Software and Systems Modeling
https://doi.org/10.1007/s10270-022-01011-2

REGULAR PAPER q

Check for
updates

Empirical analysis of the tool support for software product lines

1

José Miguel Horcas' @ - Ménica Pinto’ - Lidia Fuentes'

Received: 30 April 2020 / Revised: 23 December 2021 / Accepted: 1 April 2022
© The Author(s) 2022

Abstract

For the last ten years, software product line (SPL) tool developers have been facing the implementation of different variability
requirements and the support of SPL engineering activities demanded by emergent domains. Despite systematic literature
reviews identifying the main characteristics of existing tools and the SPL activities they support, these reviews do not always
help to understand if such tools provide what complex variability projects demand. This paper presents an empirical research in
which we evaluate the degree of maturity of existing SPL tools focusing on their support of variability modeling characteristics
and SPL engineering activities required by current application domains. We first identify the characteristics and activities that
are essential for the development of SPLs by analyzing a selected sample of case studies chosen from application domains with
high variability. Second, we conduct an exploratory study to analyze whether the existing tools support those characteristics
and activities. We conclude that, with the current tool support, it is possible to develop a basic SPL approach. But we have
also found out that these tools present several limitations when dealing with complex variability requirements demanded
by emergent application domains, such as non-Boolean features or large configuration spaces. Additionally, we identify the
necessity for an integrated approach with appropriate tool support to completely cover all the activities and phases of SPL
engineering. To mitigate this problem, we propose different road map using the existing tools to partially or entirely support
SPL engineering activities, from variability modeling to product derivation.

Keywords Empirical analysis - Case studies analysis - Software product lines - State of the art - Tool support - Tooling road
map - Variability modeling

1 Introduction

An increasing number of software application domains are
adopting Software Product Line (SPL) approaches to cope
with the high variability they present [1]. Examples of these
domains are robotics [2], cryptography [3], operating sys-
tems [4], or computer vision [5]. However, the field of SPL is
quite broad and constantly changing [6], with a large number
of solutions available for each activity of an SPL. More-
over, these proposals are usually not properly integrated in

Communicated by Joanne Atlee.

B José Miguel Horcas
horcas@lcc.uma.es

Mbonica Pinto
pinto@lcc.uma.es

Lidia Fuentes
Iff@lcc.uma.es

1 CAOSD Group, ITIS Software, Universidad de Mélaga,
Andalucia Tech, Spain

Published online: 08 June 2022

common development practices, processes, or tool support.
Thus, despite the number of successful stories about the use
of SPL engineering,! the variability and reuse management
problem has not yet been solved, and both the academy and
the industry continue to experiment with their own solutions
and approaches [7].

The success of an SPL approach depends on good tool sup-
port as much as on complete and integrated SPL engineering
processes [8]. Regarding the processes, most SPL approaches
typically cover the domain and application engineering
processes [9], which include activities such as variability
modeling and artifact implementation (domain engineering)
and requirements analysis and product derivation (applica-
tion engineering). However, the large number of approaches
and extensions that exist for each activity [10] are usu-
ally not properly integrated among them and within the
existing tool support. For instance, it is common to find
SPL approaches that support basic variability modeling con-
cepts (e.g., mandatory and optional features or includes and

! http://splc.net/hall-of-fame/.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-01011-2&domain=pdf
http://orcid.org/0000-0002-7771-0575
http://splc.net/hall-of-fame/

J. M. Horcas et al.

excludes constraints), but it is more difficult that they support
extended variability modeling (e.g., numeric and clonable
features or multi-feature modeling). The same could be said
for variability analysis, domain implementation, or prod-
uct derivation. Moreover, some important activities, such as
the analysis of non-functional properties (NFPs) or qual-
ity attributes and the evolution of SPL’s artifacts [11], are
set aside from existing SPL. approaches. When considered,
these activities are usually integrated into the traditional SPL
process by reusing existing mechanisms which were not
specifically designed for that purpose, for instance using
attributes of extended feature models to specify quality
attributes [12] while there are more appropriate approaches
to deal with quality attributes, such as the NFR Framework
[13].

Besides, although tool support is of paramount importance
for the SPL management process [8], most existing tools
cover only specific phases of the SPL approach (e.g., variabil-
ity modeling or artifacts implementation). Those few tools
that support several phases (e.g., FeatureIDE, pure::variants)
[14] demand the adoption of an implementation technique
such as feature-oriented programming (FOP) [15], aspect-
oriented programming (AOP) [16], or annotations [17];
depend on the development IDE (e.g., Eclipse); or present
some important limitations [18]. For instance, these limi-
tations make the use of classical SPL approaches to web
engineering challenging (e.g., FOP or AOP), mainly because
of the nature of web applications that require the simultane-
ous use of several languages (JavaScript, Python, Groovy...)
in the same application [19].

Unfortunately, few studies aim to understand the tool sup-
port across the different engineering activities of an SPL
[20,21], and those that specifically focus on studying the
tool support [8,22,23] usually report information extracted
from the tool documentation or reference papers without
really installing and using them with existing case studies.
We have done this work with the overarching goal of empiri-
cally testing the tool availability, usability, and applicability.
Our objective is to check out the existence of mature tool sup-
port for carrying out an SPL engineering process, especially
in those application domains with complex requirements
regarding SPL activities and variability modeling charac-
teristics. For each activity in the domain and application
engineering phases, we identify the requirements that tools
should fulfill and analyze each tool’s possibilities and limi-
tations.

The paper answers the following Research Questions

(RQs):

RQ1: Which advanced variability modeling characteristics
and SPL activities can be identified by analyzing case
studies in the SPL community? We answer this ques-
tion by performing a sampling study where we select

@ Springer

a sample of case studies in application domains with

high variability, frequently used in the SPL com-

munity for research and evaluation. We extract the
requirements of those case studies regarding variabil-
ity and SPL activities, mainly focusing on advanced

variability characteristics (Sect. 3).

What tools exist that provide support for the different

phases of an SPL? To answer this question, this paper

presents an exploratory study of the SPL tools, focus-
ing on their availability and usability and analyzing
those tools that could be used to successfully apply an

SPL approach (Sect. 4).

RQ3: How do existing tools support the SPL engineer-
ing activities and variability modeling characteristics
identified in RQ1? We answer this question by empiri-
cally analyzing a subset of the tools identified in RQ2.
We have selected it using availability and usability
criteria. Then we analyze it, specifically focusing on
those SPL activities and variability modeling char-
acteristics that were previously identified during the
analysis of the domains and case studies of the SPL
community (Sect. 5).

RQ4: Is it possible to carry out an SPL process, which
includes the SPL activities and characteristics identi-
fied in the case studies analyzed, with the existing tool
support? That is, is it possible to cover all activities of
complex approaches, including automatic reasoning,
sampling of configurations, and evolution, among oth-
ers? We answer to this question by defining different
roadmap of tools that partially or completely support
all phases of an SPL process (Sect. 6).

RQ2:

By answering these questions, the contribution of this paper is
twofold. Firstly, SPL application developers and researchers
will better understand up to what level the existing tools sup-
port is aligned with their application domains’ requirements.
Secondly, researchers can improve existing SPL processes,
activities, and tools, so that they will be able to better plan
their research in order to close the gaps that exist in the devel-
opment of SPLs.

An earlier version of this work is published as a confer-
ence paper [24]. The former paper focuses on analyzing the
tool support for a specific case study: WeaFQAs [25], study-
ing whether WeaFQAs’ variability characteristics could be
modeled and managed with the current tools. In this article,
we broaden the scope of our study to review a representative
sample group of case studies’ requirements. In particular,
we have added an analysis and discussion of the variabil-
ity characteristics and SPL activities required by up to 20
case studies in 6 different domains. Therefore, we have also
updated our tool analysis to those requirements, including a
new tool (i.e., analyzing 7 tools in total), and propose new
road map for different levels of variability modeling expres-

Empirical analysis of the tool support for software product lines

Problem Space Solution Space

| Domain Analysis Domain
Domain 3
| knowledge (DA) . Implementation
Domain » Variability and Mapping (D1)
Engineering dependency Variability and
modeling reusable artifacts

development

New Features :
equirement: Artifacts

o

Requirements Product
Customer Analysis (RA) Configuration| Derivation (PD) Product
Ap;{llcan-on Needs Automated g 3 Variability &,
Engineering reasoning and resolution and

product
configuration

product generation

Fig. 1 The classical SPL approach with its processes and activities,
adapted from Horcas et al. [24]

siveness and demanding SPL activities, such as sampling and
optimization of configurations, among others.

The paper is structured as follows. Section 2 presents
background information on SPL activities and variability
modeling characteristics. Section 3 answers RQ1 by motivat-
ing our study, showing the requirements of complex domains
and case studies. Section 4 answers RQ2 by presenting the
state of the art of the existing tools for SPLs. Section 5
answers RQ3 by empirically analyzing a subset of those
tools. Section 6 answers RQ4 by defining different tool road
map to carry out all activities of an SPL approach. Section 7
discusses the threats to validity. Section 8 discusses related
work, and Sect. 9 concludes the paper.

2 Background

This section presents the main processes and activities of
an SPL approach and describes the different extensions and
characteristics that have emerged over the years for each SPL
activity.

The classical SPL approach [26] distinguishes between
the domain engineering and the application engineering pro-
cesses, with their main phases and activities (see Fig. 1): (1)
variability and dependency modeling in the domain analysis
(DA) phase; (2) automated reasoning and product configura-
tion in the requirements analysis (RA) phase; (3) variability
and reusable artifacts development in the domain implemen-
tation (DI) phase; and (4) variability resolution and product
generation in the product derivation (PD) phase [9].

The following subsections provide more details about the
activities in the different phases presented in Fig. 1. We put
emphasis on the substantial number of extensions that have
emerged throughout the years by referencing the most rel-
evant articles or works where they were first proposed (see
Fig. 2). Note that there are many more extensions, formal-
izations, languages, and concepts for SPLs and variability
modeling. Here we briefly present those that are considered

the most relevant and well accepted by the SPL commu-
nity [10,27]. These concepts are used throughout the paper,
firstly in Sect. 3, to identify the domain applications that
require them, and then in Sect. 5, to analyze whether these
concepts are covered or not by the existing tools.

2.1 Domain analysis (DA)

In the domain analysis phase, feature models (FMs) have
been widely used to model variability since their introduc-
tion in FODA by Kang et al. [28]. From this work, different
proposals have emerged for model variability and similar
concepts (see top left of Fig. 2), such as orthogonal variabil-
ity models (OVM) [26], probabilistic feature models [29],
goal-based models [30], or decision models [31]. Even, there
was an attempt at standardization with the definition of the
common variability language (CVL) [32] and its extension,
the base variability resolution (BVR) model [33], but it did
not jell satisfactorily.

Due to the success of the FMs for variability modeling,
a vast number of modeling languages and extensions have
been proposed [10,34]. These are classified by some authors
as basic variability modeling, extended variability modeling,
and extra variability modeling.”

— Basic variability modeling. FODA [28] introduced the
basic characteristics for modeling variability in FMs,
such basic features as mandatory and optional features,
alternative (“xor”) and “or” groups, and basic constraints
or relationships between features (e.g., requires and
excludes constraints).

— Extended variability modeling. Well-known extensions
of FMs include variable features or non-Boolean values
such as numerical features [35,36] to represent num-
bers; features with attributes (called extended-FMs) [12]
that provide more information about features, such as a
cost attribute; clonable features or multi-features (called
cardinality-based FMs) [37] that determine the number
of instances of a feature that can be part of a product; and
advanced relationships between features, such as com-
plex constraints [38], which involve numerical features
and multi-features.

— Extra variability modeling. Additional modeling mech-
anisms have been proposed to deal with more complex
variability types. For instance, feature viewpoints [39]
and multi-perspective [40] help to define multiple dimen-
sions of variability separately (e.g., functionality, deploy-
ment, and context) [41]. Also, the combination of multi-
ple product lines (called MultiPLs) [42] allows defining
several families of products that are related among

2 We follow the classification of variability modeling introduced by
Alférez et al. [5].

@ Springer

J. M. Horcas et al.

sanIAnoR T4S pue Surepowr AJ[IqELIEA JO SUOISU)XA pue sjdeouod urejy g *bi4

juswadeuew Pnpoid uonnjosai A:

uonensyuod PNpold

Suluoseas pajewoiny

UM paiejal, Jo uo-paseq, —» suodau [esluydal sIsayl pue joog S90UBJ3jU0) sleuwnor @ :puada
e I -
i [ouyoas -mfos Jui ‘myfos “1shs 21dS yoog ” J1dS ‘bu3 -myos ‘supiy 3331 21dS 190.4d 4dui] 201d ‘MoS buyndwo) W [shs Ju
| (¥nQ) uounjosay i suoyesnsyuod uoneinsyuod suoneinsyuod SIAIS :SINH JO 1S SN Jo
W uonn|oAd 1ds Sumeam Aujiqenep aseg Bunsauidul 1ds W Sundwes suopuod Ay dais-uinn |aA3|yn A pue padels sisAjeuy pajewoliny sisAjeuy pajewoiny
| | 6107 "|e 10 senbiepy 910 |2 13 SedJoH 10T '|e 19 udsneH 0002 ‘[e 3@ |yod i | 6107 "le 38 zouny €107 "[e 32 493199 6002 '|e 33 3UYM 5002 '[e 313 poausez) 6102 ‘e 32 opuljen 0T0Z '[e 32 sapiAeuag
| I
| |
| |
|

uonejuawadwi Ajiqeien Buippow Aujiqetien diseg

Suiepow Ayjiqelien eax3

e R 1 P
|
! "buz ‘mfos “ydwiz ‘dx3 "101d “‘MYos L [sowen SOWDA [STHAON@IN || i | [o10s [| “poig 1dw] 2014 o5 M
| | | I |
1 W W (L3A13A) Aupgersen saul] npoud BINAI ” W sjulessuod SN
! Ayjigeuen SupiaauSua assanay Suuaauidua 1d 9|18y 11k |euoisuaWIp-BINIA 0T0Z punwisals syun aysodwo) | 1| paseq-Anjeuipie) paseq-Ayjeuipied
W LTOT ‘(e 39 0g5unssy 1102 ‘[e32 zelq | toz e e 3 J3||nwuasoy TI0Z B3R 1N ' 1| €102 (839 UOWIND 500 "[e 12 bpaule)
| | [
i B 1R v ot
W uonejudwaldwi speyuy W W yoog . ST3GoN . EPY . ” W 3sivo . 34d .
e sttt ettt st nd | b
e N " SN uo DUl swa-pepusa [| seanyeay jesusuny
W 57dS W W Jomaweld YN sanndadsiad-uiny SIN4 03 sMp3 V/ﬁ 5007 '[e 12 Sapineuag 1007 ‘|8 32 eided
i suoyejouue agensue|-yinw pue A I i 0002 ‘(e 12 8unyd 10T '[& 32 433190425 600C '[e 32 wnyl | !
W 8T0C ‘|e 12 sedloH 1008 m m « + m W Suyapow AyljiqeueA papuaix3
W | | 34d . bu3z ‘myfos ‘uuy . HSoI . | ,IIIIIIIIIIIIIIII IIIIIIIIIIIIIII*\IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIJI
W “dx3 “10.1d "MYos S1dS paiusuQ-ainieay W W (W¥04) SIN4 paseg-Ajeurpie) W W podau [p21uyd3 | W
' uonejouue Suisodwo) ET0Z 233 [3dY m | awy Suipuiq ainjeay SuI0dMB3IA 3injeay YUM UonN|oA3 1ds o (vao4) SI9poIN ainjeay m
| 8TOT ‘(e 12 498Ny | | TOO0T '|e 13 yasog 866T '[212 Suey TTOZ S9uand g zaweo W ' 066T ‘|e 12 Suey| !
! e i !
! 1| B i !

(1@) uonejuswajdw| utewoq (va) sisAjeuy ujewoq

pringer

A

Empirical analysis of the tool support for software product lines

them. Other extensions have been explicitly defined to
deal with the modularization of large models and pro-
vide scalable models such as hierarchical levels and
compositions units [43]; to deal with the evolution of
models [44] using refined FMs or edits to FMs [45]; to
handle non-functional properties (NFPs) such as the NFR
Framework [13]; or to differentiate static and dynamic
variability by defining binding modes such as binding
states, units, or time [46].

2.2 Requirements analysis (RA)

The requirements analysis phase is in charge of analyzing
the variability expressed in the FMs and creating a valid
configuration by selecting the features that will form a spe-
cific product. Due to the complexity of dealing with large
space configurations, some extensions have been proposed
for automatic reasoning and product configuration (bottom
left of Fig. 2).

— Automatic reasoning. Basic analysis on FMs includes
model statistics and metrics such as number of fea-
tures, number of constraints, and type of features. More
complex analysis such as model validation, model count-
ing (number of configurations), anomalies detection,
and explanations require specific formalizations of the
FMs [47]. Benavides et al. [48] enumerate more than 20
operators for automatic reasoning on FMs.

— Product configuration. Product configuration includes
feature selection, constraints propagation, and gener-
ation of configurations either by enumerating all the
products or by sampling configurations [36]. Optimiza-
tion of configurations can also be achieved in this phase.
Some extensions deal with the configuration process to
make it more interactive and help the user to build a
configuration product. Examples of these extensions are
staged and multilevel configurations [37] to configure
multiple dimensions or viewpoints; multi-step and par-
tial configurations [49] that allow automatically deriving
features and assist the user in the selection of features;
and visibility conditions [4] that help to hide branches of
the configurator hierarchy.

2.3 Domain implementation (DI)

In the domain implementation phase, developers build the
reusable and variable artifacts of the SPL. There are several
approaches and methodologies when it comes to implement-
ing the artifacts and their variability (top right of Fig. 2).

— Variability implementation. There are different
approaches to implement the variability of the reusable
artifacts of an SPL [9]. Mainly, they can be divided

in composition-based approaches and annotation-based
approaches or a combination of both approaches [19,50].
Composition-based approaches include component and
service composition, design patterns, feature-orientation,
aspect-orientation, etc., while annotation-based
approaches include configuration parameters, prepro-
cessors, and virtual separation of concerns, among
others [9].

— Artifacts development. The reusable (common or vari-
able) artifacts of the SPL can be managed at different
abstraction levels, from high abstraction models (soft-
ware architectures, design diagrams...) to low level
implementation details (code, functions, source files...).
Extensions to the development of the SPL artifacts
include different methodologies, such as agile meth-
ods [51] or reverse engineering methods [52]. Moreover,
artifacts can be defined in multiple languages which can
be used even in the same product [19].

2.4 Product derivation (PD)

The product derivation phase is in charge of generating or
deriving the final product by resolving the variability speci-
fied in the product configuration. Additional activities have
been proposed to manage the life cycle of the product after
its generation (bottom right of Fig. 2).

— Variability resolution. This includes the derivation of
the product, by resolving the variability of each variation
point in the artifacts of the SPL according to the selected
configuration of the feature model [33], and the evalua-
tion of the product to check if it fulfills its requirements.

— Product management. Apart from resolving the vari-
ability and generating the final product, some extensions
include the composition of different final products or
weaving [53], the traceability of the features from the
FMs to the artifacts in the final product, and the evolution
of the SPL artifacts [54] and the automatic propagation
of changes to the already configured products [55].

3 SPL and variability requirements

Variability modeling has been successfully applied in many
domains, such as the automotive domain, computer vision,
and software systems [56]. Analyses of how variability
is managed in these domains, both conceptually and with
respect to formalism and tool support, are important to under-
stand the different challenges the domains pose and the level
of support that existing proposals provide to deal with them.
To identify these challenges and to motivate the rest of the
paper, in this section, we answer our first research question:

@ Springer

J. M. Horcas et al.

RQ1: Which advanced variability modeling characteristics
and SPL activities can be identified by analyzing case
studies in the SPL community?

Rationale: There exist software systems that make
intensive use of variability management techniques
and can be customized for different scenarios [47].
Basic characteristics such as those introduced in
FODA (Boolean features, optional and mandatory fea-

tures, alternative and “or” groups,
requires/excludes constraints) are not enough to model
the variability of those systems. Thus, we need
additional advanced variability mechanisms (e.g.,
numerical features, attributed features, multi-features,
optimization of non-functional properties...). Our
sampling study tries to find if there is a fundamental
need to use advanced mechanisms to manage variabil-
ity and identify those variability characteristics and
activities.

To answer this question, we have selected a representa-
tive sample group from the studies mainly used in the SPL
community, for research and evaluation. We have analyzed
them by looking for variability requirements and uses of
SPL concepts and variability mechanisms, in particular those
introduced in Sect. 2.

Research method. We have conducted an empirical study
consisting of a sampling study [57] in which we have selected
arepresentative small group of case studies to analyze (a sam-
ple). In contrast to a systematic literature review where the
state of the art is thoroughly reviewed, the sampling study
aims for the representativeness of the selected case studies,
which allows us to evidence the need to support the non-basic
variability characteristics in current domains. To perform the
sampling study, we define the following essential specific
attributes according to the ACM SigSoft Empirical Stan-
dards [57]:

— Goal of the sampling. The main purpose of the sampling
is to establish whether there is a real necessity of using
advanced mechanisms to manage variability. Therefore,
we are especially interested in those case studies that
pose the most challenging requirements regarding vari-
ability; that is, case studies that make intensive use of
variability management techniques beyond FODA con-
cepts, requiring advanced variability mechanisms such
as those introduced in Sect. 2.

— Sampling strategy. The sampling strategy consists of
making an incremental selection of studies until we
gather a representative sample of case studies evidenc-
ing the need to use advanced variability mechanisms. To
identify the case studies, we manually searched the pro-
ceedings of the main research and industry tracks of the

@ Springer

SPLC3 and VaMoS?* conferences, which are among the
most relevant SPL and variability events, and then we
used a snowball approach to the selected case studies.
The search was limited from 2010 to December 2021
and performed in reverse chronological order to consider
only the most updated versions of possible recurrent case
studies. However, we also found older studies we consid-
ered during the snowball process. We found 477 articles,
of which we selected a sample of 2-5 case studies per
domain, limiting the sample to 6 domains and a max-
imum of 20 case studies. For the selection of the case
studies, we used the following inclusion and exclusion
criteria (IC and EC):

IC1: The paper presents a case study with requirements
that involve the variability activities and variability
concepts presented in Sect. 2.

