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Abstract— Navigation is an essential task for social robots.
However, certain rules must be followed to allow them to
move without causing distraction or discomfort to people.
Considering that the context surrounding robots and persons
affects the expected behavior, this work defines a social area
around a person that adapts to the real situation. In addition,
the social context of a person is extended to identify groups
of people, which the robot should take into account while
navigating. With this understanding of the surrounding of
the robot together with the ability to predict the trajectory
of individuals as well as groups, the proposed solution not
only effectively addresses collision avoidance while promoting
socially acceptable behavior but also outperforms the majority
of recent works in terms of accuracy. Furthermore, a dedicated
policy is introduced to react to social navigation conflicts.
The evaluation performed in a simulated environment shows
that the computation of our proposed solution is at least
8 times faster than the best state-of-the-art approach while
preserving comparable social conduct. Also, the results of
realistic experiments performed using Gazebo and a real robot
are reported.

I. INTRODUCTION

The presence of robots in social environments is becoming
a reality. Nowadays we can see robots being deployed
in a wide variety of environments, from large automotive
industries [1], delivery centers [2], airports [3], museums [4]
or even in our homes [5]. However, enabling a natural and
comfortable co-existence of robots and people is still an open
challenge. One of the most addressed aspects is how the
robot should react to the presence of individuals or groups
of people while moving in an environment [6]. For this task,
the robot can exploit perceived contextual information to
perform the most suitable action according to commonly
accepted social rules. The problem is an interdisciplinary
one, involving disciplines like psychology and sociology. For
example, the theory of Proxemics [7] defines certain areas
around people that indicate how comfortable an individual
feels when another person or object enters these zones.
This theory, when applied to robot navigation in social
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environments, allows us to define how close the robot can
be to a person without creating discomfort.

In this paper, we address social navigation by defining
an Adaptive Proxemic Area (APA), whose shape changes
depending on contextual information perceived by the robot.
To achieve this goal, we introduce a mathematical model
that differentiates between individuals and groups of people,
while taking into account the presence of obstacles in the
environment. By considering the predicted movements of the
persons in the surrounding, the APA is used to compute
possible evasion points in an effective manner. The selection
of the exact path to follow weights both the persons’ as well
as the robot’s perspective and selects the most comfortable
route. In doing this, we differentiate from the state of the art
(presented in Section II) by exploiting the APA model in
order to decrease the computational effort without affecting
the robot’s social consciousness.

In conclusion, the main contributions of this work are: (1)
the definition of an accurate model for group detection (Sec-
tion III-A); (2) the mathematical formulation of an Adaptive
Proxemic Area used for social navigation (Section III-B); (3)
a conflict resolution that allows the robot to effectively react
to collisions with agents in the scene (Section III-C). We
have evaluated our work (Section IV) in comparison to state-
of-the-art navigation approaches using the SocNavBench [8]
simulator, which bases on real-world datasets from UCY and
ETH [9]. After discussing the effectiveness of our solution
as well as its limitations, Section V provides an overview of
our contributions in the context of future work.

II. RELATED WORK

Social navigation is an essential element in applications
where robots share their environment with people. For this
reason, it is necessary that robots behave in an acceptable
way without disturbing people, while still being efficient in
the development of their tasks. With this in mind, multiple
papers on this subject have been published in recent years.
For instance, Kruse et al. [10] define the important aspects
to consider while navigating. These elements include the
comfort of the people in the presence of the robot, the
naturalness with which the robot moves and how the robot
interacts with the people around it (sociability).

In contrast to Kruse et al., Charalampous et al. [11],
discuss the topic of navigation from a mapping perspective.
The authors start with the definition of metric maps, where
it is only distinguished whether or not a section can be
traversed by the robot. On top of this map, a semantic layer
is defined in which multiple objects including people are



identified and classified. Finally, a social layer is added, in
which multiple parameters of the agents themselves are taken
into account, as well as their relationship with other agents
and with the environment. Based on this information, it is
possible to identify different zones according to the Prox-
emics theory [12]. The invasion of such zones by external
persons (or robots) creates discomfort and should, therefore,
be avoided by a robot during navigation.

