns directly pinned to the ground are used as support of the four
ends of the steel beams. Further information about this footbridge can

be found in Ref. [39].
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Fig. 2. Flowchart of the proposed combinative computational algorithm.
Fig. 3. Description of the laboratory footbridge and layout of the FVT.
3.2. Initial FE model

An initial FE model of the footbridge was built using the Ansys
Software [40]. To model the structure, three different types of ele-
ments were employed: (i) shell elements (SHELL181) for the lateral
beams; the transversal beams and the SPS panel; (ii) 3D beam elements
(BEAM188) for the bolts of the connection between the SPS panel and
6

the steel structure; and (iii) equivalent spring element (COMBIN14)
with longitudinal and transversal stiffness to model each support whose
vertical displacement was constrained. The value of the stiffness at each
direction was estimated from a simplified FE model of just the column,
resulting in an equivalent stiffness of 5.5 ⋅ 107 N∕m and 1.0 ⋅ 107 N∕m
for the longitudinal and transversal direction, respectively. The mesh
consisted of 31 903 elements. The adopted mechanical properties for
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Fig. 4. Sensitivity study to select the most relevant physical parameters of the footbridge model.
Table 1
Experimental natural frequency, 𝑓𝑒𝑥𝑝 , initial numerical natural frequency 𝑓𝑖𝑛𝑖, relative
difference, ▵ 𝑓 , and the MAC ratio.

Vibration mode 𝑓exp [Hz] 𝑓ini [Hz] ▵ 𝑓 [%] MAC [-]

1 3.810 3.638 −4.51 0.998
2 5.144 5.433 5.62 0.994
3 8.485 9.106 7.32 0.988
4 12.366 11.310 −8.54 0.877
5 18.605 17.364 −6.67 0.985
6 20.459 19.519 −4.59 0.993
7 22.980 20.725 −9.81 0.634

the different materials are the followings: (i) for the steel, a density
of𝜌𝑠 = 7850 kg∕m3, the Young’s modulus equals 𝐸𝑠 = 210 ⋅ 109 Pa and
a Poisson’s ratio of 𝑣𝑠 = 0.3; and (ii) for the polyurethane the density
was assumed to be 𝜌𝑝 = 1100 kg∕m3, the Young’s modulus 𝐸𝑝 = 7.5 ⋅108
Pa and the Poisson’s ratio 𝑣𝑝 = 0.3.

The numerical modal analysis of this model gives as result the seven
natural frequencies shown in Table 1 and the mode shapes depicted in
Fig. 5.

3.3. FVT and EMA

The experimental modal identification of the footbridge was car-
ried out through the experimental modal analysis of the accelerations
recorded in a forced vibration test. To do this, a set of proof-mass
actuators and accelerometers were employed (Fig. 3).

Random signals were used as input to simultaneously drive the
actuators within a Multiple Input-Multiple Output (MIMO) configu-
ration [41]. From the applied forces and accelerations response, the
Frequency Response Function was calculated considering an overlap
of 50%. After this, a complex mode indicator function was defined to
identify probable mode location in the FRFs fitted curves. To finish
the process, a global polynomial curve fitting method extracts the first
seven experimental natural frequencies given in Table 1 and their
mode shapes (shown in Fig. 5) from the abovementioned probable
mode locations. The reader can refer to Ref. [39] for further explana-
tion regarding the forced vibration test and the experimental modal
analysis.

