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Abstract: We propose an integrated power and transportation system control framework,
combining the power grid model with a macroscopic electromobility model including charging
stations under V2G operation. In this framework, the electrical vehicles (EVs) act as energy
storage, but also as an additional virtual power grid link, transporting energy from one point to
another. This new holistic model is used as a basis for optimal control design seeking to minimize
renewable energy curtailment, while accounting for the structural limitation of the grid and other
SoC constraints necessary for the optimal operation of the EVs. The proposed control scheme is
shown to eliminate approximately 50% of curtailment compared to uncoordinated EV charging.
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1. INTRODUCTION
As efforts towards decarbonization of all economical sec-
tors become a major priority, Electric Vehicles (EVs) have
started to emerge as one of the main components of
sustainable transportation systems worldwide. Since EVs
are projected to reach around 40% of the total fleet in
the EU by 2030 (Conway et al., 2021), it is clear that
their integration with the power grid via the charging
infrastructure poses unsolved problems that will be critical
in the coming years (EU 2019).
Although the constant increase of the electrification of
the transportation systems (electromobility) may put a
strain on the power grid, due to the large charging power
demands (Fernandez et al., 2010), the massive adoption
of EVshas the potential to help with the introduction of
renewable energy sources (RES) (Wenzel et al., 2017), by
using their batteries for energy storage, thus increasing
RES dispatchability. From the power system side, the grid
operator can use this EV flexibility to deal with network
congestion management issues, which will especially be
important in a future dominated by intermittent RES.
As the natural interface between the mobility and power
networks, the charging stations will play an essential role in
the electromobility ecosystem. Today’s power electronics
technology and new DC grid topologies, together with
V2G-enabled EVs, allow charging stations to providing
ancillary services such as frequency stabilization and con-
gestion relief to the power grid López et al. (2013).
One critical barrier to fully exploiting the EVs’ potential is
the lack of tools and methods for forecasting EV flexibility
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in time and space. A model combining electromobility
and the power grid is required for using the EVs to
minimize the RES curtailment and improve the use of
the existing power transmission network. This entails
forecasting when and where the EVs move, how their State
of Charge (SoC) evolves, and how they interact with the
charging infrastructure and the power grid. Though some
approaches based on historical data do exist (Morlock
et al., 2019), a model-based framework is preferable for
optimal control purposes. In Henry and Ernst (2021),
RES curtailment was minimized by using optimal control,
which was also used for reinforcement learning of another
computationally efficient control law. Nevertheless, in this
work storage and charging of EVs was assumed to be
situated at a single point in the power network, whereas
in reality both the EVs and the charging stations are
distributed in time and space, and connected to different
power grid nodes. In Zhou et al. (2021), coupled traffic and
power grid dynamics were considered, but the traffic flows
were only described on graph level.
In this paper we propose an integrated model, combining
the power grid model with a macroscopic electromobility
model distributed in space, including charging stations
(in Section 2). The proposed multi-class electromobility
model extends the simplified CTEC model from Čičić and
Canudas-de-Wit (2022) to capture richer electromobility
dynamics by allowing for several different co-located SoC
levels in the vehicular flow. The electromobility layer
is interfaced with the power layer through the charging
stations, which act as predictable time-varying energy
storage. This novel holistic model is used to design optimal
control minimizing RES curtailment, while accounting
for the structural limitations of the grid and EV-related
constraints (in Section 3). Finally, the control framework
is tested in simulations (in Section 4), based on which we
are able to draw some conclusions (in Section 5).
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another. This new holistic model is used as a basis for optimal control design seeking to minimize
renewable energy curtailment, while accounting for the structural limitation of the grid and other
SoC constraints necessary for the optimal operation of the EVs. The proposed control scheme is
shown to eliminate approximately 50% of curtailment compared to uncoordinated EV charging.

Keywords: Electromobility, Energy curtailment, Optimal control, Renewable energy sources

1. INTRODUCTION
As efforts towards decarbonization of all economical sec-
tors become a major priority, Electric Vehicles (EVs) have
started to emerge as one of the main components of
sustainable transportation systems worldwide. Since EVs
are projected to reach around 40% of the total fleet in
the EU by 2030 (Conway et al., 2021), it is clear that
their integration with the power grid via the charging
infrastructure poses unsolved problems that will be critical
in the coming years (EU 2019).
Although the constant increase of the electrification of
the transportation systems (electromobility) may put a
strain on the power grid, due to the large charging power
demands (Fernandez et al., 2010), the massive adoption
of EVshas the potential to help with the introduction of
renewable energy sources (RES) (Wenzel et al., 2017), by
using their batteries for energy storage, thus increasing
RES dispatchability. From the power system side, the grid
operator can use this EV flexibility to deal with network
congestion management issues, which will especially be
important in a future dominated by intermittent RES.
As the natural interface between the mobility and power
networks, the charging stations will play an essential role in
the electromobility ecosystem. Today’s power electronics
technology and new DC grid topologies, together with
V2G-enabled EVs, allow charging stations to providing
ancillary services such as frequency stabilization and con-
gestion relief to the power grid López et al. (2013).
One critical barrier to fully exploiting the EVs’ potential is
the lack of tools and methods for forecasting EV flexibility
E-mail: {mladen.cicic, carlos.canudas-de-wit}@gipsa-lab.fr, {vivas, ru-
bio}@us.es. This work has received support from the Scale-FreeBack
project, funding by the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and innovation programme (grant
agreement N 694209), ENGREEN group from University of Seville, and
projects US-1381503 (FEDER, JA), PID2020-115561RB-C32 (Spanish
National Research Agency) and TED2021-131604B-I00 (MCI Spain).