Rios et al. [13] also show how proxemics can be applied in
social navigation by defining different areas around individ-
uals and groups of people that may or may not be invaded.
Navigation is then classified in 3 possible groups: (1) robots
and people negotiate space (Unfocused interaction); (2) the
robot adapts to the changes of people (Focused Interaction);
(3) a combination of the two previous ones (Focused and
Unfocused interaction). The work also proposes several
variations to the original concentric model defined by the
proxemics theory. Among these variations is the "egg shape",
which maintains a concentric shape in the direction opposite
to the orientation of the agent’s head and an elliptical shape
in the direction of the head. A second adaptation is made
by a completely elliptical shape that deforms equally in the
direction of the head as well as in the opposite direction.
Finally, a variation is presented that reduces the space on
the dominant side of the person (right or left).

In the same way, Truong et al. introduce the Dynamic
Social Zone (DSZ) [14], which takes into account personal
space, human states, and human social signals for human
safety in robot navigation tasks. The first aspect is related
to the proxemics areas, the second one includes people’s
position and velocity, and the last one includes contextual
information like hand detection. All this information allows
the author to create a DSZ that changes its shape depending
on these variables. This work only considers the current
position of the person and not future states. Also, they evade
people without considering the possibility that the robot may
enter these zones, something that could happen in closed
environments with people crossing doors.

As presented by Rios [13], the detection of groups of
people plays an important role in social navigation, given
that proxemics areas change. For example, a robot should not
navigate traversing a group of two people in conversation.
This is why some work has focused on determining when an
agent is considered part of a group. In this area, one of the
first published works was that of Ciolek and Kendon [15],
who proposed a series of conditions for two individuals to
be considered as part of a group, using their position and
orientation. Also, Kendon [16] expanded his research with
an exhaustive study on the behavior of multiple people in
groups, concluding that their formation tends to be concen-
tric, and that parameters such as the people position and
orientation need to be taken into account. Following this line,
Truong et al. [17] included interactions between multiple
people modifying the Graph Cuts of F-Formation algorithm,
adding the motion information to the model [18].

Both proxemics theory and group detection are essential
for robot navigation in a social environment. However, it

is necessary to apply this information to the navigation
planners. This is done in works like the one presented by
Zhou et al. [19], where the On-line Collision Avoidance for
Dynamic Vehicles is presented, which uses Buffered Voronoi
Cells to derive an optimal avoidance model. Moreover, Vega-
Magro [20] proposes a solution that integrates multiple layers
of information. In particular, a social layer is defined, where
the detection of people is performed. By using the proxemics
theory, the authors define an adapted proxemics area based
on a Gaussian function. Once these areas are defined, the pro-
posed solution checks for overlapping in order to determine
whether there is interaction between people and thus create
a group. Based on this information, they create a navigation
layer with the areas that are traversable by the robot and
apply the Dijkstra algorithm to obtain the robot’s trajectory.

Additionally, Singamaneni et al. [21] introduce the Hu-
man Safety and Human Visibility layers, where Gaussian
areas of 3-meter radius are defined. The authors also make
use of a state prediction module for agents, based on the
goal that the human wants to reach. Then a local planner
uses the proposed layers and human trajectory prediction
to compute the robot’s trajectory. The work defines four
navigation methods: the first one considers that there are no
agents in the environment; the second one only considers the
information of the two closest agents; the third one considers
the information of all agents; and the last one considers the
case where there is no possible solution for the robot to reach
its goal.

Our work focuses on the use of contextual information
during the computation of an adaptive proxemic area, which
adjusts to the current situation. Differently from the state-
of-the-art approaches, we integrate all the modules for a
successful social navigation with a reduced computational
effort: group detection, trajectory prediction, adaptive prox-
emic area, evasion policies, and motion controller.