3.4. Parameters selection and search domain of the FE model updating
process

Based on the differences between the numerical and experimental
modal properties, the FE model of the footbridge is updated applying
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the proposed algorithm. Firstly, the physical parameters of the model
that are being updated must be identified. The ratio between the
modal strain energy associated with each parameter and the overall
modal strain energy is considered as criterion to reveal the influence of
the parameter on the variation of the natural frequencies [42]. Thus,
the parameters with greater ratios are selected. An initial set of 15
physical parameters were taken into account in this analysis and, as
result, ten were selected as design parameters (designated as in Fig. 4):
Young’s modulus of the steel of the longitudinal beams at 6 different
sections (𝜃𝑖𝑛,1 − 𝜃𝑖𝑛,6), Young’s modulus of the polyurethane (𝜃𝑖𝑛,8),
Young’s modulus of the steel of the bolts (𝜃𝑖𝑛,9), equivalent longitudinal
stiffness of the supports (𝜃𝑖𝑛,11) and the equivalent transversal stiffness
of the supports (𝜃𝑖𝑛,12). The selection of the Young’s modulus of the
different material as physical parameter has not got as objective the
identification of this structural property via the resolution of the inverse
problem. However, this magnitude is used as estimator of the stiffness
of the structure. In this manner, the variation of this quantity with
respect to its reference value reflects the reduction of some uncertain-
ties (geometrical tolerances, constitutive laws . . . ) associated with the
modelling of the structure.

In addition, a search domain has been established for each de-
sign parameter in order to constrain the optimization problem and to
guarantee an adequate physical meaning of the updated value. The
considered research domain for each considered updating parameter
with its lower and upper bound is illustrated by Table 2. Once both the
design parameters and their search range have been set, the FE model
updating process is performed.

3.5. FE model updating process

The previous described bi-objective algorithm is applied for the
model updating of the footbridge. The followings values for the pa-
rameters of the MHS algorithm were adopted [22,43]: a HMCR ratio
of 0.9, a PAR ratio of 0.7 and a bandwidth, 𝑏𝑤, equals the 1% of the
search domain of each parameter. Regarding the parameters of the
UKF algorithm, the sensitivity analysis carried out by the authors in
Ref. [19] was used, thus, the values of the parameters were: number
of iterations of the UKF algorithm, NUKF=3, initial estimation error
covariance, 𝑃 𝜃

0 = 𝑑𝑖𝑎𝑔(((𝜃𝑢 − 𝜃𝑙)∕2000)2) and measurement noise co-
variance matrix, 𝑅𝑖𝑖 = 0.001. The number of iterations of the MHS
algorithm was set to 10, the number of initial harmonies was 20 and
the number of new harmonies, generated at each iteration, equals 5. As
result, the non-crowded Pareto front containing the possible solutions
was obtained (see Fig. 6a). The computational cost of this step of the
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Fig. 5. First seven mode shapes obtained from: (a) the experimental identification test; and (b) the initial FE model.
proposed algorithm is the highest, as it took 4678 s to obtain the
non-crowded Pareto front.

Next, the PCA analysis of this Pareto front is conducted according to
the steps of the proposed algorithm. The singular value decomposition
method was employed to perform the decomposition of the covariance
matrix. Fig. 6b shows the projection of the Pareto front in the PC
space. As mentioned in Section 2, this analysis presents two advantages.
Firstly, the accuracy of the ANN used in the next step to approximate
the Pareto front is improved and, secondly, the selection of the best
solution is more robust due to the convex nature of the Pareto front
in the PC space. The time to perform this analysis is negligible when
compared to the bi-objective optimization as it takes less than one
second.
8

The fourth step of the algorithm involved the design of the ANN
to approximate the Pareto front. The objective is to simulate the rela-
tionship between the ten physical parameters and the two residuals of
the bi-objective function in a continuous manner, yielding a continuous
Pareto front which leads to a simpler decision-making problem. In this
study the MLP (Multi-layer perceptron) with one hidden layer has been
used as ANN topology. The rule of Kermanshahi [44] allows calculating
the number of neurons of the hidden layer as neurons = (𝑚 + 𝑛)∕2 + 𝛿,
being 𝑚 and 𝑛 the number of neurons of the input and output layers,
respectively, and 𝛿 a normalization factor which can be equal to 1 or 2.
Thus, for this case 𝑚 = 10, 𝑛 = 2 and 𝛿 = 1, giving as result 7 neurons for
the hidden layer. The ANN was trained using the Levenberg–Marquardt
backpropagation algorithm [36], defining the error function in terms
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Fig. 6. Combinative computational algorithm: (a) non-crowded Pareto front, (b) PCA analysis, (c) solution using the ANN and (d) corresponding solution in the original Pareto
front.
Table 2
Updated value of the physical parameters of model, 𝜃𝑖𝑛, after the updating process.
Parameter Description Initial value Range of variation Updated value

