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Quantum nonlocality via local contextuality with qubit-qubit entanglement

Debashis Saha,1 Adán Cabello,2 Sujit K. Choudhary,3 and Marcin Pawłowski1
1Institute of Theoretical Physics and Astrophysics, University of Gdańsk, 80-952 Gdańsk, Poland
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Quantum nonlocality can be revealed “via local contextuality” in qudit-qudit entangled systems with d > 2,
that is, through the violation of inequalities containing Alice-Bob correlations that admit a local description, and
Alice-Alice correlations (between the results of sequences of measurements on Alice’s subsystem) that admit a
local (but contextual) description. A fundamental question to understand the respective roles of entanglement and
local contextuality is whether nonlocality via local contextuality exists when the parties have only qubit-qubit
entanglement. Here we respond affirmatively to this question. This result further clarifies the connection between
contextuality and nonlocality and opens the door for observing nonlocality via local contextuality in actual
experiments.
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I. INTRODUCTION

The incompatibility between quantum theory (QT) and
local hidden variable theories (LHVTs) was first established
by Bell [1,2] by means of an inequality which involves
correlations between measurement results from two distantly
located physical systems. This inequality must be satisfied by
any LHVT, but there are quantum states and observables which
violate it.

On the other hand, QT is also incompatible with noncon-
textual hidden variable theories (NCHVTs) [3–6]. A hidden
variable model is said to be noncontextual if it assigns a value
to any observable, independently of which other compatible
observables are being measured. The contextuality (i.e., lack
of noncontextuality) predicted by QT can be observed through
the violation of inequalities which involve correlations among
the outcomes of compatible measurements on the same system
[7–9]. The simplest quantum system which exhibits
contextual behavior is a three-level quantum system
(or qutrit).

The connection between quantum contextuality and quan-
tum nonlocality was first discussed under the scope of the
so-called “Kochen-Specker with locality theorem” [10–12],
later called the “free will theorem” [13,14]. Based on these
ideas, in a recent work [15], one of the coauthors of this
paper has shown that there is a fundamentally different way
for revealing quantum nonlocality which does not involve
classically inexplicable correlations between distant systems
when Alice-Bob correlations and Alice-Alice correlations (i.e.,
correlations between successive measurements on one of the
local systems) are examined separately, but it does when both
types of correlations are considered together. Interestingly, the
correlations between two distant systems can be reproduced
by a local hidden variable model, but the correlations between
successive measurements on the local systems cannot be
reproduced by noncontextual models. This emphasizes the
role of local contextuality in the nonlocality observed in these
scenarios.

However, so far, all examples of “quantum nonlocality via
local contextuality” [15,16] require qudit-qudit entanglement
with d > 2, in contrast with the minimum entanglement

needed to show standard quantum nonlocality, namely, qubit-
qubit entanglement. In other words, all scenarios considered
earlier demand Schmidt rank of the quantum state to be at least
three. This leads to the question of whether local contextuality
can also play a role in nonlocality scenarios with qubit-qubit
entanglement (where the shared entanglement is less than or
equal to one). Since contextuality requires local dimension to
be greater than two, the answer to this question does not seem
obvious.

In this paper, we answer this question affirmatively. For
this purpose, we derive a Bell inequality from the assumption
of LHVTs. This inequality has two parts. One part contains
correlations among the results of successive measurements
on Alice’s subsystem. The other part contains correlations
between the results of measurements on Alice’s subsystem
and spacelike separated results on Bob’s subsystems. Then,
we show that the predictions of QT violate this inequality
when Alice and Bob share two qubits in a singlet state and
Alice also has in her possession an ancillary qubit. Strikingly,
the predictions of QT do not exceed the bound for LHVTs
for the Alice-Bob correlations which means that Alice-Bob
correlations admit a local description. Interestingly, when we
consider also the Alice-Alice correlations, the whole set of
correlations exhibits quantum nonlocality. As shown below,
this nonlocality stems from the state-independent contextuality
of Alice’s subsystem. We, then, extend this study to two qubits
in nonmaximally entangled states and find that a large number
of such states exhibit this feature. We also study this for three
qubits (shared by Alice, Bob, and Charlie) in Greenberger-
Horne-Zeilinger (GHZ) states [17] as here also, the Schmidt
rank is two for any bipartition of the system. The implications
of these results are discussed at the end.

