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Boltzmann showed that in spite of momentum and energy redistribution through collisions, a rarefied
gas confined in a isotropic harmonic trapping potential does not reach equilibrium; it evolves instead into a
breathing mode where density, velocity, and temperature oscillate. This counterintuitive prediction is
upheld by cold atoms experiments. Yet, are the breathers eternal solutions of the dynamics even in an
idealized and isolated system? We show by a combination of hydrodynamic arguments and molecular
dynamics simulations that an original dissipative mechanism is at work, where the minute and often
neglected bulk viscosity eventually thermalizes the system, which thus reaches equilibrium.
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Ludwig Boltzmann was among the very “first crea-
tive thinkers in any field to look at the world in a fully
twentieth-century manner” [1]. Together with J.C.
Maxwell, he was the founding father of kinetic theory
unifying Newtonian mechanics with thermodynamics, two
approaches that had been impervious to each until then.
This accomplishment is epitomized in the so-called
Boltzmann equation of which we celebrated the 150th
anniversary in 2022. It remains an important branch in
basic sciences, be it in mathematics [2], physics [3], or
engineering [4,5]. Lesser known is the fact that a few years
after having laid the foundations, Boltzmann found out-
landish solutions to the eponymous equation, where a
confined dilute gas never reaches equilibrium but rather
organizes into a perpetual oscillating “breathing mode”
[6,7]. For lack of an experimental realization in a three
dimensional system, Boltzmann’s prediction long remained
peripheral, garnering limited interest. The situation
changed recently when a large collection of Rb cold atoms
confined in a harmonic trap was shown to clearly vindicate
the breather mode, in full agreement with the theory [8,9].

Since the Boltzmann equation features irreversibility [7],
the possibility of breathing modes is surprising in two
respects. First, they do emerge under the action of viscous
forces, but are themselves shearless and undamped [10,12].
Second, they provide eternal solutions, a priori trust-
worthy in the limit where the framework applies, i.e., a
dilute system with short range interactions. Under such
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conditions, far from a critical point or from the crowding
environment that is found in kinetically arrested states of
matter or glasses [13], the system should eventually
thermalize and reach equilibrium [14]. Yet, the kinetic
theory framework of the Boltzmann equation fails to
identify any damping mechanism for the breathers. It is
our main purpose to study their fate, from the formation to
their possible disappearance, under a dissipative mecha-
nism that necessarily requires a description beyond the
Boltzmann equation. While kinetic theory itself is a
possible venue for such an analysis [15], we will see that
hydrodynamics provides a direct answer: not only does it
allow one to recover the breathing modes in a economical
fashion, but more importantly, it sheds lights on their
damping, beyond the Boltzmann equation level. In essence,
the damping is associated to the nonlocality of collisions
[16]. Hence, it vanishes in the low density limit, while it is
related to the bulk viscosity for finite densities. Our
analytical results will be confronted against molecular
dynamics (MD) simulations.

The setting.—We consider a dilute system of interacting
atoms (or molecules), trapped in a harmonic potential. Each
atom at position r is subjected to an external force —maw?r;
all masses m are identical. A sketch of the system is shown
in Fig. 1. We adopt a classical description, stressing that
quantum effects are negligible in the experiment of Ref. [8],
and also that the breathers survive to quantum effects [11].
While pure isotropic harmonic potentials do not exist in
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FIG. 1. Sketch of the system. The particles, shown with the
disks, are confined in the (red) parabolic potential. Under generic
initial conditions, the system evolves toward a breathing state,
oscillating between a dense configuration with high temperature
(left) and a more dilute configuration with a smaller temperature
and a higher potential energy (right).

reality, they provide an excellent approximation in the
context of the experiments carried out in Ref. [8]. We
restrict to monoatomic gases; the analysis relies on energy
and momentum conservation during collisions: it is not
necessary to specify the type of interatomic potential
studied, provided that interactions are short range and
the system dilute. Under this proviso, the Boltzmann
equation framework applies [15], and, unexpectedly, does
not lead at long times to Maxwell-Boltzmann distribution
n, for the particle density n:

(1)
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where k is Boltzmann constant, 7' the temperature, 7, is a
normalization factor, and r = |r|. While one may have
expected long-time thermalization starting from arbitrary
initial conditions, solutions indeed exist with avoided
equilibration, where the density, velocity, and temperature
oscillate with time 7 at 2w, twice the natural trapping
frequency [6—8]. These solutions are readily characterized
as follows.