Lower Upper

𝜃𝑖𝑛 , 1 𝐸𝑠 long. beam section 1 [GPa] 210 190 240 230.08
𝜃𝑖𝑛 , 2 𝐸𝑠 long. beam section 2 [GPa] 210 190 240 215.94
𝜃𝑖𝑛 , 3 𝐸𝑠 long. beam section 3 [GPa] 210 190 240 202.43
𝜃𝑖𝑛 , 4 𝐸𝑠 long. beam section 4 [GPa] 210 190 240 215.92
𝜃𝑖𝑛 , 5 𝐸𝑠 long. beam section 5 [GPa] 210 190 240 193.52
𝜃𝑖𝑛 , 6 𝐸𝑠 long. beam section 6 [GPa] 210 190 240 214.58
𝜃𝑖𝑛 , 8 𝐸𝑝 polyurethane [MPa] 1000 500 1500 758.92
𝜃𝑖𝑛 , 9 𝐸𝑠 steel bolts [GPa] 1000 210 2100 790.95
𝜃𝑖𝑛 , 11 K Equivalent long. stiffness [N/m2] 6.0 ⋅ 107 1.4 ⋅ 107 1.1 ⋅ 108 7.06 ⋅ 107

𝜃𝑖𝑛 , 12 K Equivalent transv. stiffness [N/m2] 9.0 ⋅ 106 4.8 ⋅ 106 3.8 ⋅ 107 7.79 ⋅ 106
of the mean square error and considering 70% of the elements of the
Pareto front for sampling. The rest of the elements were used to validate
and test the ANN. Fig. 6b illustrates the accuracy of the ANN used to
continuously approximate the Pareto front in the PC space.

Finally, the decision-making problem is solved to obtain the best
solution (knee point). For this purpose, the A-S algorithm has been used
to conduct the minimization problem. Once this point is obtained, it is
projected back into the original Pareto front (Fig. 6c-d). The simulation
time to design the ANN and calculate the knee point was about 5 s. The
physical parameters associated to this optimum point (updated values)
are collected in Table 2 and the corresponding modal properties of the
updated FE model are shown in Table 3.

It can be observed that after the updating process, all the MAC
ratios are above 0.89 and the relative differences have been reduced.
In addition, the computational cost to perform this process has been
9

also less than traditional bi-objective optimization as it is not needed
Table 3
Experimental natural frequency, 𝑓𝑒𝑥𝑝 , updated numerical natural frequency 𝑓𝑢𝑝𝑑 ,
relative difference, ▵ 𝑓 , and the MAC ratio.

Vibration mode 𝑓exp [Hz] 𝑓upd [Hz] 𝛥𝑓 [%] MAC [-]

1 3.810 3.844 0.892 0.999
2 5.144 5.458 6.104 0.994
3 8.485 8.388 1.143 0.988
4 12.366 11.858 4.107 0.890
5 18.605 18.148 2.456 0.986
6 20.459 20.185 1.339 0.993
7 22.980 21.607 5.975 0.963

a populated Pareto front, and, therefore, the number of iterations and

population of the algorithm can be set to low values.