II. QUANTUM NONLOCALITY VIA LOCAL
CONTEXTUALITY WITH QUBIT-QUBIT

ENTANGLEMENT

Consider a bipartite system in which Alice has two
qubits (qubits 1 and 2) and Bob, who is spatially separated
from Alice, has a third qubit (qubit 3). Alice can measure,
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on her two-qubit system, sequences of three compatible
observables taken from the following table of ±1-valued
observables [6]:

A = z1, B = z2, C = z1z2,

a = x2, b = x1, c = x1x2,

α = z1x2, β = x1z2, γ = y1y2, (1)

where, e.g., z1x2 denotes σ (1)
z ⊗ σ (2)

x , that is, the tensor product
of the Pauli matrices Z of qubit 1 and X of qubit 2. Observables
in the same row or column are compatible. Bob can measure
two ±1-valued observables denoted as P,Q.

Theorem 1. Any LHVT satisfies the following inequality:

〈T 〉 + 〈S〉 LHVT
� 18, (2)

where

〈T 〉 = 〈CAB〉 + 〈BAC〉 + 〈αβγ 〉
+ 〈βαγ 〉 + 〈aAα〉 + 〈αAa〉 + 〈Bbβ〉
+ 〈βBb〉 + 〈cab〉 + 〈abc〉 − 〈Ccγ 〉 − 〈cCγ 〉 (3)

and

〈S〉 = 〈ABP 〉C + 〈ACP 〉B + 〈βγP 〉α + 〈αγP 〉β
+〈AαP 〉a − 〈AaQ〉α + 〈bβQ〉B + 〈BbQ〉β
−〈cγQ〉C + 〈CγQ〉c + 〈abP 〉c − 〈bcQ〉a. (4)

Here 〈ABP 〉C denotes the correlation function 〈ABP 〉 in those
events where AB is measured in the sequential measurement
CAB on Alice’s side.

Proof. Consider the following three Clauser-Horne-
Shimony-Holt [2] Bell inequalities:

〈CP 〉 + 〈CQ〉 + 〈αP 〉 − 〈αQ〉 LHVT
� 2, (5a)

〈βP 〉 + 〈βQ〉 + 〈cP 〉 − 〈cQ〉 LHVT
� 2, (5b)

〈BP 〉 + 〈BQ〉 + 〈aP 〉 − 〈aQ〉 LHVT
� 2. (5c)

Adding all of them, we obtain

〈CP 〉 + 〈CQ〉 + 〈αP 〉 − 〈αQ〉
+ 〈βP 〉 + 〈βQ〉 + 〈cP 〉 − 〈cQ〉

+ 〈BP 〉 + 〈BQ〉 + 〈aP 〉 − 〈aQ〉 LHVT
� 6. (6)

Now recall that Alice is allowed to perform sequential
measurements on her two-qubit system. We want to prove
that some subsets of Alice-Bob correlations in inequality (6)
are lower bounded by Alice-Alice-Alice and Alice-Alice-Bob
correlations, without assuming noncontextuality in Alice’s
side. For example, we want to prove that

〈CP 〉 + 〈BP 〉 � 〈CAB〉
+ 〈BAC〉 + 〈ABP 〉C + 〈ACP 〉B − 2. (7)