III. PROPOSED METHOD

The goal of the proposed method is to provide robots
with the ability to efficiently navigate in social environments.
In this section, we describe the three components building
up our solution. First, considering the influence that group
detection has on social navigation, i.e. avoiding navigating
in the middle of two people talking (see Figure 1a without
group detection and Figure 1b with group detection), we
present the model formulated to determine whether the
agents moving in an environment are part of a group. After-
ward, we introduce the concept of APA, which is a variation
of the original proxemics theory that adjusts according to
the current context of the person. Also, we present how we
calculate the trajectory that the robot should follow taking
into account the APA, the predicted trajectory of the people,
and the local robot information. Finally, we present our
motion controller.

A. Group Detection

We assume that a group is a set of people who are
somehow interacting with each other and have certain similar



(a) (b)

Fig. 1: Social navigation (a) without group detection and (b)
with group detection with two static persons.

characteristics in terms of orientation, position and speed.
We detect groups by computing the Position Similarity (σd),
the Orientation Similarity (σh) and the Speed Similarity
(σs) among the different individuals present in the environ-
ment. At the beginning, each individual builds up a group
composed only by one person. The three aforementioned
parameters are then computed and compared between all the
possible group pairs. If the resulting similarity is above a
given threshold (τ ), the groups are merged into one. Algo-
rithm 1 presents the general process of group classification,
where wdistance, wheading and wspeed are constants and the
remaining parameters are discussed in detail in the following.

Algorithm 1 for group detection is executed with the same
frequency as the person detection algorithm. This allows that
at each time instant people are grouped depending on the
similarity results, avoiding the need to ungroup agents that
have formed a group in the previous samples and that may
take different paths at a specific point.

Algorithm 1 Group detection algorithm

1: i← 0
2: for i < groups.length - 1 do
3: j ← 0
4: for j < groups.length do
5: if i ̸= j then
6: σdistance ← wdistance ∗ σd

7: σheading ← wheading ∗ σh

8: σspeed ← wspeed ∗ σs

9: σpj
← σdistance + σheading + σspeed

10: if σpj
> τ then

11: gi.add(gj)
12: delete(gj)
13: j ← i− 1
14: end if
15: end if
16: end for
17: end for

The Position Similarity is calculated by taking the Eu-
clidean distance (∆d) between two groups, which could
be formed by one or more individuals. In the case of a

Fig. 2: Variables for the calculation of Orientation Similarity.
In light green the position of the persons in the group i, in
dark green the average position of the persons in the group
i and its average orientation (gih ), in light red the position
of the persons in the group j and in dark red the average
position of the persons in the group j and its orientation
(gjh ).

group i, we denote the position of the group as gip . This
position is either the position of the individual for groups
with a single person or the average position among all the
members. Equations 1 and 2 are used for the calculation of
the Euclidean distance (∆d) and the final similarity score
(σd), where vd is a constant factor. Since the distance
between agents affects more than the speed and orientation,
this relationship is exponential and not linear as in the other
cases. Moreover, this exponential should be negative, since
the greater the distance, the smaller the result of Equation 2
and therefore the lower the probability of group formation.

∆d =
√
(gip .x− gjp .x)

2 + (gip .y − gjp .y)
2 (1)

σd = e−vd∗∆d (2)

The Orientation Similarity is obtained by comparing the
average orientation of all group members (gih ) in relation to
the orientation of a second group (gjh ). Figure 2 shows the
variables used for the Orientation Similarity calculation. To
obtain the value of this similarity score we use the absolute
angle difference that could take values from 0 to π and then
scale the result to obtain a value between 0 and 1, as Equation
3 shows.

σh = 1− ||gih | − |gjh ||
π

(3)

Finally, the Speed Similarity between each two groups is
calculated. For this, the average speeds of all members of
both groups are calculated (gis and gjs ) and compared (see
Figure 3). As in the previous parameter, the absolute speed
difference is calculated and assigned a score (Equation 4)
between 0 and 1 to be used for group detection.