IC2: The case study is described with a high level of
detail about the variability characteristics it models
and about the SPL activities it achieves or needs.

EC1: The case study requires only basic variability mod-
eling (i.e., it only uses FODA concepts).

EC2: The case study requirements are a subset of another
case study in the same domain.

We reviewed the articles in random order but guided by
the domains. That is, we firstrandomly selected an article,
identified its domain, and checked whether it meets our
IC/EC. If the article did not pass the IC/EC, we randomly
chose another one. If it passed the IC/EC, we focused
on the requirements in the domain to which it belongs,
looking for other articles in the pool with case studies
of that domain. To do that, we relied on the title of the
articles, on a snowball approach based on the references
of the reviewed article that are already in the pool, and on
our own experience (see biased judgment in Sect. 7). We
stopped the incremental process when we reached a set of
2-5 case studies per domain, with a limit of 6 domains and
a maximum of 20 case studies satisfying our IC/EC. This
means that, from the starting pool of 477 papers, there
probably were more than 20 studies fulfilling our IC that
could be considered. However, we did not have to con-
sider all of them, because we only needed a representative
subset for our sampling goal. Note that the final objective
is not to analyze the specific requirements of case studies
or domains but to identify a need of using advanced vari-
ability modeling characteristics. Other samples from the
same pool of papers that meet our IC/EC would also sup-
port our evidence. In contrast to a systematic literature or
mapping study, we did not track the studies we left out due
to the EC, because they are not relevant to the sampling

3 https://dblp.uni-trier.de/db/conf/splc/.
4 https://dblp.uni-trier.de/db/conf/vamos/.

https://dblp.uni-trier.de/db/conf/splc/
https://dblp.uni-trier.de/db/conf/vamos/

Empirical analysis of the tool support for software product lines

study. Therefore, we did not need to collect information
about the whole population or track the different filter-
ing steps. We used Google Forms® to collect information
about the case studies: name, primary reference, domain,
year, type (industry, academic...), a brief description, and
a list of variability and SPL requirements or challenges
raised by the case study. These data were extracted from
the information found in the primary reference paper that
first introduced the case study or analyzed the case study
from an SPL point of view.

— Why the sampling strategy is reasonable? Our hypoth-
esis was that some case studies require advanced variabil-
ity characteristics beyond the FODA concepts, and we
needed to support it with a formal study. Finding just a
few case studies of different application domains requir-
ing advanced variability characteristics was enough to
show the necessity of modeling or using those advanced
mechanisms (our research question). However, to firmly
support our hypothesis, we decided to identify between
2 and 5 case studies for each domain. As stated in
Ralph et al. [57], the sampling strategy, despite not being
necessary optimal, provides us with standard empirical
research to identify those studies and answer our research
question.

— Rationale behind the selection of study objects. In the
sample, we included those case studies from research
articles with requirements that aligned to those variabil-
ity activities and variability concepts presented in Sect. 2.
We did not differentiate between industrial and academic
systems, since there are domains whose case studies pose
significant challenges regarding variability, even if they
are not considered in the industry yet. We show a prefer-
ence for emergent domains (e.g., cyber-physical systems,
computer vision) because we thought they would present
more challenging variability requirements. But, in fact,
evidence was easy to find in these domains. We real-
ized that, in addition to these emergent domains, other
domains that have been studied for years (e.g., operating
systems) also pose challenging requirements regarding
variability. We set 2010 as the starting date for the sam-
pling study because most of the advanced variability
concepts and characteristics used by the SPL community
were defined or began to be used around 2010 or later
(see Sect. 2). Thus, case studies requiring such charac-
teristics started to appear on that date. Then, during the
snowball process, we found older studies that we finally
considered, in domains such as robotics.

— Sample size. We set the sample size to 20 case studies
and 6 domains, selecting between 2 and 5 case studies
per domain.

3 https://forms.gle/PaN1L83jeW9yW7tMS8.

The main artifacts developed that allow replicating and/or
improving this analysis of case studies are available online.®

Results. The sample of 20 case studies from 6 differ-
ent domains was analyzed in detail.” The case studies were
grouped by application domains, and the results are presented
in Tables 1-8. Firstly, Table 1 lists the analyzed domains and
case studies in the order in which they were selected and
analyzed, providing their reference and type (i.e., academic,
industry...). During the analysis, we have searched for all the
requirements listed in Table 2, which are organized accord-
ing to the four main processes of an SPL (see Fig. 1) and the
activities they include (see Fig. 2). This table summarizes the
requirements and characteristics needed by each domain and
has been generated as the union of the requirements of all
the case studies in that domain. For a more detailed descrip-
tion of the case studies and their requirements, Tables 3 to
8 can be consulted. The rest of this section presents a brief
discussion about the results, organized by domains. For each
domain, we highlight the most relevant requirements regard-
ing variability and SPLs and complement the information
with the appropriate table that details all the requirements
extracted for the analyzed case studies in that domain. We
would like to highlight that the purpose of this study is not
to draw conclusions about the characteristics of the domains
themselves but instead to demonstrate that the advance vari-
ability requirements listed in Table 2 are present in a variety
of existing and emergent domains.

Automotive domain (Table 3). The automotive industry
has been associated for years with vehicles product lines.
Nowadays, the complexity of such product lines has raised
due to the heavy incorporation of intelligent software in
autonomous vehicles. Here we describe some of the most
relevant requirements of this domain. For instance, vehi-
cles usually include electronic, mechanical, and software
components, requiring different viewpoints with complex
constraints involving technical and architectural dependen-
cies [58]. These constraints are also introduced by commer-
cial offers and stakeholder requirements, which give rise to
the need of MultiPLs to distinguish two types of products
(prototypes and commercial vehicles), which are different
in terms of novelty, purpose, and the amount of reused
assets. Moreover, case studies in this domain expose the
needs of working at the architectural level and modeling
non-functional properties such as the car efficiency or the
safety traffic [59,60]. The complete set of requirements of
the case studies in this domain are detailed in Table 3 and
summarized in the first column of Table 2.

Computer vision domain (Table 4). Most of the case
studies in this domain are related with the generation of syn-

6 https://github.com/jmhorcas/SPLE-Empirical Analysis.

7 A .csv file with the information extracted for each case study is avail-
able in https://github.com/jmhorcas/SPLE-Empirical Analysis.

@ Springer

https://forms.gle/PaN1L83jeW9yW7tM8
https://github.com/jmhorcas/SPLE-EmpiricalAnalysis
https://github.com/jmhorcas/SPLE-EmpiricalAnalysis

J. M. Horcas et al.

Table 1 Domains and case

studies analyzed Domain Case study References Type Year
Automotive Parking brake system [58] Industrial 2013
Abstract fuel control system [59] Industrial 2019

Autonomous vehicles [60] Academic 2018

Computer vision Video generator [5] Industrial 2019
Quality-based video generator [61] Industrial 2019

Medical imaging workflow [62] Academic 2013

Video surveillance system [63] Academic 2011

Cryptography OpenCCE SPL [64] Industrial 2015
Cryptography API [3] Academic 2019

E-payment application [65] Academic 2016

Operating systems Kconfig and eCos systems [4] Industrial 2013
Android and Debian [66] Industrial 2014

Cyber-physical systems Development approach to CPSs [67] Academic 2017
Tank and quadcopter PLs [68] Industrial 2015

Train control system [69] Industrial 2018

Robotics Service robots [2] Academic 2019
Autonomous mobile robots [70] Industrial 2012

Cloud robotics SPL [71] Industrial 2014

Landmark search [72] Industrial 2016

Home service robots [73] Industrial 2005

thetic videos [5,61]. They show that, in the video domain,
basic variability modeling (e.g., Boolean features) is not
enough. They also demonstrate that modeling the vari-
ability in the video domain requires extended mechanisms
such as numeric features, multi-features or cardinality-based
features, and complex constraints. There are challenging
requirements not only at the variability modeling phase but
also in other phases, such as the generation of optimal config-
urations and the reduction of the configuration space to cope
with models with large number of variants, as shown by all
the case studies presented in Table 4. In fact, computer vision
is one of the domains with the largest set of requirements for
variability modeling and analysis, exposing the need of all
the characteristics presented in Table 2 (column 2) for the
domain and analysis phases.

Cryptography domain (Table 5). Cryptography is an
algorithm-heavy domain used in thousands of software sys-
tems to protect any sensitive data they collect. There are
different kinds of cryptography components (e.g., ciphers,
digests, etc.), each suitable for a specific purpose and with
various algorithms and configurations. Finding the right
combination of algorithms and correct settings to use is
often difficult [3]. Cryptography is also required by almost
all electronic-based systems, such as e-payment systems
and e-voting applications [65,74]. The encryption compo-
nents need to be specifically customized to the application’s
requirements (e.g., the RSA algorithm with keys of 2048
bits) and then introduced (weaving) in the software architec-

@ Springer

ture of the applications in a non-intrusive way (e.g., using
an aspect-oriented approach). In Table 5, we can observe
that this domain clearly requires advance variability man-
agement mechanisms such as the use of extended variability
languages with numerical features, the optimization of multi-
ple objectives during product configuration, the necessity of
better organizing large models or the weaving of cryptogra-
phy components with the application software architecture,
etc. Table 2 (column 3) summarizes these requirements for
the cryptography domain.

Operating systems domain (Table 6). Operating systems
is one of the important domains where variability has been
clearly identified and modeled [4]. Interestingly, the analyzed
case studies reveal that the languages and models used in
open-source operating systems (e.g., the Kconfig systems
such as the Linux kernel and the Component Definition Lan-
guage [CDL] used in the eCos system) use concepts that
are beyond core FODA concepts. These range from the use
of domain-specific vocabulary (e.g., tristate features) [75]
to binding modes for static and dynamic variability. They
also have in common the need of dealing with larger models
and high numbers of dependencies between features. Table 6
details all the requirements of the case studies in this domain,
while column 5 in Table 2 summarizes them.

Cyber-physical systems domain (Table 7). Cyber-
physical systems (CPSs) describe autonomous and adapt-
able systems such as embedded systems, which integrate
sensors and actuators to monitor, control, and influence

Empirical analysis of the tool support for software product lines

(***suonIpuod ANIQISIA ‘S9INJLd)
paALdp ‘suonein3yuod [ented pue doys-nnur)
$s9001d UOIIBINTYUOD SATIORIU

suorjen3yuod jo uoneziundo
suonem3yuod Jurjdureg

(***uonesedod
SJUTRIISUOD ‘UONRIAWINUD ‘UOTI[IS
$91M1BYJ) SUOTJEINSJUOD JO UOTRIAUID)

uoneInsyuod jonpoig

(" "UOTOP SII[RWIOUE ‘FUNUNOD [9POW
‘uonepifea) SJAL] U0 suonerado sIsAfeuy

(-*-somaw ‘sonsnels) SJAL] JO SISA[eue oIseq
Suruosear dpewo)ny

(" -sarmeay
1oeNSqe ‘SIUT0dMIIA U99MIAq SIUTRIISUOD
“Kyordnmu dnois Kreniqie) SUOISUI) X JOYIQ

(***suonejouue
ﬁ:o:mtumo_u ‘uoneIUAWNIOP) UONBUWLIOJUTRIIIA

(**-oeys “orwreukp ‘onels :ow) SOPOW wEvEm—

(***suonnquuod ‘suonezieuonerodo
‘sreod) sanredoid reuonounj-uoN

('sINA
01 S)IPa ‘S pauyar) STAL] JO UONN[OAH

(***STOAQ] TedIydIRIAY ‘S)TUn uonisodurod)
S[opow J1og1e] JO uoneZLIR[NPOIA

(*saanoadsiad-nrnu
‘sjurodmara aImesy) SQUI 3oNpoId
N[N pue AJIELIEA [EUOISUSWIP-HNA

Surppow AIqeriea enxy

(**SQINJBAY-IY[NW ‘SOINGLINIE ‘SAINJL)
[poLWNU SutAjoAul) sjuTRIISUO0D XI[dwo)

(saamyeadg-nnw
IO SaInjedf S[qeUOd) STA] GOmmDiﬁ:ﬁEUEU

uorstoard
pue ‘sa3uel ‘sej[ap ‘sonyea jnejeq
(sanqume Pim saed)) S|A] PIpuaIXg

(*+orep ‘SULNs ‘SUONEIOWNUD ‘[EOLIAUINY)
sSanjeA uea[oog-uou JO SaInjed) S[qeliep

Surepow A)IIqeLIBA PIPUIXH
(sopn[oxa ‘sormbar) sjurensuod diseq
(10x 10 ‘A10yEpUEW ‘[EUOndO) SAINILIJ JIseyq

Surepowr AjIjIqeLIeA JISeg

(VY) sisA[eue syudwdambayy

(V@) sisA[eue urewo(q

$o110q0Y

swAsAs [eorsAyd-1oq£)

swa)sAs SuneradQ

Aydei3oydAi)

uorsia 1ndwo))

QATIOWOINY

SONSLIRJORIRYY) PUE SJUSWIMbY

sjuowaxmbar urewo g ajqel

pringer

As

J. M. Horcas et al.

‘UTBWIOP Q) UI SAIPNJS ased | J[qe], JO Aue jsowye ur Juasaid jou ST oNSLIORIRYD Y, []
"UIBWOP Q) U SAIPNIS 9SeD | J[qE], JO Jsowr ur Juasald SI o1sLIoeIeyo oYL, |

(sa3ueyo
Jo uonededoid onrwone) sOFUBYD UONN[OAH

saImeay Jo AJIjIqeasel],

syonpoid Jo uonisodwos 1o Suraeap
JudwRSeURW JONPOI]

uonen[eAd 1onpoig

UOTIBALIOP 100POIJ

uonnosax AIqeLIeA

(eouopuadapur
o3en3ue)) sjoejnIe oen3ue] BNN

(**"S3Y ‘suonouny ‘9pod) [OA[UOT)ORISqE MO

(" s[epowr
‘ug1sop ‘2ImPAIYIR) [IAJ] UONORIISqR YSTH

Juawdo[aAap speynIy

(suonejouue
pue uonisodwoo) yoeoidde paurquio)

(***suIa0u09 Jo uoneredas femuiA ‘sod£)10a1d)s
‘siopowered) yoeoidde peseq-uonejouuy

(""" pAIUALIO-10adse ‘pAIUALIO-dINIEd)
‘syusuodwod) yoeoidde paseq-uonisoduio)

uoneymuR[dwr AIIqerLies

(Ad) uoneALIdp JonpoIg

(1) uonejuduR[duwr urewo(g

SO110qOY

swaIsAs [eo1sAyd-10q4)

swdsAs Suneredp

Aydei3oydAip

uorsia 1ndwo)

QAIoWoMY

sonsLIsjoRIRYY) puk sjuswaInbay

ponunuod go|qel

pringer

A

Empirical analysis of the tool support for software product lines

*QIMOAYDIE AIeM)JOS SUIK[IOpUN) 0) S[OPOU AINJLRJ) WOILJ SYUI] [DANIINLIS 4
(181 93UBYD QUER[‘UOISI[[0D 0} dwT) “'TF'9) Ajojes pue (Juowaai3esip dnoid ‘owr) [oAen <3 9) AOUAIOYJS Se yons saiLiadodd [puoIunf-uop

(A1noas pue Aouaroyje 3-9) senqrmie Ayfenb oyyen oy pue ‘(sopowr SUIMO[[0)-Ied
pue s1ojourered [eI0TABYQq *S°9) 9[OIYoA Snowouojne ay) (AISuap dujer) ‘SuonIpuod Iayjeam ‘peol Jo ad£) “§+9) 1X01u0d [JUSWUOIAUS Y} SUTA[OAUT WdY] UIMIIG SJUIDAISUOD PUD SJUIOAMIIA 4

Kempeoy QW) PUE ‘UOTIRIS[AIIP 9es WNWIXEU ‘Q0ur)sSIp wel ‘uoneIa[edoe ‘paads se yons ‘(Jurod [BWITOOp YIIM) S241p2f [DILI2UNU TRIASS 4
sspuauRImbay

SUONIPUOD JYIBaM JUAIJIP Japun (K1ayes pue Kouaroyje) Ajjenb
oygen Jo 9913ap ySIy € urejurew 0} I9pI0 UI “QWITIUNI Je [9powl SUIMO[[0j-Ied € Jo sidjourered oy sjdepe jey) SI[OIYIA SNOWOUOINE 10§ JUaSe IS[[ONU0D J[OIYA J[qeInSyuoddr y uondridsaq

810¢ :dBdX OIWIPeIY :3dAY, "[09] SI[OIY2A SnowouoIny :Apmjs Ise))

SUONIPUOD UoHR[NWIS/IUNSA) WUAIYIP INOqe SuIUOSDaL pup SUISIAA(]

SWISASQNS JUBLIBA IO $YO0[q JUBLIBA [9POW SE A7171qDLIDA 23150d1100 PUE ‘S[opoul AU} Ul s1ojawered se pajuasardar 111qoiiva v

S[opowl YuInwig SUIA[Iapun 3y} 0) S[APOW AANBJ dY) WOILJ SYUI] [DANIONAIS 4

Qouewofrad Ied pue ASUSIOYJR [ong St yons sa1%iadodd [puoIun-uop

(s1e0 110ds U0 S[qe[TRAR ATUO aTe UOISIOAId YSIY YITMm SIOSUSS 159q 9y “'T9) s1ojowrered Suowre sjuIDISUO)) 4

uois1oa.4d pue (o[3ue repad oy) 10} (Z'19 ‘0] ©'S°9) Sypasarur ur 28un. JULIHPIP YIM danssald ouydsoune 1o ‘9oueIa[o) siosuas ‘paads surSuo 9[3ue [epad oY) Se Yyons sanipaf [poriaumy 4
(JUOWIUOIIAUD ¢3"9) JXJUOD PUE ‘[0OJUOD WIA)SAS ‘SAINILDJ SIBD ‘SpIezey se yons way) Suowp sdiysuorvjal yim siutodmaia apdumpy 4

SUONIPUOD JUIALIP PUB ‘SUONIPUOD [BIUSWUOIIAUD ‘SPIBZRY ‘SOINJBJ UOWIWIOD dIBYS YIIYM ‘SIED JO SOI[IUIR] JO SOI[IUIE) UJAD PUE ‘SIBD JO SOI[IWR] ‘SIEd [9pOW 0 STJUINNA «
ssjuauRIImbay

doueurioyrad 185 pue AoUQIOLJ [onJ seoUANYUI YoIym (V) onel [anj-Ire feusis oy syndino pue paads sui3ue pue 9[3ue [epad oy syeusis Indur se saye) Jey) [OpojN :uondiIsaq
610¢ :aeax ‘Temnsnpuy :adAY, ‘[6G] WweIsAs [0NUOD [on] JoeNsSqY :ApnIs Ise)

‘waIsAs oy ur pareadde 31 axoym 03 Joadsar ur 9o1nos AjIqerrea o) Jo K1171qaon.y JuLNSu 4

SJuT0dMOTA JUSIOIP oY) SMO[[0F 18y} $$0001d uonDINSYu0d pasvis

(uonnjoaa 4of 11oddns “9°1) sa3ueyd 1091 0) spepow urewop Junepd)

SO[OTYaA [e1o1oWOD pue sadA10joxd :s1osse pasnar jo yunowre ay) pue ‘esodind ‘AI[OAOU JO SULIS) UT JURISHIP Ik YoryMm ‘sjonpoid jo sadA) om) ysm3unsip 03 STIUMNA «

(soryo1d woysno YPm TINN/TINSAS ¢3°9) syurodmara oy Jo yoes 10§ suonejuasaidar opraoid 0 a3en3ue| Surfepout v

(syuouoduiod a1eM1JOS PUE ‘[OTUBYIIUI ‘OTUONO]Q ') aINJoa)IydTe W)SAS o) Jo 2d0ds oY} JOA0D 0) UAY] UIIM]Iq SJTUIDAISUOD PUD SJUIOAMIA JUAD[I(T 5

A[Tuurey 9[oTYoA [oea JOJ S9INJeaJ J[OIY2A 9qLIOsap pue Juasaidor 0y 28vnduv] Linjuaundo(q 4

ssyuduRImbay

SwIdISAs aye1q Suryred [euonuaAuod jo Ajjeuonouny Yy aaoxdwr 1o 9oe[dar 0 (Jneuay “3-9) seruedwod aAnjowoIne Aq pasn A[UOWIWIOD WAISAS (gdH) oyeld Sunjied o1od[g uy :uondrsaq

€10¢ 183X ‘Ternsnpuy :adAg, ([8G] waIsAs ayeiq Sunyred :Apnjs ase)

SOIPN)S QATIOWOINY

Urewop dAnjoWoINe Y} jo sjuowarmbay ¢ ajqey

pringer

As

J. M. Horcas et al.

Qwmuni Je pue uIsop Je AI[IqeLIeA

yovouddp aanyoadsiad-umpy 4

sjapowt aampaf 234v] Pim Surdo)

sspuauRIImbay

[29] u1 pauyop o3en3ue] oyroods-urewop ay) Jo 9s) :uondrsIq

110T :a8dx -o1wapeoy AT, [€9] WAISAS 90UR[[IOAINS OIPIA :ApPNJS Ise)

yoddns uonyp.mifuod dajs-unp

sjapout paiv)al42jul Jo 3as e 10§ y1oddns JuowoFeuew pue uonisodwo)) ,

UONIDAISGD JO §]249] SNOLIBA 4

(eremyjos ‘arempiey “'39) yovosddp aandadsiad-1pnut 10 [PUOISUIUIP-IINIY 4

spapout anpaf apas-2340] Pim Jurdo)

:sjudurdambay

a3en3ue] oyroads-urewop e jo uoniuye(:uondrisa(q

€10 :a8ax "orwapedy :dAJ, ‘[¢9] mopIom Furdew [BOIPIJA :Apnys Ise))

