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1. INTRODUCTION

Microgrids offer various advantages, including reducing
costs, increasing efficiency, and providing stability in man-
aging the challenges posed by renewable energy sources
to meet electricity demand and reduce carbon footprints.
These networks can work in conjunction with the utility
grid or in an island mode using storage systems (Garcia-
Torres et al., 2021). The control problem in microgrids
aims to meet energy demand despite uncertainties in en-
ergy generation, electricity market prices, and unantic-
ipated electricity requests. Numerous works have been
developed to address this problem using various control
techniques. Review papers, such as (Minchala-Avila et al.,
2015), provide an overview of these techniques, and (Zafra-
Cabeza et al., 2020) provides a centralized controlled mi-
crogrid overview, including risk analysis using hierarchical
control.

In this context, Model Predictive Control (MPC) is an
optimal control strategy suitable for dealing with nonline-
arities, process delays, and constraints on variable systems
(Camacho and Bordons, 2013). MPC strategy involves
solving an optimization problem to minimize a specific
objective function over a prediction horizon (Nh), subject
to a discrete-time linear model that predicts the future
behavior of the system and constraints on both inputs
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and outputs to guide the system toward a reference point.
The optimization problem is built and solved at each time
instant, with the first element applied to the system using
a receding horizon strategy.

Energy management systems must consider uncertainties
when dealing with demand and renewable generation (Bor-
dons et al., 2020). The standard formulation of an MPC
controller does not consider these sources of uncertainty.
Several alternatives to classical MPC have been developed
to address non-deterministic behavior in power systems
operation, see. e.g., (Velarde et al., 2017), and references
therein.

In this sense, Chance-Constrained MPC (CC-MPC) is
suitable for dealing with uncertainties. In this case, con-
straints are tightened according to a certain risk level con-
sidering the probability distribution of the uncertainties,
which can be approximated based on historical data. For
example, CC-MPC has been used successfully in some
power systems, see e.g., (Vergara-Dietrich et al., 2019;
Márquez et al., 2021).

In geographically distributed systems like the power grid,
centralized MPC approaches are not directly applicable
due to the presence of multiple decision-makers and the
need for redundancy (Maestre and Negenborn, 2013). An
example of a distributed system is an EC, which consists
of a network of end users designed to provide economic,
social, and environmental benefits to its members while
meeting the energy demand of the entire system. In these
situations, local MPC controllers, also called agents, gov-
ern the subsystems composing the whole system. This
approach, known as Distributed MPC (DMPC), possesses
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1. INTRODUCTION

Microgrids offer various advantages, including reducing
costs, increasing efficiency, and providing stability in man-
aging the challenges posed by renewable energy sources
to meet electricity demand and reduce carbon footprints.
These networks can work in conjunction with the utility
grid or in an island mode using storage systems (Garcia-
Torres et al., 2021). The control problem in microgrids
aims to meet energy demand despite uncertainties in en-
ergy generation, electricity market prices, and unantic-
ipated electricity requests. Numerous works have been
developed to address this problem using various control
techniques. Review papers, such as (Minchala-Avila et al.,
2015), provide an overview of these techniques, and (Zafra-
Cabeza et al., 2020) provides a centralized controlled mi-
crogrid overview, including risk analysis using hierarchical
control.

In this context, Model Predictive Control (MPC) is an
optimal control strategy suitable for dealing with nonline-
arities, process delays, and constraints on variable systems
(Camacho and Bordons, 2013). MPC strategy involves
solving an optimization problem to minimize a specific
objective function over a prediction horizon (Nh), subject
to a discrete-time linear model that predicts the future
behavior of the system and constraints on both inputs
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and outputs to guide the system toward a reference point.
The optimization problem is built and solved at each time
instant, with the first element applied to the system using
a receding horizon strategy.

Energy management systems must consider uncertainties
when dealing with demand and renewable generation (Bor-
dons et al., 2020). The standard formulation of an MPC
controller does not consider these sources of uncertainty.
Several alternatives to classical MPC have been developed
to address non-deterministic behavior in power systems
operation, see. e.g., (Velarde et al., 2017), and references
therein.