in time and space. A model combining electromobility
and the power grid is required for using the EVs to
minimize the RES curtailment and improve the use of
the existing power transmission network. This entails
forecasting when and where the EVs move, how their State
of Charge (SoC) evolves, and how they interact with the
charging infrastructure and the power grid. Though some
approaches based on historical data do exist (Morlock
et al., 2019), a model-based framework is preferable for
optimal control purposes. In Henry and Ernst (2021),
RES curtailment was minimized by using optimal control,
which was also used for reinforcement learning of another
computationally efficient control law. Nevertheless, in this
work storage and charging of EVs was assumed to be
situated at a single point in the power network, whereas
in reality both the EVs and the charging stations are
distributed in time and space, and connected to different
power grid nodes. In Zhou et al. (2021), coupled traffic and
power grid dynamics were considered, but the traffic flows
were only described on graph level.
In this paper we propose an integrated model, combining
the power grid model with a macroscopic electromobility
model distributed in space, including charging stations
(in Section 2). The proposed multi-class electromobility
model extends the simplified CTEC model from Čičić and
Canudas-de-Wit (2022) to capture richer electromobility
dynamics by allowing for several different co-located SoC
levels in the vehicular flow. The electromobility layer
is interfaced with the power layer through the charging
stations, which act as predictable time-varying energy
storage. This novel holistic model is used to design optimal
control minimizing RES curtailment, while accounting
for the structural limitations of the grid and EV-related
constraints (in Section 3). Finally, the control framework
is tested in simulations (in Section 4), based on which we
are able to draw some conclusions (in Section 5).
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2. COMBINED ELECTROMOBILITY AND POWER
GRID MODEL

In this section we present the combined electromobility
and power grid model, starting with the new multi-class
aggregated electromobility model including the charging
stations, followed by the grid model, and finally connecting
the two parts into a combined model. We study a sce-
nario similar to the one used in Henry and Ernst (2021),
abstracting the situation where people commute between
home and work using EVs, potentially stopping on the
way at a public charging station. As shown in Fig. 1,
we consider a power grid with three nodes (Home, Public
charging station, and Work, in further text denoted by
h, p, and w, respectively) also connected by roads. The
two considered road links connect nodes h and w, with a
pair of off- and on-ramps at the middle, towards node p.
We assume that there is RES power generation and EV
charging ports at all three nodes, and that there is some
time-varying load at nodes h and w. While the combined
model is adapted to this specific setup it can accommodate
other types of road and power networks as well.
2.1 Electromobility model
We introduce a multi-class extension of the simplified
CTEC model (Čičić and Canudas-de-Wit, 2022), consist-
ing of the macroscopic dynamics of the EVs on the roads
and the dynamics of the EVs at charging stations, cou-
pled through ramp flows. In this work, we focus on the
discretized version of the model, and the reader is referred
to the cited paper for its continuous-time PDE version,

∂ρ(x, t)

∂t
+

∂(v(x, t)ρ(x, t))

∂x
= 0, (1)

∂ε(x, t)

∂t
+ v(x, t)

∂ε(x, t)

∂x
= D(v(x, t)), (2)

∂η(ε, t)

∂t
+

∂(c(ε, t)η(ε, t))

∂ε
= 0, (3)

where x is the position along the road, t the time, ρ(x, t)
the traffic density, v(x, t) the traffic speed, ε(x, t) the
SoC, D(v) the battery discharge as a function of EV
speed, η(ε, t) the distribution of EVs at a charging station
according to their SoC ε, and c(ε, t) the charging rate of
EVs, potentially different for different ε. We extend the
discretized version of the model by splitting the traffic
flows into different classes which have the same behaviour
while driving on the road, but may have independent SoC
dynamics or behaviour at on- and off-ramps. These classes
can be used to distinguish e.g. between combustion engine
vehicles and EVs, or between vehicles with different routes
and/or SoC, in order to avoid problems with the situation
when two traffic flows with very different SoC merge.
Aggregate traffic density equations. Each road l
is split into N l

x cells of length Lx, Lx ≥ vffT , where

Fig. 1. Layout of the combined electromobility and power
grid model used for this study.

vff is the free flow speed of the traffic, and T is the
model sampling period, appropriately selected to ensure
numerical stability. The aggregate macroscopic state of EV
traffic on each road link l is given by the traffic density ρki
and SoC εki in each cell i at each discrete time instant
k. Since here we consider multiple classes of vehicles, the
aggregate macroscopic SoC εki is not used, but instead we
will track the SoC of each class. The update equations for
the aggregate traffic density are:

ρk+1
i = ρki +

T

Lx

(
qki− − qki+

)
, (4)

qki+ =min

{
vffρ

k
i
,
ω(ρjam − ρki+1)− rkon,i+1

1− βk
i

}
, (5)

qki− =qki−1+(1− βk
i−1) + rkon,i, (6)

Here, qki− denotes the traffic flow entering cell i at its
upstream end, and qki+ the traffic flow exiting cell i at
its downstream end. The on-ramp flow into cell i is
denoted rkon,i and assumed to enter it at its upstream end,
and the off-ramp flow from cell i is assumed to leave
it at its downstream end, and denoted rkoff,i = βk

i q
k
i+,

where βk
i is the splitting ratio of mainstream traffic flow

towards the off-ramp. The traffic is assumed to follow
a triangular fundamental diagram with critical density
ρcr and jam density ρjam, yielding congestion wave speed
ω = vff