For that, let us denote by Ô the value assigned by the LHVT
to observable O when no other observable is measured first.
This allows us to distinguish Ô from the values O may have
when other observables are measured before. Then, consider
the following sequence of inequalities that hold due to simple
algebraic constraints:

|〈ĈP 〉 + 〈B̂P 〉 − 〈ĈAB〉 − 〈B̂AC〉|
� |〈ĈP 〉 − 〈ĈAB〉| + |〈B̂P 〉 − 〈B̂AC〉|
� 〈|ĈP − ĈAB|〉 + 〈|B̂P − B̂AC|〉
� 〈|ĈP − ĈABP 2|〉 + 〈|B̂P − B̂ACP 2|〉
= 〈|ĈP (1 − ABP )|〉 + 〈|B̂P (1 − ACP )|〉
= 〈|ĈP ||(1 − ABP )|〉 + 〈|B̂P ||(1 − ACP )|〉
= 1 − 〈ABP 〉C + 1 − 〈ACP 〉B. (8)

By comparing the first and last terms in (8) and replacing ĈAB

by CAB by assuring that C is always measured in the first
place, and replacing B̂AC by BAC, we obtain inequality (7),
where the notation does not preclude noncontextuality in
Alice’s side.

Similarly, we can probe that

〈αP 〉 + 〈βP 〉 � 〈αβγ 〉 + 〈βαγ 〉 + 〈βγP 〉α
+ 〈αγP 〉β − 2,〈aP 〉 − 〈αQ〉 � 〈aAα〉 + 〈αAa〉
+ 〈AαP 〉a − 〈AaQ〉α − 2,〈BQ〉
+ 〈βQ〉 � 〈Bbβ〉 + 〈βBb〉 + 〈bβQ〉B
+ 〈BbQ〉β − 2,〈CQ〉 − 〈cQ〉 � −〈Ccγ 〉
− 〈cCγ 〉 − 〈cγQ〉C + 〈CγQ〉c − 2,〈cP 〉
− 〈aQ〉 � 〈cab〉 + 〈abc〉 + 〈abP 〉c − 〈bcQ〉a − 2. (9)

Substituting Eqs. (7) and (9) in Eq. (6), we obtain inequal-
ity (2). �

The term 〈S〉 defined in Eq. (4) contains all the Alice-Bob
correlations. The upper bound of 〈S〉 for locally noncontextual
LHVTs [denoted as (LC)LHVTs] can be obtained by assigning
all possible deterministic values of the observables. To obtain
the upper bound of 〈S〉 for any LHVT, including those that are
locally contextual (but locally nondisturbing), we can consider
a particular situation where the observables P,Q are +1 valued
and the probability distribution of the sequential measurements
(irrespective of the sequence) on Alice’s subsystem is given
here:

ABC Aaα abc Bbβ αβγ Ccγ

p(+, + ,+) 1
2 0 0 1

2
1
2 0

p(+, + ,−) 0 0 1
2 0 0 0

p(+, − ,+) 0 1
2 0 0 0 1

2
p(+, − ,−) 0 0 0 0 0 0
p(−, + ,+) 0 0 0 0 0 0
p(−, + ,−) 0 1

2 0 0 0 1
2

p(−, − ,+) 0 0 1
2 0 0 0

p(−, − ,−) 1
2 0 0 1

2
1
2 0
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One can check that the above probability distribution
satisfies the no-disturbance principle; i.e., the overall outcome
statistics of an observable in sequential measurement is
independent of whether any other compatible observable is
measured or not. Such local assignment of values for all
observables gives the maximum algebraic value of 〈S〉. We
obtain

〈S〉
(NC)LHVT

� 10
LHVT
� 12. (10)

Later we show that the quantum prediction has no contradiction
with LHVT when the quantity 〈S〉 is concerned. On the other
hand, the term 〈T 〉 defined in Eq. (4) only contains Alice-Alice-
Alice correlations among three successive measurements on
Alice’s subsystem. It can also be easily checked that, for any
NCHVT [7],

〈T 〉 NCHVT
� 8. (11)

Notice that all the observables in each term in 〈T 〉 are mutually
compatible. Indeed, inequality (11) is a state-independent
noncontextuality inequality in Alice’s side [7].

