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• Background and Aims Flowering is a key process in the life cycle of a plant. Climate change is shifting 
flowering phenologies in the Northern Hemisphere, but studies with long data series at the community level are 
scarce, especially those considering the consequences of phenological changes for emerging ecological inter-
actions. In the Mediterranean region, the effects of climate change are stronger than the global average and there 
is an urgent need to understand how biodiversity will be affected in this area.
• Methods In this study, we investigated how the entire flowering phenology of a community comprising 
51 perennial species from the south of the Iberian Peninsula changed from the decade of the 1980s to the 
2020s. Furthermore, we have analysed the consequences of these changes for flowering order and co-flowering 
patterns.
• Key Results We have found that the flowering phenology of the community has advanced by ~20 days, 
which is coherent with the increasing temperatures related to climate change. Individual species have gen-
erally advanced their entire flowering phenology (start and end) and increased their flowering duration. The 
early flowering has resulted in a re-organization of the flowering order of the community and generated new 
co-flowering assemblages of species, with a slight trend towards an increase of shared flowering time among 
species.
• Conclusions The advanced flowering phenology and changes in flowering duration reported here were of 
unprecedented magnitude, showcasing the extreme effects of climate change on Mediterranean ecosystems. 
Furthermore, the effects were not similar among species, which could be attributed to differences in sensitivities of 
environmental cues for flowering. One consequence of these changes in flowering times is ecological mismatches, 
indicated by changes in the flowering order and co-flowering between decades. This new scenario might lead to 
new competitive or facilitative interactions and to the loss or gain of pollinators.

Key words: Mediterranean shrub community, flowering phenology, climate change, ecological mismatching, 
long-term phenology, emerging ecological interactions, temperature rise, flowering order, co-flowering patterns, 
phenological reassembly.

INTRODUCTION

Flowering phenology, or the recurrent timing of flower de-
velopment and anthesis, is one of the most important steps 
in the life cycle of a plant, with implications for reproductive 
success and overall fitness. However, climate change is af-
fecting flowering phenology, shifting its timing and synchrony 
and decoupling plant and pollinator cycles (Clealand et al., 
2007; Memmott et al., 2007; Parmesan and Hanley, 2015; 
Freimuth et al., 2022). For example, the reproductive success 
of an individual plant might depend on flowering synchrony 
between conspecifics, which is essential for cross-pollination 
(Augspurger, 1981, 1983; Forrest and Miller-Rushing, 2010; 
Soares et al., 2021), and on the degree of coupling with suitable 
environmental conditions for flowering (Puterill et al., 2004; 
Kudo, 2006; Rodríguez-Pérez and Traveset, 2016; Culley et al., 
2020; Soares et al., 2021). Therefore, it is important not only 
when the flowering begins or ends, but also how flowering is 

distributed over time (Thomson, 1980; Clark and Thompson, 
2011). All these factors constitute selective forces shaping the 
flowering phenologies of plant populations and communities 
(Gómez, 1993; Elzinga et al., 2007; Memmott et al., 2007).

The timing of flowering phenology is influenced by a 
number of abiotic factors, including warm spring temperat-
ures (forcing), cold winter temperatures (chilling), night–day 
length ratio (photoperiod), precipitation, elevation and other 
environmental cues (Imaizumi and Kay, 2006; Iannucci et al., 
2008; Giménez-Benavides et al., 2010; Springate and Kover, 
2014; Kharouba et al., 2017; Flynn and Wolkovich, 2018). In 
recent decades, changes in the phenological patterns of spe-
cies owing to climate change have been reported, particularly 
in the Northern Hemisphere (Menzel et al., 2006; Kharouba 
et al., 2017; United Nations Environment Programme, 2022; 
Vitasse et al., 2022). The most notable effect of climate 
change is the increase in temperatures triggering an earlier 
onset of spring and an advance in the time of first flowering 
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of species in the Northern Hemisphere (Menzel et al., 2006; 
Schwartz et al., 2006; Scheip et al., 2009; Amano et al., 
2010; CaraDonna et al., 2014; Szabó et al., 2016; Zohner 
et al., 2017; Vitasse et al., 2022). Other environmental cues 
that plants use to time their flowering, such as precipitation, 
have also been affected by climate change and might be cru-
cial in Mediterranean areas and tropics (Peñuelas et al., 2002; 
Thuiller 2007; Calzadilla et al., 2013; Chambers et al., 2013). 
Despite this general trend, some studies have found that the 
effects of climate change are species specific, with some spe-
cies flowering earlier or later than in the past, whereas others 
remain unaffected (Fitter and Fitter, 2002; Chambers et al., 
2013; CaraDonna et al., 2014).

One of the consequences of the change in flowering time 
is the decoupling of plant phenologies, which has important 
implications for plant reproduction, ecosystem functioning 
(Totland and Alatalo, 2002; Kudo and Hirao, 2006; Forrest 
and Miller-Rushing, 2010; Iler et al., 2019; Kudo and Cooper, 
2019) and species conservation (Morellato et al., 2016). For 
example, a change in flowering phenology can disrupt the syn-
chrony between a plant population and its pollinators (Forrest 
and Thomson, 2011), potentially leading to decreased pollin-
ation success and reduced seed production (Memmott et al., 
2007; Morellato et al., 2016). Furthermore, phenological shifts 
can have strong effects on community structures and eco-
logical interactions between plant and animal species (Suttle 
et al., 2007; Yang and Rudolf, 2010; Renner and Zohner, 2018; 
United Nations Environment Programme, 2022). Given that the 
flowering phenology of each plant species can show different 
responses to external factors (Rathcke and Lacey, 1985; Cortés‐
Flores et al., 2017; Renner and Zohner, 2018), climate change 
might affect the flowering phenology of each species in dif-
ferent ways. Plant species in a community establish competitive 
or facilitative interactions mediated by pollinators (Bergamo 
et al., 2020); therefore, if the timing of their flowering events 
shifts, these interactions might be altered, affecting species dif-
ferently (Albor et al., 2020, 2022). As a result, the rearrange-
ment of co-flowering patterns might limit the persistence of 
individual species in the community (Gilman et al., 2010).

Despite the importance of identifying the causes and conse-
quences of climate change on flowering phenology, the lack of 
past data to compare with contemporary information is a major 
limitation, especially in highly diverse ecosystems (Chambers 
et al., 2013; Morellato et al., 2016; Abernethy et al., 2018). 
Many researchers use natural history collections (Calinger et 
al., 2013; Aufret, 2021) or government data (Gordon and Sanz, 
2009), but these provide information on changes only at the 
species or species group level (e.g. Davis et al., 2015; Mathews 
and Mazer, 2016; Meineke et al., 2018). Furthermore, much 
of the legacy data provides information only on the onset of 
flowering (first date), with very little information on complete 
flowering periods (CaraDonna et al., 2014; Morellato et al., 
2016). However, the use of historical observations has been 
proved to be a reliable source of long-term data, uncovering 
trends and shifts of plant phenology across decades (Miller-
Rushing and Primack, 2008; Miller et al., 2021). Finally, infor-
mation at the community level (Cook et al., 2012; Ovaskainen 
et al., 2013; CaraDonna et al., 2014) or on the temporality 
of plant species interactions (Klanderud, 2005; Memmott et 
al., 2007; Genini et al., 2021) is still scarce, and plant–plant 

or plant–animal temporal associations are mostly ignored in 
models predicting how plant communities will respond to cli-
mate change.