σs = 1− |(gis − gjs)|
max(gis , gjs)

(4)

B. Adaptive Proxemic Area

As mentioned above, our proposal makes use of the theory
of proxemics by defining an area around the groups of agents
that the robot should not intrude. Due to the people dynamics
in the environment, we consider that a static area is not
enough. For example, the speed of a person directly affects



Fig. 3: Variables for the calculation of Speed Similarity. In
light green position of the persons in the group i, in dark
green the average position of the persons in the group i and
its average speed vector (gis ), in light red the position of the
persons in the group j and in dark red the average position
of the persons in group j and its speed vector (gjs ).

(a) (b)

Fig. 4: Example of an Adaptive Proxemic Area with σ = 0.6,
d = 1.2 and gih = 90° and different speed factors: in (a)
a = 0.0 and in (b) a = 1.80.

robot evasion tasks, since the higher the speed, the more
space is needed for evasion while maintaining the safety of
the person. Thus, we introduce the concept of an Adaptive
Proxemic Area. This area extends the traditional circular
shape in the same direction of the moving group with a
half ellipse, whose semi-major axis is aligned with the group
heading and has a length proportional to the group speed.
The resulting area is calculated by Equation 5, where a is
defined as wvgis , with gis the speed of the group and wv its
weight; σ is the deformation factor; and d is the minimum
radius of the area. An example of the resulting area is shown
in Figure 4 where d = 1.2m which is the external limit of
the personal area in the proxemics.

P (x) =

{
a

σ
√
2π

e−
1
2 (

x
σ )2 + d if x ∈ [gih − π

2 ; gih + π
2 ],

a
σ
√
2π

e−
1
2 (

2π−x
σ )2 + d otherwise

(5)

C. Human-Aware Navigation

For navigating the robot, we consider two relevant scenar-
ios, the first one in which the robot is outside the APA
and must avoid entering this area (Out-of-Area Evasion).
The second one, where the robot is already inside the area
and must leave it as soon as possible (In-Area Evasion) in
a socially acceptable way. Since the focus of this work is
not people trajectory prediction, human motion modeling or
human motion learning, we have considered the Constant
Turn Rate and Acceleration Motion Model (CTRA) defined

(a) (b)

Fig. 5: Out-of-Area Evasion for Human-aware navigation.
Definition of parameters for (a) Similarity of Robot’s Orien-
tation and (b) In-The-Wayness score calculation.

in [22] for human motion prediction, which provides suffi-
cient prediction capabilities.

1) Out-of-Area Evasion: When a future robot-human
collision is detected at the Prediction Window (p) given
in seconds used as parameter in the CTRA model, two
waypoints are defined demarcated by the tangents of the
APA in relation to the position of the robot (wp1 and wp2
in Figure 5). Once these points are defined, two features
are used for waypoint selection, the Similarity of Robot’s
Orientation and In-The-Wayness of a waypoint in relation to
the group.

The Similarity of Robot’s Orientation score is obtained
by Equation 6, which uses the absolute value of the angular
difference (∆θ) between the orientation of the robot (θr) and
the angle of the waypoint (θwp). Additionally, the factor ωθ

is calculated based on the relationship between the absolute
agent’s speed (vp) and the absolute robot’s speed (vr) using
Equation 7.

σθ = 1− ∆θ

π
(6)

ωθ =

{
1− | vrvp | if |vpvr | ∈ [0; 1],

0 if |vpvr | ∈ (1;+∞],
(7)

If we define α as the median angle between the angle to
the robot position (αr) and the angle to the waypoint (αwp)
(see Figure 5b), the In-The-Wayness score of a waypoint in
relation to a group is calculated through Equation 8, in which
∆α is the angular difference between α and the angle to the
robot position (αr). Finally, the factor wα is calculated to
weight this score using Equation 9, where vp and vr are
absolute values of the person and robot speeds.

σα = 1− ∆α

π
(8)

ωα =

{
vr
vp

if vp
vr
∈ [0; 1],

1 if vp
vr
∈ (1;+∞],

(9)



(a) (b)

Fig. 6: In-Area Evasion for human-aware navigation. Defini-
tion of parameters for (a) Intersection Score and (b) Intrusion
Score calculation.