In this sense, Chance-Constrained MPC (CC-MPC) is
suitable for dealing with uncertainties. In this case, con-
straints are tightened according to a certain risk level con-
sidering the probability distribution of the uncertainties,
which can be approximated based on historical data. For
example, CC-MPC has been used successfully in some
power systems, see e.g., (Vergara-Dietrich et al., 2019;
Márquez et al., 2021).

In geographically distributed systems like the power grid,
centralized MPC approaches are not directly applicable
due to the presence of multiple decision-makers and the
need for redundancy (Maestre and Negenborn, 2013). An
example of a distributed system is an EC, which consists
of a network of end users designed to provide economic,
social, and environmental benefits to its members while
meeting the energy demand of the entire system. In these
situations, local MPC controllers, also called agents, gov-
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Spain.(e-mail: pavelarde@uloyola.es).

∗∗∗ ENGREEN Laboratory of Engineering for Energy and
Environmental Sustainability, University of Seville, Spain.(e-mail:

bordons@us.es).

Abstract: This work presents a distributed energy management platform based on a smart con-
tract displayed on a blockchain network to optimize the behavior of an energy community under
stochastic disturbances, such as solar irradiance and agents’ energy demands. Disturbances are
modeled as probability distributions and are handled by a distributed model predictive control
scheme based on chance constraints. The performance of the proposed algorithm is assessed
across various simulations.

Keywords: energy and distribution management systems, blockchain, stochastic control,
predictive control.

1. INTRODUCTION

Microgrids offer various advantages, including reducing
costs, increasing efficiency, and providing stability in man-
aging the challenges posed by renewable energy sources
to meet electricity demand and reduce carbon footprints.
These networks can work in conjunction with the utility
grid or in an island mode using storage systems (Garcia-
Torres et al., 2021). The control problem in microgrids
aims to meet energy demand despite uncertainties in en-
ergy generation, electricity market prices, and unantic-
ipated electricity requests. Numerous works have been
developed to address this problem using various control
techniques. Review papers, such as (Minchala-Avila et al.,
2015), provide an overview of these techniques, and (Zafra-
Cabeza et al., 2020) provides a centralized controlled mi-
crogrid overview, including risk analysis using hierarchical
control.

In this context, Model Predictive Control (MPC) is an
optimal control strategy suitable for dealing with nonline-
arities, process delays, and constraints on variable systems
(Camacho and Bordons, 2013). MPC strategy involves
solving an optimization problem to minimize a specific
objective function over a prediction horizon (Nh), subject
to a discrete-time linear model that predicts the future
behavior of the system and constraints on both inputs

⋆ This work has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (OCONTSOLAR, grant agreement No
789051), project C3PO-R2D2 (Grant PID2020119476RB-I00 funded
by MCIN/AEI/ 10.13039/501100011033), and Grant PID2019-
104149RB-I00 funded by MCIN/AEI/ 10.13039/501100011033.

and outputs to guide the system toward a reference point.
The optimization problem is built and solved at each time
instant, with the first element applied to the system using
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Energy management systems must consider uncertainties
when dealing with demand and renewable generation (Bor-
dons et al., 2020). The standard formulation of an MPC
controller does not consider these sources of uncertainty.
Several alternatives to classical MPC have been developed
to address non-deterministic behavior in power systems
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suitable for dealing with uncertainties. In this case, con-
straints are tightened according to a certain risk level con-
sidering the probability distribution of the uncertainties,
which can be approximated based on historical data. For
example, CC-MPC has been used successfully in some
power systems, see e.g., (Vergara-Dietrich et al., 2019;
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In geographically distributed systems like the power grid,
centralized MPC approaches are not directly applicable
due to the presence of multiple decision-makers and the
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example of a distributed system is an EC, which consists
of a network of end users designed to provide economic,
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instant, with the first element applied to the system using
a receding horizon strategy.
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when dealing with demand and renewable generation (Bor-
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Several alternatives to classical MPC have been developed
to address non-deterministic behavior in power systems
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which can be approximated based on historical data. For
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and outputs to guide the system toward a reference point.
The optimization problem is built and solved at each time
instant, with the first element applied to the system using
a receding horizon strategy.

Energy management systems must consider uncertainties
when dealing with demand and renewable generation (Bor-
dons et al., 2020). The standard formulation of an MPC
controller does not consider these sources of uncertainty.
Several alternatives to classical MPC have been developed
to address non-deterministic behavior in power systems
operation, see. e.g., (Velarde et al., 2017), and references
therein.