The Mediterranean basin is one of the largest biodiversity 
hotspots of the planet (Mittermeier et al., 2004), and abiotic 
constraints impose a strong seasonal limitation on flowering 
(Arroyo, 1990a, b; Petanidou et al., 1995). The Mediterranean 
basin has been identified as one of the most vulnerable regions 
to the effects of climate change, owing to higher temperatures 
and more frequent droughts (Ali et al., 2022), and its impact on 
floral phenology is expected to be strongly pronounced (Peñuelas 
et al., 2004; del Cacho et al., 2013). In this study, we compared 
the complete flowering phenology of 51 perennial species from 
a Mediterranean community 35 years ago (1985–87) with that 
obtained in the present (2020–22) for the same site and species. 
Our aims were as follows: (1) to verify the occurrence of shifts in 
the flowering periods after 35 years; (2) to detect climate drivers 
and changes over time; and (3) to uncover and analyse changes 
in co-flowering scenarios among Mediterranean species attribut-
able to the expected phenological shifts.

MATERIALS AND METHODS

Study site and study species

Our study system was a rich Mediterranean plant community 
located in a lowland flat area at 80–90 m a.s.l., ~30 km from the 
sea, within the municipality of Hinojos, in the Huelva Province 
(37°15ʹ–37°20ʹN and 6°30ʹ–6°32ʹW), south-west Spain (Ortiz, 
1991). The community consists of a mixed scrub and rich 
grassland with scattered to dense woodland, mainly Quercus 
suber and Pinus pinea (Ortiz, 1991). The shrub layer is diverse, 
with some of the better-represented families being Cistaceae, 
Lamiaceae and Fabaceae. The herbaceous layer is much more 
diverse, consisting mainly of species of Poaceae, Liliaceae, 
Boraginaceae, Plantaginaceae, Lamiaceae, Brassicaceae, 
Fabaceae, Caryophyllaceae and Asteraceae. We studied the 
flowering phenology of the 51 most abundant perennial species 
of the community, including small trees, shrubs and perennial 
herbs (Table 1) in two periods: 1985–1987 (hereafter, decade 
1980s), with data collected by one of the authors (Ortiz, 1991); 
and present, 2020–2022 (hereafter, decade 2020s), re-collected 
for the same site and species.

Climate

The climate in the study area is typically Mediterranean, 
with hot, dry summers and mild winters (Ortiz, 1991; Deitch, 
et al., 2017). Climatic variables from 1974 to 2022 were pro-
vided by the Andalusian Environmental Information Network 
(REDIAM). We selected a data series from three nearby climate 
stations (<34 km from study sites; Supplementary Data Table 
S1). The data from the three stations were similar enough for 
us to average them in order to minimize data gaps throughout 
the studied period. The climatic variables obtained were daily 
mean temperature, daily minimum temperature, daily max-
imum temperature and daily rainfall. For temperature data, we 
obtained the annual means and the means for the four meteoro-
logical seasons (winter: Dec, Jan, Feb; spring: Mar, Apr, May; 
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Table 1. List of studied species, including family, type of life form, main pollination agent (based on personal records) and number of in-
dividuals sampled per studied year. Note that for some years we had information only on the start, peak or end of each flowering period.

Year

Species Family Type Pollination agent 1985 1986 1987 2020 2021 2022

Arbutus unedo L. Ericaceae Shrub/tree Small to big bees, hoverflies – 20 21 – 13 17

Aristolochia baetica L. Aristolochiaceae Vine Very small flies (Phoridae, 
etc.)

– 10 10c – 22 20

Salvia rosmarinus 
Spenn.

Lamiaceae Shrub Small to big bees, hoverflies, 
butterflies

– 20 13d – 16 18

Ulex eriocladus C. 
Vicioso

Fabaceae Shrub Medium to big bees, 
hoverflies

– 21 13d – 26 24

Halimium calycinum 
K. Koch

Cistaceae Suffrutix Small bees, hoverflies, flies – 12 12d – 18 18

Anchusa calcarea 
Boiss.

Boraginaceae Perennial/
biennial herb

Small to big bees, hoverflies, 
beeflies, butterflies

– 11 – – – 15

Stauracanthus 
genistoides (Brot.) 
Samp.

Fabaceae Shrub Medium to big bees – 12 – – 15 15

Lavandula stoechas L. Lamiaceae Suffrutix Small to big bees, hoverflies, 
beeflies, butterflies

– 12 12c – 15 20

Teucrium fruticans L. Lamiaceae Shrub Medium to big bees – 12 12c – 15 24

Phyllirea angustifolia 
L.

Oleaceae Shrub Wind – 13 – – 14 13

Scrophularia frutescens 
L.

Scrophulariaceae Suffrutix Small to big bees, hoverflies – 12 – – 16 20

Genista triacanthos 
Brot.

Fabaceae Shrub/suffrutix Medium to big bees – 12 – – 15 15

Erica umbellata Loefl. 
ex L.

Ericaceae Shrub Small bees – 11 – – 7 11

Cytisus grandiflorus 
(Brot.) DC.

Fabaceae Shrub/tree Small to big bees – 14 – – 13 13

Echium gaditanum 
Boiss.

Boraginaceae Perennial/
biennial herb

Small to big bees – 11 – – – 20

Crataegus monogyna 
Jacq.

Rosaceae Shrub/tree Small to big bees, hoverflies – 12 – – 15 13

Lysimachia monelli (L.) 
U.Manns & Anderb.

Primulaceae Perennial herb Small bees, hoverflies – 10 – – – 20

Cistus albidus L. Cistaceae Shrub Small to big bees, hoverflies – 11 – – 15 30

Rhamnus lycioides L. Rhamnaceae Shrub Small to big bees, hoverflies – 12 – – 11 17

Cistus salviifolius L. Cistaceae Shrub Small to big bees, hoverflies – 12 – – 20 29

Pistacia lentiscus L. Anacardiaceae Shrub/tree Wind – 14 – – 12 14

Cistus ladanifer L. Cistaceae Shrub Small to big bees, hoverflies – 12 – – 20 30

Osyris alba L. Santalaceae Shrub Hoverflies, flies – 12 – – 15 20

Quercus coccifera L. Fagaceae Shrub Wind – 12 – – – 14

Coronilla juncea L. Fabaceae Shrub Small to big bees – 13 – – 15 15

Genista hirsuta Vahl Fabaceae Shrub/suffrutix Medium to big bees – 12 – – 15 15

Cistus monspeliensis L. Cistaceae Shrub Small to big bees, hoverflies – 12 – – 20 30

Cistus libanotis L. Cistaceae Shrub Small to big bees, hoverflies – 13 – – 15 30

Halimium halimifolium 
(L.) Willk.