Using Equation 10, the final score for the waypoints is
defined and the one with the best score is chosen as the next
waypoint for the robot toward its final destination.

σwp = ωθσθ + ωασα (10)

2) In-Area Evasion: This evasion method is executed
once the robot is inside an APA. This method is designed
to make the robot leave the area as soon as possible in a
natural way. In this case, an intermediate waypoint for the
robot is defined by its current orientation with an offset (ϕ).
To obtain this angle, we use two features, the Intersection
Score and the Intrusion Score.

To obtain the Intersection Score, first, it is necessary to
calculate the collision distance (dc) between the group’s
position (gi) and the point of intersection (Ip) with the robot
(Figure 6a). Then the score of this feature is obtained by
using Equation 11, where P (0) is calculated by Equation 5.

σis = 1− dc
P (0)

(11)

On the other hand, the Intrusion Score is obtained by
Equation 12, where β is the relative angle between the
group’s orientation and the robot’s position, rp is the robot
position, gi the group position and n is the number of groups
(Figure 6b).

σit = 1−
√∑n

i=0(rpi
− gi)2

P (β)
(12)

Using the Intersection Score and the Intrusion Score,
the final score (σwp) for the waypoint is calculated using
Equation 13. Finally, the angle offset is defined by Equation
14, when the evasion happens in the front of the group and
the robot is not facing away, otherwise, ϕ is equal to 0.

σwp = ωisσis + ωitσit (13)

ϕ =

{
σwp ∗ π

2 if θwp > θr,
−σwp ∗ π

2 otherwise
(14)

3) Special considerations: In social environments with
few people, waypoint selection does not represent any par-
ticular challenge, since in most cases it is possible to find
an accessible point for the robot. However, in crowded
environments, waypoint selection can be more complex. One
of the problems identified is the probability that a calculated
waypoint belongs to another group or individual. In this case,
we create a waypoint list of all the robot’s neighbors, then
we check if the waypoints of an APA are inside the APA
of another person, and if so, we eliminate them from the list.
Finally, the waypoint that remains in the list and that needs
less path to be reached is selected.

The second identified problem is when none of the way-
points calculated and added to the list can be reached by the
robot. This case is the well-known "freezing robot problem"
[23]. To handle this situation, we took some measurements.
First, once it is detected that no waypoint can be reached,
the speed of the robot is slowed down, to a stop if necessary,
before invading the APA of any individual, and the humans
can avoid the robot as another object in the environment. Af-
ter that, with each sensor sample, we evaluate new waypoints
until there is a free one and the navigation is re-started.

D. Motion Controller

We have implemented a motion controller that takes care
of the speed control of the robot. For this, after defining the
goal or waypoint to reach, we calculate the angle difference
between the current robot orientation and the relative ori-
entation between the robot and the goal in both directions
of rotation. Once the side where the difference is smaller
is identified, we increase the angular velocity of the robot
to turn in that same direction. Once the angle difference
is less than a pre-defined threshold, the angular velocity is
decreased and the linear velocity is activated. Both velocities
remain active until the orientation of the robot is aligned with
the goal, at which point the angular velocity is deactivated
and only the linear velocity remains active until the goal is
reached.

IV. EVALUATION

We evaluate the proposed approach (Ours) first by opti-
mizing the parameters involved in the group detection. Then
we validate the behavior of the robot navigating in social
environments.

A. Parameter Optimization

Our solution is based on different heuristics with several
parameters. In order to identify their optimal value, we
perform an optimization step using available datasets.

1) Group Detection: We use the ETH Hotel dataset [24]
introduced by Ess et al. [25] to optimize the group detection
parameters. For this, we take the first half of the video where
people and groups are labeled. In this video, the approximate
position of each person is calculated taking into account that
55 pixels of the recorded image correspond to 1m in real
life. Also, the speed of the persons is calculated through the
change of position between two frames, and their orientation



TABLE I: Resulting parameters from the optimization of the
group detection procedure.

Parameter Value
vd 0.3

wdistance 0.74
wheading 0.16
wspeed 0.1

τ 0.78

TABLE II: Resulting parameters from the optimization of
the human-aware navigation.