Because of density, momentum, and energy conservation
in collisional events, the density, velocity, and temperature
fields—n, u, T, respectively—obey the generic hydro-
dynamic equations [17]

on+ V- (nu) =0, (2)
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where d denotes space dimension, the summation over
repeated indices is assumed, and the x; denote the Cartesian
coordinates of position r. The total number of atoms is
N = [n(r, t)dr, a conserved quantity. To first order in the
gradients of the fields, the heat flux is ¢ = —«VT and the
pressure tensor P reads [17]
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where p is the pressure, 5 the shear viscosity, v the bulk
viscosity (also called the volume viscosity, and sometimes
the “second” or “expansive” viscosity), k the heat conduc-
tivity; the expressions of these quantities in terms of n and
T depend on the system. By substituting the expression of
the fluxes into the balance equations [Egs. (2)—(4)], the
Navier-Stokes equations are obtained. On general grounds,
the system’s total entropy S increases under the action of
the various dissipative mechanisms at work, thermal con-
duction, and internal friction due to viscous forces. This
results in [17]

as K 5 N 2 2
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Recovering the breathing modes.—More often than not,
the bulk viscosity v is neglected [7,18]. This “tradition”
dates back to the early days of hydrodynamics, and bears
the name of Stokes hypothesis [21-23]. Since the term in
brackets in Eq. (5) is traceless, Stokes hypothesis implies
that the mechanical and thermodynamic pressures coincide.
In a polyatomic system where energy can be transferred
from translational to other degrees of freedom (rotational,
vibrational), such an assumption would fail, but it holds in a
dilute monoatomic gas [24,25] and is often considered to be
correct without the diluteness restriction for such gases;
see, e.g., [23,26-29]. Being interested in monoatomic
species, we momentarily endorse Stokes hypothesis, setting
v = 0. For consistency with the dilute assumption we also
have P;; = pé;;, where p = nkT. By taking moments in
Egs. (2) and (3), it is easily seen that the quantities (r*) =
[ r*ndr/N and (r-v) = [r-undr/N fulfill a closed set of
first order differential equations that can be transformed
into a closed second order differential equation for (r2)
[11,30,31]:

d*(r*y  4e
= (), (7)
where the total energy per particle, that is a

constant of the motion, has been introduced, e =
(1/2N) [ drn(r,t)[mu*(r, 1) + dT (r, 1) + mw*r?]. The so-
lution of Eq. (7) is simply

(r*) = p* + Acos(2wt — @), (8)
where p? =e/mw? is the equilibrium value of (r?),

@ is an irrelevant phase factor, and A is a para-
meter quantifying the amplitude of the oscillations that
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can be written in terms of the initial condition as
A=/({r v)}/o?) + ((r*), —p*)?, where the index 0
refers to averages over all atoms in the initial condition.
Let us stress that Eq. (8) is exact in the low density limit.
It holds for all times, independently of the initial con-
dition, and it clearly shows that, in general, the system
will perpetually oscillates at twice the trap natural fre-
quency (the exception being A =0 that will be ana-
lyzed later).

The maximum entropy solution, corresponding to the
long-time evolution of our interacting system (that in the
following will be denoted by the subscript B), is such that
the first two terms in parenthesis in Eq. (6) vanish. Thus,
the temperature should be spatially homogeneous (V153 =0),
and Oup; +oup—(2/d)6;V-up=0(Vik=1,....d)
that, in turn, imply that ug(r,t)=a(t)r+j(t) xr-+uy(t).
By a proper choice of the rest frame, and discarding globally
rotating system, we setu andj to 0, so thatug(r, 1) = a(t)r.
By substituting the specific form of the velocity and temper-
ature field into Eq. (3), it is obtained that the density is
Gaussian with the above identified variance:

i) N[ e (- ). o

Performing the same in Eq. (2) by taking into account the
Gaussian density profile, the time-dependent coefficient,
a(t), is identified, a(t) = (1/2)0, log(r?) and, if Eq. (4) is
used, it is obtained that T»(¢)(r?) is a constant. This is a
signature of the kinetic to potential energy conversion at
work in the present swing mechanism: when the cloud is
extended, with a large value of (r?) (i.e., a large potential
energy), the temperature is small, and the temperature is
conversely maximal when (r?) is minimal, and the peak
density (at the origin) maximal. To summarize, starting from
arbitrary initial conditions, in the long-time limit the system
reaches a state that is characterized by the parameters
describing the dynamics of (r?) (N, e, A, and ¢): the density
is Gaussian given by Eq. (9) and