Cistaceae Shrub/suffrutix Small to big bees, hoverflies, 
beetles

– 12 – 15 23 30

Armeria gaditana 
Boiss.

Plumbaginaceae Perennial herb Small to big bees – 12 – – 15 18

Erica scoparia L. Ericaceae Shrub Wind – 12 – – 12 12

Phlomis purpurea L. Lamiaceae Shrub Big bees – 11 – – 12 15
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summer: Jun, Jul, Aug; autumn: Sep, Oct, Nov) during the 
periods of study. For precipitation data, we obtained the annual 
accumulated rainfall and the accumulated rainfall for the four 
meteorological seasons during the periods of study.

Flowering phenology in 1980s and 2020s

From August 1985 to May 1987, weekly flower counts were 
made on 9–21 individuals for each of the 51 species studied 
in order to assess their annual flower production (Ortiz, 1991); 
we now use the raw data obtained in those counts to study 
flowering phenology in that decade. Thirty-six years later, to 
assess possible phenological changes, we reproduced the same 
type of counts on 4–30 individuals of the same species from 
April 2020 to July 2022 (Table 1).

We pooled all data for each sampling decade and species, 
generating two datasets for each species: 1980s and 2020s. For 
each decade and species, we obtained the mean start date of 

flowering, the mean end date of flowering, the flowering peak 
(as the median for the date of highest flower production) and 
the mean duration of the flowering period.

Changes in co-flowering patterns

In order to determine whether co-flowering patterns be-
tween species in the community had changed, we created a 
co-flowering matrix for each of the study decades, the 1980s 
and the 2020s. In each matrix, co-flowering for each focal 
species with each other species in the community was calcu-
lated as the number of overlapping days divided by the total 
number of flowering days of the focal species. These matrices 
showed the proportion of days that each focal species over-
lapped with other species in each decade. Then, we obtained a 
co-flowering change matrix showing the increase or decrease 
in overlap between species by dividing the values for the 
2020s by those for the 1980s. In this matrix, if the proportion 

Year

Species Family Type Pollination agent 1985 1986 1987 2020 2021 2022

Cistus psilosepalus 
Sweet

Cistaceae Shrub Small bees – 12 – – 13 20

Cistus crispus L. Cistaceae Shrub Small to big bees, hoverflies, 
butterflies

– 12 – – 15 30

Anthyllis cytisoides L. Fabaceae Shrub/suffrutix Small to big bees – 12 – 15 15 15

Lonicera implexa Aiton Caprifoliaceae Shrub/vine Small to big bees, 
Lepidoptera

– 9 – – 4 5

Armeria velutina Welw. 
ex Boiss. & Reut.

Plumbaginaceae Perennial herb Small to big bees, butterflies – 12 – – 15 18

Retama sphaerocarpa 
(L.) Boiss.

Fabaceae Shrub/tree Small to big bees, wasps, 
hoverflies

– 12 – – 7 8

Thymus mastichina L. Lamiaceae Suffrutix Small to big bees, wasps, 
butterflies

– 12 – 15 15 –

Clematis flammula L. Ranunculaceae Vine Small to big bees – 12 – – 15 7

Helichrysum stoechas 
DC.

Asteraceae Suffrutix/
perennial herb

Small to big bees, beeflies, 
butterflies

– 12 – – 16 15

Rubus ulmifolius Schott Rosaceae Shrub Small bees, butterflies – 12 – 10 7 10

Myrtus communis L. Myrtaceae Shrub Small to big bees, beeflies – 12 – 15 15 –

Teucrium capitatum L. Lamiaceae Suffrutix Small bees, wasps – 12 – 15 16 –

Dianthus inoxianus 
Gallego

Caryophyllaceae Perennial herb Small bees, sphingids – 10 – – 8 –

Helichrysum picardii 
Boiss. & Reut.

Asteraceae Suffrutix/
perennial herb

Small to big bees, beeflies, 
butterflies

– 12 – 15 – –

Daphne gnidium L. Thymelaeaceae Shrub Small to big bees, wasps, 
hoverflies, butterflies

20a 13 – 15 14 –

Carlina corymbosa L. Asteraceae Perennial herb Small to big bees, beeflies – 12 – – 18 –

Dittrichia viscosa (L.) 
Greuter

Asteraceae Perennial herb Small bees, hoverflies 20b 12 – – 5 –

Smilax aspera L. Smilacaceae Liana Hoverflies, flies 18 13 – 12 14 –

Calluna vulgaris (L.) 
Hull

Ericaceae Shrub Small to big bees, hoverflies – 12 – – 18 –

aData for only the end of the flowering period available.
bData for only the peak and the end of the flowering period available.
cData for only the start of the flowering period available.
dData for only the start and the peak of the flowering period available.

Table 1. Continued
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of co-flowering of species ‘A’ with species ‘B’ had changed 
from 0.2 to 0.4, the value of the cell would be 2, whereas a 
change from 0.4 to 0.2 would give a value of −0.5. If a spe-
cies gained a new co-flowering neighbour from the 1980s to 
the 2020s, the cell would be marked as a ‘gain’, whereas if a 
co-flowering interaction was lost, the cell would be marked 
as a ‘loss’.

Then, in order to address specifically how changes in 
co-flowering affected species that shared pollinators, we com-
bined the co-flowering change matrix with the information 
on main pollinators for each species. Initially, we reduced the 
co-flowering change matrix to a matrix with only three possible 
values: increased co-flowering (1), decreased co-flowering 
(−1) and unaffected co-flowering (0); then, we selected only 
the combinations of species that had changes in co-flowering 
and shared their main pollinators (Table 1), thus being potential 
competitors for their attention (Mitchell et al., 2009); finally, 
we calculated the sum of the values for each species, the total 
sum for all the species and the mean value.

Statistical analysis

In order to determine the magnitude and rate of change of the 
climatic variables in the study area, linear models were fitted, 
with the climatic variable of interest as the dependent variable 
and time as the independent variable. These models were per-
formed using both daily and annual data. Additionally, we per-
formed the same models considering exclusively data for each 
meteorological season.

