
IFAC PapersOnLine 56-2 (2023) 9588–9593

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2023.10.262

10.1016/j.ifacol.2023.10.262 2405-8963

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

A simple framework for working with
MATLAB and Home I/O

Javier Jiménez ∗ Elena M. Mosquera ∗ José M. Maestre ∗

∗ Higher Technical School of Engineering, Universidad de Sevilla,
Camino de los Descubrimientos S/N, 41092, Sevilla, Spain (e-mail:

jjsicardo@us.es, emguerrero@us.es, pepemaestre@us.es).

Abstract: A software framework that communicates MATLAB and Home I/O software, which
provides a pedagogic digital twin of a smart home, is presented. This software is packaged
as a MATLAB class code and allows reading and writing to Home I/O from MATLAB. It
also includes useful tools to simplify the implementation of learning and research algorithms
using its built-in methods. A basic thermal identification and a simple MPC (Model Predictive
Controller) with all rooms’ heaters are built using this framework to prove its functionality.

Keywords: Control education, virtual and remote labs, centralized internet repository,
predictive control, system identification.

1. INTRODUCTION

Labs and test facilities are key elements in the educa-
tion of engineers because they allow students to develop
their skills in a controlled environment. Nevertheless, these
practical activities are very often limited due to budget
or space constraints and students may miss a valuable
learning opportunity. Digital twins offer one alternative
to relieve this situation because they provide realistic sim-
ulation environments where multiple educational activities
can be developed. In the case of Control Engineering,
digital twins can be a useful resource at all educational
stages, from primary (Screpanti et al., 2022) to University
level (Čech and Vosáhlo, 2022).

In this paper, we are interested in Home I/O, which
is proposed as a pedagogic digital twin of a smart
home simulation software (Riera et al., 2020), developed
jointly by CReSTIC –from the French University of Reims
Champagne-Ardenne– and the Portuguese company Real
Games (Riera et al., 2016a,b; Riera and Vigário, 2017;
Riera et al., 2019). The pedagogic intent of Home I/O
is expressly clear by visually providing a gamified virtual
home with its surroundings, allowing the user to interact
with all elements of the simulation, e.g., weather condi-
tions, actuators and sensors via the keyboard and mouse
or an Xbox-like gamepad controller. Also, it provides pro-
grammers with an API that allows to connect and send
and retrieve data from these sensors and actuators in
addition to other environmental values that can only be
read from the simulation data. This API is shipped in form
of a DLL (Dynamic Link Library) using Microsoft’s .NET
Framework (EngineIO.dll).

⋆ This work has been funded by the European Research Council
(ERC) under the Advanced Grant OCONTSOLAR (grant agree-
ment number 789051), by MCIN/AEI/ 10.13039/501100011033 un-
der project C3PO-R2D2 (ref. PID2020 − 119476RB − I00), and by
the regional government of Andalusia under project GESVIP (ref.
US-1265917).

To help disseminate their software, Home I/O developers
presented a Simulink interface to interact with the simu-
lation. While this is a very valuable educational resource,
a package for interacting with Home I/O via MATLAB
scripting commands is not available to the best of our
knowledge. To remedy this situation, we have developed
a MATLAB class that employs the EngineIO.dll library
in a transparent way for the user. This way, we provide
a much simpler access to this digital twin via scripts and
command line. Additionally, this framework avoids refer-
ring to the documentation tables to check for the memory
addresses of the devices, providing automatic and manual
methods to update the memory shared with the simulator.

The class has been implemented in MATLAB r2021b
(The MathWorks, Inc., 2021a) and is expected to also
work in later MATLAB versions. To illustrate its usage,
two different MATLAB example scripts are provided: the
first one performs a thermal identification of the Home
I/O building by turning on and off all heaters in the
house at full power and measuring temperatures in all
rooms. After saving the input/output data, a MIMO
system identification is performed using MATLAB System
Identification Toolbox (The MathWorks, Inc., 2021b). The
second example is a basic model predictive controller
(MPC) (Camacho and Alba, 2013) using the previously
identified model to regulate the temperature in all rooms
via the heaters. The MPC is implemented in YALMIP
(Löfberg, 2004) and Gurobi (Gurobi Optimization, LLC,
2022) and controls the digital twin in real time through the
MATLAB class. This MATLAB class and both examples
are available in a GitHub repository (Sicardo et al., 2022).

The remainder of this paper is as follows: Section 2 in-
troduces the Home I/O software and provides information
about how it is possible to interact with the digital twin
of the smart house. Section 3 presents the MATLAB class
that has been developed, which can be downloaded with
two examples of code that are commented in Section 4.
Final remarks and conclusions are given in Section 5.

A simple framework for working with
MATLAB and Home I/O

Javier Jiménez ∗ Elena M. Mosquera ∗ José M. Maestre ∗

∗ Higher Technical School of Engineering, Universidad de Sevilla,
Camino de los Descubrimientos S/N, 41092, Sevilla, Spain (e-mail:

jjsicardo@us.es, emguerrero@us.es, pepemaestre@us.es).

Abstract: A software framework that communicates MATLAB and Home I/O software, which
provides a pedagogic digital twin of a smart home, is presented. This software is packaged
as a MATLAB class code and allows reading and writing to Home I/O from MATLAB. It
also includes useful tools to simplify the implementation of learning and research algorithms
using its built-in methods. A basic thermal identification and a simple MPC (Model Predictive
Controller) with all rooms’ heaters are built using this framework to prove its functionality.

Keywords: Control education, virtual and remote labs, centralized internet repository,
predictive control, system identification.

1. INTRODUCTION

Labs and test facilities are key elements in the educa-
tion of engineers because they allow students to develop
their skills in a controlled environment. Nevertheless, these
practical activities are very often limited due to budget
or space constraints and students may miss a valuable
learning opportunity. Digital twins offer one alternative
to relieve this situation because they provide realistic sim-
ulation environments where multiple educational activities
can be developed. In the case of Control Engineering,
digital twins can be a useful resource at all educational
stages, from primary (Screpanti et al., 2022) to University
level (Čech and Vosáhlo, 2022).

In this paper, we are interested in Home I/O, which
is proposed as a pedagogic digital twin of a smart
home simulation software (Riera et al., 2020), developed
jointly by CReSTIC –from the French University of Reims
Champagne-Ardenne– and the Portuguese company Real
Games (Riera et al., 2016a,b; Riera and Vigário, 2017;
Riera et al., 2019). The pedagogic intent of Home I/O
is expressly clear by visually providing a gamified virtual
home with its surroundings, allowing the user to interact
with all elements of the simulation, e.g., weather condi-
tions, actuators and sensors via the keyboard and mouse
or an Xbox-like gamepad controller. Also, it provides pro-
grammers with an API that allows to connect and send
and retrieve data from these sensors and actuators in
addition to other environmental values that can only be
read from the simulation data. This API is shipped in form
of a DLL (Dynamic Link Library) using Microsoft’s .NET
Framework (EngineIO.dll).

⋆ This work has been funded by the European Research Council
(ERC) under the Advanced Grant OCONTSOLAR (grant agree-
ment number 789051), by MCIN/AEI/ 10.13039/501100011033 un-
der project C3PO-R2D2 (ref. PID2020 − 119476RB − I00), and by
the regional government of Andalusia under project GESVIP (ref.
US-1265917).

To help disseminate their software, Home I/O developers
presented a Simulink interface to interact with the simu-
lation. While this is a very valuable educational resource,
a package for interacting with Home I/O via MATLAB
scripting commands is not available to the best of our
knowledge. To remedy this situation, we have developed
a MATLAB class that employs the EngineIO.dll library
in a transparent way for the user. This way, we provide
a much simpler access to this digital twin via scripts and
command line. Additionally, this framework avoids refer-
ring to the documentation tables to check for the memory
addresses of the devices, providing automatic and manual
methods to update the memory shared with the simulator.