Advances in Engineering Software 190 (2024) 103598J. Naranjo-Pérez et al.
Fig. 7. Royal Monastery of San Jerónimo: (a) General ground floor, (b) Largest cloisters, (c) Cross section, (d) Interior church.
Therefore, Fig. 6 summarizes the different steps of the proposed
algorithm. The first step is the determination of the non-crowded
Pareto front using the UKF-MHS algorithm. Subsequently, a PCA is
performed in order to find the coordinates that minimize the uncer-
tainty of the non-crowded Pareto front. A geometrical transformation
is implemented on this Pareto front. Lately, a continuous mapping is
established between the updating parameters and the Pareto front using
an ANN. The convex form of this ANN allows obtaining its global mini-
mum, the ‘‘knee’’ point‘‘, using a gradient-based optimization algorithm
(A-S). Finally, after the ’’knee’’ point is determined, the same one is
depicted in the original function space.

4. Case study: Church of the royal monastery of san jerónimo

This section presents the application of the proposed approach on
the Royal Monastery of San Jerónimo (Granada, Spain) with the aim of
verifying its validity on this type of historic buildings. Section 4.1 de-
scribes the historical context and the architectural configuration of the
heritage complex, highlighting the church as a case study. Section 4.2
introduces the initial FE model of the church. Then, Section 4.3 presents
the dynamic characterization of the church by means of an ambient
vibration test (AVT) together with two OMA algorithms. Finally, Sec-
tion 4.4 details the updating process of the initial FE model under the
bi-objective proposed approach.

4.1. Historical context and architectural configuration

The Royal Monastery of San Jerónimo is part of a larger heritage
complex that belongs to the Jerónima order. The construction of the
monastery dates from the 16th century and consists of a church and two
cloisters, around which the different chambers are distributed (Fig. 7a).
The main cloister presents a square shape with two levels. The lower
body has thirty-six Gothic arches supported by strong capitals, with a
total length of 29 × 29 m. The second cloister also develops through
galleries on two levels with different architectural styles (Gothic, Mude-
jar and Renaissance). In this case the plant has dimensions of 17 × 17
m. The church, which also dates from the 16th century, is attached
to the main cloister (Fig. 7b) and located in the northeast area is the
church. Initially the style of the complex was Gothic until the work
was commissioned to Jacobo Florentino who, along with his successor
Diego de Siloe, endowed the temple with its actual Renaissance style.

The church, which a Latin cross plan and a polygonal apse, has non-
protruding transepts on the lower floor. At this level, the side chapels
are covered with ribbed Gothic vaults (Fig. 7c). The total dimensions
of the church floor plan are 57 × 24 m, with a height of 30 m in the
central nave and 35 m up to the dome (Fig. 7d). The transept and the
apse are covered with barrel vaults. Next to the front of the church is
the tower that was finished in 1565. This construction is made up of
three parts adding a total of 46 m up to the bell tower [45].
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4.2. Initial FE model

The application of the OMA is usually requires the creation of an
initial model (Fig. 8) in order to estimate numerically the natural
frequencies and mode shapes and thus determine adequate positions
of the accelerometers. The FE model of the church was built using
Ansys Software [40]. This model is mainly composed of five groups
of elements: stone walls and buttresses, brick masonry vaults, concrete
floors, and fills. The types of elements used to configure the FEM are:
(i) 3D-solid elements (SOLID45) for the fills, (ii) 3D-shell elements
(SHELL63) for the rest of the elements; and (iii) 1D-spring elements
(COMBIN14) for the boundary conditions. The model contemplates
constructive and structural considerations such as: the contact between
the church and the main cloister by means of spring elements, the
weight of the wooden roof located over the central nave and the
weight of the concrete lining walls that reinforce the last section of
the tower. The final model comprises 423,627 elements, 91,773 nodes
and 469,619 degrees of freedom.