In this sense, Chance-Constrained MPC (CC-MPC) is
suitable for dealing with uncertainties. In this case, con-
straints are tightened according to a certain risk level con-
sidering the probability distribution of the uncertainties,
which can be approximated based on historical data. For
example, CC-MPC has been used successfully in some
power systems, see e.g., (Vergara-Dietrich et al., 2019;
Márquez et al., 2021).

In geographically distributed systems like the power grid,
centralized MPC approaches are not directly applicable
due to the presence of multiple decision-makers and the
need for redundancy (Maestre and Negenborn, 2013). An
example of a distributed system is an EC, which consists
of a network of end users designed to provide economic,
social, and environmental benefits to its members while
meeting the energy demand of the entire system. In these
situations, local MPC controllers, also called agents, gov-
ern the subsystems composing the whole system. This
approach, known as Distributed MPC (DMPC), possesses

the necessary modularity for this application and reduces
the computation burden compared to centralized MPC.
However, coordinating multiple controllers requires a sig-
nificant exchange of information to achieve optimality,
either hierarchically or in a distributed manner, which can
lead to security or privacy breaches (Maestre et al., 2021).

This need for security can be addressed by handling
blockchain technology, which can provide security by en-
abling trustworthy peer-to-peer transactions and remov-
ing intermediaries (Nakamoto, 2008). Distributed Ledger
Technology ensures data integrity by sharing data simul-
taneously among every node in the network (Nofer et al.,
2017). Consensus is reached through algorithms like Proof
of Work, Proof of Stake, or Proof of Authority, among
others (Yaga et al., 2019). Data are contained in im-
mutable transactions within blocks that are cryptographi-
cally linked, making it difficult for malicious agents to take
control of the network (Nofer et al., 2017). Furthermore,
smart contracts are an important feature of the blockchain
ecosystem that allows users to code programs to act accor-
ding to immutable, user-defined rules. In the context of
microgrids or EC with distributed agents participating in
distributed optimization algorithms, the smart contract
can act as a coordinator, eliminating the need for external
companies. Several works, such as (Mengelkamp et al.,
2018; van Leeuwen et al., 2020), have used blockchain
technology for energy management within microgrids.

The contribution of this work is to extend (Sivianes et al.,
2022) in such a way that disturbances are now han-
dled using a stochastic approach. In particular, a DMPC
scheme is used to operate an EC composed of various
agents affected by uncertainty in both the generation of re-
newable energy and electricity demand by using blockchain
technology. Therefore, the novelty of this work is the pro-
posal of a new approach based on distributed CC-MPC
controllers that deal with uncertainty in energy trading
systems.

The rest of this paper is organized as follows. Section 2
introduces the problem formulation of energy trading in
an EC. The CC-MPC approach is formulated in Section
3, and the negotiation procedure for distributed coupled
variables is detailed in Section 4. Section 5 discusses the
blockchain implementation, and the results are presented
in Section 6. Finally, some conclusions and future direc-
tions are drawn in Section 7.

2. PROBLEM FORMULATION

This section describes the equations that model the EC
and the performance index to be optimized over the
prediction horizon.

2.1 Energy community formulation

The EC consists of two groups of agents: prosumers have
access to Distributed Energy Resources (DERs) such as
batteries, solar panels, or Evs, while consumers need to
import energy from external sources to meet their energy
demands. The EC is represented by a complete digraph
G = (A,V), where A = {1, ...,n} is the set of agents and
V ⊆ N × N is the set of directed edges between every
agent (i, j) ∈ A. All agents are able to import power from

the UG, denoted by pugi, t, and the excess power sold back
to the UG is represented by pugbi, t and rewarded with a
cost of κb

t [�/kWh]. The import of pugi,t incurs a unitary

economic cost of κt [�/kWh].

Two uncertainty sources are considered within the model:
the global horizontal irradiance ϖi,t [W/m2] and the load
demand puli,t ∀i ∈ A. Since the EC is assumed to enclose
a relatively small geographical area compared with the
variation of ϖi,t as a function position, ϖi,t is supposed to
be the same ∀i ∈ A at each time t, i.e., ϖi,t

∼= ϖt.