The class has been implemented in MATLAB r2021b
(The MathWorks, Inc., 2021a) and is expected to also
work in later MATLAB versions. To illustrate its usage,
two different MATLAB example scripts are provided: the
first one performs a thermal identification of the Home
I/O building by turning on and off all heaters in the
house at full power and measuring temperatures in all
rooms. After saving the input/output data, a MIMO
system identification is performed using MATLAB System
Identification Toolbox (The MathWorks, Inc., 2021b). The
second example is a basic model predictive controller
(MPC) (Camacho and Alba, 2013) using the previously
identified model to regulate the temperature in all rooms
via the heaters. The MPC is implemented in YALMIP
(Löfberg, 2004) and Gurobi (Gurobi Optimization, LLC,
2022) and controls the digital twin in real time through the
MATLAB class. This MATLAB class and both examples
are available in a GitHub repository (Sicardo et al., 2022).

The remainder of this paper is as follows: Section 2 in-
troduces the Home I/O software and provides information
about how it is possible to interact with the digital twin
of the smart house. Section 3 presents the MATLAB class
that has been developed, which can be downloaded with
two examples of code that are commented in Section 4.
Final remarks and conclusions are given in Section 5.

A simple framework for working with
MATLAB and Home I/O

Javier Jiménez ∗ Elena M. Mosquera ∗ José M. Maestre ∗

∗ Higher Technical School of Engineering, Universidad de Sevilla,
Camino de los Descubrimientos S/N, 41092, Sevilla, Spain (e-mail:

jjsicardo@us.es, emguerrero@us.es, pepemaestre@us.es).

Abstract: A software framework that communicates MATLAB and Home I/O software, which
provides a pedagogic digital twin of a smart home, is presented. This software is packaged
as a MATLAB class code and allows reading and writing to Home I/O from MATLAB. It
also includes useful tools to simplify the implementation of learning and research algorithms
using its built-in methods. A basic thermal identification and a simple MPC (Model Predictive
Controller) with all rooms’ heaters are built using this framework to prove its functionality.

Keywords: Control education, virtual and remote labs, centralized internet repository,
predictive control, system identification.

1. INTRODUCTION

Labs and test facilities are key elements in the educa-
tion of engineers because they allow students to develop
their skills in a controlled environment. Nevertheless, these
practical activities are very often limited due to budget
or space constraints and students may miss a valuable
learning opportunity. Digital twins offer one alternative
to relieve this situation because they provide realistic sim-
ulation environments where multiple educational activities
can be developed. In the case of Control Engineering,
digital twins can be a useful resource at all educational
stages, from primary (Screpanti et al., 2022) to University
level (Čech and Vosáhlo, 2022).

In this paper, we are interested in Home I/O, which
is proposed as a pedagogic digital twin of a smart
home simulation software (Riera et al., 2020), developed
jointly by CReSTIC –from the French University of Reims
Champagne-Ardenne– and the Portuguese company Real
Games (Riera et al., 2016a,b; Riera and Vigário, 2017;
Riera et al., 2019). The pedagogic intent of Home I/O
is expressly clear by visually providing a gamified virtual
home with its surroundings, allowing the user to interact
with all elements of the simulation, e.g., weather condi-
tions, actuators and sensors via the keyboard and mouse
or an Xbox-like gamepad controller. Also, it provides pro-
grammers with an API that allows to connect and send
and retrieve data from these sensors and actuators in
addition to other environmental values that can only be
read from the simulation data. This API is shipped in form
of a DLL (Dynamic Link Library) using Microsoft’s .NET
Framework (EngineIO.dll).

⋆ This work has been funded by the European Research Council
(ERC) under the Advanced Grant OCONTSOLAR (grant agree-
ment number 789051), by MCIN/AEI/ 10.13039/501100011033 un-
der project C3PO-R2D2 (ref. PID2020 − 119476RB − I00), and by
the regional government of Andalusia under project GESVIP (ref.
US-1265917).

To help disseminate their software, Home I/O developers
presented a Simulink interface to interact with the simu-
lation. While this is a very valuable educational resource,
a package for interacting with Home I/O via MATLAB
scripting commands is not available to the best of our
knowledge. To remedy this situation, we have developed
a MATLAB class that employs the EngineIO.dll library
in a transparent way for the user. This way, we provide
a much simpler access to this digital twin via scripts and
command line. Additionally, this framework avoids refer-
ring to the documentation tables to check for the memory
addresses of the devices, providing automatic and manual
methods to update the memory shared with the simulator.

The class has been implemented in MATLAB r2021b
(The MathWorks, Inc., 2021a) and is expected to also
work in later MATLAB versions. To illustrate its usage,
two different MATLAB example scripts are provided: the
first one performs a thermal identification of the Home
I/O building by turning on and off all heaters in the
house at full power and measuring temperatures in all
rooms. After saving the input/output data, a MIMO
system identification is performed using MATLAB System
Identification Toolbox (The MathWorks, Inc., 2021b). The
second example is a basic model predictive controller
(MPC) (Camacho and Alba, 2013) using the previously
identified model to regulate the temperature in all rooms
via the heaters. The MPC is implemented in YALMIP
(Löfberg, 2004) and Gurobi (Gurobi Optimization, LLC,
2022) and controls the digital twin in real time through the
MATLAB class. This MATLAB class and both examples
are available in a GitHub repository (Sicardo et al., 2022).

The remainder of this paper is as follows: Section 2 in-
troduces the Home I/O software and provides information
about how it is possible to interact with the digital twin
of the smart house. Section 3 presents the MATLAB class
that has been developed, which can be downloaded with
two examples of code that are commented in Section 4.
Final remarks and conclusions are given in Section 5.

A simple framework for working with
MATLAB and Home I/O

Javier Jiménez ∗ Elena M. Mosquera ∗ José M. Maestre ∗

∗ Higher Technical School of Engineering, Universidad de Sevilla,
Camino de los Descubrimientos S/N, 41092, Sevilla, Spain (e-mail:

jjsicardo@us.es, emguerrero@us.es, pepemaestre@us.es).

Abstract: A software framework that communicates MATLAB and Home I/O software, which
provides a pedagogic digital twin of a smart home, is presented. This software is packaged
as a MATLAB class code and allows reading and writing to Home I/O from MATLAB. It
also includes useful tools to simplify the implementation of learning and research algorithms
using its built-in methods. A basic thermal identification and a simple MPC (Model Predictive
Controller) with all rooms’ heaters are built using this framework to prove its functionality.

Keywords: Control education, virtual and remote labs, centralized internet repository,
predictive control, system identification.

1. INTRODUCTION

Labs and test facilities are key elements in the educa-
tion of engineers because they allow students to develop
their skills in a controlled environment. Nevertheless, these
practical activities are very often limited due to budget
or space constraints and students may miss a valuable
learning opportunity. Digital twins offer one alternative
to relieve this situation because they provide realistic sim-
ulation environments where multiple educational activities
can be developed. In the case of Control Engineering,
digital twins can be a useful resource at all educational
stages, from primary (Screpanti et al., 2022) to University
level (Čech and Vosáhlo, 2022).

In this paper, we are interested in Home I/O, which
is proposed as a pedagogic digital twin of a smart
home simulation software (Riera et al., 2020), developed
jointly by CReSTIC –from the French University of Reims
Champagne-Ardenne– and the Portuguese company Real
Games (Riera et al., 2016a,b; Riera and Vigário, 2017;
Riera et al., 2019). The pedagogic intent of Home I/O
is expressly clear by visually providing a gamified virtual
home with its surroundings, allowing the user to interact
with all elements of the simulation, e.g., weather condi-
tions, actuators and sensors via the keyboard and mouse
or an Xbox-like gamepad controller. Also, it provides pro-
grammers with an API that allows to connect and send
and retrieve data from these sensors and actuators in
addition to other environmental values that can only be
read from the simulation data. This API is shipped in form
of a DLL (Dynamic Link Library) using Microsoft’s .NET
Framework (EngineIO.dll).

⋆ This work has been funded by the European Research Council
(ERC) under the Advanced Grant OCONTSOLAR (grant agree-
ment number 789051), by MCIN/AEI/ 10.13039/501100011033 un-
der project C3PO-R2D2 (ref. PID2020 − 119476RB − I00), and by
the regional government of Andalusia under project GESVIP (ref.
US-1265917).