Material properties were initially estimated from the literature [46].
For the stone masonry, in walls and buttresses, the properties adopted
were: (i) density, 2100 kg∕m3; (ii) Young’s modulus, 2000 MPa; and
(iii) Poisson’s ratio 0.2. For the brick masonry vaults, the following
properties were considered: (i) density, 1800 kg∕m3; (ii) Young’s mod-
ulus, 2000 MPa; and (iii) Poisson’s ratio 0.2. For the concrete floor,
the following values were taken into account: (i) density, 2500 kg∕m3;
(ii) Young’s modulus, 24 000 MPa; and (iii) Poisson’s ratio, 0.2. For the
fillings, the following data were considered: (i) density, 1600 kg∕m3;
(ii) Young’s modulus, 500 MPa; and (iii) Poisson’s ratio, 0.2. Finally, the
springs were defined by a stiffness of 2000 kN∕m. Based on the largest
modal displacements obtained from this initial numerical model, the
most suitable positions were selected to carry out the ambient vibration
tests (Fig. 9).

4.3. AVT and OMA

AVT and the OMA method were used to determine the dynamic
characteristics of the church of the Real Monastery of San Jerónimo.
These tests were carried out between 15-17th July (2020) in order
to identify the natural frequencies, the modal shapes and the modal
damping ratios of the building.

4.3.1. AVT
The experimental campaign was designed taking into account the

results obtained in the modal analyses carried out on the initial FE
model. In order to fully cover the area of interest, a network was
drawn including a total of 62 points. Fig. 9 details the position of these
measurement points. Red points mark the situation of the two reference
accelerometers while black points the moving ones. All these points
were set in the three principal directions to capture the global mode
shapes in the longitudinal, lateral and vertical direction of the complex.
Since two of the accelerometers (placed at points 16–44, Fig. 9) were
kept fixed for reference, a series of twelve set-ups were necessary to
cover all measuring points. In each one of these set-ups, accelerations
were recorded with a sampling rate of 100 Hz and a sampling time of
12 min.
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Fig. 8. Initial FE model of the Royal Monastery of San Jerónimo.
Fig. 9. Accelerometer location and direction.
The equipment used for these tests was composed by eight triaxial
force balance accelerometers with a bandwidth ranging from 0.01 to
200 Hz, a dynamic range of 155 dB, a sensitivity of 10 V∕g and 1.83 kg
of weight (Model ES-T). These accelerometers were connected via three
100-metre long and five 40-metre cables to a thirty-six-channel data
acquisition system, provided with anti-alias filters (model OBSIDIAN).
The equipment is manufactured by the company KINEMETRICS.

4.3.2. OMA
The data obtained in-situ were processed with the software ARTEMIS

[47] using two different identification methods: Enhanced Frequency
Domain Decomposition (EFDD) [48] and Stochastic Subspace Iden-
tification (SSI-UPCX) [49]. In this way, the mode shapes and the
modal frequencies of the gallery were obtained. The resulting modal
parameters of the gallery are summarized in Table 4.

As indicated in Table 4, the first four vibration modes of the church
have been identified in the frequency range from 0 to 3.5 Hz. Frequency
11
values are obtained with a high degree of reliability, with differences
lower than 1.5% between both methods. However, the values of the
damping ratios present larger variability. Finally, in relation to the
mode shapes, the first mode involves only the tower, the second mode is
a transverse translation mode that involves the tower and the transept
area, the third is a simple transverse translation mode and the fourth
mode corresponds to a bending of the vaults with a turning point in the
centre of the central nave. The great complexity of these modes can be
seen in Fig. 10a.

4.4. Parameters selection and search domain of the FE model updating
process

Based on the experimental results, the initial numerical model
was updated to simulate the current modal behaviour of the church
following the bi-objective approach proposed in this paper. Firstly, a
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Fig. 10. First four mode shapes obtained from: (a) the experimental identification test; and (b) the initial FE model.
sensitivity study was performed in order to select the most influential
physical parameters of the model, 𝜃𝑖𝑛. The materials that make up the
initial FE model were evaluated with the aim of carrying out a reliable
sensitivity study, in this way the 5 groups described above were subdi-
vided into a total of 11 since aspects such as humidity and constructive
composition of the different structural elements were considered. For
this, the following 11 parameters were initially selected: (i) Young’s
modulus of the stone, 𝜃𝑖𝑛, 1, 𝜃𝑖𝑛, 3, 𝜃𝑖𝑛, 7 [MPa]; (ii) Young’s modulus of
brick masonry 𝜃𝑖𝑛, 2, 𝜃𝑖𝑛, 10 [MPa]; (iii) Young’s modulus of wet stone
𝜃 , 4 [MPa]; (iv) equivalent Young’s modulus of stone combined with
12