Batteries not only store energy that can be later used,
but also handle both energy trading and excess power
management. Energy stored in batteries of agent i, is
represented by ebi,t and is computed and constrained as:

ebi,t = ebi,t−1 + (ηbc p
bc
i,t −

pbdi,t
ηbd

−
n∑

j ̸=i

pbtij,t
ηbt

)∆t+

+(ηpvaiϖt)∆t− pugbi,t ∆t, ∀i, t, (1)

ebi |l ≤ ebi,t ≤ ebi |u, ∀i, t, (2)

0 ≤ pbci,t ≤ pbci |u, ∀i, t, (3)

0 ≤ pbdi,t ≤ pbdi |u, ∀i, t, (4)

0 ≤ pbtij,t ≤ pbtij |u, ∀i, j, t. (5)

where pbci,t, p
bd
i,t and pbtij,t stand for charging, discharging,

and trading power, respectively. The efficiencies of the
battery for charging, discharging, and trading are repre-
sented by ηbc, ηbd, and ηbt, respectively. The solar panel
conversion efficiency and PV area installed are represented
by ηpv and ai, respectively. Lower and upper boundaries
are denoted by |l and |u. The power fed from the battery
to meet local demand is denoted by pbdi, t, while the
power sent from agent i to the EC is represented by∑

j ̸= in pij,tbt

ηbt in equation (1).

Evs are included as flexible loads in which both the time
and the demanding charging power, pevi,t, can be controlled.
Energy stored within EVs is denoted by eevi,t and it is
calculated as:

eevi,t = eevi,t−1 + ηevc pevi,t∆t, ∀i, t, (6)

eevi,t|l ≤ eevi,t ≤ eevi,t|u, ∀i, t, (7)

0 ≤ pevi,t ≤ υi,tp
ev
i |u, ∀i, t, (8)

where ηevc is the EV charging efficiency. υ is a bi-
nary parameter that represents the Ev charging availa-
bility, i.e., each agent has a predefined timetable Υi =
[υ1,i, . . . , υend,i] that indicates the time steps at which the
Ev will be at the agent’s charging point location. An EV
daily energy charge of eevdaily is required to satisfy and it is
implemented as follows:

eevi,t = eevi,daily ∀i ∈ E , t = tev (9)

where E is the set of agents equipped with an EV, and tev

is the time at which EVs must have received the required
eevdaily. Here, pugi,t is computed as the difference between
demand and delivered energy as a result of the power
balance, i.e.,

pugi,t = pbci,t − pbdi,t −
n∑

j ̸=i

pbtji,t + puli,t + pevi,t ∀i, t, (10)

pugi,t ≥ 0, ∀i, t, (11)
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in which
∑n

j ̸=i p
bt
ji,t corresponds to the power sent from the

EC to agent i.

Finally, these equations can be expressed in a discrete
linear time-invariant system as follows:

xt+1 = A · xt +B · ut +D · ωt, (12)

where xt = [p̂ugt , êevt , êbt ]
T , ut = [p̂bct , p̂bdt , p̂btt , p̂ugbt , p̂evt ]T ,

and ωt = [ϖ̂t, p̂
ul
t ]T denote the states, inputs, and distur-

bances of the system, respectively; accent ˆ aggregates a
state, input or disturbance for all agents. Matrices A, B,
and D include the corresponding coefficients of equations
(1), (6), and (11).

To simplify future allusions, closed polyedra X from state
constraints (2),(7),(11), and U from input constraints (3)-
(5),(8),(9), are defined. The constraints can be written as

xt+1 ∈ X , (13a)

ut ∈ U . (13b)

2.2 Performance index

The performance index Φ to be minimized aims to find
a trade-off among the economic cost derived from the
purchase of pug, the control effort, and the reference
tracking of eb as follows:

Φ =

Nh∑
t=1

(ctp̂
ug
t + δb(ebt |u − êbt ) + δev(eevt |u − êevt ))

+cNh+1p̂
ug
Nh+1 + δb(ebNh+1|u − êbNh+1)

+δev(eevNh+1|u − êevNh+1) +

Nh∑
t=1

uT
t Rut, (14)

where R is a matrix of proper dimensions that penalizes
pbc, pbd, and pbt. Likewise, it incentivizes pugb with a
weight factor −γct, with γ < 1. Note that, since γ < 1,
prosumers will always try to mitigate a neighbor’s power
deficit before selling power to the UG through pugb at a
100(1− γ %) discount.