To help disseminate their software, Home I/O developers
presented a Simulink interface to interact with the simu-
lation. While this is a very valuable educational resource,
a package for interacting with Home I/O via MATLAB
scripting commands is not available to the best of our
knowledge. To remedy this situation, we have developed
a MATLAB class that employs the EngineIO.dll library
in a transparent way for the user. This way, we provide
a much simpler access to this digital twin via scripts and
command line. Additionally, this framework avoids refer-
ring to the documentation tables to check for the memory
addresses of the devices, providing automatic and manual
methods to update the memory shared with the simulator.

The class has been implemented in MATLAB r2021b
(The MathWorks, Inc., 2021a) and is expected to also
work in later MATLAB versions. To illustrate its usage,
two different MATLAB example scripts are provided: the
first one performs a thermal identification of the Home
I/O building by turning on and off all heaters in the
house at full power and measuring temperatures in all
rooms. After saving the input/output data, a MIMO
system identification is performed using MATLAB System
Identification Toolbox (The MathWorks, Inc., 2021b). The
second example is a basic model predictive controller
(MPC) (Camacho and Alba, 2013) using the previously
identified model to regulate the temperature in all rooms
via the heaters. The MPC is implemented in YALMIP
(Löfberg, 2004) and Gurobi (Gurobi Optimization, LLC,
2022) and controls the digital twin in real time through the
MATLAB class. This MATLAB class and both examples
are available in a GitHub repository (Sicardo et al., 2022).

The remainder of this paper is as follows: Section 2 in-
troduces the Home I/O software and provides information
about how it is possible to interact with the digital twin
of the smart house. Section 3 presents the MATLAB class
that has been developed, which can be downloaded with
two examples of code that are commented in Section 4.
Final remarks and conclusions are given in Section 5.

A simple framework for working with
MATLAB and Home I/O

Javier Jiménez ∗ Elena M. Mosquera ∗ José M. Maestre ∗

∗ Higher Technical School of Engineering, Universidad de Sevilla,
Camino de los Descubrimientos S/N, 41092, Sevilla, Spain (e-mail:

jjsicardo@us.es, emguerrero@us.es, pepemaestre@us.es).

Abstract: A software framework that communicates MATLAB and Home I/O software, which
provides a pedagogic digital twin of a smart home, is presented. This software is packaged
as a MATLAB class code and allows reading and writing to Home I/O from MATLAB. It
also includes useful tools to simplify the implementation of learning and research algorithms
using its built-in methods. A basic thermal identification and a simple MPC (Model Predictive
Controller) with all rooms’ heaters are built using this framework to prove its functionality.

Keywords: Control education, virtual and remote labs, centralized internet repository,
predictive control, system identification.

1. INTRODUCTION

Labs and test facilities are key elements in the educa-
tion of engineers because they allow students to develop
their skills in a controlled environment. Nevertheless, these
practical activities are very often limited due to budget
or space constraints and students may miss a valuable
learning opportunity. Digital twins offer one alternative
to relieve this situation because they provide realistic sim-
ulation environments where multiple educational activities
can be developed. In the case of Control Engineering,
digital twins can be a useful resource at all educational
stages, from primary (Screpanti et al., 2022) to University
level (Čech and Vosáhlo, 2022).

In this paper, we are interested in Home I/O, which
is proposed as a pedagogic digital twin of a smart
home simulation software (Riera et al., 2020), developed
jointly by CReSTIC –from the French University of Reims
Champagne-Ardenne– and the Portuguese company Real
Games (Riera et al., 2016a,b; Riera and Vigário, 2017;
Riera et al., 2019). The pedagogic intent of Home I/O
is expressly clear by visually providing a gamified virtual
home with its surroundings, allowing the user to interact
with all elements of the simulation, e.g., weather condi-
tions, actuators and sensors via the keyboard and mouse
or an Xbox-like gamepad controller. Also, it provides pro-
grammers with an API that allows to connect and send
and retrieve data from these sensors and actuators in
addition to other environmental values that can only be
read from the simulation data. This API is shipped in form
of a DLL (Dynamic Link Library) using Microsoft’s .NET
Framework (EngineIO.dll).

⋆ This work has been funded by the European Research Council
(ERC) under the Advanced Grant OCONTSOLAR (grant agree-
ment number 789051), by MCIN/AEI/ 10.13039/501100011033 un-
der project C3PO-R2D2 (ref. PID2020 − 119476RB − I00), and by
the regional government of Andalusia under project GESVIP (ref.
US-1265917).

To help disseminate their software, Home I/O developers
presented a Simulink interface to interact with the simu-
lation. While this is a very valuable educational resource,
a package for interacting with Home I/O via MATLAB
scripting commands is not available to the best of our
knowledge. To remedy this situation, we have developed
a MATLAB class that employs the EngineIO.dll library
in a transparent way for the user. This way, we provide
a much simpler access to this digital twin via scripts and
command line. Additionally, this framework avoids refer-
ring to the documentation tables to check for the memory
addresses of the devices, providing automatic and manual
methods to update the memory shared with the simulator.

The class has been implemented in MATLAB r2021b
(The MathWorks, Inc., 2021a) and is expected to also
work in later MATLAB versions. To illustrate its usage,
two different MATLAB example scripts are provided: the
first one performs a thermal identification of the Home
I/O building by turning on and off all heaters in the
house at full power and measuring temperatures in all
rooms. After saving the input/output data, a MIMO
system identification is performed using MATLAB System
Identification Toolbox (The MathWorks, Inc., 2021b). The
second example is a basic model predictive controller
(MPC) (Camacho and Alba, 2013) using the previously
identified model to regulate the temperature in all rooms
via the heaters. The MPC is implemented in YALMIP
(Löfberg, 2004) and Gurobi (Gurobi Optimization, LLC,
2022) and controls the digital twin in real time through the
MATLAB class. This MATLAB class and both examples
are available in a GitHub repository (Sicardo et al., 2022).

The remainder of this paper is as follows: Section 2 in-
troduces the Home I/O software and provides information
about how it is possible to interact with the digital twin
of the smart house. Section 3 presents the MATLAB class
that has been developed, which can be downloaded with
two examples of code that are commented in Section 4.
Final remarks and conclusions are given in Section 5.

A simple framework for working with
MATLAB and Home I/O

Javier Jiménez ∗ Elena M. Mosquera ∗ José M. Maestre ∗

∗ Higher Technical School of Engineering, Universidad de Sevilla,
Camino de los Descubrimientos S/N, 41092, Sevilla, Spain (e-mail:

jjsicardo@us.es, emguerrero@us.es, pepemaestre@us.es).

Abstract: A software framework that communicates MATLAB and Home I/O software, which
provides a pedagogic digital twin of a smart home, is presented. This software is packaged
as a MATLAB class code and allows reading and writing to Home I/O from MATLAB. It
also includes useful tools to simplify the implementation of learning and research algorithms
using its built-in methods. A basic thermal identification and a simple MPC (Model Predictive
Controller) with all rooms’ heaters are built using this framework to prove its functionality.

Keywords: Control education, virtual and remote labs, centralized internet repository,
predictive control, system identification.

1. INTRODUCTION

Labs and test facilities are key elements in the educa-
tion of engineers because they allow students to develop
their skills in a controlled environment. Nevertheless, these
practical activities are very often limited due to budget
or space constraints and students may miss a valuable
learning opportunity. Digital twins offer one alternative
to relieve this situation because they provide realistic sim-
ulation environments where multiple educational activities
can be developed. In the case of Control Engineering,
digital twins can be a useful resource at all educational
stages, from primary (Screpanti et al., 2022) to University
level (Čech and Vosáhlo, 2022).

In this paper, we are interested in Home I/O, which
is proposed as a pedagogic digital twin of a smart
home simulation software (Riera et al., 2020), developed
jointly by CReSTIC –from the French University of Reims
Champagne-Ardenne– and the Portuguese company Real
Games (Riera et al., 2016a,b; Riera and Vigário, 2017;
Riera et al., 2019). The pedagogic intent of Home I/O
is expressly clear by visually providing a gamified virtual
home with its surroundings, allowing the user to interact
with all elements of the simulation, e.g., weather condi-
tions, actuators and sensors via the keyboard and mouse
or an Xbox-like gamepad controller. Also, it provides pro-
grammers with an API that allows to connect and send
and retrieve data from these sensors and actuators in
addition to other environmental values that can only be
read from the simulation data. This API is shipped in form
of a DLL (Dynamic Link Library) using Microsoft’s .NET
Framework (EngineIO.dll).