ρcr

ρjam−ρcr
, and we denote ρk

i
= min{ρki , ρcr} and

ρki = max{ρki , ρcr}. Note that we omit stating to which
road link l we are referring for better readability.
Multi-class traffic density equations. The aggregate
traffic flow is split into some number of traffic classes ξ ∈ Ξ,
with individual traffic densities denoted ξρki . Since here
we assume that all vehicle classes have the same traffic
behavior, the evolution of their traffic densities is given by

ξρk+1
i = ξρki +

T

Lx

(
ξqki− − ξqki+

)
, (7)

ξqki+ =
ξρki
ρki

qki+, (8)

ξqki− = ξqki−1+(1−
ξβk

i−1) +
ξrkon,i, (9)

where the ramp flows defined through ξβk
i−1 and

ξrkon,i are defined independently for each class ξ, with
ξrkoff,i =

ξβk
i−1

ξqki+. The per-class quantities relate to the
aggregate quantities according to

ρki =
∑
ξ∈Ξ

ξρki , rkon,i =
∑
ξ∈Ξ

ξrkon,i, βk
i =

∑
ξ∈Ξ

ξρki
ρki

ξβk
i . (10)

Once the vehicles reach the end of the road link from h to
w or from w to h, all of them exit the road and enter the
respective charging station, βk

Nx
= 1 for both road links.

The splitting ratios towards the public charging stations
ξβk

i , where i = iinph for the link h to w, and i = iinpw for w
to h, depend on the SoC of the approaching vehicles,

ξβk
i = 1−

(
1 + e−

ξεk
i
−εlow
γ

)−1

, (11)

as a monotonically decreasing sigmoid function centered
at some εlow, with slope calibrated by some parameter γ.
This function models the assumption that EVs are more
likely to stop to charge if their SoC is low.
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the traffic density, v(x, t) the traffic speed, ε(x, t) the
SoC, D(v) the battery discharge as a function of EV
speed, η(ε, t) the distribution of EVs at a charging station
according to their SoC ε, and c(ε, t) the charging rate of
EVs, potentially different for different ε. We extend the
discretized version of the model by splitting the traffic
flows into different classes which have the same behaviour
while driving on the road, but may have independent SoC
dynamics or behaviour at on- and off-ramps. These classes
can be used to distinguish e.g. between combustion engine
vehicles and EVs, or between vehicles with different routes
and/or SoC, in order to avoid problems with the situation
when two traffic flows with very different SoC merge.
Aggregate traffic density equations. Each road l
is split into N l

x cells of length Lx, Lx ≥ vffT , where
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grid model used for this study.

vff is the free flow speed of the traffic, and T is the
model sampling period, appropriately selected to ensure
numerical stability. The aggregate macroscopic state of EV
traffic on each road link l is given by the traffic density ρki
and SoC εki in each cell i at each discrete time instant
k. Since here we consider multiple classes of vehicles, the
aggregate macroscopic SoC εki is not used, but instead we
will track the SoC of each class. The update equations for
the aggregate traffic density are:
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qki+ =min

{
vffρ

k
i
,
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, (5)

qki− =qki−1+(1− βk
i−1) + rkon,i, (6)

Here, qki− denotes the traffic flow entering cell i at its
upstream end, and qki+ the traffic flow exiting cell i at
its downstream end. The on-ramp flow into cell i is
denoted rkon,i and assumed to enter it at its upstream end,
and the off-ramp flow from cell i is assumed to leave
it at its downstream end, and denoted rkoff,i = βk

i q
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i+,

where βk
i is the splitting ratio of mainstream traffic flow

towards the off-ramp. The traffic is assumed to follow
a triangular fundamental diagram with critical density
ρcr and jam density ρjam, yielding congestion wave speed
ω = vff

ρcr

ρjam−ρcr
, and we denote ρk

i
= min{ρki , ρcr} and

ρki = max{ρki , ρcr}. Note that we omit stating to which
road link l we are referring for better readability.
Multi-class traffic density equations. The aggregate
traffic flow is split into some number of traffic classes ξ ∈ Ξ,
with individual traffic densities denoted ξρki . Since here
we assume that all vehicle classes have the same traffic
behavior, the evolution of their traffic densities is given by

ξρk+1
i = ξρki +

T

Lx

(
ξqki− − ξqki+

)
, (7)

ξqki+ =
ξρki
ρki

qki+, (8)

ξqki− = ξqki−1+(1−
ξβk

i−1) +
ξrkon,i, (9)

where the ramp flows defined through ξβk
i−1 and

ξrkon,i are defined independently for each class ξ, with
ξrkoff,i =

ξβk
i−1

ξqki+. The per-class quantities relate to the
aggregate quantities according to

ρki =
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ξ∈Ξ

ξρki , rkon,i =
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ξrkon,i, βk
i =

∑
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ξρki
ρki

ξβk
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Once the vehicles reach the end of the road link from h to
w or from w to h, all of them exit the road and enter the
respective charging station, βk

Nx
= 1 for both road links.

The splitting ratios towards the public charging stations
ξβk

i , where i = iinph for the link h to w, and i = iinpw for w
to h, depend on the SoC of the approaching vehicles,

ξβk
i = 1−

(
1 + e−

ξεk
i
−εlow
γ

)−1

, (11)

as a monotonically decreasing sigmoid function centered
at some εlow, with slope calibrated by some parameter γ.
This function models the assumption that EVs are more
likely to stop to charge if their SoC is low.