Parameter Value
τw 0.4 meters
p 4.0 seconds
wv 2.0
σ 1.0
wis 0.5
wit 0.5

is computed by comparing the position of the person in two
different frames of the video. In total, 10 different scenes are
extracted, including 92 pedestrians and 17 groups.

To obtain the best combination of parameters, we ran
Algorithm 1 by changing the values of the different variables.
In the case of the threshold (τ ), from 0.1 to 0.9 with steps
of 0.01, and the rest of them with values from 0.1 and 0.8
with steps of 0.1. In total, more than 29,000 combinations
were run. To determine whether a result was acceptable
or not, we compared the results of these experiments with
the manually labeled groups in the first part of the ETH
Hotel dataset video. Using the combinations with more true
positives group detections, we redefined smaller ranges for
the variables changing the steps to all of them to 0.01.
Finally, the combination of variables that reached the best
true positive accuracy with around 94% are presented in
Table I.

To evaluate the accuracy of the group detection algorithm,
we labeled the groups in the second half of the ETH Hotel
dataset. Using 10 scenes as samples, we compared the results
of the group detection with the labeled groups and we found
that our solution was able to detect correctly 16 of the 17
groups, reaching a true positive rate of 94%.

2) Navigation: Regarding the optimization of the param-
eters corresponding to the navigation procedure, we used 25
atomic scenarios similar to those described by Khambhaita
[26]. These scenarios include examples of collisions with
a person or group of persons approaching the robot from
different directions, the robot overtaking a person or a group,
the evasion of one or multiple stationary persons in the
environment, the collision in a corridor, and the crossing of a
doorway. The values obtained for the navigation parameters
are presented in Table II. The variable d in Equation 5
takes the value of 1.2 meters which is the outer limit of
the personal area in the Proxemics Theory.

B. Social Navigation

1) Simulation in SocNavBench: To evaluate the resulting
social behavior of the robot, we conducted experiments using

33 episodes designed by the authors of SocNavBench [8].
These episodes are built using pre-sourced real data from
the UCY and ETH [9] datasets, where each scenario contains
between 24 and 72 people, with an average of 44. Also, we
used an Alienware Area-51 R5 (836) with 32 GB of RAM
and a Core i7-7800X CPU @ 3.50GHz processor. The speed
of the robot in the simulation was set in 1m/s. Although
this simulator does not take into account the dynamics of
the robot, the comparison is performed under the same
circumstances for all approaches.

To verify the accuracy of our solution, we compare our
method with 4 available solutions: Pedestrian-Unaware Al-
gorithm (PUA) [8], which directs the robot towards the goal
without taking collisions into account (without people or
obstacle detection); Optimal Reciprocal Collision Avoidance
(ORCA) [27], which makes the assumption that all agents
in an environment move according to the same planning
strategy, assuming reciprocal reactions by pedestrians and
the robot; Socially Aware Collision Avoidance with Deep
Reinforcement Learning (DRL) [28], which utilizes deep
reinforcement learning to formulate solutions to navigational
conflicts (rules that describe social awareness are also used);
and Social Forces (SF) [29], which introduces different
forces that act on the robot attracting it to its goal and
repealing it from pedestrians and obstacles.

The metrics that we take into account are: the Success
Rate, which is the fraction of episodes that are completed
successfully, without collisions or timeouts; the number of
Pedestrians Collisions; the average Planning Wait Time,
defined as the average time in seconds the simulator waits
for the algorithm to finish its planning step; the Path Length,
defined as the distance in meters traveled by the robot to
reach its goal; the Path Irregularity, defined as the average
of the angle between the robot’s orientation and the local
angle between the robot and the goal; the Closest Pedestrian
Distance in meters [6]; the Time in Personal Area in seconds,
in which the personal area around a person is considered to
have a radius of 1.2 meters.