Given that phenological phenomena follow a repetitive 
cycle, in which each year is an iteration of the cycle, we used 
circular statistics to deal with date analyses (Morellato et al., 
2000, 2010, 2016). Following Morellato et al. (2000, 2010), 
we transformed all dates into angular degrees. Then, we tested 
flowering dates in both decades for unimodality and signifi-
cance of mean angle (or mean dates) of flowering by using the 
Rayleigh test (Morellato et al., 2010). If significant, the pat-
tern is considered significantly seasonal, and the vector r is 
a measure of the degree of seasonality of phenological dates 
(Morellato et al., 2000). The value of r ranges from zero (no 
seasonality and a uniform distribution) to one (the highest sea-
sonality) (Morellato et al. 2000, 2010). In order to test whether 
the significant mean angle (or mean date) of the community 
had changed from the 1980s to the 2020s, we tested whether 
the number of species flowering each day of the year between 
the two decades differed by performing the Watson–Williams 
F-test. In order to test whether the degree of seasonality had 
changed from the 1980s to the 2020s, we performed an equal 
kappa test, which compares dispersion of the circular data. 
We also tested whether the mean angular start and mean end 
dates of flowering differed from the 1980s to the 2020s, using 
again the Watson–Williams F-test. Additionally, we tested for 
changes in the date of maximum flower production using the 
Wilcoxon test. The Rayleigh test, the Watson–Williams F-test 
and the equal kappa test were implemented using the ‘circular’ 
package (Agostinelli and Lund, 2022), whereas the Wilcoxon 
test was implemented using the ‘TwoCircles’ package (Guerrier 
and Jammalamadaka, 2018), all in the R statistical environment 
(R Core Team, 2022).

In order to test whether certain lineages are more suscep-
tible to climate change-induced shifts in flowering phenology, 
we estimated the phylogenetic signal in two of our variables 
(flowering start shift and flowering duration change) by calcu-
lating Pagel’s λ (Pagel, 1999) and estimating its significance 
with the the ‘phytools’ package (Revell, 2012). We obtained a 
phylogenetic tree for our data by trimming the tree ‘GBOTB.
extended’ to our species list with the ‘V.Phylo.Maker’ package 
(Qian and Jin, 2016). The mentioned tree is available within the 
same package, and all phylogenetic analyses were performed in 
the R statistical environment (R Core Team, 2022). Of our 51 
studied species, two (Retama sphaerocarpa and Stauracanthus 
genistoides) were not in the tree and could not be included in 
the phylogenetic signal analyses. Nevertheless, the Fabaceae 
family is well represented in our dataset, and these species did 
not show extreme values of phenological change; therefore, we 
expect that the exclusion of these two species would not affect 
the results of phylogenetic signal analyses.

In order to test whether the duration of the flowering period 
changed between decades, we used an ANOVA. We also fitted 
a linear model, with flowering period duration as the dependent 
variable and the flowering start date as the independent vari-
able, to test whether an earlier flowering start was related to an 
increase in flowering duration. Both the ANOVAs and linear 
models were performed as implemented in the ‘stats’ package 
(R Core Team, 2022).

We used the ‘lubridate’ package (Grolemund and Wickham, 
2011) and the ‘ggplot2’ package (Wickham, 2016) to produce 
plots in the R statistical environment.

RESULTS

Changes in climatic variables

The mean annual temperature increased from 16.93 °C in 
1974 to 17.52 °C in 2022 (Fig. 1A; Supplementary Data Fig. 
S1A). Likewise, the mean annual minimum temperature also 
increased from 8.93 °C in 1974 to 11.65 °C in 2022 Fig. 1B; 
Supplementary Data Fig. S1B), and the mean annual maximum 
temperature also increased from 24.93 °C in 1974 to 25.86 
°C in 2022 (Supplementary Data Fig. S1C). Linear regression 
models were statistically significant for mean annual temper-
atures (Fig. 1A) and for minimum annual temperatures (Fig. 
1B), in both cases showing an increasing trend. Temperature 
changes were not uniform across all seasons: for seasonally 
averaged data models, only spring mean temperatures in-
creased significantly (Fig. 1C; Supplementary Data Fig. S2), 
spring, summer and autumn mean minimum temperatures in-
creased significantly (Fig. 1D; Supplementary Data Fig. S3), 
and again only spring mean maximum temperatures showed a 
significant increase (Supplementary Data Fig. S4). The spring 
minimum temperature model equation showed the highest co-
efficient, which translates into an increase of almost 0.5 °C 
every 10 years (Fig. 1D).

The annual accumulated precipitation showed a decrease 
from 520 mm in 1974 to 290 mm in 2022 (Supplementary Data 
Fig. S1D), but the linear models were not significant. The sea-
sonally averaged accumulated precipitation models were also 
not significant (Supplementary Data Fig. S5).
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Flowering phenology

In the two studied decades, flowering phenology at the 
community level was highly seasonal (P < 0.05), with a high 
number of species flowering from late winter to early summer 
(Fig. 2A). The degree of seasonality did not change significantly 
between decades (Fig. 2B). However, the mean flowering peak 
of the community shifted significantly to an earlier date, from 
9 May in the 1980s decade to 17 April in the 2020s decade 
(22 days). The maximum number of species flowering at the 
same date was ~20 in both decades (Fig. 2). The distribution 
of the community flowering curve differed between decades: 
in the 1980s, the period with ≥10 species in flower, about half 
of the maximum, lasted from 28 March to 25 June, whereas in 
the 2020s this period lasted from 12 March to 13 June (Fig. 2). 
There was also a decrease in the number of flowering species in 
the summer from the 1980s to the 2020s (Fig. 2).

Considering phenological shifts at the species level between 
the 1980s and 2020s decades, 80 % of the species showed a 
significant (P < 0.05) advancement in their flowering start date, 
and only 6 % showed a significant delay (Fig. 3; Supplementary 
Data Table S2). Taking into account only the species that flow-
ered earlier, the advance in the start date ranged from 6 to 92 
days (mean 24 days in advance; Supplementary Data Table S2). 
The date of the end of the flowering also showed a significant 
advancement in 68 % of the species between decades, and none 
of the species had a significant delay (Supplementary Data 
Table S2). Regarding combinations of changes in both start and 
end flowering dates (Fig. 3), 59 % of species showed a shift 
to earlier start and end dates, resulting in a complete advance-
ment of their flowering period. Meanwhile, 21 % of species 
showed an advancement only in the start date, and 8 % only in 
the end date (Fig. 3). Only 6 % of the studied species did not 

show a significant shift of their flowering start or end dates, 
and 4 % showed a later start date but the end date remained 
unchanged. Only one species (Lysimachia monelli) showed 
a delay in its flowering start date and an advancement of its 
flowering end date, resulting in a reduction of its total flowering 
period (Fig. 3). Shifts were unevenly distributed across species; 
those that flowered at earlier dates, such as Salvia rosmarinus, 
Aristolochia baetica and Ulex eriocladus, advanced more than 
average, whereas the ones flowering at later dates, such as 
Clematis flammula, Dianthus inoxianus and Calluna vulgaris, 
advanced their flowering period little or not at all.