Multi-class SoC equations. The macroscopic SoC of
each class is denoted ξεki , and its evolution is defined by

ξρk+1
i

ξεk+1
i =ξρki


ξεki +

ξdki T

+

T

Lx


ξϕk

i−−
ξϕk

i+


, (12)

ξϕk
i−=(ξqki−−ξrkon,i)


ξεki−1+

ξdki−1T

+ξrkon,i

ξεkon,i, (13)

ξϕk
i+=

ξqki+


ξεki +

ξdki T

. (14)

where the battery discharge rate ξdki is given by
ξdki = Dξ

�
vki


, vki =

qki+
ρki

, (15)

depending on the traffic speed vKi , according to discharge
functions Dξ defined for each class.
Charging stations equations. Finally, the electromobil-
ity model is completed by the charging station dynamics.
For each charging station ζ, we split the SoC space into
Nε bins of length Lε, NεLε = 1. Each bin j = 1, . . . , Nε

corresponds to a range of SoC [(j − 1)Lε, jLε], and we
describe the state of the charging station through the
number of vehicles in each bin ζηkj .
Different classes of vehicles at a single physical charging
station can be represented by using multiple virtual charg-
ing stations ζ to represent charging of each vehicle class
ξ. We allow the rate of charging ζckj for each charging
station ζ and for each SoC level j, to vary in time within
some range

ζckj
 ≤ C, with Lε ≥ CT required for numeric

stability. The charging station state update is given by
ζηk+1

j =ζηkj+
T

Lε

�
ζckj−1

ζηkj−1−
ζckj

ζηkj−ζckj+1η
k
j+1


...

...+T
�
ζµk

in,j−ζµk
out,j


,

(16)

where ζckj = max{0, ζckj }, and ζckj = min{0, ζckj }, and ζµk
in,j

and ζµk
out,j represent the flows of vehicles entering and

exiting the charging station, respectively.
The flows between the road and the charging station ζ are

rkon,iout
ζ

=

Nε
j=1

ζµk
out,j , r

k
on,iout

ζ
εkon,iout

ζ
=

Nε
j=1

ζµk
out,j(j−1)Lε,(17)

rkoff,iin
ζ
=

Nε
j=1

ζµk
in,j , rkoff,iin

ζ
εkiin

ζ
=

Nε
j=1

ζµk
in,j(j−1)Lε, (18)

where iinζ and ioutζ are the cells where the off- and on-
ramp connecting the road to the charging station ζ are,
respectively, ensuring both the vehicles and the energy are
conserved. In this work, we assume that multiple classes
of vehicles can enter a single charging station ζ,

ζµk
in,j=


ξ∈Ξ

ζ,ξµk
in,j , (19)

and that all vehicles exiting the charging station are of the
same class ξoutζ , therefore ξrkon,iout

ζ
=rkon,iout

ζ
with ξ=ξoutζ , and

ξrkon,iout
ζ

=0 for ξ ̸=ξoutζ . The flows entering and exiting the
charging stations are further determined by

ζ,ξµk
in,j=






j−

ξεk
iin
ζ

Lε


ξrkoff,iin

ζ
, j−1≤

ξεk
iin
ζ

Lε
<j,ξ∈Ξin

ζ ,




ξεk
iin
ζ

Lε
−j+2


ξrkoff,iin

ζ
, j−2≤

ξεk
iin
ζ

Lε
<j−1,ξ∈Ξin

ζ,

0, otherwise,

(20)

ζµk
out,j∈


0,


1

T
−
ζckj


Lε


ζηkj+

ζckj−1
Lε

ζηkj−1−
ζckj+1

Lε

ζηkj+1


, (21)

where Ξin
ζ denotes the set of vehicle classes that enter

charging station ζ, and the exiting flow ζµk
out,j depends on

the particular behavioural logic of each charging station.
We assume that each traffic class ξ enters at most one
charging station ζ from each cell i, but it may enter
multiple charging stations in case off-ramps leading to
them are in different cells iinζ1 ̸= iinζ2 .
Charging stations control variables. Charging sta-
tions are of particular importance because they serve as
the interface between the electromobility layer and the
power grid, and can be used as actuators to improve the
situation in the wider power system. At each time step k,
the power system operator gets from each charging station
ζ the range of power that they can consume or generate,
denoted by U

k

ζ and Uk
ζ , respectively. Based on these limits,

the operator can choose the normalized current power flow
to (or from) each charging station ζ, denoted uk

ζ ∈ [−1, 1].
Here we adopt the convention that if uk

ζ > 0, the charging
station is a net power consumer from the perspective of
the grid, and is using the grid power to charge the EVs.
Otherwise, if uk

ζ < 0, the charging station is a net power
provider to the grid, and is using the energy stored in the
batteries of some EVs to provide V2G services. The actual
charging station powers, denoted Uk