𝑖𝑛
concrete 𝜃𝑖𝑛, 5, 𝜃𝑖𝑛, 9, 𝜃𝑖𝑛, 11 [MPa]; (v) spring stiffness 𝜃𝑖𝑛, 6 [kN∕m]
and (vi) Young’s modulus of concrete 𝜃𝑖𝑛, 8 [MPa].

The established selection criterion was the modal strain energy that
is associated with each parameter. The analysis of this sensitivity matrix
shows the value of the relationship between mode shapes and the
modal strain energy. Fig. 11 shows the considered physical parameters
of the model and the results of the parameter selection process.

The physical parameters to be updated were: (i) the Young’s mod-
ulus of the stone masonry walls, 𝜃𝑖𝑛,1; (ii) the brick masonry vaults,
𝜃 ,2; (iii) the stone masonry buttress, 𝜃 ,3; (iv) the wet stone masonry
𝑖𝑛 𝑖𝑛
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Table 4
OMA results: natural frequencies (Hz), damping ratios (%) and complexity (%).

Mode EFDD SSI-UPCX

𝑓 [Hz] 𝜉 [%] Comp. [%] 𝑓 [Hz] 𝜉 [%] Comp. [%]

1 1.011 0.846 1.260 1.013 (0.29%) 0.632 (25.3%) 1.489
2 1.367 0.970 0.975 1.381 (1.02%) 0.873 (10.0%) 0.888
3 1.855 1.313 3.635 1.852 (0.16%) 1.917 (45.8%) 6.883
4 3.027 1.186 8.939 3.048 (0.69%) 1.745 (47.1%) 27.44

*The percentages in parenthesis correspond to the relative differences between frequencies and damping ratios.
Fig. 11. Sensitivity study to select the most relevant physical parameters of the church model.
walls, 𝜃𝑖𝑛,4; and (v) the stone combined with concrete walls, 𝜃𝑖𝑛,5; and
(vi) spring stiffness, 𝜃𝑖𝑛,6. Table 5 shows the initial values and the
lower and upper bounds of the design variables. Taking into account
the good quality of the experimental data, the four identified modes
were selected as target modes in the updating process.

4.5. FE model updating process

Subsequently, the FE model updating process is performed. For this
purpose, the followings values for the parameters of the MHS algorithm
were adopted: a HMCR ratio of 0.8, a PAR ratio of 0.3 and a bandwidth,
𝑏𝑤, equals the 1% of the search domain of each parameter. Regarding
the parameters of the UKF algorithm, the following values were em-
ployed: (i) number of iterations of the UKF algorithm, NUKF=3; (ii)
initial estimation error covariance, 𝑃 𝜃