Regarding changes in the distribution of the flowering peak 
date, 90 % of the species showed a significant difference be-
tween decades (Supplementary Data Table S2). Of all the 
species, 82 % showed an advancement of their median date, 
whereas 6 % showed a delay. One species (Daphne gnidium) 
showed differences in its flowering peak date distribution, but 
its median date did not change from the 1980s to the 2020s; in-
stead, its distribution became wider.

The length of the flowering period showed a significant in-
crease in 43 % of the species (P < 0.05), whereas 20 % of the 
species showed a significant decrease and 37 % showed no 
change between decades (Supplementary Data Table S2).

There was no phylogenetic signal for either of the two ana-
lysed variables [flowering start date (λ = 6.64325 × 10−5, P = 1; 
Supplementary Data Fig. S6A) or change in flowering duration 
(λ = 5.98388 × 10−5, P = 1; Supplementary Data Fig. S6B), 
suggesting that species underwent phenological changes re-
gardless of their evolutionary relationship. There was a positive 
and significant association between the change in the length of 
the flowering period and the advancement of flowering start 
date (Fig. 4), meaning that species that suffered a stronger shift 
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in their start of flowering to an earlier date also showed an in-
creased flowering duration.

Changes in flowering order and co-flowering patterns

Phenological rank order within the community changed from 
the 1980s decade to the 2020s decade (Fig. 5; Supplementary 
Data Table S3). Although most species underwent only a small 
change in their flowering rank order, some shifted considerably. 
For instance, Echium gaditanum shifted from being the 15th 
to the 36th species to start flowering, and Lonicera implexa 
shifted from the 36th to the 22nd.

Regarding co-flowering patterns, the matrix of co-flowering 
changed drastically from the 1980s (Supplementary Data Fig. 
S7) to the 2020s (Supplementary Data Fig. S8). A total of 324 
co-flowering interactions in the 1980s increased, including the 
gain of 102 completely new co-flowering interactions in the 
2020s (Fig. 6). Meanwhile, 252 co-flowering interactions de-
creased, including the complete loss of 74 co-flowering inter-
actions (Fig. 6).

In the 1980s decade, 38 % of species shared at least part 
of their flowering period with more than half of the commu-
nity (Supplementary Data Fig. S7). Anchusa calcarea was the 
species sharing its flowering period with the most neighbours 
(84 %), whereas Carlina corymbosa was the species sharing 
its flowering period with the fewest neighbours (only two spe-
cies). Meanwhile, in the 2020s decade, 54 % of species shared 
at least part of their flowering period with more than half of the 
community (Supplementary Data Fig. S8). Anchusa calcarea 
was again the species with the most co-flowering neighbours 
(82 %), and both Carlina corymbosa and Dittrichia viscosa 
were tied as the species with the fewest co-flowering neigh-
bours (only one species).

The matrix of changes in co-flowering for the species that 
shared their main pollinators (Supplementary Data Fig. S9) 
revealed important differences between species. Four species 
were left out of the analysis, because they were wind pollin-
ated (Table 1). Only one entomophilous species (Aristolochia 

baetica) did not share its main pollinators with any other. 
Most entomophilous species (26, i.e. 55 %) increased their 
co-flowering with potential competitors; 18 of them (38 %) 
decreased their co-flowering with potential competitors, and 
3 of them (6 %; including A. baetica) showed no overall in-
crease or decrease. The species with the highest positive value 
for increased co-flowering with potential competitors was 
Scrophularia frutescens (14), whereas the species with the 
greatest decrease in co-flowering with potential competitors 
were Cytisus grandiflorus and Halimium halimifolium (both 
−9). The mean value of changes in co-flowering with potential 
competitors was 1.17 ± 5.15, but the total sum of the values was 
55, indicating that the overall co-flowering with potential com-
petitors remained relatively stable, although some species had 
extreme positive values.

DISCUSSION

We demonstrated that Mediterranean plant communities and 
perennial species have shifted their overall flowering phen-
ology since the decade of the 1980s, in terms of both start and 
end dates and duration. These shifts followed the increases in 
temperature related to climate change (IPCC, 2021) and were 
more pronounced for species that historically flowered in winter 
or early spring, and for the start and peak flowering dates. As 
a result of the different rates at which species were shifting, 
co-flowering neighbours changed between decades, with new 
co-flowering species pairs and novel ecological interactions. 
The new arrangements suggest that competitive or facilitative 
interactions between plant species might be emerging.

Climate change and flowering phenology

Climate change projections over the Mediterranean region show 
a marked increase in temperatures and reduction in precipitation 
for the south-west Mediterranean (Giorgi and Lionello, 2008). 
These trends might be important in shifting the climate zone from 
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mediterranean to arid by the end of the century (Alessandri et al., 
2014). Accordingly, the Mediterranean region has been described 
as a climate change ‘hot spot’ (Giorgi and Lionello, 2008; Lionello 
and Scarascia, 2020). Our results are in line with these predictions, 
because we found a significant increase in mean annual temperat-
ures from the late 1970s to the present. Warming in our study area 
has occurred all year round, with a mean increase of 0.59 °C over 
the last 50 years, but being much stronger in the spring (1.8 °C). 
According to the latest Intergovernamental Pannel of Climate 
Change (IPCC) report, the projected mean annual warming in the 
Mediterranean basin by the end of the century will be in the range 
of 0.9–5.6 °C compared with the last two decades of the 20th 
century, depending on the emission scenario (IPCC, 2021). Our 
study confirmed an earlier and warmer spring in our study area, 
contrasting with predictions for the Mediterranean basin, where 
warming is expected to be much more pronounced in autumn and 
especially in summer (Lionello and Scarascia, 2018).

The warming in our study area was stronger for the minimum 
(≤2.7 °C) than for maximum daily temperature, determining a 
decrease in the amplitude of the daily temperature range, al-
though some models have predicted the opposite pattern for 
the Mediterranean region (Lionello and Scarascia, 2018, 
2020). Asymmetric differences in day/night temperatures re-
ported here are found in the Northern Hemisphere (Solomon 
et al., 2007). Daytime and nighttime temperature might influ-
ence plant phenology unequally (Wang et al., 2019). Thus, ob-
served shifts in flowering phenology might be more sensitive 
to variations in minimum temperatures in the season preceding 
flowering than to maximum temperatures. Daily temperature 
ranges are reported to influence plant flowering through effects 
on plant metabolism and development and on pollination (Peng 
et al., 2013; Wang et al., 2019).