SuONEINSYUOD DIBME-)XSJUOD JJLIQUSS 0} Widy] SUOWD SIUIDAISUOD Y] PUD SUOISUULIP JU2A2[fip Jo K11]1qDIIDA
SuONBINSYUOd pajeIauas-uou [[1s Jo sentadoid oy} IoJur 0} SIQYISSL[O IO S[OPOW ANIIPAId 9JeId 0) PIPAU I8 FUTUIBI] SUIYOBW PUR SUONDANS1U0D fo Sutjduipg .
(3{1ep 00} 10 As1ou 00} “3'9) S0IpIA d[qe}dasde-uou Jo UoNeIaUdT AY) PIoAe 0 9deds uoneIn3yuod Ay NPy 4
SIUIDAISUOD X2]dUl0d PUR ‘SUIDUIOP 2INGIIIID AOf SISUDL SUNIDIS D1IIUWNN] 4

ssjuduRImbay

SUIA)SAS UOISIA 19INdWOD YIBWIYIUIQ 0) PISN SOIPIA JNAYIUAS JO UONLIAUL) :uondLsaq

L10¢ :aedx ‘Temsnpuy :adA7, [[19] J01eI0Ud3 09pIA paseq-Afen) :Apnys Ise)

soanbruyo9) uonezrundo JuaIolIp SUISN PUB BLIDILIO JUAISYIP SUIpIe3AT SUODANSu0d [pu1ido Jo UOTIRIQUL) 4
waY) JNOge FUTUOSLI PAILWOINE I} [0NUOD 0} SUOHDINSHYU0D JUDA2]24 SULdIfy pup Sutjduung

&go1ava onupudp puv IS U2aMIaq SUDIUIAILJI(T +

UONDULIOSUIDIDJY

(sopo1yeA (o uey) ssof Surpnpour sorjduwir 9udds APISANUNOD © “3*9) SIUIDLISU0D Xa]dui0))

OJPIA QUWIES Y] J0J SABM JUIIJIP UL SI[OIYA JUSIQHIP ‘Q0URISUL J0J ‘QINSYUO0D 0) SaLMnIpa[pasvq-A1pulpivd 10 SaImpaf-uinpy .
§23UD4-13N PUE ‘SIN[BA UTBWOP SNONUNUOD IZNIISIP O} SVIIP ‘Sanipa JINpfop YNM SANGLITY

09pIA & ur readde Jey) SO[OIYaA JO JoqUINU Y} SB YONS SoUNIDIS ILIIUMN] 4

HYUELIERTLLIEN ¢

swyirIo3 e Surssoood 0opIA YIBWYOUIQ 0 PASN SOIPIA JNAYIUAS JO SIUBLIBA JO UONEIUAD) uondLIdsa(q

6107 :Xeax ‘remsnpu] :ddLY, [G] Joje1ouas 09pIA :Apnys Ise)

SoIpNIS 9sed UoISIA 1ndwo))

urewop uoIsIA 1ndwod oy jo sjuowrarnbay ¢ jqer

pringer

A

Empirical analysis of the tool support for software product lines

(uoypiua1io-12adsp 3uisn “3-9) Kem SAISNIUI-UOU © UT 2.410211104p 21vmzfos uonedridde oy ur sjuouodwiod uondAIous ay) Jo Suranam 4o uo12afuf

(sNq 807 JO SAY yim wprIode VS oY) Jo asn ¢3-9) syuawarmbar s, uoneordde o) 0y Surpioooe sjuouodwiod uondAIous Jo uouY2IUIOISN) 4

ssjuduRImbay

‘uonesrjdde ay) Jo 2INONIYITE 2IBMIJOS) YIIM Furaeom pue sjuswalinbar uonesrdde ay) 03 Surpiosoe syusuodwod uondA1ous Jo uoneziwolsn) :uondrIdSIQ

910 :aedx orudpedy :dAY, "[69] 1dS uoneordde juowked-g :Apmys ase)

pain3yuod Jureq ST Jey) Sk} JO puny| oY) Uo paseq japout ayj Jo sivd junaajatil 240US]

1oydro oy Jo suoneIalr 1o 9z1s Ay se yons sentodoid 10y sampaf jporiawmu Suiznundo

SJUTBI)SUOD JO 19S B UO Pastq dpIoap 0 J0JeIouad aoue)sur oy 2aeo] pue santadord ureirad Ajroads 0y suoyp.ndifuod puang

(4 01 T ©°39) sanpa 2124251p JUIPOOUD SIOFAUI JO PLAISUI (03 ,‘Suouis,, . ‘MojS,, <3°9) sadK] uoyniawmua se pouyop WYILIOI[e U. JO S[OAJ] dourwWIOfIad J0 AJLINDIS SB YONS SAINGLIIID [DUIPAQ) 4
(S)NeJop 2Ind3s 93BIAAL IIM Iasn) op1aoid 03 3-9) sanjva ynnfap pue (VS 10J 9€G°G9 PUB T[S U2aM)q SAN[BA SIZIS KoY “*39) sadun. pamoqpp (zis Indino ayy ““3-9) sz
$31q U1 9z1s A9y uondA1oud oy Jo ysey paonpoid oy} Jo 9ZIS Y} S YONS §]qDIIDA [DILIDUINN 4

(3[se) ® Jo swyjioS[e “3-9) sponpoud ayy uaamiaq sjuinisuod Yim nq K[ereredas paopour 9q 03 pasu Jey swriode uondAous pue syse) uondAious se yons saddy onpo.d apdunpy 4
ssyuduRImbay

syuauodwod Ayder301dA1o o11oua3 [opowt 03 [$9] Ul JIom Y} JO UOISUA XY :uondiIdsaq

9107 :aedx -orwapeoy ALY, '[¢] IV AydeiSoidA1) :Apmys ase)

101N]042 wpLSoid Jurmp 10 juauidoaasp pryur SULINP OIS ‘pAONPONUL UIAQ JABY SIBAIY) OU JeY) 2INSUL 0) wiv48o.sd (puif oy} sazpuy

way) J0J S[[ed [dV 1991100 Y} YIIM 2pod padinbai ayj Jo uoyniauasd Jpuomy ,

asn 03 syuauodwod Ayder3o1dA1o jueas[ar oy Funoo[es ysnoiy) s.adojaaap apms) .

s2411921qo apdinu 221urpdo pue saouvisul puif 0y SUIUOSDAL PIIDUIOINY 4

19ydro yoea 10§ seInqLIIe SWes A} JUIUYIPAI PIOAR 0} SUIDUIL2[24 JO ULIOf 2UI0S YSNOAY] SUISNIY 4

s[eA9] uondwnsuod Alowaw 1o zIs Ay st yons sanquuie AJ10ads 03 sanppa unajoog-uop

(s15931p Surysey "sa sroydro uondArous <3-9) sasse[d WYILIOI[e pue SIOYdIO JLJOWWASE PUB OLJOWWAS 9JBNUAIIYIP 0} d4MIONLIS [DIIYIUDIII]

HYUELIERTLLIEN ¢

syuouodwod Ayderoyd£o oSeuewr 03 1dS gODudQ 2y Jo Juswdoaadp pue (D) 2amoayory AyderSoidAi) eaer oy jo Aiqenes :uondridsaq

10T :reax ‘fernsnpuy :2dAp, ‘[$9] TdS HODuedQ :Apmys ase)

sarpmys ased AydeigoydAi)

urewop Aydei301dA1o oy Jo syjuowannbay ¢ 9jqel

pringer

As

J. M. Horcas et al.

sarouapuadap Jo 1aquinu ySiy pue Sjapoul 42340] M [83P 0) SUSIUDYIIUL UODZLIDINPOIA 4

QWNUNI JB PIAOWAI PUB PI[[LIsul 99 0} sjun)1sodwod Jo sjun dIseq Mo[[e 0} Sauiyy Suipuiq ‘renonaed ur pue ‘sapowt Sutpuig
uoneIngyuod oyroads € 0) SurpIoode sjuduoduwiod peoy 03 S24112211Y24D PaJuUdLIO-1UdU0duiod pue si21auppd uoyPm3Yuod se Yyons susunydau £111qoLva JUnud(
SOy $921n0S 1AW A[QATII[AS 0) UOuP|IdUI0D [PUOLIPUOD PUR SLOIDLIUIS PO SB YONS SWUSIUDYIIUL K11]1GDLIDA DUDIS 4
sspuauRIImbay

asdijog pue ‘ueIqa(‘proIpuy Apnoul 0 [{7] Ul JI1om Jo uoisualxy :uondrLsd(

$10¢ :aedx Ternsnpu] :ddAY, '[99] uriqe pue proipuy :Apnjs Ise))

Ayo1e191Y 1072INSYU0D AY) JO SAYOURIQ A[OYM IPIY 0] SUOLIPUOI KJIJIGISIA 4

310 UOTIBINSYUOD ATBSSIOUUN JISN AY) ABS 0] SUOISSAIAXD 1O S[RIANI] S PoIuasatdar IyIIs sanpa ynvfo(4

Juasqe I0 ‘SUruI] STWRUAP I0J I[Tnq ‘A[[eone)s payuI] st uorjejuawedwt aInjes) e Ioyjoym AJ1oads 01 sapow Suipuiq 91301 pan[eA-09Iy], 4
(1°°0) X2 M3 e pue (1) £L0x A[)sow Suraq ‘SIUILISU0D dnois)

wA)SAS p[Ing ay) Ul UAPPIY 99 P[NOM ISIMIIYIO JeYy) suone[nofed wiojiad o pue syurensuod Ajijdwis 0y sa4npaf (pamduiod) paaria(
*$401042d0 Suls pup dy2uwy1ip SUIPNTOUL ‘SIUIDLISUO)) 4

(soureu 9[y 10J pasn Ie SFULNS “3°9) §SULIS pup ‘Sio}f ‘S1232ju1 SUIPN[OUL ‘SIS DID(T 4

adpys jua4affip A19A & 9ALY puR ‘(93RISAL UO SAIMEL) §()L] “'S°9) L2841 APunofiusis a.v sjapows) ddULs Sujapoiu K111qoLva Suipag .
(sw)sAs YUooY| Ul SaIMed) 2Jpisidy <°39) Livjngnooa dif10ads-uipuio(J 4

ssjuduRImbay

wA)ISAS S0 oy} ut pasn (D)

93en3ue uonmuyd(Jusuodwo) oY) pue ‘(UL XNUIT AY) S Yons swasAs JYuooy| ‘A[ere1ouo)) ‘swalsAs Sunerado ao1nos-uado ur pesn sofenue| Surjopowr Ajiqerrea jo Apnig :uondrdsaq

€107 :1edx ‘Ternsnpuy :ddAY, *[] sSwAIsAs soD)? pue Syuody :Apnjs ase))

SQIpMYS 9sed swd)sAs Juneredo

urewop swa)sAs Sunerado ay) jo sjuowaanbay 9 a|qel

pringer

A

Empirical analysis of the tool support for software product lines

(sdoys Aoua3Iowo [euUONIPUOSUN IO [RUONIPUOD PUE SUONILNSAI paads Areiodwo) “3-9) spuin.gsuod [pioduta se yons A1171quLipa d1upulp o) pAIR[AI SJUIDAISUOD X2]dui0d 1Y) 4

A3oroydiowr yoen ay) uo Surpuadap paads
POMO[[e WNWIXBUW 3Y) IO [JABI) O} PIOMO][E ST Ul B Jey) 99ue)sIp wnwixew ay) A3109ds 0 ‘ojdurexs 104 “sampaf [putiou puv wayj uaamiaq SpuInIsuod pup £I04nd00 Yii SaUnInaf [pILIWNN

uoneI1ado Jo S[OAI] JURISHIP dY) JO AN[IqeLIBA AU} [OPOW O} §]242] [DIIYIUDAIIE]
ssyuduRImbay

"PAPI2XI 10U AIE JDUEISIP
pue paads K1ayes oy Jey) SuLNSuL ‘uten Yy sastazadns A[SNONUNUOD Jey) W)SAS (J V) Uonodjoid uren onewone ue st yorym (SO IH) WIsAS jonuo)) urel], ueadoing oy} uo sarfol SN LT
'sKem[rel uropow Jo Ajajes pue ‘Kijiqerfar ‘@ouewoyiad ‘Ayiqeradorojur ay) oroidwir 0} prepue)s [euoneUIdUI U ST (SIALLYH) WISAS JuowaFeur]y oyjel], Aemyrey ueadoing oy, :uondridsaq

810¢ :Iedx ‘Ternsnpuy :adAJ, ‘[69] waIsAs [o1uod urel], :Apnjs ase)

(3unsay Aem-)
¢3'9) 90U0 JSBA 1k WAy} SUOWE JOBIIUL SAINJBIJ JUIISJIP 2IYM SUONRINIYUOD IS00YD 0) sanbruyoa) JurajoAur ‘Swa)sAs uoneinSyuod spdwes 2)epIeA pue AJLIdA 0) suoupnSiyfuod fo Suyduny ..

QINJOIYDTE 2IBMIJOS oY) Ul AJ[IqeLIeA Sunuawd[dwur udym SIUTresuod d0IN0sAI SULIOPISUOD [242] [DANIIIIY2ID Y} T JIOM

SIOSUDS JUAIQYIP WOIJ BIep urejqo o} 1o s3ss9001d [eorsAyd [e10aas [0nuod 03 ‘O[dwexa 10J ‘9I0W IO U0 dIMIJOS JO 9031d dwes Y} AJeNULISUL 0) S2.1ID2f PasSPG-KIPUIPID)) 4

s1osn oY) Aq dn 30s A[[enuew a1e Jey) SIOSUIS JO san[eA dLowered [9pow 0) SN [PILIGUNN 4

waIsAs [8qo[3 oy Jo uondwnsuod A31ous pue souewIojrad oy pue ‘(owr) asuodsar ‘soFuel ‘AJTANISUAS) SI0JeN)O puk SIOSUAS Ay Jo Ayfenb oy [opowr 03 san1adosd ppuonsunf-uop .
(1eotwrayo st prnbiy s yue) oy J1 ANIPIoE AU 2INSLAU 0} J0SUIS K1ojepuewl € “°3-9) sjutodmara JuLIdJJIp 93 Jo sjutod UonBLIBA Q) USIMIRq SIUIDAISUOD X2]dwO))

QIem)JOs pue ‘orempIey ‘SJUSUISS [EOTUBYOAW ‘(SI0JeNn)O. PUB SIOSUS) UOTIOBIIUT (SOIOUOXE) AJ[IqeLIeA JUSIOIp Juasaidal 03 §7242] [po1yoiniary pue sjurodmaia apdungy 4
ssjuduRImbay

191doopenb e 21n3yuod 03 (SAY(]) SI[OIYAA [BLIdR PAUULBWIUN JO TS UB pue Wa)sAs yue) 9[qeindyuod e Jo (s1onpoid [edruayd 10 191em) [9A9] pinbif ay) [01u09 0] TS Uy :uondrLsaq
G10z :1edx rewnsnpu] :ddLY, ([89] s71d 19rdoopenb pue yue], :Apnys ase)

sonradoid aaneyenb uo paseq S[e03 pauyap PIAIYDE 03 Sa1.12do.sd [PUOIUN[-UON

SJUQUWIUOIIAUD PUE SAsBD 9sn Je[nonted ur uoneinIyuod 9[qeins ISOw Y} puy 0) suoyninsifuod fo uonvnundQ

JUSWUOIIAUD JI3Y) Ul sagueyd 03 anp syuduodwod Jo uoneIn3yuodsal pue sundepe-J[as 10J $7JS AMuUDUL(4

UONBIUAWNIOP IO ‘SJUdUodwod aIempIey ‘SJUSWTeI} IP0I-92IN0S :Suljapout 11j1gu1iva Y] 0] K110U2304219F]

SJuT0dMaTA YY) US9M)q SUOTIOBIIUT [OPOW O} SIUIDAISUOD X2]dUI0)) .

(swmuni ‘usIsop) awn
pue ‘(£107es ‘oouewroyrad) Lyfenb ‘([opowrojur ‘opowreniur) AYOoILISIY ‘(9B 2SN JUSWUOIIAUR) 1XJUO0D ‘(I01ABYRq ‘Oremprey) sjuouodwiod :s1o0adse ANIqeLreA JUSIQIp J0J stutodmala ajdunpy o

ssjuauRIImbay
sw)sAs [eorsAyd-10940 d[qerrea o3 yoeoidde juowdo[oadp e uo uoIsiA y :uondrsaq

L10T :1edx -orwopedy ALY, '[£9] sSdD 01 yoeoidde juswidojoas :Apnjs ase)

SAIpMS SWIA)SAS [eorsAyd-10q4D

urewop swA)sKs [eo1sAyd-10g40 oy jo sjuowrarnbay /£ sjqel

pringer

As

J. M. Horcas et al.

'ssa001d Jurreour3uo as1oaar e JutA[dde £q $)0qox 901AI0S WOy A0BSO] WOIJ PAJORIIXd SAINJBIJ PPR O S]Poul aANipaf pauLfay

ssjuduRImbay

ANIQRLIBA JIIM S)OQOI IDTAIS QWOY JO uonIuya(q :uondrdsaq

G00T :Iedx ‘Ternsnpuy :dAY, ‘[€/] $10qOI A01AIS QWO :Apn)s Ase))

]242] [04n32231y24v) Je paSeurwl ST ANIQRLIBA

ssjuduRImbay

AN[IqeLIeA Yiim s10qol yoIeas yrewpue| Jo uonuyd(:uonduasaq

9107 :xedx ‘Ternsnpuy :ddAY, ‘[7/] 10901 yoreas yrewpue| :Apnjs ase)

1001 9y} JO SUOISUWIIP JUSISJIP [opowt 0} paimnbair are siutodmaia apdumpy

:sjudurdambay

71dS $o110qo1 pnojd & Jo uonuydq :uondrsaq

107 :dedx ‘remmsnpuy :ddAY, *[12] TdS sonoqol pnopD :Apnjs Ise)

asuodsar pajoadxa pue ‘anseaw asuodsal ‘9suodsal)orJIiIR ‘JUIWUOIIAUD ‘SN[NWS JO IINOS ‘SNNUWILS :2INJIAIYDIE dY) Ul §271GLIID s pAudsatdal santadoad ppuoyounf-uop
1242] [P4N32211Y24D Y} Je SIISSE 100 JUAsAIdar 01 (TQVX Pue TINSAS “39) sadvnsun) oifidads-uipuiop

ssjuduaImbayy

sontadoid euonounj-uou uo 3uisndooj pue saSendue| oyroads-urewop Suisn [9AJ] 2INJOAIYDIE Y] I8 $10qOI 9[IqoUl snowouolne Jjo Ajiqerey uonduasaq
210 :aedg ‘[emsnpu] :ddAY, "[0L] S10901 9[IqOWw snowouoIny :Apnjs Ise))

‘(pareys 9q pnoys 10qol Y} JO SANI[BUONIUNJ U} MOY] PIOSP 0 IASN PUS) MO[[B 0} ANQLIIE dpOW SuLIeys € ““39) sapow uonyv.ado jua4affiq 4

(30qo1 2y} Jo I01ABYAq) Ul AJ[IQIXS dWOS a1Inbar Aewl SpuUIy SNOLIBA JO $9[0BISqO “*3'9) duunun. 1 PIAJOSI 9q AJuo ued AJI[IqeLIeA JO 99139p [BNURISNS Y 4
JuowWdO[2ASP USALIP-[OPOW JO SULID) UT SWRISAS-QNS YOBD JO 241M1I2J1YIAD 24DMLJOS Y] SulALIdp pup ‘Sursoduiod ‘Suljapopy

71dS UB St 10gOJ1 SNOWOoUoINe Uk JO WIdSASqns [RUONOUNJ Yord USISIp 01 STJS UM

Iowo)snd dyroads v Aq paxnbal st 1Byl UONBZIOISND YY) UO Paseq 21em1Jos JuIJIp Ao[dap 01 japout 10qo. awws ayj Jo SUDLIDA U1 4

(30q01 9y} JO SONBWIAULY 2Y) UO PISBq PIsn aIe SWILIOS[B UONBSIARU JUAIPIP “*S°9) SUOISUaUIP Y] UIIMIDq §210UIPUIAI(] 4

(3X31U02) SUONIPUOD [BJUSWUOIIAUD Jf} pue ‘pauiofrad 9q 0] syse) Y ‘9INoNnIs [BIIUBYIIW J0QOI dY) SB YINS ‘SUOISUUIP 11]1gDLIDA JO JpMmny
HYUELIERTLLIEN ¢

$10QO1I QOTAIS [BLIISNPUL PUB JTWPEIE SNOLIBA UT SULIOAUISUD A)I[IqeLiep :uondiIasaq

610C :dedx onudpedy :ddAY, "[7] $10q01 901A10G :Apn)s Ise))

SOIPN)S ASBI $I110qOY

"UTBWOP SO110qOI dY) JO sjuswanmbay g ajqel

pringer

A

Empirical analysis of the tool support for software product lines

physical objects [67]. Due to the variety of technologies
involved in the development of the CPSs’ devices, they
require very diverse variability characteristics and SPL activ-
ities such as multiple viewpoints and hierarchical levels for
different aspects (e.g., context, sensors, actuators, software,
etc.); dynamic variability with complex constraints for self-
adaptation and reconfiguration; cardinality-based features to
instantiate multiple sensors; optimization of non-functional
properties such as energy consumption, among other require-
ments detailed in Table 7. This variety of requirements makes
CPSs one of the most complex domain to deal with from the
point of view of SPLs (see column 4 in Table 2).

Robotics domain (Table 8). Robotics systems are a
specific type of CPS. Although they share some of the
requirements of CPS, robotic technologies are characterized
by high variability, where each robotic system is equipped
with a specific mix of functionalities [2]. This is another
domain in which advanced variability management mech-
anisms are required. It is important to highlight some of
them, such as the use of MultiPLs for each subsystem of an
autonomous robot [2], the architectural-level derivation of
products [72], or the explicit representation of non-functional
requirements as part of the variability modeling [70]. In
Table 8, we can observe all the requirements in detail for
the analyzed case studies, while Table 2 (last column) sum-
marizes them for this domain.

We will finish this section summarizing the answer to
RQ1:

Conclusions and lessons learned from RQ1: There is
animportant number of highly relevant domains in which
advanced variability characteristics beyond FODA [28]
were identified, and complex SPL activities (e.g., sam-
pling, optimization) [76,77] are required by existing
case studies. In particular, numerical features, attributes,
and complex constraints involving numerical values are
required by almost all domains, while the activities
related to the analysis of configurations (e.g., multi-step
configuration, optimization) are often demanded by cur-
rent domains. Another common requirement has been
managing the systems from a high abstraction level by
modeling the variability at the architectural level.