⋆ This work has been funded by the European Research Council
(ERC) under the Advanced Grant OCONTSOLAR (grant agree-
ment number 789051), by MCIN/AEI/ 10.13039/501100011033 un-
der project C3PO-R2D2 (ref. PID2020 − 119476RB − I00), and by
the regional government of Andalusia under project GESVIP (ref.
US-1265917).

To help disseminate their software, Home I/O developers
presented a Simulink interface to interact with the simu-
lation. While this is a very valuable educational resource,
a package for interacting with Home I/O via MATLAB
scripting commands is not available to the best of our
knowledge. To remedy this situation, we have developed
a MATLAB class that employs the EngineIO.dll library
in a transparent way for the user. This way, we provide
a much simpler access to this digital twin via scripts and
command line. Additionally, this framework avoids refer-
ring to the documentation tables to check for the memory
addresses of the devices, providing automatic and manual
methods to update the memory shared with the simulator.

The class has been implemented in MATLAB r2021b
(The MathWorks, Inc., 2021a) and is expected to also
work in later MATLAB versions. To illustrate its usage,
two different MATLAB example scripts are provided: the
first one performs a thermal identification of the Home
I/O building by turning on and off all heaters in the
house at full power and measuring temperatures in all
rooms. After saving the input/output data, a MIMO
system identification is performed using MATLAB System
Identification Toolbox (The MathWorks, Inc., 2021b). The
second example is a basic model predictive controller
(MPC) (Camacho and Alba, 2013) using the previously
identified model to regulate the temperature in all rooms
via the heaters. The MPC is implemented in YALMIP
(Löfberg, 2004) and Gurobi (Gurobi Optimization, LLC,
2022) and controls the digital twin in real time through the
MATLAB class. This MATLAB class and both examples
are available in a GitHub repository (Sicardo et al., 2022).

The remainder of this paper is as follows: Section 2 in-
troduces the Home I/O software and provides information
about how it is possible to interact with the digital twin
of the smart house. Section 3 presents the MATLAB class
that has been developed, which can be downloaded with
two examples of code that are commented in Section 4.
Final remarks and conclusions are given in Section 5.

 Javier Jiménez et al. / IFAC PapersOnLine 56-2 (2023) 9588–9593 9589

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

A simple framework for working with
MATLAB and Home I/O

Javier Jiménez ∗ Elena M. Mosquera ∗ José M. Maestre ∗

∗ Higher Technical School of Engineering, Universidad de Sevilla,
Camino de los Descubrimientos S/N, 41092, Sevilla, Spain (e-mail:

jjsicardo@us.es, emguerrero@us.es, pepemaestre@us.es).

Abstract: A software framework that communicates MATLAB and Home I/O software, which
provides a pedagogic digital twin of a smart home, is presented. This software is packaged
as a MATLAB class code and allows reading and writing to Home I/O from MATLAB. It
also includes useful tools to simplify the implementation of learning and research algorithms
using its built-in methods. A basic thermal identification and a simple MPC (Model Predictive
Controller) with all rooms’ heaters are built using this framework to prove its functionality.

Keywords: Control education, virtual and remote labs, centralized internet repository,
predictive control, system identification.

1. INTRODUCTION

Labs and test facilities are key elements in the educa-
tion of engineers because they allow students to develop
their skills in a controlled environment. Nevertheless, these
practical activities are very often limited due to budget
or space constraints and students may miss a valuable
learning opportunity. Digital twins offer one alternative
to relieve this situation because they provide realistic sim-
ulation environments where multiple educational activities
can be developed. In the case of Control Engineering,
digital twins can be a useful resource at all educational
stages, from primary (Screpanti et al., 2022) to University
level (Čech and Vosáhlo, 2022).

In this paper, we are interested in Home I/O, which
is proposed as a pedagogic digital twin of a smart
home simulation software (Riera et al., 2020), developed
jointly by CReSTIC –from the French University of Reims
Champagne-Ardenne– and the Portuguese company Real
Games (Riera et al., 2016a,b; Riera and Vigário, 2017;
Riera et al., 2019). The pedagogic intent of Home I/O
is expressly clear by visually providing a gamified virtual
home with its surroundings, allowing the user to interact
with all elements of the simulation, e.g., weather condi-
tions, actuators and sensors via the keyboard and mouse
or an Xbox-like gamepad controller. Also, it provides pro-
grammers with an API that allows to connect and send
and retrieve data from these sensors and actuators in
addition to other environmental values that can only be
read from the simulation data. This API is shipped in form
of a DLL (Dynamic Link Library) using Microsoft’s .NET
Framework (EngineIO.dll).

⋆ This work has been funded by the European Research Council
(ERC) under the Advanced Grant OCONTSOLAR (grant agree-
ment number 789051), by MCIN/AEI/ 10.13039/501100011033 un-
der project C3PO-R2D2 (ref. PID2020 − 119476RB − I00), and by
the regional government of Andalusia under project GESVIP (ref.
US-1265917).

To help disseminate their software, Home I/O developers
presented a Simulink interface to interact with the simu-
lation. While this is a very valuable educational resource,
a package for interacting with Home I/O via MATLAB
scripting commands is not available to the best of our
knowledge. To remedy this situation, we have developed
a MATLAB class that employs the EngineIO.dll library
in a transparent way for the user. This way, we provide
a much simpler access to this digital twin via scripts and
command line. Additionally, this framework avoids refer-
ring to the documentation tables to check for the memory
addresses of the devices, providing automatic and manual
methods to update the memory shared with the simulator.

The class has been implemented in MATLAB r2021b
(The MathWorks, Inc., 2021a) and is expected to also
work in later MATLAB versions. To illustrate its usage,
two different MATLAB example scripts are provided: the
first one performs a thermal identification of the Home
I/O building by turning on and off all heaters in the
house at full power and measuring temperatures in all
rooms. After saving the input/output data, a MIMO
system identification is performed using MATLAB System
Identification Toolbox (The MathWorks, Inc., 2021b). The
second example is a basic model predictive controller
(MPC) (Camacho and Alba, 2013) using the previously
identified model to regulate the temperature in all rooms
via the heaters. The MPC is implemented in YALMIP
(Löfberg, 2004) and Gurobi (Gurobi Optimization, LLC,
2022) and controls the digital twin in real time through the
MATLAB class. This MATLAB class and both examples
are available in a GitHub repository (Sicardo et al., 2022).

The remainder of this paper is as follows: Section 2 in-
troduces the Home I/O software and provides information
about how it is possible to interact with the digital twin
of the smart house. Section 3 presents the MATLAB class
that has been developed, which can be downloaded with
two examples of code that are commented in Section 4.
Final remarks and conclusions are given in Section 5.

A simple framework for working with
MATLAB and Home I/O

Javier Jiménez ∗ Elena M. Mosquera ∗ José M. Maestre ∗

∗ Higher Technical School of Engineering, Universidad de Sevilla,
Camino de los Descubrimientos S/N, 41092, Sevilla, Spain (e-mail:

jjsicardo@us.es, emguerrero@us.es, pepemaestre@us.es).

Abstract: A software framework that communicates MATLAB and Home I/O software, which
provides a pedagogic digital twin of a smart home, is presented. This software is packaged
as a MATLAB class code and allows reading and writing to Home I/O from MATLAB. It
also includes useful tools to simplify the implementation of learning and research algorithms
using its built-in methods. A basic thermal identification and a simple MPC (Model Predictive
Controller) with all rooms’ heaters are built using this framework to prove its functionality.

Keywords: Control education, virtual and remote labs, centralized internet repository,
predictive control, system identification.

1. INTRODUCTION

Labs and test facilities are key elements in the educa-
tion of engineers because they allow students to develop
their skills in a controlled environment. Nevertheless, these
practical activities are very often limited due to budget
or space constraints and students may miss a valuable
learning opportunity. Digital twins offer one alternative
to relieve this situation because they provide realistic sim-
ulation environments where multiple educational activities
can be developed. In the case of Control Engineering,
digital twins can be a useful resource at all educational
stages, from primary (Screpanti et al., 2022) to University
level (Čech and Vosáhlo, 2022).