3. STOCHASTIC MPC FORMULATION

CC-MPC approach combines the benefits of MPC with
probabilistic constraints to address uncertainties in en-
ergy systems. In CC-MPC, uncertain constraints can be
converted into deterministic ones by assuming a risk of
violation, and the nominal objective function is replaced
by its expected value (E[Φ]).

3.1 Standard MPC Formulation

MPC strategy consists of solving an optimization problem
at each time step, t, to compute a set of manipulated
variables along Nh. Only the first component, ut, is applied
at the current time, while the remaining elements are
discarded. The optimization problem is formulated as

arg min
u[t:t+Nh−1]

Φ, (15)

subject to (12) and (13).

The optimization problem (15) is repeated at the next time
step, t+ 1, in a receding horizon fashion.

3.2 CC-MPC Formulation

The uncertainties in solar radiation and energy demand
in the load affect the state ebi, t, which represents the
energy stored in the batteries, as described in equation
(1). It should be noted that puli, t indirectly affects ebi, t
by replacing pbci,t from equation (10) in equation (1). Thus,
equation (2) can be converted into a chance constraint
where the constraint is satisfied with a specified probabil-
ity by using the risk of violating the constraint, δx, i.e.,

P
[
ebi |l ≤ ebi,t ≤ ebi |u

]
≥ 1− δx. (16)

Here, P[·] is the probability operator. The stochastic vari-
ables considered, i.e., ηpvaiϖt∆t and puli,t∆t, are modeled
as known cumulative distribution functions (cdf). The
deterministic equivalent of the chance constraint is for-
mulated as

P
[
ebi,t ≥ ebi |l

]
≥ 1− δx ⇔ P

[
ebi,t < ebi |l

]
≤ δx ⇔

ϕi

(
ebi |l − ebi,t

)
≤ δx ⇔ ebi |l − ebi,t ≤ ϕ−1

i (δx) ⇔
ebi,t ≥ ebi |l + ϕ−1

i (1− δx) . (17)

Here, ϕ is the corresponding cdf of the random variable
for each agent along Nh. It can be obtained from a known
stochastic cdf or based on historical data. An equivalent
deterministic chance constraint for the upper limit can be
derived in a similar manner, as

ebi,t ≤ ebi |u − ϕ−1
i (1− δx) . (18)

Furthermore, the stochastic variable has been modeled as
normal distribution functions with a mean and standard
value of µ and σ, respectively, that is, ϕi = N (µi, σ

2
i ).

To this end, the optimization problem to be solved by the
CC-MPC controller can be expressed as

arg min
u[t:t+Nh−1]

E [Φ] , (19)

subject to (7), (11), (12), (13b), (17), and (18).

4. DISTRIBUTED MPC

To solve the CC-MPC in a distributed way, the Feasible
Cooperation-Based MPC (FC-MPC) algorithm of Venkat
et al. (2005) is used to solve the CC-MPC formulation.
The main idea behind this approach is to set ∀i ∈ A, a
cost function that measures the performance of the entire
system, e.g., a convex combination of every local cost
function Φi:

Φ =
n∑

i=1

αiΦi, (20)

with αi > 0 and
∑n

i=1 αi = 1. The FC-MPC algorithm
guarantees plant-wide feasibility of the intermediate itera-
tes, meaning that even if the computation time is higher
than the time required for convergence, the control se-
quence computed during the last iteration is plant-wide
feasible. The DMPC formulation is computed ∀i ∈ A for
a number of iterations p:

U∗
i ∈ arg(FC-MPCi), where (21)

FC-MPCi ≜min
ui

1

N
Φi,
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in which
∑n

j ̸=i p
bt
ji,t corresponds to the power sent from the

EC to agent i.
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and ωt = [ϖ̂t, p̂
ul
t ]T denote the states, inputs, and distur-

bances of the system, respectively; accent ˆ aggregates a
state, input or disturbance for all agents. Matrices A, B,
and D include the corresponding coefficients of equations
(1), (6), and (11).
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Nh∑
t=1

(ctp̂
ug
t + δb(ebt |u − êbt ) + δev(eevt |u − êevt ))