To show that inequality (2) gets violated in QT, we consider
the following state shared between Alice (who has qubits 1 and
2) and Bob (who has qubit 3):

|�〉12|3 = |χ〉1|ψ−〉23,

|χ〉1 = cos(π/8)|0〉1 + sin(π/8)|1〉1,

|ψ−〉23 = 1√
2

(|0〉2|1〉3 − |1〉2|0〉3). (12)

The observables at Bob’s side are chosen as

P = − (z3 + x3)√
2

,Q = − (z3 − x3)√
2

. (13)

The quantities appearing in inequality (2) thus take the
following values:

〈ABP 〉 = 〈βγP 〉 = 〈αγP 〉 = −〈AaQ〉
= 〈BbQ〉 = −〈cγQ〉 = 〈CγQ〉 = 〈abP 〉 = 1

2
,

〈ACP 〉 = 〈AαP 〉 = 〈bβQ〉 = −〈bcQ〉 = 1√
2
. (14)

Therefore, 〈S〉 = 4 + 2
√

2 = 6.828(< 12). Nonetheless, 〈T 〉
+ 〈S〉 = 18.828 violates inequality (2). Hence these correla-
tions cannot have a description in terms of LHVTs. However,
the Alice-Alice-Bob correlations (represented by 〈S〉) show no
contradiction with LHVTs. Therefore, we can conclude that
the violation of inequality (2), which was derived assuming
only LHVTs, is revealed from the contextual correlation
observed in Alice’s subsystem and local Alice-Alice-Bob
correlation.

A. White noise and nonmaximal entanglement

One may think that this only occurs in the case of perfect
correlations and vanishes either when there is white noise in
the Alice-Bob singlet state or when Alice and Bob are not
sharing a maximally entangled pair of qubits. However, in the
presence of white noise [when the shared state between Alice

and Bob is ρ = v|ψ−〉〈ψ−| + (1 − v) I4 ], a simple calculation
shows that inequality (2) is violated whenever the visibility v

is larger than 6
4+2

√
2

≈ 0.8787.
On the other hand, the quantum violation is not restricted

to the perfect correlations characteristic of the maximally
entangled state. To show that, we consider the following
normalized nonmaximally entangled state:

|ψ−〉23 = d1|01〉 − d2|10〉 (15)

for some real d1,d2, and the following observables in Bob’s
side:

P = − cos(t)z3 − sin(t)x3, (16a)

Q = cos(t ′)z3 − sin(t ′)x3, (16b)

where

cos(t) = cos(t ′) = 1
√

1 + 4(d1d2)2
, sin(t) = − sin(t ′).

(17)

A simple calculation leads to 〈S〉 =
√

1 + 4(d1d2)2(2 + 2
√

2).
Then, inequality (2) is violated by QT if

√
1 + 4(d1d2)2(2 + 2

√
2) > 6,

|d1d2| > 0.369, (18)

a condition which is satisfied by a large number of two-qubit
entangled states.

B. Nonlocality via local contextuality with GHZ entanglement

Here we address the question of what happens if, instead
of qubit-qubit entanglement, Alice, Bob, and Charlie share
a three-qubit GHZ state with one qubit in Alice’s side (who
also has an ancillary qubit needed for performing compatible
sequential measurements). Charlie measures two ±1-valued
observables U,V . Studying this scenario is interesting, since
the Schmidt rank is 2 for any bipartition of the system.

Following the method described earlier, one obtains a
similar inequality:

〈T 〉 + 〈S ′〉 LHVT
� 18, (19)

where 〈T 〉 is defined in Eq. (3) and

〈S ′〉 = 〈ABPV 〉C + 〈ACPV 〉B + 〈βγPU 〉α + 〈αγPV 〉β
+〈AαPU 〉a − 〈AaQV 〉α + 〈bβQU 〉B + 〈BbQU 〉β
−〈cγQU 〉C + 〈CγQV 〉c + 〈abPU 〉c − 〈bcQV 〉a.