In this paper, we are interested in Home I/O, which
is proposed as a pedagogic digital twin of a smart
home simulation software (Riera et al., 2020), developed
jointly by CReSTIC –from the French University of Reims
Champagne-Ardenne– and the Portuguese company Real
Games (Riera et al., 2016a,b; Riera and Vigário, 2017;
Riera et al., 2019). The pedagogic intent of Home I/O
is expressly clear by visually providing a gamified virtual
home with its surroundings, allowing the user to interact
with all elements of the simulation, e.g., weather condi-
tions, actuators and sensors via the keyboard and mouse
or an Xbox-like gamepad controller. Also, it provides pro-
grammers with an API that allows to connect and send
and retrieve data from these sensors and actuators in
addition to other environmental values that can only be
read from the simulation data. This API is shipped in form
of a DLL (Dynamic Link Library) using Microsoft’s .NET
Framework (EngineIO.dll).

⋆ This work has been funded by the European Research Council
(ERC) under the Advanced Grant OCONTSOLAR (grant agree-
ment number 789051), by MCIN/AEI/ 10.13039/501100011033 un-
der project C3PO-R2D2 (ref. PID2020 − 119476RB − I00), and by
the regional government of Andalusia under project GESVIP (ref.
US-1265917).

To help disseminate their software, Home I/O developers
presented a Simulink interface to interact with the simu-
lation. While this is a very valuable educational resource,
a package for interacting with Home I/O via MATLAB
scripting commands is not available to the best of our
knowledge. To remedy this situation, we have developed
a MATLAB class that employs the EngineIO.dll library
in a transparent way for the user. This way, we provide
a much simpler access to this digital twin via scripts and
command line. Additionally, this framework avoids refer-
ring to the documentation tables to check for the memory
addresses of the devices, providing automatic and manual
methods to update the memory shared with the simulator.

The class has been implemented in MATLAB r2021b
(The MathWorks, Inc., 2021a) and is expected to also
work in later MATLAB versions. To illustrate its usage,
two different MATLAB example scripts are provided: the
first one performs a thermal identification of the Home
I/O building by turning on and off all heaters in the
house at full power and measuring temperatures in all
rooms. After saving the input/output data, a MIMO
system identification is performed using MATLAB System
Identification Toolbox (The MathWorks, Inc., 2021b). The
second example is a basic model predictive controller
(MPC) (Camacho and Alba, 2013) using the previously
identified model to regulate the temperature in all rooms
via the heaters. The MPC is implemented in YALMIP
(Löfberg, 2004) and Gurobi (Gurobi Optimization, LLC,
2022) and controls the digital twin in real time through the
MATLAB class. This MATLAB class and both examples
are available in a GitHub repository (Sicardo et al., 2022).

The remainder of this paper is as follows: Section 2 in-
troduces the Home I/O software and provides information
about how it is possible to interact with the digital twin
of the smart house. Section 3 presents the MATLAB class
that has been developed, which can be downloaded with
two examples of code that are commented in Section 4.
Final remarks and conclusions are given in Section 5.

A simple framework for working with
MATLAB and Home I/O

Javier Jiménez ∗ Elena M. Mosquera ∗ José M. Maestre ∗

∗ Higher Technical School of Engineering, Universidad de Sevilla,
Camino de los Descubrimientos S/N, 41092, Sevilla, Spain (e-mail:

jjsicardo@us.es, emguerrero@us.es, pepemaestre@us.es).

Abstract: A software framework that communicates MATLAB and Home I/O software, which
provides a pedagogic digital twin of a smart home, is presented. This software is packaged
as a MATLAB class code and allows reading and writing to Home I/O from MATLAB. It
also includes useful tools to simplify the implementation of learning and research algorithms
using its built-in methods. A basic thermal identification and a simple MPC (Model Predictive
Controller) with all rooms’ heaters are built using this framework to prove its functionality.

Keywords: Control education, virtual and remote labs, centralized internet repository,
predictive control, system identification.

1. INTRODUCTION

Labs and test facilities are key elements in the educa-
tion of engineers because they allow students to develop
their skills in a controlled environment. Nevertheless, these
practical activities are very often limited due to budget
or space constraints and students may miss a valuable
learning opportunity. Digital twins offer one alternative
to relieve this situation because they provide realistic sim-
ulation environments where multiple educational activities
can be developed. In the case of Control Engineering,
digital twins can be a useful resource at all educational
stages, from primary (Screpanti et al., 2022) to University
level (Čech and Vosáhlo, 2022).

In this paper, we are interested in Home I/O, which
is proposed as a pedagogic digital twin of a smart
home simulation software (Riera et al., 2020), developed
jointly by CReSTIC –from the French University of Reims
Champagne-Ardenne– and the Portuguese company Real
Games (Riera et al., 2016a,b; Riera and Vigário, 2017;
Riera et al., 2019). The pedagogic intent of Home I/O
is expressly clear by visually providing a gamified virtual
home with its surroundings, allowing the user to interact
with all elements of the simulation, e.g., weather condi-
tions, actuators and sensors via the keyboard and mouse
or an Xbox-like gamepad controller. Also, it provides pro-
grammers with an API that allows to connect and send
and retrieve data from these sensors and actuators in
addition to other environmental values that can only be
read from the simulation data. This API is shipped in form
of a DLL (Dynamic Link Library) using Microsoft’s .NET
Framework (EngineIO.dll).

⋆ This work has been funded by the European Research Council
(ERC) under the Advanced Grant OCONTSOLAR (grant agree-
ment number 789051), by MCIN/AEI/ 10.13039/501100011033 un-
der project C3PO-R2D2 (ref. PID2020 − 119476RB − I00), and by
the regional government of Andalusia under project GESVIP (ref.
US-1265917).

To help disseminate their software, Home I/O developers
presented a Simulink interface to interact with the simu-
lation. While this is a very valuable educational resource,
a package for interacting with Home I/O via MATLAB
scripting commands is not available to the best of our
knowledge. To remedy this situation, we have developed
a MATLAB class that employs the EngineIO.dll library
in a transparent way for the user. This way, we provide
a much simpler access to this digital twin via scripts and
command line. Additionally, this framework avoids refer-
ring to the documentation tables to check for the memory
addresses of the devices, providing automatic and manual
methods to update the memory shared with the simulator.

The class has been implemented in MATLAB r2021b
(The MathWorks, Inc., 2021a) and is expected to also
work in later MATLAB versions. To illustrate its usage,
two different MATLAB example scripts are provided: the
first one performs a thermal identification of the Home
I/O building by turning on and off all heaters in the
house at full power and measuring temperatures in all
rooms. After saving the input/output data, a MIMO
system identification is performed using MATLAB System
Identification Toolbox (The MathWorks, Inc., 2021b). The
second example is a basic model predictive controller
(MPC) (Camacho and Alba, 2013) using the previously
identified model to regulate the temperature in all rooms
via the heaters. The MPC is implemented in YALMIP
(Löfberg, 2004) and Gurobi (Gurobi Optimization, LLC,
2022) and controls the digital twin in real time through the
MATLAB class. This MATLAB class and both examples
are available in a GitHub repository (Sicardo et al., 2022).

The remainder of this paper is as follows: Section 2 in-
troduces the Home I/O software and provides information
about how it is possible to interact with the digital twin
of the smart house. Section 3 presents the MATLAB class
that has been developed, which can be downloaded with
two examples of code that are commented in Section 4.
Final remarks and conclusions are given in Section 5.

A simple framework for working with
MATLAB and Home I/O

Javier Jiménez ∗ Elena M. Mosquera ∗ José M. Maestre ∗

∗ Higher Technical School of Engineering, Universidad de Sevilla,
Camino de los Descubrimientos S/N, 41092, Sevilla, Spain (e-mail:

jjsicardo@us.es, emguerrero@us.es, pepemaestre@us.es).