ζ , represent the control
input to the electromobility system, and are given by

Uk
ζ =


uk
ζU

k

ζ , uk
ζ ≥ 0,

uk
ζU

k
ζ , uk

ζ < 0,
(22)

therefore we have Uk
ζ ≤ Uk

ζ ≤ U
k

ζ . This charging station
power relates to its EV charging rates as

Uk
ζ =

Nε
j=1

ζckj
ζηkjB (23)

where B is the EV battery average capacity. In order to
best utilize the available power, we employ a hierarchical
charging scheme, where vehicles with lower SoC have
a higher charging priority. We split the vehicles into
three groups according to their SoC: low SoC EVs, with
0≤ε<εlow, medium SoC EVs, with εlow≤ε≤εhigh, and
high SoC EVs, with εhigh<ε≤1. In case there is not
enough power to charge the low SoC EVs, or if the grid
operators requests power to be provided to the grid, we
utilize the energy stored in batteries of EVs with higher
SoC to satisfy the power demands.
Given the boundaries between these groups of EVs εlow
and εhigh, we define jlow as the highest j ∈ {1, . . . , Nε}
for which εj < εlow and jhigh as the lowest for which
εj > εhigh. The number of EVs in each group is then
ζηklow =

jlow
j=1

ζηkj ,
ζηkmed =

jhigh−1
j=jlow+1

ζηkj ,
ζηkhigh =

Nε
j=jhigh

ζηkj . (24)

For each charging station we define the maximum charging
rate Cζ ≥ 0 and maximum discharging rate Cζ ≤ 0 per EV,
yielding Cζ ≤ ζckj ≤ Cζ , respecting |Cζ | ≤ C and |Cζ | ≤ C.
We assign a different charging rate to each group of EVs,
denoted ζcklow, ζckmed, and ζckhigh, and given by
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ζckj =




ζcklow, j = 1, . . . , jlow,
ζckmed, j = jlow + 1, . . . , jhigh − 1,
ζckhigh, j = jhigh, . . . , Nε.

(25)

The exception is charging at home, ζ = h, where we
assume that all vehicles charge at the same rate,

hckj = min


P k
h

hηklow + hηkmed + hηkhigh
, Ch


. (26)

Given the current provided or demanded power Uk
ζ , these

charging rates are given by

ζcklow=min


ζPk

low
ζηklow

, Cζ


, (27)

ζckmed=




Cζ ,
ζηklowCζ>

ζPk
low,

min


ζPk

med
ζηkmed

, Cζ


, ζηklowCζ≤ζPk

low,
(28)

ζckhigh=




Cζ ,
ζηkmedCζ>

ζPk
med,

min


ζPk

high

ζηkmed

, Cζ


, ζηkmedCζ≤ζPk

med,
(29)

where we define maximum available charging power to
each group of vehicles, ζPk

low, ζPk
med, and ζPk

high, as
ζPk

low = Uk
ζ −

�
ζηkmed + ζηkhigh


Cζ , (30)

ζPk
med = Uk

ζ − ζηklowCζ − ζηkhighCζ , (31)
ζPk

high = Uk
ζ − (ζηklow + ζηkmed)Cζ . (32)

This charging scheme results in a range of charging station
ζ power consumption or production [Uk

ζ , U
k

ζ ], given by

U
k

ζ =
�
ζηklow + ζηkmed + ζηkhigh


CζB, (33)

Uk
ζ =max


0,
�
ζηklowCζ+

�
ζηkmed+

ζηkhigh

Cζ


B

. (34)

Finally, we define the flows of EVs exiting each charging
stations by their scheduled departure demand ζµ̂k

out,

ζµk
out,j=



min


ζµ̂k

out,


1

T
−

ζckj


Kε


ζηkj


, j = jkζ ,

0, j ̸= jkζ .

(35)

For ζ = h and ζ = w, ζµ̂k
out is given externally, to represent

EVs commuting from home around t = 6 h, and from
work to home around t = 16 h. For ζ = p, we assume
that the EVs stay at the charging station for 1 h, so
the departure demand will depend on the flow entering
the charging station in the past. At each sampling time,
we randomly select the SoC of the departing EVs for
each charging station jkζ , with probabilities of each SoC
level proportional to the number of vehicles currently at
charging station ζ.
2.2 Power Grid Model
This section describes the dynamics of the AC power grid
that interacts with the electromobility layer. For notation
clarity, in this section, parameters and variables of the
power grid model are denoted by tilde.
A balanced three-phase power network can be represented
in phasor form as an equivalent single-phase representa-
tion, where only one of the phases is taken into account.
Also, for mathematical convenience, the power system will
be analyzed using the per-unit (p.u.) notation, in which all

electrical quantities are normalized with respect to a set
of base quantities.
The distribution grid is modelled as a set of nodes Ñ linked
by a set of directed edges Ẽ that represent the transmission
lines. Each edge ẽij ∈ Ẽ links buses i and j and can
contain transmission lines, power transformers and/or
phase shifters. Here the conventional π transmission line
model is employed where each branch can be defined by
five parameters: a series resistance r̃ij , a series reactance
x̃ij , a charging susceptance b̃ij , a tap ratio magnitude τ̃ij
and phase shift θ̃ij . These magnitudes allows to define
the link series admittance ỹij = 1/(r̃ij +

√
−1x̃ij) and shunt

admittance ỹshij =
√

−1
b̃ij
2 as well as the complex tap ratio

of transformers, t̃ij = τ̃ije
√

−1θ̃ij .
Power Network equations. For a network with Ñb= |Ñ |
buses, and after applying Kirchhoff’s current law at each
bus i ∈ Ñ , the constant impedance elements of the model
are incorporated into a complex Ñb × Ñb bus admittance
matrix Ỹ , systematically defined in the standard way, that
relates the complex nodal current injections, Ĩ to the com-
plex node voltages, Ṽ , as Ĩ = Ỹ Ṽ .
Power flow solution. The standard power (load) flow
problem involves solving for the set of voltages and flows
in a network corresponding to a specified pattern of load
and generation. The definition of grid admittance matrix
Ỹ allows to define the nodal equation in an equivalent form
in terms of power injections and voltage level at buses as