We found a decrease of annual accumulated rainfall from 
1975 to 2022 of ~25 %, which was marginally non-significant, 
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Fig. 3. Patterns of change in start and end of flowering in the Mediterranean shrub community studied. The ‘Flowering’ column shows a representation of the dif-
ferent types of changes in the flowering period from the 1980s decade to the 2020s. The ‘Start’ and ‘End’ columns show the direction of change for the flowering 
start and end dates, respectively (green clocks = no changes; yellow clocks with a right-pointing arrow = change towards a later date; and blue clocks with a left-
pointing arrow = change towards an earlier date). The ‘Example’ column provides a picture and name of a species representing each type of phenological change. 

The ‘Spp n’ column shows the number and percentage of species presenting each type of phenological change.
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probably owing to the high interannual variability in precipi-
tation, which is characteristic of the Mediterranean region 
(Deitch et al., 2017). The latest report by the IPCC also pre-
dicts a decrease in precipitation across the Mediterranean 
basin by the end of the century (by 4–22 %, depending on the 
emission scenario; IPCC, 2021). Mediterranean communities 
are strongly seasonal (Ackerly et al., 2014), which is condi-
tioned by the distribution of temperatures and precipitation. In 
our study area, we found strong flowering seasonality that did 
not change over the last 35 years. However, we did find a con-
siderable shift in the flowering phenology of the community, 
because the community-scale flowering peak advanced >20 
days since the 1980s. This shift is concurrent with the increase 
of spring temperatures; as spring gets warmer, the anticipated 
warming temperatures trigger an early flowering (Menzel et al., 
2006; Visser et al., 2022).

We demonstrated that most species shifted towards earlier 
dates not only at the start but also at the anticipated end of the 
flowering period. Additionally, many species shifted to either 
an earlier start or end of the flowering period, all of which led 
to an advancement of the entire flowering period, a new and 
underexplored aspect of phenological responses to warming 
(Fig. 4). The early flowering shifts were pervasive in the com-
munity and in line with the trends described for first flowering 
for Northern Europe (Menzel et al., 2020). Only five species 
did not experience a shift in either the start or the end of their 
flowering period.

Nevertheless, the advance in flowering phenology was of an 
unprecedented magnitude in our plant community. We found 
a mean advance in the beginning of the flowering of 21 days 
in a 35-year period (0.6 days year−1), 3-fold higher than pre-
viously described, and a maximum advance value of 90 days. 
For instance, in the Mediterranean, Peñuelas et al., (2002) de-
scribe a mean advance in the beginning of flowering of 9.5 
days from 1952 to 2000 (0.2 days year−1) and a maximum 
advance value of 70 days. Spring temperatures were the cli-
matic variable that showed the greatest increase in our low-
land Mediterranean study area and were significantly related to 

flowering. Therefore, we concluded that temperature must have 
played a key role in shifting the flowering times of our commu-
nity. Crimmins et al. (2010) observed that, in semi-arid, low-
land ecosystems at Mt. Kimball (AZ, USA), the phenological 
advance of flowering phenology was influenced by the increase 
in spring temperatures (spring forcing), which had a strong 
effect on the advancement of the first flowering day.

Despite this strong general trend, shifts in flowering also 
varied in magnitude among our Mediterranean species, with 
some showing no shift at all. Flowering species-specific 
shifts are pointed out in a few studies (Peñuelas et al., 2004; 
Crimmins et al., 2010; Cook et al., 2012; CaraDonna et al., 
2014; Theobald et al., 2017), mostly regarding starting dates. 
Shifting responses of flowering phenology are generally re-
ported as being stronger in annuals than in perennial plants 
(Petanidou et al., 2014; Büntgen et al., 2022). In contrast, an-
nual plant phenologies are also very sensitive to rainfall in com-
parison to perennials (Crimmins et al., 2010), and a reduction in 
autumn rainfall could lead to a delay in the phenology response 
of the annual plant community. Thus, the phenological shifts 
of the whole community are expected to follow more complex 
patterns when including other life forms aside from perennial 
plants, as in the present study.

Species that flowered in late winter during the 1980s 
decade showed the highest values of advance and extended 
flowering periods: Arbutus unedo, Aristolochia baetica, Salvia 
rosmarinus and Ulex eriocladus all started flowering between 
late December and early February in the 1980s and all showed 
the greatest advances in mean start dates (between 26 and 92 
days). Increased spring forcing has been shown to advance 
flowering phenology, whereas reduced winter chilling has the 
opposite effect (Flynn and Wolkovich, 2018). The net shift in 
phenology might depend on the particular sensitivity of plant 
species to these two effects, among other factors (Flynn and 
Wolkovich, 2018). It is likely that chilling does not play a role 
in the early flowering responses of species in our study area, 
because the species in the 2020s decade were flowering before 
the onset of winter. In fact, several studies have shown that 
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some Mediterranean taxa (e.g. Quercus, Olea) do not require 
accumulated chilling hours to initiate flowering (Osborne et 
al., 2000; Pinto et al., 2011). In contrast, the accumulation of 
heat units has been reported to be a key factor influencing the 
phenology of Mediterranean vegetation (Spano et al., 2013). 
We postulate that perhaps one reason behind the extreme 
shift in flowering time is precisely the absence of a chilling 
cue balancing out the effect of spring forcing in the lowland 
Mediterranean region studied. In contrast, although rainfall 
has decreased only slightly during the period studied, the ob-
served increase in temperature must have led to a significant 

loss of soil water availability (Komuscu et al., 1998), which 
would bring forwards the critical summer drought period. 
Several studies have shown that soil water availability affects 
Mediterranean species by bringing forwards their flowering 
when conditions become drier (Spano et al., 2013). Therefore, 
the combined effect of higher temperatures and lower water 
availability would also be responsible for the strong pheno-
logical shift observed here; this would particularly affect 
spring-flowering species, which would escape the advancing 
soil drought with this phenological shift. In any case, sensi-
tivity to water stress is highly variable among Mediterranean 