0 = 𝑑𝑖𝑎𝑔(((𝜃𝑢 − 𝜃𝑙)∕2000)2); and
(iii) measurement noise covariance matrix, 𝑅𝑖𝑖 = 0.001. The number
of iterations of the MHS algorithm was set to 40, the number of
initial harmonies was 50 and the number of new harmonies, generated
at each iteration, equals 25. As result, the non-crowded Pareto front
containing the possible solutions was obtained (see Fig. 12a). The
computational cost of this step of the proposed algorithm is the highest,
as it took 44 h to obtain the non-crowded Pareto front. Fig. 12b shows
the projection of the Pareto front in the PC space. The design of the
ANN was conducted employing the same rules of the previous section.
For this case, the number of neurons of the hidden layer is equal to
4. After the training with the Levenberg–Marquardt backpropagation
algorithm, the ANN simulated the Pareto front in the PC space giving
as result the estimated outputs depicted in Fig. 12b. The solution of the
decision-making problem is represented in Fig. 12c and Fig. 12d after
its projection into the original Pareto front space. The updated values
of the physical parameters are shown in Table 5.
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Table 6 summarizes the results after the updating process and
confirms the high correspondence of the results between the calibrated
model and those obtained from ambient vibration tests. It can be
noted that the updated frequencies are close to the experimental ones,
differing by less than 7% while exhibiting MAC values in a range from
0.760 (mode 4) to 0.977 (mode 1) for the four considered mode shapes.
Fig. 10 confirms the high correspondence between the mode shapes of
the experimental identification process and the FE model. Considering
the FE model employed in this section, the computational cost, used to
calibrate it, is low as the elapsed time was about 45 h.

Finally, the main advantages of the proposed combinative compu-
tational algorithm in comparison with the conventional bi-objective
optimization method are remarked in Fig. 12. A clear reduction of
the computational time due to the use of a local–global optimization
(UKF-MHS) algorithm together with the computation of a non-crowded
Pareto front is highlighted. Additionally, a direct estimation of the
‘‘knee point’’, inside the curve generated by the Pareto front, is achieved
by the combination of the different statistical learning techniques. In
this manner, this proposal allows reducing the requited simulation time
without compromising the accuracy of the solution.

5. Conclusions

In this manuscript a combinative computational algorithm is pro-
posed to improve the robustness of FE model updating of complex
historical constructions. The proposal takes advantage of the main
strengths of two previous algorithms proposed by the authors in order
to obtain a new powerful numerical tool which can assist architects
and structural engineers in the model updating of complex historical
structures. The combinative work, performed between the two prim-
itive algorithms, allows that the global performance achieved by this
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Table 5
Updated value of the physical parameters of model, 𝜽𝑖𝑛, after the updating process.
Parameter Description Initial value Range of variation Updated value

Lower Upper

𝜃𝑖𝑛,1 E stone masonry walls [MPa] 2000 500 3000 1101
𝜃𝑖𝑛,2 E brick masonry vaults [MPa] 2000 500 3000 1071
𝜃𝑖𝑛,3 E stone masonry buttress [MPa] 2000 500 3000 598
𝜃𝑖𝑛,4 E wet stone masonry walls [MPa] 1500 500 3000 509
𝜃𝑖𝑛,5 E stone concrete walls [MPa] 24 000 14 000 34 000 23 717
𝜃𝑖𝑛,6 K spring stiffness [kN/m] 2000 1000 3000 1507
Fig. 12. Collaborative computational algorithm: (a) non-crowded Pareto front, (b) PCA analysis, (c) solution using the ANN and (d) corresponding solution in the original Pareto
ront.
Table 6
Experimental natural frequency, 𝑓𝐸𝐹𝐷𝐷

𝑒𝑥𝑝,𝑗 ; initial numerical natural frequency, 𝑓𝑖𝑛𝑖,𝑗 ;
elative initial difference, ▵ 𝑓 𝑖𝑛𝑖,𝑗

𝑒𝑥𝑝,𝑗 ; the initial 𝑀𝐴𝐶 𝑖𝑛𝑖,𝑗
𝑒𝑥𝑝,𝑗 ratios; the updated natural

requency, 𝑓𝑢𝑝𝑑,𝑗 ; the relative updated difference, ▵ 𝑓 𝑢𝑝𝑑,𝑗
𝑒𝑥𝑝,𝑗 ; and the updated 𝑀𝐴𝐶𝑢𝑝𝑑,𝑗