Abstract: A software framework that communicates MATLAB and Home I/O software, which
provides a pedagogic digital twin of a smart home, is presented. This software is packaged
as a MATLAB class code and allows reading and writing to Home I/O from MATLAB. It
also includes useful tools to simplify the implementation of learning and research algorithms
using its built-in methods. A basic thermal identification and a simple MPC (Model Predictive
Controller) with all rooms’ heaters are built using this framework to prove its functionality.

Keywords: Control education, virtual and remote labs, centralized internet repository,
predictive control, system identification.

1. INTRODUCTION

Labs and test facilities are key elements in the educa-
tion of engineers because they allow students to develop
their skills in a controlled environment. Nevertheless, these
practical activities are very often limited due to budget
or space constraints and students may miss a valuable
learning opportunity. Digital twins offer one alternative
to relieve this situation because they provide realistic sim-
ulation environments where multiple educational activities
can be developed. In the case of Control Engineering,
digital twins can be a useful resource at all educational
stages, from primary (Screpanti et al., 2022) to University
level (Čech and Vosáhlo, 2022).

In this paper, we are interested in Home I/O, which
is proposed as a pedagogic digital twin of a smart
home simulation software (Riera et al., 2020), developed
jointly by CReSTIC –from the French University of Reims
Champagne-Ardenne– and the Portuguese company Real
Games (Riera et al., 2016a,b; Riera and Vigário, 2017;
Riera et al., 2019). The pedagogic intent of Home I/O
is expressly clear by visually providing a gamified virtual
home with its surroundings, allowing the user to interact
with all elements of the simulation, e.g., weather condi-
tions, actuators and sensors via the keyboard and mouse
or an Xbox-like gamepad controller. Also, it provides pro-
grammers with an API that allows to connect and send
and retrieve data from these sensors and actuators in
addition to other environmental values that can only be
read from the simulation data. This API is shipped in form
of a DLL (Dynamic Link Library) using Microsoft’s .NET
Framework (EngineIO.dll).

⋆ This work has been funded by the European Research Council
(ERC) under the Advanced Grant OCONTSOLAR (grant agree-
ment number 789051), by MCIN/AEI/ 10.13039/501100011033 un-
der project C3PO-R2D2 (ref. PID2020 − 119476RB − I00), and by
the regional government of Andalusia under project GESVIP (ref.
US-1265917).

To help disseminate their software, Home I/O developers
presented a Simulink interface to interact with the simu-
lation. While this is a very valuable educational resource,
a package for interacting with Home I/O via MATLAB
scripting commands is not available to the best of our
knowledge. To remedy this situation, we have developed
a MATLAB class that employs the EngineIO.dll library
in a transparent way for the user. This way, we provide
a much simpler access to this digital twin via scripts and
command line. Additionally, this framework avoids refer-
ring to the documentation tables to check for the memory
addresses of the devices, providing automatic and manual
methods to update the memory shared with the simulator.

The class has been implemented in MATLAB r2021b
(The MathWorks, Inc., 2021a) and is expected to also
work in later MATLAB versions. To illustrate its usage,
two different MATLAB example scripts are provided: the
first one performs a thermal identification of the Home
I/O building by turning on and off all heaters in the
house at full power and measuring temperatures in all
rooms. After saving the input/output data, a MIMO
system identification is performed using MATLAB System
Identification Toolbox (The MathWorks, Inc., 2021b). The
second example is a basic model predictive controller
(MPC) (Camacho and Alba, 2013) using the previously
identified model to regulate the temperature in all rooms
via the heaters. The MPC is implemented in YALMIP
(Löfberg, 2004) and Gurobi (Gurobi Optimization, LLC,
2022) and controls the digital twin in real time through the
MATLAB class. This MATLAB class and both examples
are available in a GitHub repository (Sicardo et al., 2022).

The remainder of this paper is as follows: Section 2 in-
troduces the Home I/O software and provides information
about how it is possible to interact with the digital twin
of the smart house. Section 3 presents the MATLAB class
that has been developed, which can be downloaded with
two examples of code that are commented in Section 4.
Final remarks and conclusions are given in Section 5.

A simple framework for working with
MATLAB and Home I/O

Javier Jiménez ∗ Elena M. Mosquera ∗ José M. Maestre ∗

∗ Higher Technical School of Engineering, Universidad de Sevilla,
Camino de los Descubrimientos S/N, 41092, Sevilla, Spain (e-mail:

jjsicardo@us.es, emguerrero@us.es, pepemaestre@us.es).

Abstract: A software framework that communicates MATLAB and Home I/O software, which
provides a pedagogic digital twin of a smart home, is presented. This software is packaged
as a MATLAB class code and allows reading and writing to Home I/O from MATLAB. It
also includes useful tools to simplify the implementation of learning and research algorithms
using its built-in methods. A basic thermal identification and a simple MPC (Model Predictive
Controller) with all rooms’ heaters are built using this framework to prove its functionality.

Keywords: Control education, virtual and remote labs, centralized internet repository,
predictive control, system identification.

1. INTRODUCTION

Labs and test facilities are key elements in the educa-
tion of engineers because they allow students to develop
their skills in a controlled environment. Nevertheless, these
practical activities are very often limited due to budget
or space constraints and students may miss a valuable
learning opportunity. Digital twins offer one alternative
to relieve this situation because they provide realistic sim-
ulation environments where multiple educational activities
can be developed. In the case of Control Engineering,
digital twins can be a useful resource at all educational
stages, from primary (Screpanti et al., 2022) to University
level (Čech and Vosáhlo, 2022).

In this paper, we are interested in Home I/O, which
is proposed as a pedagogic digital twin of a smart
home simulation software (Riera et al., 2020), developed
jointly by CReSTIC –from the French University of Reims
Champagne-Ardenne– and the Portuguese company Real
Games (Riera et al., 2016a,b; Riera and Vigário, 2017;
Riera et al., 2019). The pedagogic intent of Home I/O
is expressly clear by visually providing a gamified virtual
home with its surroundings, allowing the user to interact
with all elements of the simulation, e.g., weather condi-
tions, actuators and sensors via the keyboard and mouse
or an Xbox-like gamepad controller. Also, it provides pro-
grammers with an API that allows to connect and send
and retrieve data from these sensors and actuators in
addition to other environmental values that can only be
read from the simulation data. This API is shipped in form
of a DLL (Dynamic Link Library) using Microsoft’s .NET
Framework (EngineIO.dll).

⋆ This work has been funded by the European Research Council
(ERC) under the Advanced Grant OCONTSOLAR (grant agree-
ment number 789051), by MCIN/AEI/ 10.13039/501100011033 un-
der project C3PO-R2D2 (ref. PID2020 − 119476RB − I00), and by
the regional government of Andalusia under project GESVIP (ref.
US-1265917).

To help disseminate their software, Home I/O developers
presented a Simulink interface to interact with the simu-
lation. While this is a very valuable educational resource,
a package for interacting with Home I/O via MATLAB
scripting commands is not available to the best of our
knowledge. To remedy this situation, we have developed
a MATLAB class that employs the EngineIO.dll library
in a transparent way for the user. This way, we provide
a much simpler access to this digital twin via scripts and
command line. Additionally, this framework avoids refer-
ring to the documentation tables to check for the memory
addresses of the devices, providing automatic and manual
methods to update the memory shared with the simulator.

The class has been implemented in MATLAB r2021b
(The MathWorks, Inc., 2021a) and is expected to also
work in later MATLAB versions. To illustrate its usage,
two different MATLAB example scripts are provided: the
first one performs a thermal identification of the Home
I/O building by turning on and off all heaters in the
house at full power and measuring temperatures in all
rooms. After saving the input/output data, a MIMO
system identification is performed using MATLAB System
Identification Toolbox (The MathWorks, Inc., 2021b). The
second example is a basic model predictive controller
(MPC) (Camacho and Alba, 2013) using the previously
identified model to regulate the temperature in all rooms
via the heaters. The MPC is implemented in YALMIP
(Löfberg, 2004) and Gurobi (Gurobi Optimization, LLC,
2022) and controls the digital twin in real time through the
MATLAB class. This MATLAB class and both examples
are available in a GitHub repository (Sicardo et al., 2022).

The remainder of this paper is as follows: Section 2 in-
troduces the Home I/O software and provides information
about how it is possible to interact with the digital twin
of the smart house. Section 3 presents the MATLAB class
that has been developed, which can be downloaded with
two examples of code that are commented in Section 4.
Final remarks and conclusions are given in Section 5.