The analysis of the requirements exposed in the sample
of case studies shows the need to consider the variabil-
ity and requirements listed in Table 2 when building an
SPL approach. Thus, the general conclusion is that, inde-
pendently of the characteristics of each specific domain,
there is an important number of existing and emergent
domains in which advanced variability characteristics
and SPL activities are demanded.

4 State of the art of SPL tools

Providing tool support for all the requirements extracted
in the previous section (Table 2) is challenging for SPL
researchers and developers. Our first step is to explore the
existing tool support for SPL by answering our second
research question:

RQ2: What tools exist that provide support for the different
phases of an SPL?
Rationale: To analyze whether the SPL tools pro-
vide support for advanced variability mechanisms or
not, we first need to identify the existing tools provid-
ing some support to SPLs. This exploratory study will
identify the existing tools providing some support to
SPLs, classifying them according to the SPL phases
they cover.

We analyze the current state of the art of SPL tools to iden-
tify which ones are available online and are really usable for
researchers and the SPL community. The goal is to collect
all possible tools related to SPL to check their status (avail-
able, working, updated, usable) before considering them for
analysis. This does not pretend to be a systematic review of
tools but an exploratory study to identify existing tools.

Research method. We performed an exploratory study,
which Ralph et al. [57] define as “an empirical inquiry
that investigates a contemporary phenomenon (the ‘case’)
in depth and within its real-world context”. The cases in
our approach are tools, and our goal is to perform an in-
depth study of these tools’ characteristics, in the real-world
context of case studies that demand a series of advanced
variability characteristics. Our exploratory study consists of
a manual search on different sources. First, we identified
SLRs [8,21,22] and surveys [23] about SPL tools. We also
searched the proceedings of the Demonstrations and Tools
track in some of the most relevant events about SPL and
variability (e.g., SPLC,® VaMoS?) for the period not covered
by the SLRs and surveys (2015-2019). The only inclusion
criteria (IC) we applied was the following:

IC1: The tool is directly related to SPL or is used in the
context of SPL to provide support to at least one of
the phases of the SPL process: DA, RA, DI, and PD,
as defined in Sect. 2 and in Apel et al. [9] and Pohl
et al. [26].

Any other tool not considered for downloading and test-
ing was directly discarded without registering in the data

8 https://dblp.uni-trier.de/db/conf/splc/.
9 https://dblp.uni-trier.de/db/conf/vamos/.

@ Springer

https://dblp.uni-trier.de/db/conf/splc/
https://dblp.uni-trier.de/db/conf/vamos/

J. M. Horcas et al.

I T T T T T T T T T

T T T T T T T T T T 1

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
2020

2
0018, ASADAL & AORA & VL2
DARE—CO'(I'1$9.é7) DECIMALOCOVAMOF-V S Ext De,cisiOBIéiBEEO ko3
Odysseye DREANISS Extension % BeTTy FLAME &
Metadoc FI\{I&)8 Kumbang ¢ GenArch ¢ Hephaestus ¢ FMTe
(1998) LK C - Feature Modeling Tool ¢ Invar & ISMT4SPL &
Holmes_¢ PLUSS toolkit & MoSPL ¢ MUSA ¢ LISA toolkit &
g (1999) Requiline & REMAP-tool ¢ VariaMos ¢ OPTI-SELECT &
g PuLSE & VARMOD ¢ Scatter Tool & Sysiphus-IVMM & VMC ¢
‘g WeCoTin & XML- BFM ¢ YaM @ VISIT-FCe S.P.LA.R. ¢ VULCAN ¢ WebFML ¢
2 Captain Feature ¢
2 Feature Model DSL Pacose
S2T2 Configurator — 1 RoeeR ProductlinRE e—x
FAMILIAR; ¢
MOSKitt4SPL RESDEC ¢
fmp: Feature Modeling Plug-in X< KernelHaven &
Hydra ® HADAS ¢———x
S.P.LO.T. e FMCAT —x
s Glencoe &—x
Clafer*e-
FaMa ¢
" PLUSEE & BVR o catureMapper ToolDay ¢ VITAL 9
"l&, XFeature & VMWT ¢ PLUM ¢ MPLM-MaTelo 0!>
5 ConcernMapper ¢ VivViD exX
] Undertakel &
3 MosI$ CVL Tool} ¢ BVR Tool Bundjgy
o3 Gears @
£ pure::variants @ -
% Easy-Producer ¢ FIengLg
a FeaturelDE ¢ VA A
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, L ___
1
; View infigity {e VEXgine X
1
FeatureC++ ¢ L A FeatureDashBoard ¢
HEAD ¢ symfinder &
] FeatureHouse ¢ FeatureCloud ¢
g Aspect! ¢ ADLTgol Stitg _BUT4Reus
A XVCL & MUK gela $ %
2 Feature Command. 2 R
E CIDE+
s CIDE & ur?
Antenna 0—"‘4 83—
CDL

MetaEdit+ :Té
[

|

I I I I I I I I I I 1

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

2000

Legend Available and usable in green

Academic tool ¢
Not available to download or not working in red Commercial tool ©

Prototype < 2020

Latest release X

Period under active development
Integration — — — —p»

Fig.3 State of the art of SPL tools

extraction form. For each reported tool, we searched for
its availability (i.e., its website, code repository, or exe-
cutable). When the information was not available in the
paper, we performed a manual search on web search engines
(e.g., Google) to localize the tool by applying the fol-
lowing search strings: «name of the tool», tool,
SPL, Software Product Line,and variability.
Finally, we downloaded, installed, and launched each tool to
check its correct functioning and main use case.

Data extraction form. We used Google Forms'? to cap-
ture the basic information about the availability of the tools:
name, brief description, URL, main reference, SPL’s phases
covered, type of tool (academic, commercial, prototype), first
and last release date, availability, current status, and integra-
tion with other tools. These data have been extracted from the
information found in the reference papers, the official web-
sites, and the code repository of the tool. The main artifacts

10 https://forms.gle/ITFTHOBKHHTgCLc3 1R7.

@ Springer

developed that allow replicating and/or improving this state
of the art are available online.!!

Results To illustrate the state of the art, we have built
a timeline (Fig. 3) with all the SPL tools published until
December 2019.!> As summarized in Fig. 4 and at the top of
Table 9, only 6% of them cover all phases of the SPL process
(Problem & Solution Space block in the middle of Fig. 3).
Moreover, there seems to be more interest in the problem
space than in the solution space since the DA (72% of the
tools) and the RA (64%) are the phases most covered by the
tools (top of Fig. 3). The DI and PD phases are only cov-
ered by 38% and 14% of the tools, respectively (bottom of
Fig. 3). These values can be explained due to the difficulty of
building tools that support all the functionalities required by
an SPL approach across all the SPL activities, particularly

11 https://github.com/jmhorcas/SPLE-Empirical Analysis.

12 A csv file with the tools information is available in https://github.
com/jmhorcas/SPLE-EmpiricalAnalysis. The original timeline pub-
lished on Horcas et al. [24] contained 97 tools. In this work, we have
updated the timeline including tools suggested by other researchers and
increased the number of tools considered up to 103 tools.

https://forms.gle/JfH9bKHHTgCLc31R7
https://github.com/jmhorcas/SPLE-EmpiricalAnalysis
https://github.com/jmhorcas/SPLE-EmpiricalAnalysis
https://github.com/jmhorcas/SPLE-EmpiricalAnalysis

Empirical analysis of the tool support for software product lines

Domain
Analysis (DA)

Product
Derivation
(PD)

Fig.4 SPL phases covered by existing tools

those related to SPL activities dealing with large configu-
ration spaces or the generation and derivation of products,
which are considered well-known NP-problems [9].

We also found evidence that there are a large number of
tools that are academic (91%). The reason behind this is that
practitioners often propose new tools when they are making
research on the SPL field, and thus the percentage of aca-
demic vs. industrial tools is so disproportionate. However,
many of the academic tools are usually abandoned shortly
after the associated research project ends. The tool becomes
usually obsolete, is no longer available to be downloaded, or
becomes non-usable due to the continuous evolution of their
core technologies (e.g., Java). This fact can be observed in
the multiple red points on the top of the timeline in Fig. 3.

We conclude this section with our answer to RQ2:

Conclusions and lessons learned from RQ2: There
are many tools (we discovered up to 103) that provide
some support for SPL, most of them academic. How-
ever, researchers are often not aware of all these tools
and the kind of support they provide to SPL activities
and therefore continue proposing new tools to support
their contributions in SPL and abandoning them later,
especially when the contribution of the tool is too spe-
cific and has not been integrated as part of another tool
(e.g., FeatureIDE).

Our study gives a comprehensive vision of the current
state of the art of the SPL tools and helps users to be
aware of the existing tools and the SPL phases each tool
supports. Therefore, the user can select appropriate tools
according to their needs.

5 Tools support analysis for complex SPLs

This section answers our third research question, selecting a
subset of tools identified in Sect. 4:

RQ3: How do existing tools support the SPL engineer-
ing activities and variability modeling characteristics
identified in RQ1? Rationale: The lack of mature tool
support is one of the main reasons that make the indus-
try reluctant to adopt SPL approaches. The problem
becomes worse when considering advanced variabil-
ity mechanisms such as those identified in Sect. 3 for
several case studies since practitioners are not aware of
which tools will provide support for those characteris-
tics or how the tools support them. By answering this
research question, we aim to help SPL users to choose
the tool that offers the best support according to the
variability characteristics they need to model and the
activities they need to carry out within an SPL. Our
exploratory study will analyze what kind of support
the existing tools provide for the SPL activities and
variability characteristics identified in RQ1.

5.1 Tool selection

Of the 103 tools discovered when seeking an answer to RQ2
(Sect. 4), we included in the analysis all tools that meet the
following inclusion criteria (IC):

IC1: The tool is fully available and usable, that is, it can be
downloaded, installed, and successfully executed.

This inclusion criteria is met by 23 tools (22%) (see bottom
of Table 9). Note that multiple academic tools did not pass
our IC1. Many of them are abandoned soon after the associ-
ated research project ends. The tool becomes obsolete, stops
being available to be downloaded, or becomes non-usable
due to the technical debt [88]. In the case of industrial tools
such as Gears or MetaEdit++, these tools are not freely avail-
able, since no evaluation or limited version is provided, in
contrast to, for example, the pure::variants tool, which offers
an evaluation version. Working with industrial tools requires
contacting distributors for tool assistance, and sometimes no
evaluation or academic versions are available. This lack of
free evaluation versions usually prevents SPL researchers
from knowing if the tool is appropriate for their needs before
acquiring an expensive license. To select the tools to be finally
analyzed in detail, we executed the 23 tools so as to identify
their main functionalities and use cases regarding the SPL
activities and characteristics identified in Sect. 3. Then, we
apply the following exclusion criteria (EC) to those 23 tools:

@ Springer

J. M. Horcas et al.

Table9 Summary of tools for

SPL by phases covered ook g?c?lileéjni()s\p/):rc:e: Solution space
DA % RA % DI % PD % All % Total %
Total 74 72 66 64 39 38 14 14 6 6 103 100
Academic 67 91 60 91 35 90 10 71 3 50 94 91
Commercial 3 4 2 3 2 2 14 1 17 4 4
Prototype 4 5 4 6 2 2 14 2 3 5 5
Available and usable 11 15 12 16 11 28 7 50 2 33 23 22
Academic 10 91 10 83 10 91 6 86 1 50 21 91
Commercial 1 9 1 8 1 10 1 14 1 50 1
Prototype 0 1 8 0 0 0 0 0 0 1
EC1: The tool is a prototype, a preliminary or beta version cific functionality related to SPL (e.g., estimation of energy

without a stable release.!3

The tool has been integrated within another tool that
has already been selected.

The tool supports only a specific activity or char-
acteristic of an SPL phase (e.g., optimization of
non-functional properties). That activity or charac-
teristic is also covered by another selected tool also
supporting other activities and characteristics.

The tool relies on another SPL tool to offer its func-
tionality (e.g., performance analysis). The former is
not a tool specifically designed to support the devel-
opment of an SPL process.

EC2:

EC3:

EC4:

We have chosen the seven SPL tools to be analyzed in this
section by applying these exclusion criteria. Table 10 sum-
marizes these tools, showing their main reference, the year
of its first release, the date of its last update, the SPL phases
covered by the tool, the website from where it can be down-
loaded (or accessed in case of an online tool like SPLOT or
Glencoe), its code repository if available, and a brief descrip-
tion of the tool. Note that many other tools are available,
such as FeatureHouse [89] or AHEAD [90], but EC2 has
excluded them since they are integrated within other tools
like FeatureIDE [14]. Others, such as Hydra [91] or Pro-
ductlineRE [92], did not pass IC1, since they do not have a
stable release. Although they can be executed, they present
several bugs during execution because of third-party depen-
dencies or currently obsolete specific versions of plugins
(i.e., technical debt), so they did not pass IC1. Others are
exclusive to a particular domain, such as FMCAT [93] that
focuses on the analysis of dynamic services product lines,
and those activities are also supported by other tools such as
FeatureIDE [14] or pure::variants [80], so they did not pass
IC3. Finally, other tools such as HADAS [94] offer a spe-

13 A stable release (also called production release) is the last product
version that has passed all verifications/tests, and whose remaining bugs
are considered acceptable.

@ Springer

consumption of configurations) but rely on other SPL tools
such as Clafer [81] which provides the core functionality
regarding the SPL activities, so they did not pass IC4.

5.2 Experiments

To perform our empirical analysis of the selected tools,
we have tried to model the variability characteristics iden-
tified in Sect. 3, adapting the modeling to the support
provided by the different tools when the tool does not pro-
vide direct support to model or implement that characteristic.
It is worth remembering that the objective of this analy-
sis is not to model all the case studies identified but to
analyze whether the tools provide support to model those
characteristics. All artifacts developed and used through-
out the different phases are available online to replicate the
experiments.14 These include: (1) the FMs in several for-
mats: SPLOT, Clafer, GFM, v.control, pure::variants, Excel,
SPASS, and DIMACS; (2) the software components imple-
mented with different variability approaches: annotations
with Antenna, feature-oriented programming with Feature-
House, and aspect-oriented programming with AspectJ; (3)
the software architecture models in UML; and (4) other arti-
facts such as model to model transformations that implement
specific variation points.

The experiments were performed on two desktop com-
puters: (1) Intel Core 17-4770, 3.40 GHz, 16GB of memory,
Windows 10 64 bits and Java 8 and (2) Intel Core i7-4771,
3.5GHz, 8GB of memory, Windows 7 64 bits and Java 8.

5.3 Tool analysis
In this section, we analyze the selected tools to check whether

they satisfy the requirements of the different domains identi-
fied in Sect. 3. For each phase in the SPL process, we explain

14 https://github.com/jmhorcas/SPLE-Empirical Analysis.

https://github.com/jmhorcas/SPLE-EmpiricalAnalysis

Empirical analysis of the tool support for software product lines

soyoeoxdde Liqerrea oydninw 110ddns 01 sOUISUS UOT)BEWIIOJSULI) WOISNO YA PIPUIXS 9q Ued Jey) [7¢] QuISuo uonnodxa JAD Yy Jo uoneyuawa[dwr ojqezruoisn)) :uondLsaq
QuIg xHA/seatoqui{/woo-qnyis//:sdny :K1oysoday

JOUISX0A /SO BN 0] PSOBI//:d1NY :IJISYIA

dd ‘1d :p31340d saseyd T4S

810 "uer :33epdn jsery '/ 107 :XedX [£8] ‘T8 10 SEOIOH :99UdIYY

XHA

[98] S[00} SUIGEUISUS AIEMIJOS PUB SWAISAS UOUIIOD YIIM SJUBLIEA::2Ind JOSUUO0D Jey) SUOISUIXa Auely 'ss001d 14S oy Jo saseyd [re suroddns jey) uonnjos [erorowwo)) :uondiIdsa(
Jwod swAsAs -oand mmm//:sdny :93Isqapg

dd ‘Id V¥ ‘YA :pa1aa0d saseyd "1dS

120¢ "o :depdn jse ‘100g :dedx [08] Ayonag pue YAzouldg :30udI9Joy

Nd

[¢8] s1otpo Suowre ‘eUUANUY 10 ‘(103dsy ‘QVHHY ‘@SnoHIed se yons soydeoidde 4S pue sjoo) Sunsixa 1s9) pue 9eI3Aul 0} WSIURYIIW UOISUIX paseq-ul-3njd yim sromourey asdijog oinos-uadQ :uondursaq
Jorqnuns-opranyed)//:sdny :K10ysodoy

/W0 APIaINIEd) MM //:d1NY :IJISIA

ad ‘1A 'V 'Vd :pd1a40d saseyd 14

120T AON :93epdn jser “$(0T :1edax ‘(1] ‘Te 10 wny[, ‘[#8] 'Te 10 Yo1oT :90udtajay

H4d1d

(SI0ATOS SO PUe ‘ILVS ‘Add) 2xmyeron| oy ur pasodoid s1oajos pue suonejuasardar 91301 pasn A[uowrtiod 1sow Y} Jo awos SuneiSaur S| Jo sesA[eue pojewojne Joy yromower] :uondrisaq
JVINEI/0TqnuiS myewrey//:dny :K10j1soday /ewre]/so snesrmmm//:sdny :9)ISqapp

VY ‘VA :paaaaod saseyd TJS

6102 ‘994 :9epdn iser] £007 :d1edx ‘[£8] Te 10 SopIABUSg :30UIIIY

YWY L

[z8] 19A105000yD) A1e1qI] SurweiSord jurensuod
Q) SB [ONS ‘SIUOSLI [OPOW PUB SIOAJOS [EIIAS SIPNIIUT 19Je[)) "Surfopowe)ow pue ‘Surfopout 199[qo pue sse[o ‘uoneindyuoo pue Surfopow a1njes) :Surfopowr [eInonns 10 agensuey JySromiysiy osodind-ferousn :uondridsaq

103e10/qe[psS /wod qnyis//:sdny :Ax031soday /31010510 mmm//:sdNY :9ISYIAL

V¥ ‘V{ :pa13a0d saseyd 1dS

810C ‘94 :33epdn 3se 107 :dedx "[18] T8 10 ZOIMATIUY :30UIJIY

L2fv])

SIA] JO SISATeue pajewiojne oy J0J SIOAJOS [e10AdS [08] Ad 10 SOVINTQ woij uoneirodw [9pOJA “S[opour A)[Iqeries s yzom o) uoneordde gopy ruondridsaqq
/3P I9LI}-0[NYISYO0Y 20JU[S//:SANY :9PSYIAA

VY ‘Vd :paaaaod saseyd TJS

610C "AON :93epdn Jse "g107 :dBIX "[6L] NIWYOS BUUY :IUIIYIY

200u3]0)

s1ouonnoeld pue soruapest Wolj S| JO SPIpuny sI1aJjo 11 “S]A PLO[UMOp pue ‘areys ‘amgyuod ‘9zAeue ‘Snqap 41pa 03 [00) duruQ :uondLsaq
/310°yo1easar-jo1ds mmm //:dny :9)ISqIAN

VY ‘Vd :pa13A0d saseyd 1S

G10T "uer :33epdn 3serY "600T :IBIX "[8L] ‘TE 19 BOUOPURJA] :3IUIIPIY

L'O"Td’S

§[00) "TJS P199[as 2y jo uonduosaq QL d|qel

pringer

As

http://www.splot-research.org/
https://glencoe.hochschule-trier.de/
https://www.clafer.org/
https://github.com/gsdlab/clafer
https://www.isa.us.es/fama/
http://famafw.github.io/FaMA/
http://www.featureide.com/
https://featureide.github.io/
https://www.pure-systems.com/
http://caosd.lcc.uma.es/vexgine/
https://github.com/jmhorcas/vEXgine

J. M. Horcas et al.

(***suonipuod
K)IQISIA ‘SoINjea) PoALIOp ‘suoneInSyuod [ented pue
dors-nnur) sse001d nonEINSYUOD 2ATIORIAIU]

suonje3yuod jo uonezrundo
suonen3yuod Jurjdureg

(***uoneSedoid sjurensuod ‘uoneIOWNUI
“UOI1J[3s SaIN)ed)) mEOﬁNHSM@EOO JO uoneirauan)

uoneInsyuod Pnposg

(**"uonO)P SaI[eWOU. ‘FUNUNOd
[opow ‘uoneprifea) S]AL] uo suoneiado sisAeuy

(*""somau ‘sonsness) SJAL JO SIS[eue dIseq
Suruosear dyewoINy

(** sammea) Joensqe ‘SyurodmarA u2amIaq SIUTRIISUOD
‘Kyordnmu dnoid Areniqre) SUOISUIX JAYIO

(***suonejouue
‘suondHosap ‘UONBIUAWNOOP) UOT)BULIOJUT-BIA!