+cNh+1p̂
ug
Nh+1 + δb(ebNh+1|u − êbNh+1)

+δev(eevNh+1|u − êevNh+1) +

Nh∑
t=1

uT
t Rut, (14)
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for each agent along Nh. It can be obtained from a known
stochastic cdf or based on historical data. An equivalent
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derived in a similar manner, as
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Furthermore, the stochastic variable has been modeled as
normal distribution functions with a mean and standard
value of µ and σ, respectively, that is, ϕi = N (µi, σ

2
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CC-MPC controller can be expressed as

arg min
u[t:t+Nh−1]

E [Φ] , (19)

subject to (7), (11), (12), (13b), (17), and (18).

4. DISTRIBUTED MPC

To solve the CC-MPC in a distributed way, the Feasible
Cooperation-Based MPC (FC-MPC) algorithm of Venkat
et al. (2005) is used to solve the CC-MPC formulation.
The main idea behind this approach is to set ∀i ∈ A, a
cost function that measures the performance of the entire
system, e.g., a convex combination of every local cost
function Φi:

Φ =
n∑

i=1

αiΦi, (20)

with αi > 0 and
∑n

i=1 αi = 1. The FC-MPC algorithm
guarantees plant-wide feasibility of the intermediate itera-
tes, meaning that even if the computation time is higher
than the time required for convergence, the control se-
quence computed during the last iteration is plant-wide
feasible. The DMPC formulation is computed ∀i ∈ A for
a number of iterations p:

U∗
i ∈ arg(FC-MPCi), where (21)

FC-MPCi ≜min
ui

1

N
Φi,

subject to

xi(t+ 1) =A · xi(t) +B · ui(t) +D · w(t),
∀t ∈ {1, . . . ,Nh}, (22)

and (13), ∀t ∈ {1, . . . ,Nh + 1}.

The optimized control sequence for each agent i is stored
in U∗

i , and the state and input variables are denoted by xi

and ui. The model optimizes only the variables belonging
to each agent, while the rest remain as constant values
from the previous iteration.

The stages to solve the FC-MPC algorithm are shown
in Algorithm 1, where upperscript p refers to the p-th
iteration. The goal is to get every agent to compute a pair
of control and state sequences (xp

i ;U
p
i ) that differ less than

the admissible error µ from those computed in the previous
iteration. The error between two consecutive iterations
of the agent i is defined as ϑp

i . As mentioned above,
each agent solves (21) taking into account the information
provided by his neighbors during the previous iteration
and gets U∗

i . Then, x
p,∗
i is obtained after substituting Up,∗

i ,

and U
p,∗)
j ̸=i in (22). Ultimately, (xp

i ;U
p
i ) are determined as

a linear combination of (xp−1
i , xp,∗

i ;Up−1
i , Up,∗

i ), and ϑp
i is

computed. If ∀ϑp
i ≤ κ, termination is reached.

Algorithm 1 FC-MPC algorithm

Given u0
i , x

0, ct ≥ 0, pmax > 0, κ > 0, p ← 1, ∀ϑ1
i ≫ 1, ϕi,

i ∈ A.
while ϑp

i > κ for some i ∈ A and p ≤ pmax do
for i ∈ A do

Up,∗
i ∈ arg(FC-MPCi, eq. (21))

end for
for i ∈ A do

xp,∗
i ← x

(u
p,∗
i

,u
p,∗
j ̸=i

,x0)

i in eq. (22)

(xp
i , u

p
i ) =

1
N
(xp,∗

i , up,∗
i ) + (1− 1

N
)(xp−1

i , up−1
i )

ϑp
i =∥ (xp

i , u
p
i )− (xp−1

i , up−1
i ) ∥

end for
p ← p+ 1

end while

5. BLOCKCHAIN IMPLEMENTATION

One of the main concerns discussed in this work is to
address a distributed optimization problem without rely-
ing on a centralized coordinator who has complete con-
trol and freedom over the algorithm. A smart contract
deployed within a blockchain can replace a centralized co-
ordinator in a distributed optimization problem. Ethereum
blockchain (Buterin et al., 2013), a public and permission-
less blockchain, enables the creation of Turing complete
smart contracts through Solidity 1 , which is an object-
oriented, high-level programming language designed to
target the Ethereum Virtual Machine 2 . The smart con-
tract functions as a replacement for the coordinator, per-
forming information exchange between agents, data stor-
age, and distributed algorithm control flow. Note that a
smart contract is immutable once it is deployed within the
blockchain. This means that no changes can be made to
the contract’s code or state, making it easier to audit the
process.