𝑒𝑥𝑝,𝑗
atios for each considered mode shapes 𝑗 after the updating process considering the
i-objective approach.
Mode 𝑓𝐸𝐹𝐷𝐷

𝑒𝑥𝑝,𝑗 Initial UKF-MHS

𝑓𝑖𝑛𝑖,𝑗 ▵ 𝑓 𝑖𝑛𝑖,𝑗
𝑒𝑥𝑝,𝑗 𝑀𝐴𝐶 𝑖𝑛𝑖,𝑗

𝑒𝑥𝑝,𝑗 𝑓𝑢𝑝𝑑,𝑗 ▵ 𝑓 𝑢𝑝𝑑,𝑗
𝑒𝑥𝑝,𝑗 𝑀𝐴𝐶𝑢𝑝𝑑,𝑗

𝑒𝑥𝑝,𝑗
[Hz] [Hz] [%] [-] [Hz] [%] [–]

1 1.011 1.272 25.82 0.966 0.945 6.53 0.977
2 1.367 1.778 30.07 0.944 1.339 2.05 0.974
3 1.855 2.627 41.62 0.926 1.983 6.90 0.930
4 3.027 3.738 23.49 0.633 2.819 6.87 0.760

proposal was greater than the sum of the local performance of each
preliminary algorithm.

As for practical FE model updating, the problem is usually formu-
lated according to the maximum likelihood method, this approach has
14
been considered as basis for the formulation of the updating problem.
Thus, the updating problem can be transformed into two sub-problems:
(i) a bi-objective optimization sub-problem and (ii) a decision-making
sub-problem. The maximum likelihood method presents two clear ad-
vantages, when it is implemented to cope with this problem, an easy
implementation and understandable interpretation of the updating re-
sults. However, there is a clear limitation when this approach is applied
for the FE model updating of complex historical construction, the high
simulation required to solve the updating problem.

In order to shed some light to this problem, a new combinative
computational algorithm has been proposed herein. Three are the
main objectives of this proposal: (i) to reduce the computational time
requited to solve the FE model updating problem; (ii) to guarantee an
adequate accuracy of the solution obtained; and (iii) a direct solution
of the updating problem without the necessity of solving different
sub-problems.

For this purpose, the proposed algorithm combines the strength
of two previously proposed algorithms: (i) a local–global (UKF-MHS)
optimization algorithm, which allows increasing the computational
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speed of the searching process together with a better quantification of
the uncertainty associated with the variability of the experimental mea-
surements; and (ii) a collaborative algorithm in which several statistical
learning techniques are linked to make easier the determination of the
‘‘knee’’ point among the different elements of the Pareto front.

Therefore, the main contribution of this manuscript is not only the
combination of both algorithms in order to obtain a new proposal with
higher performance than the two primitive algorithms but also the
implementation of this proposal for the FE model updating of a complex
historical construction.

In order to clarity the implementation of the algorithm, two differ-
ent numerical applications have been included herein: (i) a validation
examples, in which the proposed algorithm has been described in detail
when it is implemented for the FE model updating of a laboratory
footbridge; and (ii) a case study, in which the performance of the
proposed algorithm has been assessed when it is implemented for the
FE model updating of a complex historical construction. The good
performance of the proposal has been highlighted not only in the non-
crowded Pareto front computed to solve the problem (with a clear
reduction of the computational time) but also for the good accuracy
of the ‘‘knee’’ point obtained (inside the curve that defines the Pareto
front).

Despite the good results obtained, further studies are needed to
assess the performance of this proposal when it is subjected to different
updating scenarios. In this sense, it is interesting the analysis of the
efficiency of this combinative algorithm either when a regularization
term is included in the definition of the objective function (to guarantee
the stability of the solution when the number of updating parameters
is greater than the number of identified modal properties) or when a
meta-model, based on some subrogate modelling technique, is ‘‘on-line’’
updated to assist in damage detection applications for civil engineering
structures considering a structural health monitoring strategy.
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