(*+-ore3s ‘orwreuAp ‘opels :own) sopowr Jurpurg

(***suonnquuod ‘suonezifeuonerddo
‘sreod) sanaadoad [euonounj-uoN

(***SINA 01 SHP3 ‘SN Pauyal) SIAL] JO UOTIN[OAT

(" S[9AQ [BIIYDIBIONY ‘SHun
uonisodwod) S[opou I93.Ie] JO UONRZLIB[NPOIA

(*soanoadsiod-nnu
‘sjurodmara a1myesy) SQUIT JoNpoid
DA pue AN[IGELIEA [CUOISUSWIP-DNIA

Surpppowr AIIqeLIeA BI)XY

(***saImea)-nnu ‘saInqruie
‘SQIN)ed) [eoLIoWNU SUTA[OAUT) Surensuod onEOU

(saInjeag-nmnu
JO SaINIedJ 9[qeUO[d) STAI] ﬁoman.bzmﬁgmo

uorsoa1d pue ‘sa3uel ‘sejap ‘sanfeA Jnejoq
(sanqume Yim saedy) SA POpuaIXg

(*+orep ‘SuULNs ‘SUONEIOWNUD ‘[EOLIOUINY)
SanjeA uea[oog-uou JO SaInjed) S[qeliep

Surepow AJIIqeLIBA PIPUIXH
(sopn[oxa ‘sormbar) Sjurensuod Jiseq
(10x 10 ‘A10yEpUEw ‘[euondo) sarnyLy JIseyqg

Surepowr AjI[IqeLIeA JISeg

(VY) sisA[euy sjuswambay

(V@) s1s{[euy urewo

QuUISXHA

sjuerreA::oInd

AAremIed,]

VINVA

BJe[D

200Uad[D)

L'OTd’S

SONSLIRJORIRY)) PUE SJUAWIMbY

1dS Ue Jo AJIAT)OR Yora JO SONSLI)OrIRYd pue sjuswaInbar ay) o 1oddns oo, || 3|qel

pringer

A

Empirical analysis of the tool support for software product lines

-onsue)oeIRyd/uawaInbar oy 1oddns jou seop 1]]
“onsueldeIRydAudwAImbar oy syroddns Afrenyed 11 x
‘onsue)oeIRyd/Juswanbar oy syroddns Ajejerdwod)y |

(soSueyo
Jo uonegedoid onewoine) wowzmso uonnjoayg

sameay Jo Afiqeasery,

sjonpoud jo uonisodwod 10 SurABIpy
judugeURW JONPOIJ

uoneneAd 19npold

UOTJBALISP 10NPOIJ

uonn[osax Afiqeries

(s0uspuadapur o3en3uey) sjoejIiIe 9FenIUR[-NNIA
(*+s3[Y ‘suonouny ‘9pod) [JA] UOTJOBRISQR MO

(" s[epouwr
‘USISOp ‘2IMOANIYIIL) [OAJ] UONOBIISqR YSIH

JuawdoaAdp spenIy
(suonejouue pue uopisodwoo) yoroxdde paurquio))

(***suIa0u09 Jo uoneredas femuia ‘sod£)10a1d)s
‘siowrered) yoeoidde paseq-uoneouuy

(***pAIUALIO-10adse ‘pAUILIO-INIed)
‘sjusuodwod) yoeoidde peseq-uonisodwo)

uoneymuR[dwr AIiqeries

(Ad) uoneALI_(1PNPOIJ

(1) uoneyuwRdw] urewoq

QuISYKHA

syuerrea::aind

E(QICAULER

VIAVA

1BJR[D)

Q00U9[D)

L'O1d'S

SONSLIR)ORIRYD) PuE sjuawaInbay

panunuod || ajqel

pringer

As

J. M. Horcas et al.

how the tools provide practical support for the activities and
characteristics in that phase and discuss our findings. Table 11
summarizes the results of our analysis.

5.3.1 Domain analysis (DA) phase

Asdescribed in Sect. 2, this phase is in charge of modeling the
domain variability. Almost all tools (except vEXgine) pro-
vide support for model the variability using FMs. vEXgine
is based on CVL [32], and despite the fact that its CVL meta-
model supports several of the considered characteristics (e.g.,
variable features and clonable features), the tool vEXgine
mainly focuses on the solution space phases (DI and PD)

Basic variability modeling. All tools supporting the
domain analysis phase allow building basic FMs.

— Basic features. Glencoe and FeatureIDE offer an
excellent graphical editor to build the diagram of the FM
following the notation proposed by Czarnecki [95], while

,pure: :variants, and FAMA provide
a great tree-based reflective editor. In Clafer, the FM
needs to be created using a text editor. In all tools, manda-
tory, optional, and group features (“or” and “xor”) are
supported.

— Basic constraints. Each tool provides its own notation
to define cross-tree constraints, but all of them support at
least the requires and excludes constraints.

Extended variability modeling. The support for extended
characteristics is very limited. While and
Glencoe do notimplement extended characteristics, other
tools provide their own implementation, which often does
not completely fit with the definition most widely accepted
by the SPL community [37]. For instance, the support for
variable features (or non-Boolean features) and the support
for feature with attributes are confused in some tools because
of the thin difference between these two concepts (variables
and attributes).

— Variable features or non-Boolean values. Only
clafer provides full support for specifying variable
features with a specific type (e.g., integer) that behaves
as a normal feature but allows providing a value during
the configuration step, for example, a numerical feature
to represent the key size of an encryption algorithm. In
pure: :variants, variable features can be defined
using features with attributes.

— Extended FMs. FAMA and pure: :variants offer
complete support for defining features with attributes, for
example, to specify a utility value for each feature in the
FMs. To support attributes in Clafer, we have to rely in
the Clafer Multi-Objective Optimizer (ClaferMOO) [81],
which is a specific reasoner for attributed-FMs, or in the

@ Springer

modeling of the attributes as variable features. The latter
implies defining an additional variable feature (e.g., inte-
ger) for each attribute associated with each normal feature
and making sure those variable features are selected in the
final configuration. FeatureIDE supports attributes
only partially, because it requires selecting the “Extended
Feature Modeling” composer, and then, no other com-
poser can be selected. Also, using the extended models
of FeatureIDE, only the variability modeling activ-
ity is supported since they are not compatible with the
graphical editor or the later analysis, and attributes need
to be manually defined in the XML source file.

Default values, deltas, ranges, and precision. There is
no explicit support for these characteristics in any of the
analyzed languages, despite the fact that these character-
istics are required by most of the case studies analyzed,
as shown in Table 2. However, it is possible to provide
default values to variable features or to attributes by defin-
ing constraints (see support for complex constraints). But
this solution does not allow to change the value during
configuration. Deltas, ranges, and precision can also be
simulated by manually defining constraints or additional
features (e.g., discretizing a variable) at the expense of
losing information.

Cardinality-based FMs. Clonable features or multi-
features are the most difficult characteristics to be imple-
mented, and thus, no tool provides support for them
completely, although this is also a required character-
istic in many domains as shown in Table 2. clafer
allows cloning any feature in the FMs and configur-
ing each instance, but this is done at the configuration
step and deciding whether a feature is clonable should
be done at the domain analysis phase. FeatureIDE
and pure: :variants allow a similar behavior of
clonable features by inserting subtrees in the FMs. In
FeatureIDE, this characteristic follows the VELVET
approach of MultiPLs [41], while pure: :variants
introduces the concept of “variant instance” as a link
in the FMs to another configuration space. Within this
approach, and in contrast to Clafer, the number of
instances for the clonable feature has to be decided in
the domain analysis phase and not at the configuration
step, where this decision is normally taken.

Complex constraints. Only Clafer, FAMA, and
pure: :variants allow specifying constraints about
the values of non-Boolean features (numerics). Con-
straints in pure: :variants are based on Prolog or a
variant of OCL: pvSCL [80], so in pure: :variants
it is possible to specify constraints that are more com-
plex. clafer also allows specifying basic constraints
(and, or, not, implies) over features that can be cloned
later. Once again, the results shown in Table 11 demon-
strate that the support currently provided by the analyzed

Empirical analysis of the tool support for software product lines

tools is not aligned with the domain requirements shown
in Table 2.

Extra variability modeling. There is very poor support for
extra characteristics of variability modeling.

— Multi-dimensional variability and Multi Product
Lines. No tool provides explicit support for defining vari-
ability in different dimensions such as feature viewpoints
or multi-perspectives. However, pure: :variants
and Clafer offer some mechanisms to modularize
FMs that can be used to model separately the variability
of different dimensions (see the following point about
modularization of large models). On the other hand,
supporting MultiPLs is more an organizational concept
rather than an extra variability modeling facility. How-
ever, FeatureIDE provides explicit support for the
development of the technical aspects of MultiPLs by fol-
lowing the VELVET approach [41], but this extension is
still in its infancy.

— Modularization of large models. Large FMs cannot be
easily modularized within existing tools by means of
composition units or hierarchical levels. Clafer allows
defining multiple FMs as abstract classes, but all of them
must be in the same file. FeatureIDE, as discussed
before for clonable features and multi-dimensional vari-
ability, supports MultiPLs that can help to modularize
entire SPLs, but the FMs themselves cannot be divided
in multiple files. In pure: :variants, the support is
better since it defines a “hierarchical variant composi-
tion” to link an FM inside another.

— Evolution of FMs. Modifications and edits to FMs once
created can be complex in some tools like ,
Glencoe, and FeatureIDE, where modifying a part
of the feature model usually can only be achieved
by removing that part and adding it again. Contrarily,
pure::variants and Clafer allow even moving
features from a branch to another in a straightforward
way.

— Non-functional properties. No tool provides explicit
support for dealing with NFPs. That is, modeling goals,
subgoals, operationalizations of goals, and contributions
between them [13]. However, we can rely on features
with attributes (in pure: :variants and FAMA) and
variable features (in Clafer) to model basic NFPs of the
FMs, such as cost or performance, and define constraints
between them.

— Binding modes. As occurs with NFPs, there is not
explicit support for specifying binding modes, but it can
also be simulated using attributes (pure: :variants
and FAMA) or variables (Clafer).

— Metainformation. There is also no explicit support for
documenting the FMs by adding descriptions or annota-
tions to the features or using domain-specific vocabulary.
An alternative is the use of comments in the source file
of the FM.

— Other extensions. Each tool provides additional charac-
teristics for variability modeling. For instance, Glencoe
andpure: :variants allow mixing mandatory fea-
tures within “or” groups. Glencoe,
pure::variants, and Clafer support arbitrary

multiplicity in group features (e.g., x. .y, where x can
be distinct from 1 and y distinct from *). FeatureIDE
and Clafer allow defining abstract features. More com-
plex constraints such as constraints between different
viewpoints are not supported in any tool.

Discussion. and Glencoe are the
most usable tools for the domain analysis phase since
they are available online, intuitive, and easy to use and
even their models can be exported to FeatureIDE and
pure: :variants, respectively. However, they do not
provide any support for advanced characteristics. Only
Glencoe and FeatureIDE use the notation proposed
by Czarnecki [95], which is now the most comprehensi-
ble and flexible (and the most used) [47]. The notation of
Clafer can be tedious for variability modeling, although
it provides good support for variable features and accept-
able support for clonable features. and
pure: :variants share a similar interface to build the
FMs, following a tree structure but each of them with its
own notation. It is worthy to mention that there are other
tools that provide explicit support for clonable and variable
features such as the tools that provide support to the CVL
language [32], for example, the MoSIS CVL Tool [96] and
the BVR Tool Bundle [97]. However, those tools are spe-
cific to the CVL language and are currently obsolete or not
available.

Regarding some advanced characteristics, first, it is wor-
thy to differentiate between variable features [36,98], which
are those that require providing a value (e.g., integer, string,
float) during configuration, and features with attributes [12].
A value change in an attribute does not suppose a different
configuration of the FMs, because an attribute assigned to a
feature is not a variation point of an artifact in the SPL. This
distinction should be considered in the tools. Second, the car-
dinality of the clonable features or multi-features should be
defined in the domain engineering phase of the SPL, while
the specific number of instances for a clonable feature should
be specified in the application engineering phase. Neither
Clafer nor pure::variants follow these criteria.
Third, there are more appropriate approaches for modeling
NFPs than encoding them as attributes. For instance, the NFR

@ Springer

J. M. Horcas et al.

framework [13], which allows defining goal, sub-goals, oper-
ationalizations, and contributions of the NFPs and whose
integration in an SPL tool can be desirable. Finally, regard-
ing complex constraints, tools should provide support for
defining high-order logic constraints in standard constraint
languages such as OCL and programming languages such as
Prolog (asinpure: :variants). Those constraints should
be able to be defined using any kind of feature (variable fea-
tures, clonable features) or even between features defined in
different FMs as for multi-dimensional variability.

5.3.2 Requirements analysis (RA) phase

The goal of this process is to select a desired combination
of features according to the application requirements. This
phase should also consider the automatic analysis of the vari-
ability model and managing configurations of the product at
the feature level.

Automatic reasoning. Analysis of variability is one of
the most important activities in an SPL, and thus, all tools
covering the RA phase provide some kind of support for
automatic reasoning of FMs.

— Basic analysis of FMs. Statistics and metrics about FMs
are provided by almost all tools in different degrees.
Glencoe isthe best tool in this sense, showing up to 27
metrics about the FMs (e.g., core features, optional fea-
tures, number of constraints, deep of the tree diagram,
average children per feature, homogeneity of features,
etc.). FeatureIDE andpure: :variants also offer
great statistics and even distinguish between the metrics
of the FM and the metrics of the SPL implementation. In
contrast, Clafer is the tool that provides less informa-
tion with only 5 metrics.

— Analysis operations on FMs. FAMA is the tool that
stands out here because it was built with the purpose
of performing FM analyses. Thus, it supports most of
the operations defined in Benavides et al. [48]. These
operations cover model validation (consistency, void
feature model...), anomalies detection (dead features,
false-optional features, redundancy constraints...), and
model counting (number of configurations), among oth-
ers. Depending on the requested analysis, each tool uses
a specific FM formalization and/or solver to perform the
analysis. For example, to calculate the number of con-
figurations or the variability degree of the feature model,

uses a Binary Decision Diagram (BDD)
engine [99] for which counting the number of valid con-
figurations is straightforward [100]. Glencoe uses a
Sentential Decision diagram (SDD) [101] engine that
enables determining the total number of configurations
within very short times. Within pure: :variants is
also possible to calculate the number of configurations

@ Springer

for each subtree under a selected feature. The other tools
(Clafer and FeatureIDE) require to generate all
configurations in order to enumerate them, and thus, with
these tools it is not possible to calculate the number
of configurations for large models (e.g., 10%° configu-
rations) in a reasonable time.

Product configuration. Managing configurations and
products includes activities such as sampling and optimiz-
ing configurations, as well as assisting application engineers
when generating configurations. However, tools fail to pro-
vide good support for these activities and generally focus on
a basic generation of a configuration by selecting features
from the variability model.

— Generation of configurations. Although all tools allow
generating a configuration by selecting a set of features,
only and Glencoe provide automatic
derivation of features due to the cross-tree constraints.
Regarding the enumeration of configurations, generating
all configurations of a large model is infeasible for any
tool nowadays. For instance, using the Choco solver [82]
integrated in Clafer, it takes 1 hour to generate 13e6
configurations from a total of 5.72e24 (calculated with

), requiring more than a billion years to
generate all configurations. FeatureIDE, in addition,
can generate the associated code of all the products (for
small FMs).

— Sampling configurations. Only Clafer and
FeatureIDE allow to sample a specific number of
configurations, but the process is not completely ran-
dom [36].

— Optimization of configurations. None of the selected
tools provide specific good support for finding optimal
configurations (based on NFPs) in FMs. Clafer, with
its ClaferMOO module, provides a multi-objective opti-
mization mode, but this implies to use another kind of
model not related to the Clafer’s variability model.
FeatureIDE, with the use of plugins, allows a com-
plete configuration based on the optimization of NFPs
and historical data [102].

— Interactive configuration process. The support to man-
age partial configurations and step-by-step configura-
tions varies a lot among tools. provides
validation and statistics of partial configurations and also
automatic derivation of features and auto-completion of
the configuration with fewer features or the configura-
tion with more features. This is done through an online
step-by-step configuration assistant. Glencoe allows
generating partial configurations by assisting the user
with colors over the feature diagram as the user selects
the desired features, including the automatic derivation of
features due to the cross-tree constraints. Clafer allows

Empirical analysis of the tool support for software product lines

generating complete configurations from a partial one
thanks to its instantiation process based on constraint def-
inition. FeatureIDE and pure: :variants allow
generating partial configurations and calculate the num-
ber of valid configurations from those partial configura-
tions. FeatureIDE also integrates a visual guide for
product configuration [103] that assists the user with col-
ors over the feature diagram and recommendations as the
user selects the desired features with auto-completion of
the configuration, including the automatic derivation of
features due to the cross-tree constraints.

Discussion. Although existing tools provide good sup-
port for the RA phase, there are some activities that are not
properly covered. Firstly, none of the tools allows generat-
ing all configurations efficiently for large variability models
(103 configurations) like the ones used in some domains
(e.g., operating systems). Secondly, existing tools are able
to calculate the number of configurations but without taking
into account advanced characteristics like variable features
or clonable features, which considerably increments the
total number of configurations. Finally, the support provided
by the analyzed tools to generate optimal configurations
of products based on some criteria like NFPs [104] is
not straightforward. Thus, it is necessary to use additional
plugins, such as the ClaferMOO module for Clafer, or
external tools such as SPLConqueror [105] in combination
with FeatureIDE for the analysis of colossal feature
models considering sampling and optimization of configura-
tions (e.g., analysis of NFPs). The extension mechanism of
FeatureIDE, based on plugins, and the provided API allow
applying specific optimization techniques (e.g., evolutionary
algorithms), additional formalizations of the FMs such as
CNF [106], or the use of advanced SAT solvers [107,108].
Most of these applications have been developed as part of
a research work and are available as evaluation or proof of
concept artifacts. They still require to be properly integrated
in a main release of a tool like FeatureIDE to make them
widely available to the SPL community.

5.3.3 Domain implementation (DI) phase

This phase focuses on the implementation of the SPL vari-
able and common artifacts (e.g., models and code). Only
FeatureIDE, pure: :variants and vEXgine cover
this phase. While FeatureIDE and pure::variants
are tools based on the Eclipse IDE and provide all the nec-
essary support to implement an SPL (i.e., project and file
manager, integrated editors, etc.), vEXgine offers a stand-
alone application to resolve the variability in the models
provided by its interface, but this is the unique tool that pro-
vides support for CVL.

Variability implementation. Several variability imple-
mentation techniques have been widely studied in the
SPL [9], and most of them have been successfully incor-
porated into the analyzed tools.

— Composition-based approach. FeatureIDE pro-
vides good support for different variability approaches.
Concretely, it supports feature-oriented programming
using the FeatureHouse approach or AHEAD and aspect-
oriented programming with Aspect], among others
[109]. Furthermore, FeatureIDE offers a plugin-based
mechanism to incorporate any other approach into the
IDE. pure: :variants provides its own variation
points system which is also compatible with multi-
ple approaches such as Aspect-Oriented Programming
(e.g., Aspect] and AspectC++). vEXgine provides a
complete set of variation points with associated model
transformations to resolve the variability following an
orthogonal approach [87]. For example, it defines an
“object existence” variation point to determine the exis-
tence or absence of an artifact in the SPL.

— Annotation-based approach FeatureIDE provides
support for specific annotation-based approaches like
Antenna (Java comments), Colligens (C preprocessor),
or Munge (Android). pure: :variants in contrast,
support annotations for different generic languages (e.g.,
Java, JavaScript, C++). vEXgine does not provide
support for annotations by default, because it is a
composition-based tool, but annotations can be supported
by extending it in a combined approach (see below).

— Combined approach Neither in FeatureIDE nor in
pure: :variants, it is possible to combine differ-
ent approaches in different parts of the application (e.g.,
annotations and AHEAD). Actually, only the combina-
tion of FeatureHouse with Java and Aspect] is supported
in FeatureIDE. In vEXgine, it is possible to use and
combine different variability mechanisms (composition
and annotations) [19], but the resolution of that variability
must be delegated to an external engine [87].

Artifacts implementation. Artifacts can be implemented
at different abstraction levels, from elements in software
architectures and design models to pieces of code, functions,
or resource files. Moreover, a product usually is composed by
artifacts defined in different languages. In general, the tools
analyzed provide good support for defining and/or managing
the product’s artifacts.

— High abstraction level. pure::variants and
vEXgine offer the best support for working at the archi-
tectural and design levels. However,
pure:: variants requires the commercial version
to manage high abstract models (e.g., UML), while

@ Springer

J. M. Horcas et al.

vEXgine requires to define the appropriate model trans-
formations, although it supports any Meta-Object Facility
(MOF)-compliant model [87]. FeatureIDE offers the
possibility of combining FeatureHouse and UML, but
actually, this integration is not completely operable.

— Low abstraction level. FeatureIDE and
pure::variants work by default at the code level
providing good support for implementing the SPL arti-
facts (as discussed for the composition and annotation-
based approaches). In contrast, vEXgine needs specific
extensions to work at the code level [19].

— Multi-language artifacts. vEXgine is completely
independent of the language used to implement the arti-
facts at the architectural or code level. FeatureIDE
andpure: :variants support multiple programming
languages, but it is not easy to combine them in the same
project.

Discussion. FeatureIDE andpure: :variants are
excellent tools to build the artifacts of an SPL from scratch,
but it is very difficult to apply the variability mechanisms
(e.g., AOP, FOP) to existing third party libraries. Pure: :
variants also allows extracting variability from source
code, but most of the advanced options of
pure::variants are only available in the commercial
version [86]. Moreover, no tool supports an effective vari-
ability mechanism to be applied over several languages (Java,
Python, JavaScript) in the same project.

5.3.4 Product derivation (PD) phase

Variability resolution and product derivation are achieved
only with the tools analyzed that cover this phase (i.e.,
FeatureIDE, pure::variants, and vEXgine),
although these tools present some limitations in the man-
agement of products after their generation.

Variability resolution. This includes generating the final
product (by resolving the variability of the artifacts accord-
ing to the selection of features made in the RA phase) and
validating the generated product.

— Product derivation. All the three tools (FeatureIDE,
pure: :variants, and vEXgine) can resolve the
variability specified in FMs over SPL artifacts to gen-
erate a final product.

— Product evaluation. The code resulting from the prod-
ucts generated with FeatureIDE and
pure::variants can be directly compiled and val-
idated. In contrast, in vEXgine, the user needs to
manually verify if the generated models are valid and
conform to the associated metamodel.

@ Springer

Product management. When a final product is generated,
it can be incorporated within another product (e.g., in the case
of subsystems) by applying some combination mechanism
(weaving or MultiPL). In addition, the traceability of features
and the propagation of changes in the final products when the
requirements change or domain artifacts evolve need to be
considered.

— Weaving or composition of products. Only vEXgine
provides complete support for weaving products by
defining custom model transformations [25]. The flex-
ibility of pure: :variants allows integrating other
tools like Git to partially support mixing variants [110].
FeatureIDE does not support explicit weaving of
final products but integrates the VELVET approach [41]
for MultiPL, which may be used to weave the products,
although this is a prototype and in this case the product
derivation is not fully operable.