1 https://docs.soliditylang.org/en/develop/index.html
2 https://ethereum.org/en/developers/docs/evm/

Next, the software tools used to implement the blockchain
are described. The Ethereum testnet Rinkeby 3 is used for
development and testing. A graphic user interface is de-
veloped using React 4 , and web3.js, which enables agents
to interact with the smart contract. Web3.js 5 is a set of
libraries that allows users to link to an Ethereum node,
and Infura 6 , which provides the Ethereum node. Meta-
mask serves as the Ethereum wallet. A simplified diagram
displaying the interconnection between these tools can be
seen in Figure 1.

Algorithm 2 incorporates a smart contract into the dis-
tributed optimization problem. The main differences from
Algorithm 1 are that agents must upload the current state
and a feasible initial control sequence to the smart contract
before the first iteration, and during the iterations, agents
need to interact with the smart contract to uploadup,∗

i and
retrieve up,∗

j , ∀j ∈ A− i. The smart contract also evalu-
ates the terminating condition.

Algorithm 2 Blockchain-based FC-MPC algorithm

Given ct ≥ 0, pmax > 0, κ > 0, p ← 1, ∀ϑ1
i ≫ 1, ϕi, i ∈ A.

while ϑp
i > κ for some i ∈ A and p ≤ pmax do

if p = 1 then
for i ∈ A do

• Compute FC-MPCi with pbtij,t|u = 0.

• Upload u1,∗
i and x1

i to the smart contract.

• Retrieve u1,∗
j and x1

j ∀j ∈ A− i from the
smart contract.

end for
Smart contract:

for i ∈ A do
• Collect u1,∗

i and x1
i .

end for
• Assemble global U1,∗ and x1 matrices.

else
for i ∈ A do

• Compute FC-MPCi.
• Upload up,∗

i to the smart contract.
• Retrieve up,∗

j ∀j ∈ A− i from the smart
contract.

• Calculate:

xp,∗
i ← x

(u
p,∗
i

,u
p,∗
j ̸=i

,x1)

i in eq. (22)
(x

p
i
,u

p
i
)= 1

N
(x

p,∗
i

,u
p,∗
i

)+(1− 1
N

)(x
p−1
i

,u
p−1
i

)

ϑp
i =∥ (xp

i , u
p
i )− (xp−1

i , up−1
i ) ∥

• Upload ϑp
i to the smart contract.

end for
Smart contract:

for i ∈ A do
• Collect ϑp

i .
end for
• Check the terminating condition.
• p = p+ 1.

end if
end while

6. RESULTS AND DISCUSSION

This section presents a case study to evaluate the perfor-
mance of the distributed Algorithm 2. Different simulation
settings are considered, and the results are compared and
evaluated.
3 https://ethereum.org/en/developers/docs/networks/
4 https://es.reactjs.org/
5 https://web3js.readthedocs.io/en/v1.3.4/
6 https://docs.infura.io/infura/



7106	 Manuel Sivianes  et al. / IFAC PapersOnLine 56-2 (2023) 7102–7107

6.1 Case study

The EC consists of 15 agents with 7 prosumers and 8
consumers. Prosumers have a battery, solar panels, and an
EV, while consumers can only buy power from the UG or
via power trades. The cost of buying power from the grid
is based on the clearing prices of the Iberian Electricity

Market, and the selling price of pugbt back to the grid

is cugbt = 0.5ct, ∀t. The simulations start at midnight in
September and for Nh = 24 hours, it covers a full day.

Solar radiation and power demand are treated as normal
distribution functions. For the load, data were obtained
from (Palacios-Garcia et al., 2018) to generate the agent’s
hourly consumption profiles for a year. Here, these data are
used to generate bimonthly normal distributions for each
hour as, on the one hand, a yearly data set is divided into
M = 6 groups of 2 consecutive months each. On the other

Fig. 1. Interconnection between the distributed application
elements.
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Fig. 3. Results CC-DMPC test.

hand, for each subset, defined as Ωpul

m , ∀m ∈ {1, . . . ,M},
an equivalent normal distribution function is generated

ϕpul

i,t,m = N (µ
Ωpul

m,t

i , σ
Ωpul

m,t

i ), ∀t ∈ {1, . . . , 24}.