A simple framework for working with
MATLAB and Home I/O

Javier Jiménez ∗ Elena M. Mosquera ∗ José M. Maestre ∗

∗ Higher Technical School of Engineering, Universidad de Sevilla,
Camino de los Descubrimientos S/N, 41092, Sevilla, Spain (e-mail:

jjsicardo@us.es, emguerrero@us.es, pepemaestre@us.es).

Abstract: A software framework that communicates MATLAB and Home I/O software, which
provides a pedagogic digital twin of a smart home, is presented. This software is packaged
as a MATLAB class code and allows reading and writing to Home I/O from MATLAB. It
also includes useful tools to simplify the implementation of learning and research algorithms
using its built-in methods. A basic thermal identification and a simple MPC (Model Predictive
Controller) with all rooms’ heaters are built using this framework to prove its functionality.

Keywords: Control education, virtual and remote labs, centralized internet repository,
predictive control, system identification.

1. INTRODUCTION

Labs and test facilities are key elements in the educa-
tion of engineers because they allow students to develop
their skills in a controlled environment. Nevertheless, these
practical activities are very often limited due to budget
or space constraints and students may miss a valuable
learning opportunity. Digital twins offer one alternative
to relieve this situation because they provide realistic sim-
ulation environments where multiple educational activities
can be developed. In the case of Control Engineering,
digital twins can be a useful resource at all educational
stages, from primary (Screpanti et al., 2022) to University
level (Čech and Vosáhlo, 2022).

In this paper, we are interested in Home I/O, which
is proposed as a pedagogic digital twin of a smart
home simulation software (Riera et al., 2020), developed
jointly by CReSTIC –from the French University of Reims
Champagne-Ardenne– and the Portuguese company Real
Games (Riera et al., 2016a,b; Riera and Vigário, 2017;
Riera et al., 2019). The pedagogic intent of Home I/O
is expressly clear by visually providing a gamified virtual
home with its surroundings, allowing the user to interact
with all elements of the simulation, e.g., weather condi-
tions, actuators and sensors via the keyboard and mouse
or an Xbox-like gamepad controller. Also, it provides pro-
grammers with an API that allows to connect and send
and retrieve data from these sensors and actuators in
addition to other environmental values that can only be
read from the simulation data. This API is shipped in form
of a DLL (Dynamic Link Library) using Microsoft’s .NET
Framework (EngineIO.dll).

⋆ This work has been funded by the European Research Council
(ERC) under the Advanced Grant OCONTSOLAR (grant agree-
ment number 789051), by MCIN/AEI/ 10.13039/501100011033 un-
der project C3PO-R2D2 (ref. PID2020 − 119476RB − I00), and by
the regional government of Andalusia under project GESVIP (ref.
US-1265917).

To help disseminate their software, Home I/O developers
presented a Simulink interface to interact with the simu-
lation. While this is a very valuable educational resource,
a package for interacting with Home I/O via MATLAB
scripting commands is not available to the best of our
knowledge. To remedy this situation, we have developed
a MATLAB class that employs the EngineIO.dll library
in a transparent way for the user. This way, we provide
a much simpler access to this digital twin via scripts and
command line. Additionally, this framework avoids refer-
ring to the documentation tables to check for the memory
addresses of the devices, providing automatic and manual
methods to update the memory shared with the simulator.

The class has been implemented in MATLAB r2021b
(The MathWorks, Inc., 2021a) and is expected to also
work in later MATLAB versions. To illustrate its usage,
two different MATLAB example scripts are provided: the
first one performs a thermal identification of the Home
I/O building by turning on and off all heaters in the
house at full power and measuring temperatures in all
rooms. After saving the input/output data, a MIMO
system identification is performed using MATLAB System
Identification Toolbox (The MathWorks, Inc., 2021b). The
second example is a basic model predictive controller
(MPC) (Camacho and Alba, 2013) using the previously
identified model to regulate the temperature in all rooms
via the heaters. The MPC is implemented in YALMIP
(Löfberg, 2004) and Gurobi (Gurobi Optimization, LLC,
2022) and controls the digital twin in real time through the
MATLAB class. This MATLAB class and both examples
are available in a GitHub repository (Sicardo et al., 2022).

The remainder of this paper is as follows: Section 2 in-
troduces the Home I/O software and provides information
about how it is possible to interact with the digital twin
of the smart house. Section 3 presents the MATLAB class
that has been developed, which can be downloaded with
two examples of code that are commented in Section 4.
Final remarks and conclusions are given in Section 5.

Fig. 1. Three switches in Home I/O showing the different
modes (Red: Wired, Green: Wireless, Blue: External)

2. INTRODUCTION TO HOME I/O

Home I/O presents a virtual home with a predefined lay-
out, sensors and actuators, that is fixed. This means that
there is no way to extend the simulation itself, and the
user is unable to add/remove devices or simulation param-
eters, or changing their way of functioning. Sensors and
actuators are respectively named as Inputs and Outputs,
while the environmental variables and other miscellaneous
values are saved in Memories. Further details are given in
the documentation (Real Games, Unipessoal Lda, 2022a).

While a couple examples regarding energy saving are
presented in this paper, Home I/O is meant for a broader
training in control engineering than energy concerns, e.g.,
you can trigger a fire alarm or control a garage door.

2.1 Devices

All devices are distributed throughout the house and its
exterior coherently with what an actual home could look
like. All the space is sectorized in predefined Zones by
the documentation, with zones A to N being rooms, and
zone O for the exterior of the house). Some devices are not
assigned to a zone, e.g., the remote controller device and
some simulation parameters in Memories.

Additionally, sensor and actuator devices, i.e., Input and
Output devices, have three operation modes (see Figure
1): Wired (red color), without automation; Wireless (green
color), for using with an automation console available via
the interface; and External (blue color), which is of interest
here, where the devices remain visible and available for
connection with external technologies via the API. All
Memories are always visible when connecting to the API.

Through the API, any Inputs, Outputs and Memories can
be read, but only Outputs can be written. Attempting to
write any Inputs or Memories is silently ignored, because
these are either physical sensors or simulation parameters
that can only be interacted through the user interface, or
are calculated values such as Zone temperatures. There are
some other objects the user can interact with through the
user interface, like doors and windows that can be opened
or closed, but their status cannot be retrieved via the API
(because they are not sensors or actuators).

Fig. 2. Simulink model of the light regulation educational
resource, in original French language

The full list of devices can be found at the documenta-
tion (Real Games, Unipessoal Lda, 2022a), where it is
specified the type (Input, Output or Memory), data type
(e.g., Bool, Float and DateTime) and memory address,
which are required to identify an API data entry. Note also
that some devices may work as Bool (like a contact) and
Float (precision value) simultaneously in separate memory
entries. Likewise, some Float values have a documented
operating range of 0− 10 V . Special care should be taken
with Output entries: any values set out of this range is
silently capped within it and, most importantly, the con-
sumed power (W) for that device behaves linear to V up
to its maximum power: W = (V/10) ·max_power.

Finally, fully exhaustive data loads and saves can be
done through XML save files (usually in Documents\Home
IO\Saves). This save file is not suitable for control pur-
poses, but can be used for setting all devices to External
mode on a base save via a search and replace operation
from DeviceMode="Wired" to DeviceMode="External".

2.2 External technologies and educational resources

With all devices of interest in External mode, they are
available for the Home I/O API and other processes that
include the API library file, EngineIO.dll. This DLL file
is provided in the documentation with code examples for
C#, Python and Scratch 2 and 3.

There are also additional examples in the documenta-
tion (Real Games, Unipessoal Lda, 2022b) for, e.g., a
MATLAB-Simulink implementation for a PID controller
to control lights at Zone A via the usage of M-S-Function
blocks (see Figure 2, where the simulation has been slightly
altered to properly fit here); or using additional appli-
cations from the same provider to enable a middleware
controller to other additional technologies such as Modbus,
KNX, OPC or Siemens PLCs, which are out of the scope
of this paper.