The results are presented in Table III and IV. In terms
of accuracy, our method proved to be the second best,
completing 24 of the 28 scenarios without any type of
collision (person or object) or timeouts. Of the four scenarios
not completed by our algorithm, 3 of them were due to
collisions with people and one due to collision with objects.
The collisions with pedestrians were caused by the sensor
detecting people late due to the obstruction of the field of
view by another person or object. Only the pure SF per-
formed better with 25 of the 28 scenarios without collisions.
SF , instead, obtained one collision with people, one with an
object and one timeout. In the case of DRL, it failed 10 of
the 28 scenarios with 19 pedestrian collisions and one with
objects. Finally, ORCA experienced 4 pedestrian collision
and 3 timeouts with a total of 7 failed scenarios out of 28.

The most significant advantage of our method is a con-
siderable decrease in the Planning Wait Time. In fact, the
processing time is one-eighth of the second most efficient
method (PUA) and 96 times more efficient than the slowest



TABLE III: Success Rate and Pedestrian Collisions.

Metric PUA ORCA DRL SF Ours
Succ. Rate (%) 25 75 64.28 89.2 85.7
Pedestrian Col. 38 6 19 1 3

Object Col. 2 0 1 1 1
Timeout 0 3 0 1 0

TABLE IV: Median (x) and Interquartile (IQR) for Planning
Wait times (PWT) in seconds, Path Length (PL) in meters,
Path Irregularities (PI) in radians, Closest Distance to a
Pedestrian (CD) in meters and Time in Personal Area (TPA)
in seconds.

Metric PUA ORCA DRL SF Ours

PWT x 19.13 232.11 108.95 20.67 2.4
IQR 6.82 175.97 54.22 29.67 1.68

PL x 18.29 16.36 16.57 18.62 17.72
IQR 4.94 6.93 5.65 7.22 4.27

PI x 1.34 1.4 1.75 1.39 1.77
IQR 1.6 1.72 1.8 1.67 1.71

CD x 0.11 0.42 0.43 0.86 0.58
IQR 0.33 0.11 0.48 0.71 0.41

TPA x 3 3.75 2.95 1.43 2.6
IQR 3.4 6.5 2.97 3.12 3.84

method (ORCA). This result highlights the practicality of
our approach and its low computational requirements. In
relation to the Path Length and Path Irregularity, our algo-
rithm obtained the third and last place, respectively. However,
observing the data it is clear that a shorter or less irregular
path in social robotics does not mean to be the best because
one of the most important aspects is safety, that we keep
with one of the approaches with less pedestrian collisions.
As we can see in Table III, ORCA and DRL had shorter
paths at the cost of higher collisions with pedestrians.

One of the most important metrics in social navigation is
how close to the person the robot navigates. The more distant
the robot is from a person, the more socially acceptable its
behavior is considered. In this case, SF obtained the first
place, keeping the robot at a median distance of 0.86 m,
while ours obtained a result of 0.58 m, both distances
remaining in the social zone defined by the theory of prox-
emics. While ORCA and DRL, with medians of 0.42 m
and 0.11 m, are inside the personal area. Also related to
the discomfort of the persons in the environment is the time
that the robot remains in the personal area. In this aspect,
SF obtained a result of 1.43 s, while our method obtained
2.6 s. This is due to the way in which the robot tries to leave
the area. While SF tries to move away from the person in
a faster way, our method tries to avoid the person without
abrupt changes that could make people uncomfortable.

Finally, one aspect observed during the simulations was
that a purely SF -based method leads to reactive navigation
which does not predict future states and, therefore, the
robot behavior may not be perceived as natural. Methods
such as DRL or ours take into account the prediction of
people’s trajectories, resulting in predictive navigation that
is perceived more natural. A demonstration video of our
method can be found at https://youtu.be/3Uf2nvLK-KA.

TABLE V: Comparison results between a simulated frame-
work and emulated environment with Turtlebot 2 in Gazebo.
The minimum distance to pedestrian (dmin) and the path
smoothness ∆θ are presented.