— Traceability of features. FeatureIDE provides sev-
eral mechanisms that facilitate tracing features such as
feature colors, naming, or virtual separation of con-
cerns[111]. Inpure: :variants,its family model [80]
allows describing the variable architecture/code and con-
necting it to the FM via appropriate rules. vEXgine
allows connecting the features of the FMs directly with
the artifacts of the SPL through explicit references to the
variation points, but the final product does not contain
this information.

— Evolution changes. The support for propagating changes
in the variability model to the existing configurations
exists but is limited. FeatureIDE does not provide
explicit support for evolution, and the products need to
be generated again after changes in the SPL artifacts.
In pure: :variants, the source code of the product,
variants can be evolved by using merge operations from
Git [110,112]. vEXgine can evolve the deployed arti-
facts with the help of specific model transformations and
evolution algorithms [55,113], but the effort of defining
those transformations is considerable.

Discussion. Variability resolution and product deriva-
tion are achieved by all the analyzed tools. A limitation
in FeatureIDE is that only one composer (e.g., Fea-
tureHouse, annotations) can be selected for an SPL appli-
cation, and thus, the combination of different approaches
requires building and integrating a custom composer within
FeatureIDE. Apart from resolving the variability and
generating the final products, existing tools have not paid
special attention to advanced activities such as weaving
or evolution. However, those activities could be incorpo-
rated into some tools thanks to their extension mecha-
nisms, such as the possibility of defining new composers in

Empirical analysis of the tool support for software product lines

FeatureIDE [85] or the custom engines and model trans-
formations of vEXgine [87].

Conclusions and lessons learned from RQ3: While
most of the tools analyzed provide full support for basic
variability modeling, they present several limitations
when dealing with more complex variability require-
ments. For example, SPLOT, Glencoe, and FeatureIDE
are recommended tools for modeling variability, but they
do not support advanced variability characteristics. In
contrast, Clafer and pure::variants, which provide sup-
port for advanced variability characteristics, implement
such support differently. Practitioners should be aware
of what kind of support they need for their projects.
In addition, the support for advanced SPL activities
such as sampling configurations or optimization of con-
figurations is scarce due to the difficulty of managing
and dealing with large feature models and configuration
spaces. Here, Clafer offers the best support.

Our analysis helps SPL users choose the tool that
provides the best support according to the variability
characteristics they need to model and the activities they
need to carry out within an SPL. Moreover, tool devel-
opers can benefit from this analysis to focus on those
activities that require better support.

6 SPL tools road map

This section answers our fourth research question:

RQ4: Is it possible to carry out an SPL process, which
includes the SPL activities and characteristics iden-
tified in the case studies analyzed, with the existing
tool support? Rationale: Even though the analyzed
tools support some of the identified SPL activities
and characteristics, not all tools provide support for
the same activities and characteristics or in the same
way, as demonstrated in Sect. 5. Moreover, the usage
of a unique tool in isolation is not enough to support
the complete process of an SPL that includes the four
phases: DA, RA, DI, and PD, and thus, to support an
SPL process completely, more than one tool needs to
be employed depending on the specific requirements
of the user. We would like to know if a complete SPL
process, including its four phases (DA, RA, DI, and
PD), can be performed with the existing tools provid-
ing support for the different activities of those phases.

To answer RQ4, based on the analysis in the previous sec-
tion, we define some practical road map to completely carry
out an SPL process with the existing tool support (Figure 5).

The road map!> defined in Figure 5 shows, for each phase
and activity of the SPL, the recommended tool to be used.
For example, the road map defined with FeatureIDE and
pure::variants allow carrying out a complete SPL
approach, covering all the activities of an SPL process and
generating a final product. However, the limitations of these
tools, as evidenced in Sect. 5, make them not suitable for com-
plex domains, such as robotics or video systems, that demand
advanced SPL characteristics such as clonable features, bind-
ing modes, multi-dimensional variability, managing large
models, or dealing with NFPs.

To partly solve these issues, SPL users can combine some
of the tools or integrate them. Following with our road map
(Figure 5), the possible combinations are represented by the
sequence flow that connects each activity of the SPL and are
tagged with the tool that provides support for that activity.
When we are only interested in analyzing the SPL variability,
we can opt to use only Glencoe (for basic variability mod-
eling) or FAMA (for extended variability modeling) that are
the tools with the best support for automated reasoning. When
we need to generate a specific configuration (or a partial one)
based on the requirements of the application,
and Glencoe offer an excellent online service for feature-
based interactive configuration. When all configurations need
to be generated at the RA phase, or we need to generate a sub-
set of all the possible configurations, or we want to optimize
configurations, our best option is Clafer. For implement-
ing the reusable artifacts of the SPL from scratch, that is,
following a proactive and/or reactive approach to develop
an SPL [114], FeatureIDE and pure: :variants are
the recommendable choices because they allow using several
languages and variability approaches (FOP, AOP, annota-
tions). For an extractive approach where the user starts with
a collection of existing products [114], pure: : variants
with its family model, which connects the existing artifacts
with the FM, and vEXgine, which follows an orthogonal
approach to define the variability [19], are good choices.
For those domains (e.g., web engineering) in which appli-
cations require the combination of more than one different
approach, users will need to implement specific composers to
perform the combination work, like a new composer plugin
for FeatureIDE. In this sense, vEXgine provides great
flexibility because it is designed to be extensible by means of
model transformations. Finally, to deal with variability mod-
els at the architectural level, pure: :variants isthe most
mature tool, with the only drawback that the commercial ver-
sion of the tool is required [86]. Also, vEXgine provides
excellent support for resolving the variability of architectural
models, but in this case the downside is that users need to

15 We use the Business Process Model and Notation (BPMN) to repre-
sent the road map.

@ Springer

J. M. Horcas et al.

Domain Analysis (DA)

Feature Model FM Analysis

Domain Requirements (RA)

Domain Implementation (DI)

Product Derivation (PD)

. . vEXgine
s.p.L}o.T., .
Glehcoe Glenicoe,
Basic variabilit FAA FeatureIDE,
S.P.LO.T. Glencoe _ ¥___ pure::variants _ ﬂu,.Fe i
mo e ing Automatic Variability VEXgine Variability e, v ey
reasoning implementation resolution VEy, Tap
' % <o Qing s,
Glencoe includes (é@ .~’b(\ N
Y \
. I . Gle::;:e, z’&"..ﬁ@ FeatureIDE, pure::\ariants, .
FAMA Extended variability! A “0(0' pure: :yariants VEXgine X% Final
modeling % Q &% product
. N 3 . T ®
FeaturelDE ! Product Artifact Product o
eature includes XS configuration FeaturelDE, development management
. | qa(-‘x"‘“ pure: :variants
.t \d
—— ol Cl3fer
Extra variability |$&~ ¥ FeatyreIDE,
pure::variants Clafer :
; modeling S.P.L.O.T., pure::pariants
. Glehcoe .
Clafer . Sampling .
configurations

Valid selected
configuration optimization configurations:

and

Enumerate

Reusable artifacts

Fig.5 Road map with the recommended tools for each phase and activity of an SPL

have some expertise in Model-Driven Engineering to define
the appropriate model transformations.

We illustrate the usage of our road map with the fol-
lowing interoperability scenario. Let us suppose that a user
Joseph needs to model the variability of an edge comput-
ing application [115], analyze its variability, and sample
some valid configurations that optimize the system’s per-
formance to generate the final product. He decides to use the

tool to specify the variability model using
an online and easy-to-use web application. To automatically
reason about the system’s variability, the user exports the
variability model into the FAMA tool, which provides good
support for validity checking and finding inconsistencies.
However, he realizes that none of these tools support all
the variability characteristics required by the edge comput-
ing domain. As the other domains analyzed in Sect. 3, edge
computing applications require the modeling of numerical
features, clonable features, and complex cross-tree con-
straints involving some numerical values. To work with that
“extra variability,” the user exports its model to the Clafer
tool, which allows modeling the numerical features and opti-
mizing a configuration sample. Knowing the configurations

@ Springer

that will be deployed, the SPL user needs to implement the
variable artifacts and resolve the variability according to
those configurations to generate the final product. To do that,
he exports its model again to the FeatureIDE tool and
implements the artifacts using the high diversity of variabil-
ity implementation techniques offered by FeatureIDE.
Finally, with the configurations previously identified, he gen-
erates the final products also using FeatureIDE. This chain
of tools is possible because all these tools use interchange-
able formats easy to import and export. FeatureIDE,
FAMA, and Clafer support importing SXFM models from

Similarly, Glencoe allows exporting the
models to several formats (DIMACS, SPASS, v.control...)
including the format used by pure: : variants. To cover
some of the possible connections in the road map (e.g., con-
nect and clafer), we have implemented
the necessary scripts and algorithms, which are available
online.'®

16 https://github.com/jmhorcas/SPLE-Empirical Analysis.

https://github.com/jmhorcas/SPLE-EmpiricalAnalysis

Empirical analysis of the tool support for software product lines

Conclusions and lessons learned from RQ4: Exist-
ing tools support the complete process of SPL but with
many limitations when dealing with complex variabil-
ity requirements, demanding the usage of more than
one tool. Concretely, for the DA phase, Clafer and
pure::variants are the tools supporting more advanced
mechanisms to model variability. However, for the RA
phase, Glencoe and FAMA provide better support for
automatic reasoning on those models, even though
they do not support the advanced variability mecha-
nisms completely. In the RA phase, Clafer can also be
used for specific analysis operations such as the enu-
meration, sampling, and optimization of configurations
despite its poor performance. Finally, FeatureIDE and
pure::variants are the most appropriate tools for the DI
and PD phases to support the implementation and reso-
lution of the variability and the subsequent generation of
the final product. Our road map will help SPL engineers
to be aware of which tools can be used in isolation or
in combination when a single tool does not support the
complete SPL process.

7 Threats to validity

This section discusses the threats to validity of our study
[116]:

Internal validity. An internal validity concern is the relia-
bility of the experiments to check the functionality fulfillment
of tools.

Functionality fulfillment. The functionality and character-
istics analyzed vary among the tools. For example, clonable
features are implemented differently in each tool. Literature
reviews about tools usually study the support of functional-
ities as a primary goal. However, the goal of this paper is
verifying how the tools satisfy the requirements in which we
are interested to carry out a complex SPL process instead
of reviewing all the available functionalities provided by the
tools.

External validity. An external validity concerns the gen-
eralization of the SPL and variability requirements to others
case studies and domains, beyond those discussed in Sect. 3.

Generalization of the requirements. We have especially
looked for case studies that pose the most challenging
requirements in the context of SPLs and variability mod-
eling. We have analyzed a sample of 20 case studies in six
different domains. We consider that this sample is represen-
tative enough, and indeed there are many more case studies
and domains that share the same requirements, for exam-
ple, some of the case studies in the ESPLA catalog [117].
We believe that our analysis of case studies is representa-
tive for the domains. We also conjecture that case studies in

other related domains, especially the current trending topic
domains, such as Internet of Things (IoT), Cyber-Physical
Systems, Edge Computing, and web engineering, will share
many characteristics and requirements with the studied sys-
tems.

Construct validity. Construct validity relates to the com-
pleteness of our study, as well as any potential bias.

Important tools missing in the state of the art. The search
for the tools information was conducted in several SLRs,
proceedings of the most relevant conferences in SPL (e.g.,
SPLC) and variability (e.g., VaMoS), as well as in web search
engines, and it was gathered through a data extraction form.
We believe that we do not have omitted any relevant tools.
However, since new tools are constantly appearing and evolv-
ing, we encourage SPL researchers to fill the information
about any missing or new SPL tools in our form so that we
can include them and continuously extend our study.

Tools selection for analysis. The defined inclusion and
exclusion criteria to select the tools for our analysis can
exclude some relevant tools (e.g., Gears). Our criteria focus
especially on the availability and usability of the tools that
we consider the first obstacle for an advanced analysis of the
tools. Therefore, we did not consider for our detailed analysis
those tools that are not available to be directly downloaded,
require to pay a license, or have inadequate documentation
because those tools cannot be analyzed before acquiring them
(case of industrial tools) or require continuously contacting
the developers to solve issues or errors when using the tools
(case of obsoleted and not available tools). A threat to valid-
ity is that, for those tools that were not able to be installed or
had some errors or lack of documentation that prevented us
from testing them, we decided not to contact the authors for
help, since we consider that regular users often do not make
sO.

Biased judgment selection and analysis. As the researchers
involved in this study are active in the SPL research area, a
validity problem could be the author’s bias in the selection
process of studies and tools. Regarding the sampling of case
studies, authors have been working for years to contribute
to the improvement in convenience modeling languages due
to the shortcomings they have in modeling certain character-
istics. Part of our previous work Horcas et al. [24] and the
limitations found were the starting point for the detailed study
that has been conducted in this article. In fact, the specific
case study presented in Horcas et al. [24], WeaFQAs, was
not considered in the sample because it represents a cross-
cutting domain (e.g., quality attributes), and no other case
studies were found in that domain in the pool of 477 articles.
Finally, only 2 of the 20 studies analyzed were published by
the authors of this article. Regarding the tool selection, the
authors of this article have produced several tools in SPL
(e.g., vVEXgine, HADAS, Hydra, AO-ADL). Only vEXgine
passed our inclusion/exclusion criteria and was considered

@ Springer

J. M. Horcas et al.

to be further analyzed. In addition, the decision to include
vEXgine over other similar tools is threefold: (1) actually,
it is the only available tool to provide support for CVL
models [87]; (2) it is one of the few tools that work at the
architectural level; and (3) it is very flexible to be extended or
integrated within any other tool or approach. Despite those
benefits, vEXgine also presents some limitations as discussed
in Sect. 5.

Conclusion validity. Conclusion validity relates to the
reliability and robustness of our results.

Interpretation of the analysis results. A potential threat
to conclusion validity is the interpretation of the results
extracted from the analyzed tools. It was not always obvious
to state from the empirical experiments if the tools satisfy the
exposed requirements completely or partially. To ensure the
validity of our results, apart from the empirical experiments,
we analyzed multiple data sources (e.g., tool documentation,
reference papers, technical reports...). Moreover, the exper-
iments were carried out at least by two primary authors that
acted as reviewers of the results reported by the others. Con-
sidering alarger number of evaluators might have contributed
to a more extensive experimentation and a higher precision
of the results. These external researchers would have helped
to cross-check our results.

8 Related work

SPL phases and activities have been widely studied by
researchers, but unfortunately, there are few empirical stud-
ies covering the use of those SPL activities in practice with
the existing tool support.

8.1 SPL phases and activities

Multiple reviews and surveys have been published cover-
ing different aspects of SPL engineering, such as the level
of alignment in the topics covered by academia and indus-
try [20], the level of tool support [118], or the most researched
topics in SPL [6,56]. These studies help to identify the phases
and activities of SPL engineering that deserve more attention
in the SPL community. For instance, the survey by Rabiser
et al. [6] states that architecting (i.e., working at the architec-
tural level) is the dominating SPL topic, covered by 38% of
surveyed papers.

Other studies focus on specific phases of the SPL. For
example, Schobbens et al. [34] survey the different lan-
guages and notations for variability modeling, while Berger
et al. [20] address the use of variability modeling notations,
the scalability of industrial models, and SPL tools in indus-
try, and Benavides [10] focuses on the modeling and analysis
of variability and, in particular, on the automated reason-
ing on feature models [47], imposing new challenges to

@ Springer

the existing development and analysis activities, as well as
on the tool support. The automatic configuration of prod-
ucts has been widely studied in multiple works, from works
covering the optimization and trade-off of NFPs [105] or
modeling performance of highly configurable systems [119],
to surveys and systematic literature reviews focused on semi-
automatic configuration of extended product lines [120],
which include scalability and performance concerns [77].
Covering the domain implementation phase, Apel et al. [9]
explain in detail well-known variability implementation tech-
niques (e.g., components and services, preprocessors, design
patterns, feature-oriented programming, aspect-oriented pro-
gramming, virtual separation of concerns, etc.). They also list
tools that provide support for those techniques as well as for
other activities, such as mapping features or traceability, but
without further details, in contrast to our deep analysis in
Sect. 5.

8.2 SPL requirements

Regarding the requirements of SPLs, most of the research
literature on SPL usually provides only small examples [9],
and thus, tools are usually built to support specific case stud-
ies or toy applications. While no work studies the practical
support of the existing tools for case studies [121], we have
presented in Sect. 3 a sample of 20 case studies with com-
plex requirements for SPL as motivation for the analysis of
the tools.

8.3 SPL tools analysis

Few works study the tool support for the SPL phases
and activities [8,21-23,118]. They are systematic literature
reviews, mapping studies, or surveys that are normally done
only from the perspective of the documentation found for
each tool and the characteristics listed and discussed in that
documentation. In addition, most of the details about the
tools are covered in gray literature, thesis, and websites, that
are not usually considered as primary studies in SLRs. For
example, Bashroush et al. [8] study general characteristics
of SPL tools, such as the technology used in its implementa-
tion, or the notation (graphical or textual) used for variability
modeling. Other similar but older studies are presented by
Pereira et al. [22] and by Lisboa et al. [23]. In particular,
there are also some other works analyzing directly SPL tools
by testing their usability and applicability [18,122], but these
works consider only two tools to be analyzed. A more recent
work [21] presents a systematic mapping study with more
than a hundred of variability tools and up to 11 capabilities
that are missed by the industry in those tools. In contrast to
our study, where we provide a deep analysis of how each tool
supports different variability characteristics, Allian et al. [21]
analyze the tools by conducting a survey with practitioners

Empirical analysis of the tool support for software product lines

from the industry to analyze the missing capabilities. More-
over, some of the capabilities are common to any type of
tools and not specific to SPL, such as collaborative support,
scalability, or integration with testing tools.

However, these kinds of studies are not enough to select
the most appropriate tool to provide support for an SPL pro-
cess. This is because only information about the high-level
phases covered by each tool is provided, omitting the details
about the specific topics covered in each phase. Moreover,
the information is extracted from the tool documentation or
a reference paper, and thus, these studies become outdated
very soon because, in most of the cases, they are not trying
directly with the tools, downloading, installing, and execut-
ing the tools or even checking their online availability—i.e.,
many of the tools included in existing studies are not avail-
able at all. There are even tools referenced in these papers
that have never been implemented [22]. Commercial tools
like Gears [123] and pure: :variants [86] present the
additional problem of the intellectual property protection of
their technical details [8].

9 Conclusions and future work

We have presented a state of the art of the tools for SPL,
focusing on their availability and usability. Based on this
study, we have later empirically analyzed the most usable
tools to check out the existence of enough mature tool support
to cover the current variability and SPL requirements of case
studies in different domains. We have also defined a road
map of the recommended tools to partially or completely
support SPL activities, from the variability modeling until
the product derivation phase.

The conclusion is that we need an integrated approach with
appropriate tool support that covers all activities/phases that
are normally performed in complex SPLs. The main char-
acteristics that the tools should support are: (1) modeling
the variability of complex features (e.g., clonable features,
variable features, composite features), (2) flexibility in the
analysis of large feature models considering sampling and
optimization of configurations (e.g., analysis of NFPs), and
(3) combination of multiple variability approaches (FOP,
AOP, annotations) since only a variability approach (e.g.,
FOP) is not enough for some domains like cyber-physical
systems or robotics that could greatly benefit from the use of
SPLs. Therefore, with the existing tool support, it is possi-
ble to carry out a simple SPL process, but the tools present
several limitations when dealing with complex SPLs.

As future work, we plan to continue our study to incor-
porate updated or new tools that could appear and that can
be integrated into our road map.!” In parallel, we plan to

17 https://github.com/jmhorcas/SPLE-Empirical Analysis.

provide support for advanced variability modeling charac-
teristics either by integrating them into existing tools or by
developing new tools if needed. This will allow completing
and improving the presented road map and interconnect the
existing tools.

Acknowledgements This work is supported by the projects MEDEA
RTI2018-099213-B-100 (co-financed by FEDER funds), LEIA UMA18-
FEDERIA-157, Rhea P18-FR-1081 (MCI/AEI/FEDER, UE), TASOVA
MCIU-AEI TIN2017-90644-REDT, and European Union’s H2020
research and innovation program under grant agreement DAEMON
101017109.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature. Funding for open access charge: Uni-
versidad de Malaga / CBUA

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Berger, T., Collet, P.: Usage scenarios for a common feature mod-
eling language. In: Proceedings of the 23rd International Systems
and Software Product Line Conference, ACM, New York, NY,
USA, SPLC’19, vol B, pp. 174-181 (2019). https://doi.org/10.
1145/3307630.3342403

2. Garcia, S., Striiber, D., Brugali, D., Di Fava, A., Schillinger, P.,
Pelliccione, P., Berger, T.: Variability modeling of service robots:
experiences and challenges. In: Proceedings of the 13th Interna-
tional Workshop on Variability Modelling of Software-Intensive
Systems (VaMoS), ACM, New York, NY, USA, VAMOS’19, pp.
8:1-8:6 (2019). https://doi.org/10.1145/3302333.3302350

3. Nadi, S., Kriiger, S.: Variability modeling of cryptographic com-
ponents: Clafer experience report. In: Proceedings of the Tenth
International Workshop on Variability Modelling of Software-
intensive Systems, ACM, New York, NY, USA, VaMoS’16, pp.
105-112 (2016). https://doi.org/10.1145/2866614.2866629

4. Berger, T., She, S., Lotufo, R., Wasowski, A., Czarnecki, K.: A
study of variability models and languages in the systems soft-
ware domain. [EEE Trans. Softw. Eng. 39(12), 1611-1640 (2013).
https://doi.org/10.1109/TSE.2013.34

5. Alférez, M., Acher, M., Galindo, J.A., Baudry, B., Benavides, D.:
Modeling variability in the video domain: language and experi-
ence report. Softw. Qual. J. 27(1), 307-347 (2019). https://doi.
org/10.1007/s11219-017-9400-8

6. Rabiser, R., Schmid, K., Becker, M., Botterweck, G., Galster, M.,
Groher, 1., Weyns, D.: A study and comparison of industrial vs.
academic software product line research published at SPLC. In:
Proceedings of the 22nd International Conference on Systems and

@ Springer

https://github.com/jmhorcas/SPLE-EmpiricalAnalysis
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3307630.3342403
https://doi.org/10.1145/3307630.3342403
https://doi.org/10.1145/3302333.3302350
https://doi.org/10.1145/2866614.2866629
https://doi.org/10.1109/TSE.2013.34
https://doi.org/10.1007/s11219-017-9400-8
https://doi.org/10.1007/s11219-017-9400-8

J. M. Horcas et al.

10.