S̃bus
i = ṼiĨ

∗
i = Ṽi(ỸiṼ )∗ = ṼiỸ

∗
i Ṽ

∗, ∀i ∈ Ñ , (36)

where S̃bus
i = P̃ bus

i +
√

−1Q̃bus
i is the complex power phasor

accounting for active (P̃ bus
i ) and reactive (Q̃bus

i ) powers
injected at bus i, and Ỹi denotes the i-th row of the
admittance matrix Ỹ .
Equation (36) is a set of Ñb complex-valued equations,
that can be posed as 2Ñb quadratic real valued equations
with 2Ñb real unknowns. By convention, a single generator
bus is typically chosen as a reference bus to serve the roles
of both a voltage angle reference and a real power slack.
Unknowns for the problem will thus be active and reactive
power at the slack bus together with complex voltage at
the remaining Ñb − 1 buses. These equations are solved
at every iteration step providing equilibrium power and
voltage at every bus.

2.3 Combined model

We denote the encapsulated full state of the mobility
model at time k as Ek,

Ek=

ξρkl,i|l∈{hw,wh}, i={1, . . . , Nx}, ξ∈{h/w,p}, . . .
ξεkl,i|l∈{hw,wh}, i=1, . . . , Nx, ξ∈{h/w,p}, . . .
ζηkj |j∈ {1, . . . , Nε}, ζ ∈{h,w,phw,pwh}


, (37)

capturing the traffic density ξρkl,i and SoC ξεkl,i for all
classes ξ and all cells i on both road links l, and the
numbers of charging vehicles ζηkj at each SoC level j at
each charging station ζ. The vehicles are split into classes
based on whether they enter the road from h/w, or from
p. Physical charging station p is modelled by two virtual
charging stations pwm and phw, connected to either link.
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ζckj =




ζcklow, j = 1, . . . , jlow,
ζckmed, j = jlow + 1, . . . , jhigh − 1,
ζckhigh, j = jhigh, . . . , Nε.

(25)

The exception is charging at home, ζ = h, where we
assume that all vehicles charge at the same rate,

hckj = min


P k
h

hηklow + hηkmed + hηkhigh
, Ch


. (26)

Given the current provided or demanded power Uk
ζ , these

charging rates are given by

ζcklow=min


ζPk

low
ζηklow

, Cζ


, (27)

ζckmed=




Cζ ,
ζηklowCζ>

ζPk
low,

min


ζPk

med
ζηkmed

, Cζ


, ζηklowCζ≤ζPk

low,
(28)

ζckhigh=




Cζ ,
ζηkmedCζ>

ζPk
med,

min


ζPk

high

ζηkmed

, Cζ


, ζηkmedCζ≤ζPk

med,
(29)

where we define maximum available charging power to
each group of vehicles, ζPk

low, ζPk
med, and ζPk

high, as
ζPk

low = Uk
ζ −

�
ζηkmed + ζηkhigh


Cζ , (30)

ζPk
med = Uk

ζ − ζηklowCζ − ζηkhighCζ , (31)
ζPk

high = Uk
ζ − (ζηklow + ζηkmed)Cζ . (32)

This charging scheme results in a range of charging station
ζ power consumption or production [Uk

ζ , U
k

ζ ], given by

U
k

ζ =
�
ζηklow + ζηkmed + ζηkhigh


CζB, (33)

Uk
ζ =max


0,
�
ζηklowCζ+

�
ζηkmed+

ζηkhigh

Cζ


B

. (34)

Finally, we define the flows of EVs exiting each charging
stations by their scheduled departure demand ζµ̂k

out,

ζµk
out,j=



min


ζµ̂k

out,


1

T
−

ζckj


Kε


ζηkj


, j = jkζ ,

0, j ̸= jkζ .

(35)

For ζ = h and ζ = w, ζµ̂k
out is given externally, to represent

EVs commuting from home around t = 6 h, and from
work to home around t = 16 h. For ζ = p, we assume
that the EVs stay at the charging station for 1 h, so
the departure demand will depend on the flow entering
the charging station in the past. At each sampling time,
we randomly select the SoC of the departing EVs for
each charging station jkζ , with probabilities of each SoC
level proportional to the number of vehicles currently at
charging station ζ.
2.2 Power Grid Model
This section describes the dynamics of the AC power grid
that interacts with the electromobility layer. For notation
clarity, in this section, parameters and variables of the
power grid model are denoted by tilde.
A balanced three-phase power network can be represented
in phasor form as an equivalent single-phase representa-
tion, where only one of the phases is taken into account.
Also, for mathematical convenience, the power system will
be analyzed using the per-unit (p.u.) notation, in which all

electrical quantities are normalized with respect to a set
of base quantities.
The distribution grid is modelled as a set of nodes Ñ linked
by a set of directed edges Ẽ that represent the transmission
lines. Each edge ẽij ∈ Ẽ links buses i and j and can
contain transmission lines, power transformers and/or
phase shifters. Here the conventional π transmission line
model is employed where each branch can be defined by
five parameters: a series resistance r̃ij , a series reactance
x̃ij , a charging susceptance b̃ij , a tap ratio magnitude τ̃ij
and phase shift θ̃ij . These magnitudes allows to define
the link series admittance ỹij = 1/(r̃ij +