Scene dmin (meters) ∆θ (radians)
Python Gazebo Real Python Gazebo Real

Front 1.79 0,91 1.75 0.02 0.1 0.16
Side 1.92 1.06 1.19 0.01 1.7 0.18
Back 1.43 0.3 1.27 0.02 0.6 0.12
Still 1.69 1.70 1.16 0.1 0.8 0.1

2) Turtlebot 2 experiments: Finally, we implemented our
approach in a ROS node to navigate with a Turtlebot 2. We
used angular and linear speeds at the same time to have more
efficient movements using the motion controller proposed
in the previous section. To evaluate our approach with the
Turtlebot 2, we test it in the same 25 atomic scenarios that
we used for parameter optimization in navigation. We select
4 of these scenarios and the results are presented in Tables
V and VI. In these tables, we present the comparison of the
robot behavior using a pure simulated environment developed
using Python tools that do not take into account the dynamics
of the robot (Python). Also, we present the results for a
simulated environment using the Turtlebot 2 and Gazebo
(Gazebo) and finally the results for a real environment using
a real Turtlebot 2 (Real).

In the first scenario, a person approaches the robot from
the front (Front). In the second scenario, a person moves
perpendicularly at 90 degrees to the robot (Side). The third
scenario consists of a person approaching the robot from the
rear (Back), and in the last scenario, there is a static person
in the path of the robot toward the goal (Still). The maximal
speed of the robot was set to 0.5 m/s, taking into account
the dynamics of the Turtlebot 2.

In the results, the influence of the robot dynamics on the
behavior of our method is evident. For example, due to the
acceleration and velocities (v) reached by the Turtlebot 2, no
collisions with people are evidenced. However, in all cases
where the person moves, the distance between the robot and
the person (dmin) is reduced. The dynamics also influence
the smoothness of the path (∆θ), as the robot tries to rotate
more to avoid people. However, the length (l) is decreased, as
the speed of the person influences the amount of adjustments
to be made to the path and how the robot reacts to the
evasion. However, the results obtained through the Real
experiment showed that the robot behaves acceptably, staying
within the social area defined by the p Proxemics in the worst
case. The difference in the results between Gazebo and Real,
is due to the fact that in the first case, the speed of the
people was constant at 1 m/s while in the second case, there
was an average speed of 0.75 m/s. The complete video with
the behavior of the Turtlebot 2 in Gazebo and real-world
experiments can be seen at https://youtu.be/UDUtqZ-En-s.

V. CONCLUSIONS

In this paper, we have presented a method for efficient
social navigation that exploits group detection and trajectory



TABLE VI: Comparison results between a simulated frame-
work and emulated environment with Turtlebot 2 in Gazebo.
The path length (l) and the average velocity of the robot v
are presented.

Scene l (meters) v (vmax = 0.5m/s)
Python Gazebo Real Python Gazebo Real

Front 11.1 10.25 10.61 0.49 0.38 0.33
Side 11.44 10.51 12.44 0.48 0.16 0.31
Back 12.2 10.04 11.2 0.48 0.43 0.31
Still 10.65 10.01 11.12 0.49 0.4 0.33

prediction, resulting in a path with a lower number of colli-
sions that keeps the robot outside the personal area defined by
the proxemics theory. We introduce the concept of Adaptive
Proxemic Area, which can be easily extended to integrate
more information about the person’s context. We show that
our method performed well compared to other solutions,
in particular for what concerns the required computational
effort. Pure SF offers a better performance in several aspects
at the cost of a reactive response, which can cause discomfort
to people. We deem the provide comparative experimentation
to be helpful, in particular in highlighting both the different
trade-offs and the existing space for optimizations, e.g., in
resource utilization.

While focusing on the latter, the evaluation of our ap-
proach shows also the need to extend the Prediction Window
to the cases in which persons cannot be perceived by the
sensor because they are hidden behind other persons or
obstacles. To address these cases, we plan as next steps
the extension of our formulation through the integration
of additional context information. Also, the integration of
external sensors that perceive the complete scenario could
help to avoid collisions with persons that are in the shadow
of the robot’s sensors. Finally, it is necessary to extend the
solution for the robot freezing problem [23], in order to
improve the behavior in very crowded environments.
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