aslr.) =50, Jogl?). Tyl =5 (10

where C is a constant that depends on the same parameters
[15]. The velocity field is shearless, and thus immune to
shear-viscosity effects. In fact, this is exactly the breathing
mode solution obtained by Boltzmann. The equilibrium
solution [n, in Eq. (1)] corresponds to A = 0, which requires
highly specific initial conditions [32]. Note that the inter-
atomic interaction specifics are immaterial here.

Damping mechanism for the breathing modes.—It is
appropriate at this point to revisit Stokes hypothesis [33].
Physically, the bulk viscosity arises because collisions
involve particles that are not exactly located at the same
point in space; in other words, there is a transfer of

momentum through a given surface due to the interaction
of a pair of particles located at different sides of the surface.
The rationale for setting v = 0 is that dilatational dissipa-
tion is often small compared to its shear counterpart. In the
context of the Boltzmann equation, the pressure tensor is
purely kinetic and the bulk viscosity vanishes. The
Boltzmann equation is derived in the low density limit,
whereas the bulk viscosity makes an appearance at higher
densities. For the breathers, shear dissipation vanishes and
attention should be paid that the bulk viscosity, no matter
how small, may cause dissipation. As it has been discussed,
for a monoatomic gas, what can be shown rigorously is that
v/n — 0 when n — 0, but taking v = 0 does not yield a
valid description at all times. Interestingly, the hydro-
dynamics framework above is convenient for the analysis
where v # 0, which aims at going beyond the low density
approximation. In particular, the maximum entropy argu-
ment now demands that the three terms in parenthesis in
Eq. (6) do vanish, so that a =0 =V - u: the long-time
maximum entropy solution thus has # = 0 (in the rest
frame, assuming again no global rotation), a uniform
temperature, and a profile set by Eq. (3), i.e., the hydrostatic
balance Vp + mnw*r = 0, which is the equilibrium sol-
ution. Beyond the dilute limit, the explicit form of the
pressure p depends on the specific interactions at work,
which modifies the Gaussian profile on the rhs of Eq. (1).
We have just shown that the bulk viscosity dissipation
drives equilibrium: ultimately, the breathers have to decay
to thermal equilibrium. This takes place at constant energy
per particle e in our conservative system [34].

The damping time.—What is the lifetime of a Boltzmann
breather? From Eqs. (2)—(4), we obtain on general grounds

aa<r2>_4e 2/.2 2d
=4 <r>+mN/dr[AP—vV-uL (11)

where Ap = p — nkT is the excess pressure that depends
on density n and temperature 7', themselves time and
position dependent. This opens the way to a multiple
timescale analysis. Indeed, plugging the breather expres-
sions into Eq. (11) and linearizing around the equilibrium
value, (r?),, a differential equation for x = (r?) — (r?), is
obtained:

e

2
¥4+-x+ Q% =0, (12)
T

where a new timescale 7 appears, which measures the
lifetime of the breathers. We have 7 = (2mNp?/d* [ drv,),
which is a functional of the equilibrium bulk viscosity v,,
itself position dependent. The frequency of the oscillations,
Q = [40* + (2d/mN) [dr(5Ap/5(r*))]"/?, differs from
the Boltzmann value, 2w, due to the excess pressure
contribution and its explicit expression depends on the
particular equation of state. Here, the excess pressure
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FIG. 2. (r?)/p? as a function of the dimensionless time, w?, for
¢ =9 x 1073, The circles are the simulation results and the solid
line the Boltzmann theoretical prediction (8). In the inset, the
envelope of the oscillations (dashed line) is plotted on a much
longer timescale (the dotted line at unity is plotted for reference).

contribution does not affect the relaxation time because, to
linear order, it is x-independent. As expected, in the low-
density limit 7 — oo and Q — 2. In contrast with Eq. (7),
Eq. (12) does not hold for all times, but it describes the
universal long-time behavior in which the initial condition
is forgotten and the fields are close to their breather
counterparts.