11.

12.

13.

14.

15.

18.

19.

20.

Software Product Line (SPLC), pp. 14-24 (2018). https://doi.org/
10.1145/3233027.3233028

. Chacén-Luna, A.E., Gutiérrez, A.M., Galindo, J.A., Benavides,

D.: Empirical software product line engineering: a systematic lit-
erature review. Inf. Softw. Technol. 128, 106389 (2020). https://
doi.org/10.1016/j.infsof.2020.106389

Bashroush, R., Garba, M., Rabiser, R., Groher, 1., Botterweck, G.:
CASE tool support for variability management in software prod-
uct lines. ACM Comput. Surv. 50(1), 14:1-14:45 (2017). https:/
doi.org/10.1145/3034827

Apel, S., Batory, D.S., Kistner, C., Saake, G.: Feature-Oriented
Software Product Lines - Concepts and Implementation. Springer,
Berlin (2013). https://doi.org/10.1007/978-3-642-37521-7
Benavides, D.: Variability modelling and analysis during 30 years.
In: From Software Engineering to Formal Methods and Tools, and
Back - Essays Dedicated to Stefania Gnesi on the Occasion of Her
65th Birthday, pp. 365-373 (2019). https://doi.org/10.1007/978-
3-030-30985-5_21

Laguna, M.A., Crespo, Y.: A systematic mapping study on soft-
ware product line evolution: From legacy system reengineering
to product line refactoring. Sci. Comput. Program. 78(8), 1010-
1034 (2013). https://doi.org/10.1016/j.scico.2012.05.003.special
section on software evolution, adaptability, and maintenance &
Special section on the Brazilian Symposium on Programming
Languages

Benavides, D., Trinidad, P., Cortés, A.R.: Automated reasoning on
feature models. In: 17th International Conference on Advanced
Information Systems Engineering CAiSE, pp. 491-503 (2005).
https://doi.org/10.1007/11431855_34

Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional
Requirements in Software Engineering. International Series in
Software Engineering, vol 5. Springer (2000). https://doi.org/10.
1007/978-1-4615-5269-7

Thiim, T., Kistner, C., Benduhn, E., Meinicke, J., Saake, G., Leich,
T.: Featureide: an extensible framework for feature-oriented soft-
ware development. Sci. Comput. Program. 79, 70-85 (2014).
https://doi.org/10.1016/j.scico.2012.06.002. Experimental Soft-
ware and Toolkits (EST 4): A special issue of the Workshop
on Academic Software Development Tools and Techniques
(WASDeTT-3 2010)

Prehofer, C.: Feature-oriented programming: A fresh look at
objects. In: Aksit, M., Matsuoka, S. (eds.) ECOOP’97—Object-
Oriented Programming, pp. 419-443. Springer, Berlin (1997)

. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,

C., Loingtier, J.M., Irwin, J.: Aspect-oriented programming. In:
Aksit, M., Matsuoka, S. (eds.) ECOOP’97—Object-Oriented Pro-
gramming, pp. 220-242. Springer, Heidelberg (1997)

. Hunsen, C., Zhang, B., Siegmund, J., Késtner, C., Lelenich, O.,

Becker, M., Apel, S.: Preprocessor-based variability in open-
source and industrial software systems: an empirical study.
Empir. Softw. Eng. 21(2), 449-482 (2016). https://doi.org/10.
1007/s10664-015-9360-1

Constantino, K., Pereira, J.A., Padilha, J., Vasconcelos, P.,
Figueiredo, E.: An empirical study of two software product line
tools. In: Proceedings of the 11th International Conference on
Evaluation of Novel Software Approaches to Software Engineer-
ing, SCITEPRESS - Science and Technology Publications, Lda,
Portugal, ENASE 2016, pp. 164-171 (2016). https://doi.org/10.
5220/0005829801640171

Horcas, J.M., Cortifas, A., Fuentes, L., Luaces, M.R.: Combining
multiple granularity variability in a software product line approach
for web engineering. Inf. Softw. Technol. 148, 106910 (2022)
Berger, T., Rublack, R., Nair, D., Atlee, J.M., Becker, M., Czar-
necki, K., Wasowski, A.: A survey of variability modeling in
industrial practice. In: Proceedings of the Seventh International
Workshop on Variability Modelling of Software-intensive Sys-

@ Springer

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

tems, ACM, New York, NY, USA, VaMoS’13, pp. 7:1-7:8
(2013a). https://doi.org/10.1145/2430502.2430513

Allian, A.P,, Oliveiralr, E., Capilla, R., Nakagawa, E.Y.: Have
variability tools fulfilled the needs of the software industry? J.
Univ. Comput. Sci. 26(10), 1282-1311 (2020)

Pereira, J.A., Constantino, K., Figueiredo, E.: A systematic lit-
erature review of software product line management tools. In:
Schaefer, 1., Stamelos, I. (eds.) Software Reuse for Dynamic Sys-
tems in the Cloud and Beyond, pp. 73-89. Springer, Cham (2014)
Lisboa, L.B., Garcia, V.C., Lucrédio, D., de Almeida, E.S., de
Lemos Meira, S.R., de Mattos Fortes, R.P.: A systematic review
of domain analysis tools. Inf. Softw. Technol. 52(1), 1-13 (2010)
Horcas, J., Pinto, M., Fuentes, L.: Software product line engi-
neering: a practical experience. In: Proceedings of the 23rd
International Systems and Software Product Line Conference
(SPLC), ACM, vol A, pp. 25:1-25:13 (2019). https://doi.org/10.
1145/3336294.3336304

Horcas, J.M.: WeaFQAs: a software product line approach for
customizing and weaving efficient functional quality attributes.
PhD thesis, Universidad de Mdlaga (2018). https://hdl.handle.net/
10630/17231

Pohl, K., Bockle, G., Linden, FJvd: Software Product Line Engi-
neering: Foundations, Principles and Techniques. Springer, Berlin
(2005)

Assung¢do, W.K.G., Lopez-Herrejon, R.E., Linsbauer, L., Vergilio,
S.R., Egyed, A.: Reengineering legacy applications into software
product lines: a systematic mapping. Empir. Softw. Eng. 22(6),
2972-3016 (2017). https://doi.org/10.1007/s10664-017-9499-z

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.:
Feature-oriented domain analysis (FODA) feasibility study, Tech.
rep.. Carnegie-Mellon Univ Pittsburgh Pa Software Engineering
Inst (1990)

Czarnecki, K.,, She, S.,, Wasowski, A.: Sample spaces and feature
models: There and back again. In: International Conference on
Software Product Lines, SPLC, pp. 22-31 (2008). https://doi.org/
10.1109/SPLC.2008.49

Gonzélez-Baixauli, B., do Prado Leite, J.C.S., Mylopoulos, J.:
Visual variability analysis for goal models. In: 12th IEEE Inter-
national Conference on Requirements Engineering (RE), pp.
198-207 (2004). https://doi.org/10.1109/RE.2004.56

Schmid, K., John, I.: A customizable approach to full lifecycle
variability management. Sci. Comput. Program. 53(3), 259-284
(2004). https://doi.org/10.1016/j.scic0.2003.04.002

Haugen, @., Mgller-Pedersen, B., Oldevik, J., Olsen, G.K., Svend-
sen, A.: Adding standardized variability to domain specific
languages. In: 12th International Software Product Line Confer-
ence (SPLC), pp. 139-148 (2008). https://doi.org/10.1109/SPLC.
2008.25

Haugen, @., @gérd, O.: BVR - better variability results. In: Inter-
national Conference on System Analysis and Modeling: Models
and Reusability, SAM, pp. 1-15 (2014). https://doi.org/10.1007/
978-3-319-11743-0_1

Schobbens, P., Heymans, P., Trigaux, J., Bontemps, Y.: Generic
semantics of feature diagrams. Comput. Netw. 51(2), 456479
(2007). https://doi.org/10.1016/j.comnet.2006.08.008

Capilla, R., Dueiias, J.C.: Modelling variability with features in
distributed architectures. In: Revised Papers from the 4th Inter-
national Workshop on Software Product-Family Engineering,
Springer-Verlag, Berlin, Heidelberg, PFE’01, pp. 319-329 (2001)
Munoz, D., Oh, J., Pinto, M., Fuentes, L., Batory, D.S.: Uni-
form random sampling product configurations of feature models
that have numerical features. In: Proceedings of the 23rd Interna-
tional Systems and Software Product Line Conference (SPLC),
vol. A, pp. 39:1-39:13 (2019). https://doi.org/10.1145/3336294.
3336297

https://doi.org/10.1145/3233027.3233028
https://doi.org/10.1145/3233027.3233028
https://doi.org/10.1016/j.infsof.2020.106389
https://doi.org/10.1016/j.infsof.2020.106389
https://doi.org/10.1145/3034827
https://doi.org/10.1145/3034827
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-030-30985-5_21
https://doi.org/10.1007/978-3-030-30985-5_21
https://doi.org/10.1016/j.scico.2012.05.003.
https://doi.org/10.1007/11431855_34
https://doi.org/10.1007/978-1-4615-5269-7
https://doi.org/10.1007/978-1-4615-5269-7
https://doi.org/10.1016/j.scico.2012.06.002
https://doi.org/10.1007/s10664-015-9360-1
https://doi.org/10.1007/s10664-015-9360-1
https://doi.org/10.5220/0005829801640171
https://doi.org/10.5220/0005829801640171
https://doi.org/10.1145/2430502.2430513
https://doi.org/10.1145/3336294.3336304
https://doi.org/10.1145/3336294.3336304
https://hdl.handle.net/10630/17231
https://hdl.handle.net/10630/17231
https://doi.org/10.1007/s10664-017-9499-z
https://doi.org/10.1109/SPLC.2008.49
https://doi.org/10.1109/SPLC.2008.49
https://doi.org/10.1109/RE.2004.56
https://doi.org/10.1016/j.scico.2003.04.002
https://doi.org/10.1109/SPLC.2008.25
https://doi.org/10.1109/SPLC.2008.25
https://doi.org/10.1007/978-3-319-11743-0_1
https://doi.org/10.1007/978-3-319-11743-0_1
https://doi.org/10.1016/j.comnet.2006.08.008
https://doi.org/10.1145/3336294.3336297
https://doi.org/10.1145/3336294.3336297

Empirical analysis of the tool support for software product lines

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

S1.

52.

Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing
cardinality-based feature models and their specialization. Softw.
Process: Improv. Pract. 10(1), 7-29 (2005). https://doi.org/10.
1002/spip.213

Quinton, C., Romero, D., Duchien, L.: Cardinality-based feature
models with constraints: a pragmatic approach. In: 17th Interna-
tional Software Product Line Conference (SPLC), pp. 162-166
(2013). https://doi.org/10.1145/2491627.2491638

Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM:
a feature-oriented reuse method with domain-specific reference
architectures. Ann. Softw. Eng. 5, 143-168 (1998). https://doi.
org/10.1023/A:1018980625587

Schroeter, J., Lochau, M., Winkelmann, T.: Multi-perspectives
on feature models. In: 15th International Conference on Model
Driven Engineering Languages and Systems (MODELS), pp.
252-268 (2012). https://doi.org/10.1007/978-3-642-33666-9_17
Rosenmiiller, M., Siegmund, N., Thiim, T., Saake, G.: Multi-
dimensional variability modeling. In: Proceedings of the 5th
Workshop on Variability Modeling of Software-Intensive Sys-
tems (VaMoS), ACM, New York, NY, USA, VaMoS’11, pp. 11-20
(2011). https://doi.org/10.1145/1944892.1944894

Rosenmiiller, M., Siegmund, N.: Automating the configuration
of multi software product lines. In: Fourth International Work-
shop on Variability Modelling of Software-Intensive Systems
(VaMoS), pp. 123-130 (2010). http://www.vamos-workshop.net/
proceedings/VaMoS_2010_Proceedings.pdf

Urli, S., Blay-Fornarino, M., Collet, P., Mosser, S.: Using compos-
ite feature models to support agile software product line evolution.
In: Proceedings of the 6th International Workshop on Models and
Evolution (ME@MOoDELS), pp. 21-26 (2012). https://doi.org/10.
1145/2523599.2523604

Gamez, N., Fuentes, L.: Software product line evolution with
cardinality-based feature models. In: 12th International Con-
ference on Software Reuse (ICSR) - Top Productivity through
Software Reuse, pp. 102-118. (2011). https://doi.org/10.1007/
978-3-642-21347-2_9

Thiim, T., Batory, D.S., Késtner, C.: Reasoning about edits
to feature models. In: International Conference on Software
Engineering, ICSE, pp. 254-264 (2009). https://doi.org/10.1109/
ICSE.2009.5070526

Bosch, J., Florijn, G., Greethorst, D., Kuusela, J., Obbink, J.H.,
Pohl, K.: Variability issues in software product lines. In: Software
Product-Family Engineering, PFE, pp. 13-21 (2001). https://doi.
org/10.1007/3-540-47833-7_3

Galindo, J.A., Benavides, D., Trinidad, P., Gutiérrez-Fernandez,
A.M., Ruiz-Cortés, A.: Automated analysis of feature models:
Quo vadis? Computing 101(5), 387-433 (2019). https://doi.org/
10.1007/s00607-018-0646-1

Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of
feature models 20 years later: a literature review. Inf. Syst. 35(6),
615-636 (2010). https://doi.org/10.1016/j.i5.2010.01.001

White, J., Dougherty, B., Schmidt, D.C., Benavides, D.: Auto-
mated reasoning for multi-step feature model configuration prob-
lems. In: International Software Product Line Conference (SPLC),
pp. 11-20. Carnegie Mellon University, Pittsburgh (2009)
Kriiger, J., Pinnecke, M., Kenner, A., Kruczek, C., Benduhn,
F., Leich, T., Saake, G.: Composing annotations without regret?
practical experiences using featureC. Softw. Pract. Exp. 48(3),
402-427 (2018). https://doi.org/10.1002/spe.2525

Diaz, J., Pérez, J., Alarcén, P.P., Garbajosa, J.: Agile product line
engineering—a systematic literature review. Softw. Pract. Exp.
41(8), 921-941 (2011). https://doi.org/10.1002/spe.1087
Assuncdo, W.K.G., Lopez-Herrejon, R.E., Linsbauer, L., Vergilio,
S.R., Egyed, A.: Multi-objective reverse engineering of
variability-safe feature models based on code dependencies of

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

system variants. Empir. Softw. Eng. 22(4), 1763-1794 (2017).
https://doi.org/10.1007/s10664-016-9462-4

Horcas, J.M., Pinto, M., Fuentes, L.: An automatic process for
weaving functional quality attributes using a software product
line approach. J. Syst. Softw. 112, 78-95 (2016). https://doi.org/
10.1016/j.jss.2015.11.005

Marques, M., Simmonds, J., Rossel, P.O., Bastarrica, M.C.: Soft-
ware product line evolution: a systematic literature review. Inf.
Softw. Technol. 105, 190-208 (2019)

Horcas, J.M., Pinto, M., Fuentes, L.: Product line architecture for
automatic evolution of multi-tenant applications. In: 20th IEEE
International Enterprise Distributed Object Computing Confer-
ence (EDOC), pp. 1-10 (2016). https://doi.org/10.1109/EDOC.
2016.7579384

Raatikainen, M., Tiihonen, J., Ménnisto, T.: Software product
lines and variability modeling: a tertiary study. J. Syst. Softw.
149, 485-510 (2019)

Ralph, P., Baltes, S., Bianculli, D., Dittrich, Y., Felderer, M., Feldt,
R., Filieri, A., Furia, C.A., Graziotin, D., He, P., Hoda, R., Juristo,
N., Kitchenham, B., Robbes, R., Mendez, D., Molleri, J., Spinellis,
D., Staron, M., Stol, K., Tamburri, D., Torchiano, M., Treude, C.,
Turhan, B., Vegas, S.: Acm sigsoft empirical standards (2020).
arXiv: 2010.03525

Dumitrescu, C., Mazo, R., Salinesi, C., Dauron, A.: Bridging the
gap between product lines and systems engineering: an experience
in variability management for automotive model based systems
engineering. In: 17th International Software Product Line Con-
ference (SPLC), pp. 254-263 (2013). https://doi.org/10.1145/
2491627.2491655

Ali, S., Arcaini, P.,, Hasuo, ., Ishikawa, F., Lee, N.Z.: Towards a
framework for the analysis of multi-product lines in the automo-
tive domain. In: Proceedings of the 13th International Workshop
on Variability Modelling of Software-Intensive Systems, ACM,
New York, NY, USA, VAMOS’ 19, pp. 12:1-12:6 (2019). https://
doi.org/10.1145/3302333.3302345

Horcas, J.M., Monteil, J., Bouroche, M., Pinto, M., Fuentes,
L., Clarke, S.: Context-dependent reconfiguration of autonomous
vehicles in mixed traffic. J. Softw. Evol. Process 30(4), 1926
(2018). https://doi.org/10.1002/smr.1926

Temple, P., Acher, M., Perrouin, G., Biggio, B., Jezequel, J.M.,
Roli, F.: Towards quality assurance of software product lines with
adversarial configurations. In: Proceedings of the 23rd Interna-
tional Systems and Software Product Line Conference (SPLC),
ACM, New York, NY, USA, SPLC’19, vol A, pp. 277-288 (2019).
https://doi.org/10.1145/3336294.3336309

Acher, M., Collet, P., Lahire, P., France, R.B.: FAMILIAR: a
domain-specific language for large scale management of feature
models. Sci. Comput. Program. 78(6), 657-681 (2013)

Acher, M., Collet, P., Lahire, P., Moisan, S., Rigault, J.: Mod-
eling variability from requirements to runtime. In: 16th IEEE
International Conference on Engineering of Complex Computer
Systems, pp. 77-86 (2011). https://doi.org/10.1109/ICECCS.
2011.15

Arzt, S., Nadi, S., Ali, K., Bodden, E., Erdweg, S., Mezini, M.:
Towards secure integration of cryptographic software. In: ACM
International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Onward!), ACM,
New York, NY, USA, Onward! 2015, pp. 1-13 (2015). https:/
doi.org/10.1145/2814228.2814229

Horcas, J., Pinto, M., Fuentes, L.: Automatic enforcement of secu-
rity properties. In: 13th International Conference on Trust, Privacy
and Security in Digital Business (TrustBus), pp. 19-31 (2016a).
https://doi.org/10.1007/978-3-319-44341-6_2

Berger, T., Pfeiffer, R., Tartler, R., Dienst, S., Czarnecki, K.,
Wasowski, A., She, S.: Variability mechanisms in software

@ Springer

https://doi.org/10.1002/spip.213
https://doi.org/10.1002/spip.213
https://doi.org/10.1145/2491627.2491638
https://doi.org/10.1023/A:1018980625587
https://doi.org/10.1023/A:1018980625587
https://doi.org/10.1007/978-3-642-33666-9_17
https://doi.org/10.1145/1944892.1944894
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
https://doi.org/10.1145/2523599.2523604
https://doi.org/10.1145/2523599.2523604
https://doi.org/10.1007/978-3-642-21347-2_9
https://doi.org/10.1007/978-3-642-21347-2_9
https://doi.org/10.1109/ICSE.2009.5070526
https://doi.org/10.1109/ICSE.2009.5070526
https://doi.org/10.1007/3-540-47833-7_3
https://doi.org/10.1007/3-540-47833-7_3
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1002/spe.2525
https://doi.org/10.1002/spe.1087
https://doi.org/10.1007/s10664-016-9462-4
https://doi.org/10.1016/j.jss.2015.11.005
https://doi.org/10.1016/j.jss.2015.11.005
https://doi.org/10.1109/EDOC.2016.7579384
https://doi.org/10.1109/EDOC.2016.7579384
http://arxiv.org/abs/2010.03525
https://doi.org/10.1145/2491627.2491655
https://doi.org/10.1145/2491627.2491655
https://doi.org/10.1145/3302333.3302345
https://doi.org/10.1145/3302333.3302345
https://doi.org/10.1002/smr.1926
https://doi.org/10.1145/3336294.3336309
https://doi.org/10.1109/ICECCS.2011.15
https://doi.org/10.1109/ICECCS.2011.15
https://doi.org/10.1145/2814228.2814229
https://doi.org/10.1145/2814228.2814229
https://doi.org/10.1007/978-3-319-44341-6_2

J. M. Horcas et al.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

ecosystems. Inf. Softw. Technol. 56(11), 1520-1535 (2014).
https://doi.org/10.1016/j.infsof.2014.05.005

Kriiger, J., Nielebock, S., Krieter, S., Diedrich, C., Leich, T,
Saake, G., Zug, S., Ortmeier, F.: Beyond software product lines:
Variability modeling in cyber-physical systems. In: Proceedings
of the 21st International Systems and Software Product Line Con-
ference (SPLC), ACM, New York, NY, USA, SPLC’17, vol A, pp.
237-241 (2017). https://doi.org/10.1145/3106195.3106217
Arrieta, A., Sagardui, G., Etxeberria, L.: Cyber-physical systems
product lines: Variability analysis and challenges. In: VI Jornadas
de Computaciéon Empotrada (2015)

Beek, M.H., Fantechi, A., Gnesi, S.: Product line models of large
cyber-physical systems: The case of ERTMS/ETCS. In: Proceed-
ings of the 22nd International Systems and Software Product Line
Conference, ACM, New York, NY, USA, SPLC’18, vol 1, pp.
208-214 (2018). https://doi.org/10.1145/3233027.3233046

Abd Halim, S., Jawawi, D., Ibrahim, N., deris, S.: An approach
for representing domain requirements and domain architecture in
software product line. (2012). https://doi.org/10.5772/37704
Gherardi, L., Hunziker, D., Mohanarajah, G.: A software product
line approach for configuring cloud robotics applications. In: Pro-
ceedings of the IEEE International Conference on Cloud Comput-
ing, IEEE Computer Society, Washington, DC, USA, CLOUD’ 14,
pp- 745-752 (2014). https://doi.org/10.1109/CLOUD.2014.104
Ziadi, T., Farges, J.L., Stinckwich, S., Ziane, M., Dhouib, S.,
Marmoiton, F., Morette, N., Novales, C., Kchir, S., Patin, B.: A
toolset to address variability in mobile robotics. J. Softw. Eng.
Robot. 7(1),20-35 (2016). https://hal.sorbonne-universite.fr/hal-
01353929