01-Arbutus unedo
1-DEC 1-MAR 1-JUN

Day of the year
1980s

1-SEP 1-DEC 1-DEC 1-MAR 1-JUN

Day of the year
2020s

1-SEP 1-DEC

02_Aristolochia baetica
03_Salvia rosmarinus

04_Ulex eriocladus
05_Halimium calycinum

06_Anchusa calcarea
07_Stauracanthus genistoides

08_Lavandula stoechas
09_ Teucrium fruticans

10_Phyllirea angustifolia
11_Scrophularia frutescens

12_Genista triacanthos
13_Erica umbellata

14_Cytisus grandiflorus
15_Ech ium gaditanum

16_Crataegus monogyna
17_Lysimachia monelli

18_Cistus albidus
19_Rhamnus lycioides

20_Cistus salviifolius
21_Pistacia lentiscus

22_Cistus ladanifer
23_Osyris alba

24_Quercus coccifera
25_Coronilla juncea
26_Genista hirsuta

27_Cistus monspeliensis
28_Cistus libanotis

29_Halimium halimifolium
30_Armeria gaditana

31_Erica scoparia
32_Phlomis purpurea

S
pecies

33_Cistus psilosepalus
34_Cistus crispus

35_Anthyllis cytisoides
36_Lonicera implexa
37_Armeria velutina

38_Retama sphaerocarpa
39_Thymus mastichina
40_Clematis flammula

41_HeIichrysum stoechas
42_Rubus ulmifolius

43_Myrtus communis
44_Teucrium capitatum
45_Dianthus inoxianus

46_Helichrysum picardii
47_Daphne gnidium

48_Carlina corymbosa
49_Dittrichia viscosa

50_Smilax aspera
51_Calluna vulgaris

Fig. 5. Flowering of the 51 studied species in the decades of the 1980s and 2020s in the Mediterranean shrub community. Species are ordered from top to bottom 
according to the date when they started flowering in the 1980s. Bars span from the mean start date to the mean end date for each species; lines show the standard 
deviation. Legend: Green bars = 1980s phenology; Blue and red bars = 2020s phenology, blue bars = unchanged ranking order, red bars = changed ranking order.
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species (Spano et al., 2013) and this will condition the strength 
of the response of each species.

In contrast, species that flowered in summer–autumn in the 
1980s decade showed the smallest shifts or even no flowering 
shifts (Dianthus inoxianus, Daphne gnidium, Carlina 
corymbosa or Smilax aspera) (see Dunne et al., 2003). We 
propose alternative and non-exclusive explanations: the late-
blooming species could be equally sensitive to both chilling 
and forcing and, therefore, the effects of reduced chilling and 
increased forcing could be balancing each other (Flynn and 
Wolkovich, 2018). Cook et al. (2012) found that warm tem-
peratures during the vernalization period (typically autumn and 
winter) can delay dormancy or the fulfilment of chilling re-
quirements, thereby delaying spring events, such as flowering. 
Alternatively, given that photoperiod is a third factor, along with 
chilling and forcing, usually involved in determining flowering 
date (Wang et al., 2020a), it is possible that late-blooming spe-
cies might be strongly photoperiod dependent for flowering.

Our study clearly showed a consistent pattern of ad-
vancements in the start flowering date driving the increase 

in flowering duration. Only a few occasional differences in 
flowering duration have been associated with shifts in phen-
ology (CaraDonna et al., 2014), highlighting the relevance 
of detailed phenological observations covering the complete 
flowering event.

Our study is, to our knowledge, the first to analyse the phylo-
genetic signal of changes in phenological variables, rather than 
the phenological variables (dates and durations) themselves. We 
found no significant phylogenetic signal for the change of the 
phenological variables, which would indicate that the effects of 
climate change on the flowering phenology of our community 
are pervasive and more influenced by factors other than phyl-
ogeny (i.e. flowering season). Previous studies have shown that 
phylogeny is relatively good at predicting flowering phenology 
on a global scale (Davies et al., 2013), but studies focusing 
on ecological communities have found a lack of phylogenetic 
signal for flowering phenology (Cortés‐Flores et al., 2017; 
Wang et al., 2020b), perhaps because the pool of species be-
longing to a community is already filtered by an underlying 
evolutionary history.
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03 Salvia rosmarinus

04 Ulex eriocladus

05 Halimium calycinum

06 Anchusa calcarea

07 Stauracanthus genistoides

08 Lavandula stoechas

09 Teucrium fruticans

10 Phyllirea angustifolia

11 Scrophularia frutescens

12 Genista triacanthos

13 Erica umbellata

14 Cytisus grandiflorus

15 Echium gaditanum

16 Crataegus monogyna

17 Lysimachia monelli

18 Cistus albidus
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19 Rhamnus lycioides

20 Cistus salviifolius

21 Pistacia lentiscus

22 Cistus ladanifer

23 Osyris alba

24 Quercus coccifera

25 Coronilla juncea

26 Genista hirsuta

27 Cistus monspeliensis

28 Cistus libanotis

29 Halimium halimifolium

30 Armeria gaditana

31 Erica scoparia

32 Phlomis purpurea

33 Cistus psilosepalus

34 Cistus crispus

35 Anthyllis cytisoides

36 Lonicera implexa

37 Armeria velutina

38 Retama sphaerocarpa

39 Thymus mastichina

40 Clematis flammula

41 Helichrysum stoechas

42 Rubus ulmifolius

43 Myrtus communis

44 Teucrium capitatum

45 Dianthus inoxianus

46 Helichrysum picardii

47 Daphne gnidium

48 Carlina corymbosa

49 Dittrichia viscosa

50 Smilax aspera

51 Calluna vulgaris

Fig. 6. Community-level matrix of change in co-flowering overlap in our Mediterranean shrub community. Each cell represents the proportional change in 
co-flowering overlap between species pairs in the two study decades of the 1980s and 2020s, 35 years apart. To represent the change in co-flowering visually for 
all species, we divided the co-flowering proportion value of the 2020s matrix by the value in the 1980s matrix (see Supplementary Data Figs S7, S8); thus, if the 
proportion of co-flowering of species ‘A’ with species ‘B’ had changed from 0.2 to 0.4, the value of the cell would be 2, whereas a change from 0.4 to 0.2 would 
give a value of −0.5. If a species gained a new co-flowering neighbour from the 1980s to the 2020s, the cell would be marked as a ‘gain’, whereas if a co-flowering 
interaction was lost, the cell would be marked as a ‘loss’. Cells are coloured to emphasize the message, hence a deeper shade of orange means an increase in 
co-flowering overlap, whereas a deeper shade of purple means a decrease in co-flowering overlap. Net gains and losses of co-flowering overlap were coloured as 

red and blue, respectively, in order to differentiate them.
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We have found a strong phenological reassembly, including 
the gain and the disappearance of co-flowering partners, and 
also a change in flowering order, probably related to climate 
change, for the first time in the studied Mediterranean com-
munity. Regarding co-flowering, the number of autumn- to 
winter-flowering species has doubled, whereas the number of 
summer-flowering species has decreased. Flowering reassembly 
occurs when changes in phenological patterns are species spe-
cific (Crimmins et al., 2010), as detected in our community. 
Studies examining how climate reshapes co-flowering relation-
ships at the community level are still very scarce (Mitchell et 
al., 2009; Forrest et al., 2010; Caradonna et al., 2014; Faust and 
Iler, 2021), but they are crucial because such shifts influence the 
nature of ecological interactions that are shaped by the commu-
nity context (Theobald et al., 2017).