√
−1x̃ij) and shunt

admittance ỹshij =
√

−1
b̃ij
2 as well as the complex tap ratio

of transformers, t̃ij = τ̃ije
√

−1θ̃ij .
Power Network equations. For a network with Ñb= |Ñ |
buses, and after applying Kirchhoff’s current law at each
bus i ∈ Ñ , the constant impedance elements of the model
are incorporated into a complex Ñb × Ñb bus admittance
matrix Ỹ , systematically defined in the standard way, that
relates the complex nodal current injections, Ĩ to the com-
plex node voltages, Ṽ , as Ĩ = Ỹ Ṽ .
Power flow solution. The standard power (load) flow
problem involves solving for the set of voltages and flows
in a network corresponding to a specified pattern of load
and generation. The definition of grid admittance matrix
Ỹ allows to define the nodal equation in an equivalent form
in terms of power injections and voltage level at buses as

S̃bus
i = ṼiĨ

∗
i = Ṽi(ỸiṼ )∗ = ṼiỸ

∗
i Ṽ

∗, ∀i ∈ Ñ , (36)

where S̃bus
i = P̃ bus

i +
√

−1Q̃bus
i is the complex power phasor

accounting for active (P̃ bus
i ) and reactive (Q̃bus

i ) powers
injected at bus i, and Ỹi denotes the i-th row of the
admittance matrix Ỹ .
Equation (36) is a set of Ñb complex-valued equations,
that can be posed as 2Ñb quadratic real valued equations
with 2Ñb real unknowns. By convention, a single generator
bus is typically chosen as a reference bus to serve the roles
of both a voltage angle reference and a real power slack.
Unknowns for the problem will thus be active and reactive
power at the slack bus together with complex voltage at
the remaining Ñb − 1 buses. These equations are solved
at every iteration step providing equilibrium power and
voltage at every bus.

2.3 Combined model

We denote the encapsulated full state of the mobility
model at time k as Ek,

Ek=

ξρkl,i|l∈{hw,wh}, i={1, . . . , Nx}, ξ∈{h/w,p}, . . .
ξεkl,i|l∈{hw,wh}, i=1, . . . , Nx, ξ∈{h/w,p}, . . .
ζηkj |j∈ {1, . . . , Nε}, ζ ∈{h,w,phw,pwh}


, (37)

capturing the traffic density ξρkl,i and SoC ξεkl,i for all
classes ξ and all cells i on both road links l, and the
numbers of charging vehicles ζηkj at each SoC level j at
each charging station ζ. The vehicles are split into classes
based on whether they enter the road from h/w, or from
p. Physical charging station p is modelled by two virtual
charging stations pwm and phw, connected to either link.

The electromobility state is updated according to (7), (12),
and (16), as defined in Section 2.1, and we write jointly

Ek+1 = M(Ek, Uk), (38)
where Uk is the collection of Uk

ζ to all physical charging
stations, ζ ∈ {h,w,p}, yielding charging rates (25) that
directly determine the evolution of ζηkj through (16).
Power grid equations at discrete time step k is given by a
static mapping, and can be expressed compactly as

F̃ k = F̃(Uk, Λ̃k, Ṽ k), (39)

P̃ k
c = C̃(F̃ k, Ṽ k), (40)

P̃ k
r = R̃(Ek), (41)

where F̃ k are the power flows at time k as a function of
the EV power injected/retrieved Uk, loads Λ̃k, and RES
distributed generation Ṽ k. RES curtailment is given by
P̃ k
c , and mobility power reserves by P̃ k

r,ζ . Except for power
flows F̃ k, all other variables in (39)–(41) are collection of
variables related to different ports ζ ∈ {h,w,p}.

3. OPTIMAL CONTROL DESIGN
3.1 Power system optimization
The proposed optimization problem focuses on active
network management (ANM) policies to reduce generation
curtailments by providing near future scheduling of the
optimal power flow policy to/from EVs plugged at the
charging poles of the system (h, w, and p).
The optimization problem is formulated based on a pre-
diction model and operated in a receding horizon man-
ner using the latest system information. In this approach,
load injections and generation profiles of RES are non-
controllable variables. Only the active power (and reactive,
within operational limits) of EV demand is assumed to
be manageable. The objective function, constraints, and
optimization algorithm will be presented next.

3.2 Optimal control formulation
We can now formulate ANM taking electromobility into
account as a receding horizon optimal control problem

minimize
ũk̃
ζ

J(k̃, ũk̃
ζ )

subject to Mobility and grid dynamics (38)-(41),
Grid operational constraints,

|S̃ij | ≤ S̃ij , ẽij ∈ Ẽ , (42)

Ṽ i ≤ Ṽi ≤ Ṽ i, i ∈ Ñ − Ñslack, (43)
Reactive to active power ratio limitations.