The exact same process is repeated for solar radiation,
where data are gathered from PVGIS Photovoltaic Ge-
ographical Information System 7 , leading to ϕϖ

i,t,m =

N (µ
Ωϖ

m,t

i , σ
Ωϖ

m,t

i ) ∀t ∈ {1, . . . , 24}.
The prosumers are equipped with a single battery with
an energy capacity ranging from 3.3 to 3.9 kWh, and
charging, discharging, and trading efficiencies of 94.5%,
94.5%, and 93%, respectively. The lower and upper bounds
for the battery’s energy level are set as ebi |l=28% and
ebi |u=87% of the maximum energy capacity. For EVS, the
daily energy charge is between 7.25 and 8.35 kWh, with a
charging time of 24 hours. The EV availability timetable is
generated randomly and the upper limit of power for EV
charging is set at 2.5 kW. The charging efficiency of EV is
0.95.

6.2 Simulations

Simulations were carried out in three test scenarios to
compare the proposed control strategies. The first scenario
was an islanded approach where power trades between
agents were not allowed. The second scenario was the
distributed CC-MPC (CC-DMPC) approach, where power
trades were enabled, and a risk of constraint violation
was set at 5%. The third scenario was the standard
DMPC, which did not consider the stochastic nature
of disturbances. The results of the simulations for each
scenario are shown in Figures 2, 3, and 4, respectively.

Results are shown in Table 1, where both economic and
performance indexes are defined as E1: economic cost
of purchasing power from the UG, E2: profit of selling
power to the UG, E3: difference between E1 and E2, E4:
energy exchanged between agents, E5: energy sold back to
the UG, E6: energy purchased from the UG, E7: energy
purchased from the UG by consumers, and E8: energy
purchased from the UG by prosumers.

7 https://joint-research-centre.ec.europa.eu/

pvgis-photovoltaic-geographical-information-system_en
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Table 1. Simulation results

Tests
Indexes Islanded Distributed Standard

CC-MPC CC-MPC MPC

E1[�] 38.59 28.86 27.09

E2[�] 11.68 5.25 4.57

E3[�] 26.90 23.61 22.52

E4[kWh] 0 37.49 40.66

E5[kWh] 56.40 24.47 21.15

E6[kWh] 113.13 83.80 79.35

E7[kWh] 59.37 30.04 27.71

E8[kWh] 53.76 53.76 51.64

6.3 Performance assessment

Considering the economic and performance indexes shown
in Table 1, the lowest E1 is found in the Islanded CC-MPC
test since power trades are not enabled and prosumers
cannot help consumers reduce their consumption pug.

The results show that CC-DMPC and standard DMPC
have a lower dependence on the microgrid than Islanded
CC-MPC, reducing E1. Islanded CC-MPC has higher
values for E2 and E5 due to excess solar power generation.
Standard MPC has the lowest value for E3, while CC-
DMPC and standard DMPC reduce the gap between ebi |u
and ebi |l, leading to less battery usage in terms of power
trading, reflected in E4. In E7 and E8, it is shown that
consumers’ consumption is slightly higher than prosumers’
in Islanded CC-MPC, but this changes drastically when
power trades are enabled. Finally, E8 remains constant
in both Islanded CC-MPC and CC-DMPC tests due to
the surplus of energy from solar generation, allowing
prosumers to obtain a greater global benefit from the
consumer side without assuming any performance loss.

7. CONCLUSIONS AND FUTURE WORK

This study has presented the energy management in an
EC affected by uncertainty in both solar irradiance and
energy demand. The stochastic nature of the disturbances
has been addressed by using a CC-MPC controller in
each agent of the system. Moreover, the DMPC scheme
is based on a smart contract deployed in Rinkeby and
serves as a global coordinator of the distributed algorithm
without relying on a central authority. The results show
that CC-MPC and blockchain algorithms, jointly working,
are suitable for carrying out a negotiation process among
agents to satisfy the energy demand despite uncertainties.
Future work will focus on new EC formulations and secure
DMPC schemes to enhance the obtained results.
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