Additionally, there was an impressive change in the flowering 
order between the 1980s and the 2020s decades. The reshuf-
fling of species in flower might affect the visits of pollinators 
to the plants, adding to the temporal effects of flowering antici-
pation and duration. The reassembly of flowering order related 
to climate change is an unexplored theme in climate change re-
search, and we need to explore how pervasive the phenomenon 
is across landscapes and phenophases. However, flowering 
order is a relevant issue for pollination research and defines 
pollination patterns, such as the trapline visits by humming-
birds and bats, across time and space (Gentry, 1974; Lau et al., 
2017).

Although our data do not allow us to determine the con-
sequences of temporal changes and flowering decoupling, 
phenological reassembly has the potential ultimately to impact 
the fitness of species through their relationships with pollin-
ators (Lázaro et al., 2009; Fantinato et al., 2018) and patho-
gens (O’Brien et al., 2021). For plant species, matching their 
flowering time and synchrony with pollinator activity is crucial 
for fitness (Augspurger, 1981; Labonté et al., 2022), particu-
larly for those species that are self-incompatible. That is the 
case for many of the studied Mediterranean species, because 
they are entomophilous and self-incompatible (e.g. Cistus and 
Halimium spp., Lysimachia monelli, Phlomis purpurea, Salvia 
rosmarinus or Ulex eriocladus) (Talavera et al., 1997; Gibbs 
and Talavera, 2001; Magrach et al., 2021). Co-flowering species 
frequently share pollinators and can compete for their services 
(Mitchell et al., 2009; Johnson et al., 2022), but co-flowering 
species can also be mutually beneficial if a higher number of 
open flowers in the immediate area facilitate pollinator attrac-
tion (Bergamo et al., 2020). In this regard, most of our studied 
species are pollinated by bees or hoverflies, and we found a 
slight tendency towards increased co-flowering with other 
plants sharing pollinators, which might lead to a subsequent 
increase in competition or facilitation. Given that the number of 
species flowering varies widely throughout the year, there is the 
possibility that, at different times of the year, either competition 
or facilitation is prevalent at a community scale.

An example of the temporal decoupling between species 
sharing pollinators in our study area is Cistus, an important 
genus in terms of number of species (seven) and abundance, 
providing resources for a variety of pollinators and being 
self-incompatible (Bosch, 1992; Talavera et al., 1993; Ortiz, 
1994; Magrach et al., 2021). We found a decrease in flowering 
overlap of Cistus species in the 2020s compared with the 1980s. 

Phylogenetic relatedness has been shown to mediate the effect 
of heterospecific pollen on post-pollination success, with pos-
sible consequences for reproduction (Streher et al., 2020), and 
all Cistus species share their general main pollinator groups. 
If the Cistus species were mutually facilitating, the reduced 
flowering overlap could lead to a decrease in their current fit-
ness, but if their relationships were competitive, we might ex-
pect an increase in the fitness of some species. According to 
Theobald et al. (2017), phenological reassembly can have a 
high impact on long-lived species, such as those studied here, 
because changes in abundance and distribution are slow relative 
to climate change, and this might have implications for species 
conservation (Morellato et al., 2016).

In contrast, changes in the flowering phenology of the studied 
community might have important consequences from the pol-
linator point of view. In the Mediterranean basin, the most 
important pollinators are insects, and their activity is highly 
seasonal (Herrera, 1988; Petanidou et al., 1995). In our study 
area, in the 1980s, pollinator activity was concentrated between 
March and June, depending on the taxonomic group (Herrera, 
1988). This seasonal pattern suggests that pollinators would be 
very sensitive to warming and consequent changes in flowering 
phenology (Manincor et al., 2023). If the pace in phenological 
shift differs between plants and pollinators, an ecological mis-
match will result (Memmott et al., 2007). Although some broad 
studies suggest that the phenological shift of flowering and pol-
linator activity might occur at roughly the same pace (Bartomeus 
et al., 2011), other more specific studies have found differences 
in the shift of plants and their pollinators, resulting in some 
degree of mismatch (Kehrberger and Holzschuh, 2019; Kudo 
and Cooper, 2019; Manincor et al., 2023). Owing to the gen-
eralization of ecological interactions in pollination networks, 
ecological mismatches of plants and pollinators might not have 
major negative consequences for most species (Hegland et al., 
2009). However, for the specialized species, the consequences 
might be dire (Memmott et al., 2007; Hegland et al., 2009). 
Furthermore, there is currently a need for more empirical evi-
dence on ecological mismatch and its consequences at the com-
munity level (Gérard et al., 2020; Iler et al., 2021).

Thanks to the research produced or started in the 20th century, 
along with the access to legacy datasets (e.g. Miller-Rushing 
and Primack, 2008), we are beginning to understand the effects 
of climate change on important biological processes, such as 
the flowering of plants. However, there are very few studies 
providing evidence of the effect of climate change on emerging 
ecological interactions, as we have already pointed out, and on 
the evolutionary mechanisms by which plants can adapt their 
phenology to environmental changes. Among these mechan-
isms are genetic change under natural selection and phenotypic 
plasticity. Both mechanisms have been demonstrated to play a 
role in the phenological response of flowering to climate change 
(Anderson et al., 2012; Richardson et al., 2017). However, be-
cause perennials have longer life cycles, their response to selec-
tion must be slower (Yue et al., 2010), and phenotypic plasticity 
is therefore likely to play a more important role in the pheno-
logical shifts observed in the shrub community studied (Yue 
et al., 2010; and see Satake et al., 2022). Further studies re-
garding the ecological and evolutionary processes governing 
plant phenological responses to the ongoing climate change 
remain necessary.
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SUPPLEMENTARY DATA

Supplementary data are available at Annals of Botany online 
and consist of the following.

Figure S1: evolution of climatic variables and fitted linear 
models for our study area. Figure S2: evolution of mean tem-
peratures and fitted linear models for our study area. Figure 
S3: evolution of mean minimum temperatures and fitted linear 
models for our study area. Figure S4: evolution of mean max-
imum temperatures and fitted linear models for our study area. 
Figure S5: evolution of cumulative precipitation and fitted 
linear models for our study area. Figure S6: phylogenetic tree 
for our study species showing the phylogenetic signal inferred 
from shifts in flowering start date [log(number of days)] from 
the decade of the 1980s to the decade of the 2020s. Figure S7: 
community-level co-flowering overlap in the 1980s decade. 
Figure S8: community-level co-flowering overlap in the 2020s 
decade. Figure S9: community-level matrix of change in 
co-flowering overlap for the species that shared their main pol-
linators (as defined in Table 1). Table S1: list of meteorological 
stations used in this study. Table S2: list of studied species, 
including information on each studied phenological param-
eter for both decades, the direction of change, the significance 
level of the test (n.s. = non-significant, *P < 0.05, **P < 0.01) 
and the magnitude of the change. Table S3: list of studied spe-
cies, including the order of the flowering start date in the 1980s 
decade and the 2020s decade.
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