The optimization problem is articulated as constrained
minimization of the cost function

J(k̃,ũk̃
ζ )=

H∑
h=1

∑
ζ∈{h,p,w}

(
wcP̃c,ζ(tk̃+h|tk̃)−wrP̃r,ζ(tk̃+h|tk̃)

)
(44)

where P̃c,ζ(tk̃+h|tk̃) represent the curtailed power at time
tk̃+h inferred from the information available at time tk̃,
at port ζ. Similarly P̃r,ζ(tk̃+h|tk̃) accounts for the mobility
reserve power available at time tk̃+h. Constants wc and wr

weigh the different optimization terms. The optimization
problem is subject to constraints on the maximum appar-
ent power |S̃ij | (42), power line voltage Ṽi deviation at

buses (43), and limitations on the amount of reactive to
active power ratios the distributed generation can manage.
Note that in order to ease the numeric burden, we solve
this problem at a time scale different than that of the
electromobility model. We take the optimization sampling
period T̃ as a multiple of electromobility sampling periods
T , and denote the optimization time step k̃. The resulting
control ũk̃

ζ is then applied to the electromobility model
over a number of time steps,

uk
ζ = ũ

⌊k T
T̃
⌋+1

ζ , (45)
where ⌊ · ⌋ denotes rounding down.
The first part of the cost function accounts for the energy
lost due to curtailment imposed by the ANM algorithm
to satisfy grid constraints for a predicted sequence of con-
trol actions ũζ(tk+h|tk), ζ ∈ {h,p,w}, h = 1..., Nu. The
control actions correspond to the normalized active power
that the controller schedules to be retrieved or injected
(V2G) at port ζ, and Nu is the control horizon consid-
ered. In this scheme, as is usually employed in the classic
formulation of predictive control, for Nu > 1 only the first
control action of the sequence computed is applied. The
control action terms ũζ(tk+h|tk) ∈ [−1, 1] are considered
in a normalized fashion, allowing to accommodate the con-
straints on the time-varying mobility reserve powers in
a more convenient form. The second term is designed to
maximize the mobility reserve storage available within the
prediction horizon, which is taken for simplicity as a proxy
of the overall SoC of the EV fleet.

4. SIMULATION RESULTS
Finally, we assess the behaviour of the proposed ANM EV
charging scheme by comparing two simulation scenarios.
The first one corresponds to uncoordinated charging where
a fixed percentage of EVs at each charging station ζ (70%
for ζ = h, and 40% for ζ = w and ζ = p) is charging at
constant maximum rate Cζ . The second scenario corre-
sponds to a scheduled charging operation as proposed in
this work using a receding horizon control scheme that
balances curtailment losses in relation to average EV re-
serves. Note that in both cases vehicles decide whether or
not they enter the public charging station depending on
their SoC, according to (11).
Both scenarios have been simulated on the test layout
described in Fig.1 where the power network is simplified
to three representative ports that lump loads, distributed
generation and EV operation for aggregated domestic,
work and public EV charging stations. In order to illustrate
the state of the electromobility model, we show the state of
charging stations over time in Figure 2 for one simulation
run. As expected, all EVs start at home, then travel
to work, and finally return home, with some of them
stopping at the public charging station along the way.
Simulations were performed assuming a grid configuration
with balanced capacities on the three ports in the order of
30 MW. Power lines capacities were assigned to naturally
induce RES curtailment at specific times of the day with
high RES production and lower loads. Domestic and work
loads, together with RES production have been simulated
taking averaged typical profiles for every category. From
the mobility side, a baseline of 3334 EVs with an average
battery capacity of 60 kWh were considered, and their SoC
was initialized in the ε ∈ [0.5, 1] range.
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Fig. 2. Distribution of EVs according to their SoC at each charging station over time in the coordinated charging case.
Brighter colours indicate more EVs at that SoC. Note the different color scale in case of public charging station.

Fig. 3. Curtailment cut for the two charging scenarios.

(a) Uncoordinated (b) Coordinated

Fig. 4. Charging station power for the two scenarios.

Due to the daily cyclic nature of power loads, RES pro-
duction and mobility patterns, simulations for a period
of 24h were considered representative of the system. For
the computation of the coordinated charging schedule, we
used a prediction horizon of HT̃ = 5 h, and a control
horizon of NuT̃ = 30 min. To speed up computations, sim-
ulations were performed with different sample times, with
T = 1 min for the electromobility model, 5 min for the
power grid model and T̃ = 30 min as sample time for the
receding horizon control.
As a primary objective of the optimization problem pro-
posed, the performance index in (44) has been balanced to
maximize the use of RES (reduce curtailment losses), while
preserving a reasonable average state of charge of the EVs.
Figure 3 plots the compared curtailment induced by the
uncoordinated and coordinated schemes, the shaded area
corresponding to curtailment energy saving by the later
approach. More precisely, in this particular simulation,
the uncoordinated charging scenario induces 249.7 MWh
losses in curtailment, while the coordinated approach pro-
vides 124.1 MWh, a significant reduction of 50.3%.
Figure 4 shows the evolution of the power used by EVs.
For the uncoordinated charging scenario, the power used
for charging is directly proportional to the number of
EVs currently present at the charging station. Coordinated
charging allows for a more nuanced use of power depending
on the power grid load and RES production profile. In this
case EVs end the day with somewhat lower SoC, which will
be rectified through overnight charging at home.

5. CONCLUSIONS
In this work, we present a control framework combining
electromobility and the power grid. Using an extended
multi-class electromobility model, we are able to capture
the SoC dynamics of EVs on their daily commute. The
electromobility layer is interfaced with the power grid
through charging stations, providing us with a way to store
energy and control the power flows. We use this framework
to design a receding horizon control law for for active
network management, in order to reduce RES production
curtailment, which is shown in simulation to significantly
improve the situation.
The models and results presented herein could serve as a
basis for a number of future research directions. Though
the network studied here was adopted for simplicity, the
presented control approach should be extended to a more
general case and more complex networks, both in terms
of roads and power lines. In this work, we did not utilize
the ratio of EVs that enter the public charging station as
a control input, but this behavior could be influenced by
e.g. introducing dynamic pricing of charging, which opens
an entirely new area of control problems.
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