(20)

To outline the proof, we start with the Bell inequality,

〈CPV 〉 + 〈CQU 〉 + 〈αPU 〉 − 〈αQV 〉
+ 〈βPV 〉 + 〈βQU 〉 + 〈cPU 〉 − 〈cQV 〉

+ 〈BPV 〉 + 〈BQU 〉 + 〈aPU 〉 − 〈aQV 〉 LHVT
� 6. (21)
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Taking pairs of terms, we derive six algebraic relations [as we
did in Eq. (8)], for example:

〈CPV 〉 + 〈BPV 〉 �
〈CAB〉 + 〈BAC〉 + 〈ABPV 〉C + 〈ACPV 〉B − 2. (22)

Subsequently, Eq. (19) can be obtained by substituting these
algebraic relations in Eq. (21). �

The four-qubit state shared by Alice, Bob, and Charlie is
given by

|�〉12|3|4 = |χ〉1|ψ〉234,

|χ〉1 = cos(π/8)|0〉1 + sin(π/8)|1〉1,

|ψ〉234 = 1

2
√

2
(|000〉234 + |001〉234 + |010〉234 − |011〉234

+|100〉234 − |101〉234 − |110〉234 − |111〉234),

(23)

where |ψ〉234 is a GHZ state. The observables are chosen as
follows:

P = z3,Q = x3; U = z4V = x4. (24)

It can be seen that 〈S ′〉 = 4
√

2 + 4 = 9.657(< 12), such
that 〈T 〉 + 〈S ′〉 = 21.657, and the corresponding threshold
visibility of the GHZ state is 0.6213.

III. CONCLUSIONS

Nonlocality via local contextuality is an exceptional way
for revealing nonlocality which connects nonlocality and
local contextuality in certain scenarios. The implication of
such a quantum feature is to show the equivalence between
two different manifestations of quantum nonlocality. These
two are: nonlocal correlation between two distant parties,
and contextual correlation in the sequential measurement
of one’s subsystem with correlation between distant parties
admitting a local model. This equivalence is natural in the two
scenarios studied in the literature, namely two-ququart [15]
and two-qutrit [16] systems in maximally entangled states.
Similarly, state-independent contextuality assisted by bipartite

entanglement has been exploited to show fully nonlocal
quantum correlations [18–20]. Also in these cases, the re-
quired entanglement has Schmidt rank greater than 2. Since
contextuality requires local dimension to be greater than 2,
an interesting question is whether local contextuality may
lead to nonlocality in the case of qubit-qubit entanglement
(where the shared entanglement is less than or equal to
1). We have shown that the answer is affirmative. Then,
we have shown that neither noise nor the lack of perfect
entanglement impedes us in observing this effect. This makes
this configuration valuable for observing quantum nonlocality
via local contextuality in experiments, extending previous
experiments without entanglement [21–25], since it is easier to
perform sequential measurements on two qubits such that just
one of them is entangled with a distant location than requiring
both qubits to be entangled with a distant location [15] or
requiring qutrit-qutrit entanglement [16].

We have also explored the role of the type of entan-
glement exploited in this form of nonlocality and shown
that GHZ states shared by three parties, even noisy ones,
also allow us to reveal quantum nonlocality via local
contextuality.

Our examples highlight the variety of roles and uses of
entanglement in nonlocality scenarios via local contextuality
and suggest ways to avoid the so-called “compatibility loop-
hole” [21,26] typical of quantum contextuality experiments
with sequential measurements. Nevertheless, an open question
remains: Can any form of nonlocality be understood as
based on local contextuality? More specifically, can quantum
nonlocality via local contextuality be extended for all pure
entangled states in bipartite and multipartite scenarios. This
needs to be investigated in future research.
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