Comparison to numerical simulations.—To proceed,
we specify the analysis to the simplest nontrivial mono-
atomic case possible: the hard-sphere system, for which
all quantities of interest are known [35]. For this
model, the explicit expressions for 7 and 7 are
t = [d2\ D20 (d/2)NV4 ) 742412 ] and

(d +2)z?
2(d+4)/2ﬁ(d/2)

where the maximum (dimensionless) density at equilibrium
at Boltzmann level, ¢ = N(d/2np*)%?6, has been intro-
duced. We have also neglected position correlations at
contact.

We have put our predictions to the test with MD
simulations of a system with N = 1000 hard disks (two-
dimensional system), where the particle trajectories are
followed with time, under the action of the harmonic one-
body confinement potential, and of instantaneous inter-
particle collisions [36]. Figure 2 shows that the cloud
spread, (r?), for a system with ¢p = 9 x 1073, oscillates in
time as predicted for the breather state around the (equi-
librium) value, pz. The circles are the simulation results and
the solid line the Boltzmann theoretical prediction. The
agreement between both in the shown time window is
excellent taking into account that there are no adjustable
parameters. Nevertheless, a tiny discrepancy with the
theoretical frequency, 2w, can be appreciated (specially
for times wt ~ 50 as it is a cumulative effect). In the inset,
the envelope of the oscillations is plotted on a much longer
timescale (dashed line), where the damping becomes

Q2 =40 |1 + o (13)
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FIG. 3. (Q/w)? as a function of the dimensionless density, ¢.
The dots are the simulation results and the solid line is the
theoretical prediction (13).

visible. Both effects, shifting of the frequency and damp-
ing, are precisely those predicted by our hydrodynamical
theory. In addition, the breather state characterized by the
hydrodynamic fields (9) and (10) is only reached for times
wt > 40. This can be appreciated by checking the con-
stancy of Tz(r?) with time.

For different small densities and starting with an initial
condition close to equilibrium, A/p2 = 0.2, (the density
has to be “close to Boltzmann” and the amplitude of (r?)
small for the theory to be valid), MD simulations have been
performed. The frequency and the relaxation time of the
oscillations have been measured by counting the number of
maxima (minima) per unit time and by fitting the envelope
to an exponential, respectively. In Fig. 3, the frequency is
plotted. The points are the simulation results (the error bars
are not plotted because they cannot be seen in the figure)
and the solid line the theoretical prediction. The agreement
between the theoretical prediction and the simulation
results is excellent in the whole range of densities. Note
that the corrections to the Boltzmann prediction are of the
order of ¢, ~1072. In Fig. 4, wt is plotted as a function of ¢
in logarithmic scale. The points are the simulation results
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FIG. 4. wrt as a function of the dimensionless density, ¢, in

logarithmic scale. The points are the simulation results, the solid
line is the theoretical prediction for 7 as defined above (13), and
the dashed line is the linear fitting of the simulation results.
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(as above, the error bars are not plotted), the solid line is the
theoretical prediction and the dashed line is the linear fitting
of the simulation results with slope —1.53 = 0.02, in perfect
agreement with the theoretical prediction for d =2,
7~ ¢~3/%. The quotient between the theoretical and mea-
sured relaxation times is of the order of 1.5, indicating that,
although the density dependence is perfectly captured by
the theory, there are other not considered ingredients that
“renormalize” the amplitude of ¢~3/2. The only approxi-
mation made in the theory has been to take for the
hydrodynamic fields the corresponding ones of the breather
state. It seems that it is perfectly valid to first order in ¢ (the
frequency Q fits the theoretical prediction), but it fails
beyond first order. Yet, the agreement is satisfactory taking
into account the simplicity of the theory.

In conclusion, treading in Boltzmann’s footsteps, we
have recovered that an isolated low-density system con-
fined in a harmonic trap generically evolves toward a time-
dependent breathing mode. Such a solution, however,
cannot be eternal: it holds in a finite time window, all
the larger as the system is more dilute, and we could
characterize the ultimate fate of a breather. Under an
original dissipation mechanism that is insensitive to usual
shear viscous forces, but involves dilatational dissipation,
the system reaches asymptotically thermal equilibrium, as
expected. The key player is the bulk viscosity, which is
minute compared to the shear viscosity for dilute systems:
neglecting it allows one to recover Boltzmann’s results in a
convenient fashion; yet, it rules the long-time dynamics.
This dissipation mechanism, which operates as conse-
quence of the breathing mode spherical symmetry, is
unique and provides a platform for measuring the elusive
bulk viscosity.
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