Kang, K.C., Kim, M., Lee, J., Kim, B.: Feature-oriented re-
engineering of legacy systems into product line assets—a case
study. In: Obbink, H., Pohl, K. (eds.) Software Product Lines, pp.
45-56. Springer, Heidelberg (2005)

Horcas, J.M., Pinto, M., Fuentes, L.: An aspect-oriented model
transformation to weave security using CVL. In: Proceedings
of the 2nd International Conference on Model-Driven Engineer-
ing and Software Development (MODELSWARD), pp. 138-147
(2014). https://doi.org/10.5220/0004890601380147

She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.:
The variability model of the linux kernel. In: Benavides, D.,
Batory, D.S., Griinbacher, P. (eds.) Fourth International Work-
shop on Variability Modelling of Software-Intensive Systems
(VaMoS), Universitit Duisburg-Essen, ICB-Research Report,
vol. 37, pp. 45-51 (2010). http://www.vamos-workshop.net/
proceedings/VaMoS_2010_Proceedings.pdf

Pett, T., Thiim, T., Runge, T., Krieter, S., Lochau, M., Schaefer,
I.: Product sampling for product lines: the scalability challenge.
In: Proceedings of the 23rd International Systems and Software
Product Line Conference (SPLC), ACM, vol A, pp. 14:1-14:6
(2019). https://doi.org/10.1145/3336294.3336322,

Ochoa, L., Pereira, J.A., Gonzélez-Rojas, O., Castro, H., Saake,
G.: A survey on scalability and performance concerns in extended
product lines configuration. In: Proceedings of the Eleventh
International Workshop on Variability Modelling of Software-
intensive Systems (VaMoS), ACM, New York, NY, USA,
VAMOS’17, pp. 5-12 (2017). https://doi.org/10.1145/3023956.
3023959

Mendonca, M., Branco, M., Cowan, D.: S.PL.O.T: software
product lines online tools. In: Proceedings of the 24th ACM
SIGPLAN Conference Companion on Object Oriented Program-
ming Systems Languages and Applications, ACM, New York,
NY, USA, OOPSLA’09, pp. 761-762 (2009). https://doi.org/10.
1145/1639950.1640002

Schmitt, A., Bettinger, C., Rock, G.: Glencoe—a tool for spec-
ification, visualization and formal analysis of product lines. In:
Transdisciplinary Engineering Methods for Social Innovation of

@ Springer

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

Industry 4.0, Advances in Transdisciplinary Engineering, vol. 7,
pp. 665-673 (2018). https://doi.org/10.3233/978-1-61499-898-
3-665

Spinczyk, O., Beuche, D.: Modeling and building software
product lines with eclipse. In: Companion to the 19th Annual
ACM SIGPLAN Conference on Object-oriented Programming
Systems, Languages, and Applications, ACM, New York, NY,
USA, OOPSLA’04, pp. 18-19 (2004). https://doi.org/10.1145/
1028664.1028675

Antkiewicz, M., Bak, K., Murashkin, A., Olaechea, R., Liang,
J.H.J., Czarnecki, K.: Clafer tools for product line engineer-
ing. In: Proceedings of the 17th International Software Product
Line Conference Co-located Workshops, ACM, New York, NY,
USA, SPLC’13 Workshops, pp. 130-135 (2013). https://doi.org/
10.1145/2499777.2499779

Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation.
TASC - LS2N CNRS UMR 6241, COSLING S.A.S., (2017).
http://www.choco-solver.org

Benavides, D., Segura, S., Trinidad, P., Cortés, A.R.: FAMA: tool-
ing a framework for the automated analysis of feature models.
In: International Workshop on Variability Modelling of Software-
Intensive Systems, VaMoS, pp. 129-134 (2007)

Leich, T., Apel, S., Marnitz, L., Saake, G.: Tool support for
feature-oriented software development: FeatureIDE: an eclipse-
based approach. In: Proceedings of the 2005 OOPSLA Workshop
on Eclipse Technology eXchange, ACM, New York, NY, USA,
eclipse’05, pp. 55-59 (2005). https://doi.org/10.1145/1117696.
1117708

Krieter, S., Pinnecke, M., Kriiger, J., Sprey, J., Sontag, C., Thiim,
T., Leich, T., Saake, G.: FeatureIDE: Empowering third-party
developers. In: Proceedings of the 21st International Systems and
Software Product Line Conference (SPLC), ACM, New York,
NY, USA, SPLC’17, vol. B, pp. 42-45 (2017). https://doi.org/10.
1145/3109729.3109751

Beuche, D.: Using pure: variants across the product line lifecycle.
In: Proceedings of the 20th International Systems and Software
Product Line Conference (SPLC), ACM, New York, NY, USA,
SPLC’16, pp. 333-336 (2016). https://doi.org/10.1145/2934466.
2962729

Horcas, J.M., Pinto, M., Fuentes, L.: Extending the common vari-
ability language (cvl) engine: a practical tool. In: Proceedings of
the 21st International Systems and Software Product Line Con-
ference (SPLC), ACM, New York, NY, USA, SPLC’17, vol. B,
pp. 32-37 (2017). https://doi.org/10.1145/3109729.3109749
Yli-Huumo, J., Maglyas, A., Smolander, K.: How do software
development teams manage technical debt? An empirical study.
J. Syst. Softw. 120, 195-218 (2016). https://doi.org/10.1016/j jss.
2016.05.018

Apel, S., Kistner, C., Lengauer, C.: Language-independent and
automated software composition: the featurehouse experience.
IEEE Trans. Softw. Eng. 39(1), 63-79 (2013). https://doi.org/10.
1109/TSE.2011.120

Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling step-wise
refinement. IEEE Trans. Softw. Eng. 30(6), 355-371 (2004).
https://doi.org/10.1109/TSE.2004.23

Horcas, J.M., Pinto, M., Fuentes, L.: Variability and dependency
modeling of quality attributes. In: 39th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), pp
185-188 (2013). https://doi.org/10.1109/SEAA.2013.20
Ghofrani, J., Fehlhaber, A.L.: Productlinre: Online management
tool for requirements engineering of software product lines.
In: Proceedings of the 22nd International Systems and Soft-
ware Product Line Conference (SPLC), ACM, New York, NY,
USA, SPLC’18, vol. 2, pp 17-22 (2018). https://doi.org/10.1145/
3236405.3236407

https://doi.org/10.1016/j.infsof.2014.05.005
https://doi.org/10.1145/3106195.3106217
https://doi.org/10.1145/3233027.3233046
https://doi.org/10.5772/37704
https://doi.org/10.1109/CLOUD.2014.104
https://hal.sorbonne-universite.fr/hal-01353929
https://hal.sorbonne-universite.fr/hal-01353929
https://doi.org/10.5220/0004890601380147
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
https://doi.org/10.1145/3336294.3336322
https://doi.org/10.1145/3023956.3023959
https://doi.org/10.1145/3023956.3023959
https://doi.org/10.1145/1639950.1640002
https://doi.org/10.1145/1639950.1640002
https://doi.org/10.3233/978-1-61499-898-3-665
https://doi.org/10.3233/978-1-61499-898-3-665
https://doi.org/10.1145/1028664.1028675
https://doi.org/10.1145/1028664.1028675
https://doi.org/10.1145/2499777.2499779
https://doi.org/10.1145/2499777.2499779
http://www.choco-solver.org
https://doi.org/10.1145/1117696.1117708
https://doi.org/10.1145/1117696.1117708
https://doi.org/10.1145/3109729.3109751
https://doi.org/10.1145/3109729.3109751
https://doi.org/10.1145/2934466.2962729
https://doi.org/10.1145/2934466.2962729
https://doi.org/10.1145/3109729.3109749
https://doi.org/10.1016/j.jss.2016.05.018
https://doi.org/10.1016/j.jss.2016.05.018
https://doi.org/10.1109/TSE.2011.120
https://doi.org/10.1109/TSE.2011.120
https://doi.org/10.1109/TSE.2004.23
https://doi.org/10.1109/SEAA.2013.20
https://doi.org/10.1145/3236405.3236407
https://doi.org/10.1145/3236405.3236407

Empirical analysis of the tool support for software product lines

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

Basile, D., Di Giandomenico, F., Gnesi, S.: FMCAT: Supporting
dynamic service-based product lines. In: Proceedings of the 21st
International Systems and Software Product Line Conference -
Volume B, ACM, New York, NY, USA, SPLC’17, pp. 3-8 (2017).
https://doi.org/10.1145/3109729.3109760

Munoz, D., Pinto, M., Fuentes, L.: Finding correlations of features
affecting energy consumption and performance of web servers
using the HADAS eco-assistant. Computing 100(11), 1155-1173
(2018). https://doi.org/10.1007/s00607-018-0632-7

Czarnecki, K.: Generative programming: Methods, techniques,
and applications tutorial abstract. In: Gacek, C. (ed.) Software
Reuse: Methods, Techniques, and Tools, pp. 351-352. Springer,
Heidelberg (2002)

Svendsen, A., Zhang, X., Fleurey, F., Haugen, @., Olsen, G.K.,
Mgller-Pedersen, B.: CVL tool - modeling variability in spls. In:
14th International Conference Software Product Lines (SPLC),
vol 2, p. 299 (2010)

Vasilevskiy, A., Haugen Chauvel, F., Johansen, M.F., Shimbara,
D.: The bvr tool bundle to support product line engineering. In:
Proceedings of the 19th International Conference on Software
Product Line (SPLC), ACM, New York, NY, USA, SPLC’15, pp.
380-384 (2015). https://doi.org/10.1145/2791060.2791094
Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A.: Beyond
boolean product-line model checking: Dealing with feature
attributes and multi-features. In: Proceedings of the 2013 Interna-
tional Conference on Software Engineering, IEEE Press, Piscat-
away, NJ, USA, ICSE’13, pp. 472-481 (2013). http://dl.acm.org/
citation.cfm?id=2486788.2486851

Czarnecki, K., Wasowski, A.: Feature diagrams and logics: There
and back again. In: 11th International Software Product Line
Conference (SPLC), pp. 23-34 (2007). https://doi.org/10.1109/
SPLINE.2007.24

Heradio, R., Ferndndez-Amorés, D., Galindo, J.A., Benavides,
D., Batory, D.S.: Uniform and scalable sampling of highly con-
figurable systems. Empir. Softw. Eng. 27(2), 44 (2022). https://
doi.org/10.1007/s10664-021-10102-5

Oztok, U., Darwiche, A.: A top-down compiler for sentential
decision diagrams. In: Proceedings of the 24th International Con-
ference on Artificial Intelligence. AAAI Press, IICAI’ 1S, pp.
3141-3148 (2015). http://dl.acm.org/citation.cfm?id=2832581.
2832687

Pereira, J.A., Matuszyk, P., Krieter, S., Spiliopoulou, M., Saake,
G.: Personalized recommender systems for product-line configu-
ration processes. Comput. Lang. Syst. Struct. 54,451-471 (2018).
https://doi.org/10.1016/j.c1.2018.01.003

Pereira, J.A., Martinez, J., Gurudu, H.K., Krieter, S., Saake, G.:
Visual guidance for product line configuration using recommen-
dations and non-functional properties. In: Haddad, H.M., Wain-
wright, R.L., Chbeir, R. (eds.) Proceedings of the 33rd Annual
ACM Symposium on Applied Computing (SAC), ACM, pp.
2058-2065 (2018). https://doi.org/10.1145/3167132.3167353
Horcas, J.M., Pinto, M., Fuentes, L.: Variability models for gen-
erating efficient configurations of functional quality attributes.
Inf. Softw. Technol. 95, 147-164 (2018). https://doi.org/10.1016/
j-infsof.2017.10.018

Siegmund, N., Rosenmiiller, M., Kuhlemann, M., Kistner, C.,
Apel, S., Saake, G.: SPL conqueror: toward optimization of non-
functional properties in software product lines. Softw. Qual. J.
20(3-4), 487-517 (2012). https://doi.org/10.1007/s11219-011-
9152-9

Oh, J., Batory, D., Myers, M., Siegmund, N.: Finding near-optimal
configurations in product lines by random sampling. In: Proceed-
ings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ACM, New York, NY, USA, ESEC/FSE 2017, pp.
61-71 (2017). https://doi.org/10.1145/3106237.3106273

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

Xiang, Y., Zhou, Y., Zheng, Z., Li, M.: Configuring software
product lines by combining many-objective optimization and sat
solvers. ACM Trans. Softw. Eng. Methodol. 26(4), 14:1-14:46
(2018). https://doi.org/10.1145/3176644

Buccella, A., Pol’la, M., de Galarreta, E.R., Cechich, A.: Com-
bining automatic variability analysis tools: an SPL approach for
building a framework for composition. In: Gervasi, O., Mur-
gante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, AM.A.,
Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y. (eds.) Compu-
tational Science and Its Applications - ICCSA 2018, pp. 435-451.
Springer, Cham (2018)

Meinicke, J., Thiim, T., Schroter, R., Benduhn, F., Leich, T., Saake,
G.: Mastering Software Variability with FeatureIDE. Springer,
Berlin (2017). https://doi.org/10.1007/978-3-319-61443-4
Schulze, S., Schulze, M., Ryssel, U., Seidl, C.: Aligning coe-
volving artifacts between software product lines and products. In:
Proceedings of the Tenth International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS), ACM, New
York, NY, USA, VaMoS’16, pp. 9-16 (2016). https://doi.org/10.
1145/2866614.2866616

Narwane, G.K., Galindo, J.A., Krishna, S.N., Benavides, D.,
Millo, J.V., Ramesh, S.: Traceability analyses between features
and assets in software product lines. Entropy 18, 269 (2016)
Hellebrand, R., Schulze, M., Ryssel, U.: Reverse engineering
challenges of the feedback scenario in co-evolving product lines.
In: Proceedings of the 21st International Systems and Software
Product Line Conference (SPLC), ACM, New York, NY, USA,
SPLC ’17, vol B, pp. 53-56 (2017). https://doi.org/10.1145/
3109729.3109735

Ayala, 1., Amor, M., Horcas, J.M., Fuentes, L.: A goal-driven
software product line approach for evolving multi-agent systems
in the internet of things. Knowl. Based Syst. 184, 104883 (2019).
https://doi.org/10.1016/j.knosys.2019.104883

Clements, P.C., Krueger, C.W.: Point—counterpoint: being proac-
tive pays off—eliminating the adoption. IEEE Softw. 19(4),28-31
(2002). https://doi.org/10.1109/MS.2002.1020283

Cariete, A., Amor, M., Fuentes, L.: Supporting IoT applications
deployment on edge-based infrastructures using multi-layer fea-
ture models. J. Syst. Softw. 183, 111086 (2022). https://doi.org/
10.1016/j.jss.2021.111086

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell,
B.: Experimentation in Software Engineering. Springer, Berlin
(2012). https://doi.org/10.1007/978-3-642-29044-2

Martinez, J., Assungdo, W.K.G., Ziadi, T.: ESPLA: a catalog
of extractive SPL adoption case studies. In: Proceedings of the
21st International Systems and Software Product Line Confer-
ence (SPLC), ACM, vol. B, pp. 38-41 (2017). https://doi.org/10.
1145/3109729.3109748

Capilla, R., Sédnchez, A., Dueiias, J.C.: An analysis of variability
modeling and management tools for product line development.
In: Software and Service Variability Management Workshop-
Concepts, Models, and Tools, pp. 32-47 (2007)

Kolesnikov, S.S., Siegmund, N., Késtner, C., Grebhahn, A., Apel,
S.: Tradeoffs in modeling performance of highly configurable
software systems. Softw. Syst. Model. 18(3), 2265-2283 (2019).
https://doi.org/10.1007/s10270-018-0662-9

Ochoa, L., Rojas, O.G., Pereira, J.A., Castro, H., Saake, G.: A
systematic literature review on the semi-automatic configuration
of extended product lines. J. Syst. Softw. 144, 511-532 (2018).
https://doi.org/10.1016/].jss.2018.07.054

Tolvanen, J.P., Kelly, S.: How domain-specific modeling lan-
guages address variability in product line development: investiga-
tion of 23 cases. In: Proceedings of the 23rd International Systems
and Software Product Line Conference (SPLC), ACM, New York,

@ Springer

https://doi.org/10.1145/3109729.3109760
https://doi.org/10.1007/s00607-018-0632-7
https://doi.org/10.1145/2791060.2791094
http://dl.acm.org/citation.cfm?id=2486788.2486851
http://dl.acm.org/citation.cfm?id=2486788.2486851
https://doi.org/10.1109/SPLINE.2007.24
https://doi.org/10.1109/SPLINE.2007.24
https://doi.org/10.1007/s10664-021-10102-5
https://doi.org/10.1007/s10664-021-10102-5
http://dl.acm.org/citation.cfm?id=2832581.2832687
http://dl.acm.org/citation.cfm?id=2832581.2832687
https://doi.org/10.1016/j.cl.2018.01.003
https://doi.org/10.1145/3167132.3167353
https://doi.org/10.1016/j.infsof.2017.10.018
https://doi.org/10.1016/j.infsof.2017.10.018
https://doi.org/10.1007/s11219-011-9152-9
https://doi.org/10.1007/s11219-011-9152-9
https://doi.org/10.1145/3106237.3106273
https://doi.org/10.1145/3176644
https://doi.org/10.1007/978-3-319-61443-4
https://doi.org/10.1145/2866614.2866616
https://doi.org/10.1145/2866614.2866616
https://doi.org/10.1145/3109729.3109735
https://doi.org/10.1145/3109729.3109735
https://doi.org/10.1016/j.knosys.2019.104883
https://doi.org/10.1109/MS.2002.1020283
https://doi.org/10.1016/j.jss.2021.111086
https://doi.org/10.1016/j.jss.2021.111086
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1145/3109729.3109748
https://doi.org/10.1145/3109729.3109748
https://doi.org/10.1007/s10270-018-0662-9
https://doi.org/10.1016/j.jss.2018.07.054

J. M. Horcas et al.

NY, USA, SPLC’19, vol. A, pp. 155-163 (2019). https://doi.org/
10.1145/3336294.3336316

122. Pereira, J.A., Souza, C., Figueiredo, E., Abilio, R., Vale, G.,
Costa, H.A.X.: Software variability management: an exploratory
study with two feature modeling tools. In: VII Brazilian Sympo-
sium on Software Components, Architectures and Reuse, IEEE
Computer Society, pp. 20-29 (2013). https://doi.org/10.1109/
SBCARS.2013.13

123. Krueger, C., Clements, P.: Feature-based systems and software
product line engineering with gears from biglever. In: Proceed-
ings of the 22nd International Systems and Software Product Line
Conference (SPLC), ACM, New York, NY, USA, SPLC’18, vol. 2,
pp- 14 (2018). https://doi.org/10.1145/3236405.3236409

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

José Miguel Horcas is a post-
doc researcher at the University of
Mailaga, Spain, where he received
his M.Sc. degree in computer sci-
ence in 2012 and the Ph.D. degree
in 2018. He is a member of the
CAOSD research group and has
carried out two postdoct stays at
King’s College London in 2019
for three months and at the Uni-
versity of Seville for 18 months.
His main research areas are
related to software product lines,
including variability and config-
urability, and quality attributes.
More information available at https://sites.google.com/view/josemigue
lhorcas

@ Springer

Ménica Pinto received the M.Sc.
degree in computer science and
the Ph.D. degree from the Univer-
sidad de Malaga, Spain, in 1998
and 2004, respectively. She is an
Associate Professor since 2009
with the Department of Lengua-
jes y Ciencias de la Computacion,
Universidad de Madlaga. She is a
research member of the CAOSD
research group, one of the con-
stituent group of the Instituto de
Tecnologia e Ingenieria del Soft-
ware “José Marfa Troya Linero of
the Universidad de Mdlaga. She is
currently part of the institute management team. She actively partici-
pates in Spanish and European research projects. Her main research
areas are energy-aware software development, quality-driven variabil-
ity modeling and analysis, model-driven software engineering, and
Internet Of Things and Edge computing systems development.

Lidia Fuentes received the M.Sc.
and Ph.D. degrees in computer
science from the Universidad de
Midlaga, Spain, in 1998. She has
done all her teaching work with
the Department Lenguajes y Cien-
cias de la Computacion, Universi-
dad de Mdlaga since 1993, being
the first female Full Professor,
where she is the Head of the
CAOSD Research Group. She has
coauthored more than 200 pub-
lications in software engineering
techniques applied to IoT and

' cyber-physical systems.
Dr. Fuentes has an important international profile leading European
projects and as a member of program committees of prestigious
international conferences. Examples are ECOOP, SPLC, Modular-
ity/AOSD, and OOPSLA.

https://doi.org/10.1145/3336294.3336316
https://doi.org/10.1145/3336294.3336316
https://doi.org/10.1109/SBCARS.2013.13
https://doi.org/10.1109/SBCARS.2013.13
https://doi.org/10.1145/3236405.3236409
https://sites.google.com/view/josemiguelhorcas
https://sites.google.com/view/josemiguelhorcas

	Empirical analysis of the tool support for software product lines
	Abstract
	1 Introduction
	2 Background
	2.1 Domain analysis (DA)
	2.2 Requirements analysis (RA)
	2.3 Domain implementation (DI)
	2.4 Product derivation (PD)

	3 SPL and variability requirements
	4 State of the art of SPL tools
	5 Tools support analysis for complex SPLs
	5.1 Tool selection
	5.2 Experiments
	5.3 Tool analysis
	5.3.1 Domain analysis (DA) phase
	5.3.2 Requirements analysis (RA) phase
	5.3.3 Domain implementation (DI) phase
	5.3.4 Product derivation (PD) phase

	6 SPL tools road map
	7 Threats to validity
	8 Related work
	8.1 SPL phases and activities
	8.2 SPL requirements
	8.3 SPL tools analysis

	9 Conclusions and future work
	Acknowledgements
	References