2.3 Using the API

The nature of the API is a cached copy of the memory
map in the EngineIO.dll file. The synchronization of this
cached copy with the latest Home I/O data is done on
demand with previously fetched memory entries. Thus,
a typical recurrent workflow through the Home I/O API
would read or write devices and synchronize back with the
home simulation data in a programming loop.

These programming actions are well documented and
independent of the chosen language (the base is in C#,
and the EngineIO prefix can be avoided via a smart usage
of namespaces in languages that support it):

9590 Javier Jiménez et al. / IFAC PapersOnLine 56-2 (2023) 9588–9593

• Updating the Memory Map:
EngineIO.MemoryMap.Instance.Update()

• Destroying the Memory Map:
EngineIO.MemoryMap.Instance.Dispose()

• Retrieving a Bool (Bit) value:
EngineIO.MemoryMap.Instance.GetBit(
<address>,<memType>)

• Retrieving a Float value:
EngineIO.MemoryMap.Instance.GetFloat(
<address>,<memType>)

• Retrieving a DateTime value:
EngineIO.MemoryMap.Instance.GetDateTime(
<address>,<memType>)

A list of memory addresses is available at the documenta-
tion. Valid memTypes are:

• for Inputs: EngineIO.MemoryType.Input
• for Outputs: EngineIO.MemoryType.Output
• for Memories: EngineIO.MemoryType.Memory

Instead of updating and manually reading all devices, the
API code samples show a more advanced way of reading
changed devices via events and handlers, procedures not
shown here for brevity.

3. THE FRAMEWORK

The framework is a MATLAB class ready to use (named
HomeIO.m). Its code is open, available as a GitHub
repository (Sicardo et al., 2022), is in active development
as of the date of this publication and does welcome
suggestions and pull requests to improve and/or extend its
functionality. For a proper construction, a HomeIO object
requires the API DLL file (by default EngineIO.dll) and
an Microsoft Excel file containing all devices of interest
(by default homeio_full.xlsx). By this approach, various
objectives can be reached in regard to the easiness of use:

• No need to check documentation tables;
• Reduction in human mistakes with addressing;
• Automated updates for the devices (if desired);
• A user-friendly abstraction of the DLL code;
• Checks in place before making the API calls;
• More robustness in expected behaviour.
• Simultaneous reading or writing for multiple devices.

All this also enables to put in practice more advanced
techniques on the virtual home without worrying about
the API or internals of the inter-process communications.

3.1 Implementation considerations

All devices in Home I/O will be provided to MATLAB in a
Microsoft Excel file (homeio_full.xlsx by default) with
all relevant data saved by columns, including the required
three entries to identify a device as mentioned in sections
2.1 and 2.3 (Memory Type, Data Type, Address), plus their
Zone and Name (Zone is A to O, or "-" if not applicable;
while Name is the name as per the documentation), and
other values that might apply to some devices: Contact
Type (applies only to Input Bools, fill with "-" for non
applicable entries) and Power (applies only to Outputs, fill
with 0 for others). The homeio_full.xlsx file is provided
in the GitHub repository with all device names in English.

A partial list of devices is also acceptable, with these
devices being the only ones accessible in that case.

In MATLAB, two additional columns are created on object
construction to improve runtime performance. Since all
data is doubly classified with their Memory Type and Data
Type, requiring different calls (see section 2.3), a numerical
VarType column has been calculated as shown in Table 1
(eg an Input Bool is VarType = 1).

Table 1. VarType value from Memory Type and
Data Type

Bool Float DateTime
Inputs 1 2 3
Outputs 4 5 6

Memories 7 8 9

Then, the other additional column is a unique row iden-
tifier, RowID, The rows are previously sorted by VarType
and Address. Both new columns allow for significatively
faster search speeds.

Synchronization and value updates are made in two dif-
ferent ways each. Regarding synchronization, the user can
synchronize manually (calling the updateHomeIO method
on demand), or configuring an included timer that calls the
update method on their behalf, which performs the update
operation in the background with each trigger (mentioned
in section 3.2).

A first approach for the values updates is just fetching
every entry in the devices table, which is considerably
slow. However, a listener handler for each Memory Type
has been implemented. They wait for value changed flags
and extract and process only changed devices, contained in
the event data between update operations. This saves ac-
cessing the API for values that have remained unchanged.
The full table update approach remains useful for checking
smaller sets of devices in terms of API calls (see sec-
tion 3.3).

Most methods implemented use name-pair arguments,
which can be used to the user’s advantage:

• Most optional arguments are configuration argu-
ments, with a default behavior already defined;

• Some methods can also assume a default behavior
when called with no arguments, providing custom
versatility when arguments are present. For example
readValues will read all values from Home I/O unless
the user specifies a set of devices to read.

3.2 Functionalities

This section is a succinct revision of the attributes and
methods for the HomeIO class. Extensive documentation
is available in the code at the GitHub repository.

A HomeIO object has two main table attributes: BaseData
and FullData. Both are similar, but FullData is the only
table that contains values from Home I/O, for performance
concerns. All other attributes are a collection of pre-made
classifications for all devices. This makes finding them
easier, but a given device may appear in more than one
of these collections:

 Javier Jiménez et al. / IFAC PapersOnLine 56-2 (2023) 9588–9593 9591

• Updating the Memory Map:
EngineIO.MemoryMap.Instance.Update()

• Destroying the Memory Map:
EngineIO.MemoryMap.Instance.Dispose()

• Retrieving a Bool (Bit) value:
EngineIO.MemoryMap.Instance.GetBit(
<address>,<memType>)

• Retrieving a Float value:
EngineIO.MemoryMap.Instance.GetFloat(
<address>,<memType>)

• Retrieving a DateTime value:
EngineIO.MemoryMap.Instance.GetDateTime(
<address>,<memType>)

A list of memory addresses is available at the documenta-
tion. Valid memTypes are:

• for Inputs: EngineIO.MemoryType.Input
• for Outputs: EngineIO.MemoryType.Output
• for Memories: EngineIO.MemoryType.Memory

Instead of updating and manually reading all devices, the
API code samples show a more advanced way of reading
changed devices via events and handlers, procedures not
shown here for brevity.

3. THE FRAMEWORK

The framework is a MATLAB class ready to use (named
HomeIO.m). Its code is open, available as a GitHub
repository (Sicardo et al., 2022), is in active development
as of the date of this publication and does welcome
suggestions and pull requests to improve and/or extend its
functionality. For a proper construction, a HomeIO object
requires the API DLL file (by default EngineIO.dll) and
an Microsoft Excel file containing all devices of interest
(by default homeio_full.xlsx). By this approach, various
objectives can be reached in regard to the easiness of use:

• No need to check documentation tables;
• Reduction in human mistakes with addressing;
• Automated updates for the devices (if desired);
• A user-friendly abstraction of the DLL code;
• Checks in place before making the API calls;
• More robustness in expected behaviour.
• Simultaneous reading or writing for multiple devices.

All this also enables to put in practice more advanced
techniques on the virtual home without worrying about
the API or internals of the inter-process communications.

3.1 Implementation considerations

All devices in Home I/O will be provided to MATLAB in a
Microsoft Excel file (homeio_full.xlsx by default) with
all relevant data saved by columns, including the required
three entries to identify a device as mentioned in sections
2.1 and 2.3 (Memory Type, Data Type, Address), plus their
Zone and Name (Zone is A to O, or "-" if not applicable;
while Name is the name as per the documentation), and
other values that might apply to some devices: Contact
Type (applies only to Input Bools, fill with "-" for non
applicable entries) and Power (applies only to Outputs, fill
with 0 for others). The homeio_full.xlsx file is provided
in the GitHub repository with all device names in English.

A partial list of devices is also acceptable, with these
devices being the only ones accessible in that case.

In MATLAB, two additional columns are created on object
construction to improve runtime performance. Since all
data is doubly classified with their Memory Type and Data
Type, requiring different calls (see section 2.3), a numerical
VarType column has been calculated as shown in Table 1
(eg an Input Bool is VarType = 1).

Table 1. VarType value from Memory Type and
Data Type

Bool Float DateTime
Inputs 1 2 3
Outputs 4 5 6

Memories 7 8 9

Then, the other additional column is a unique row iden-
tifier, RowID, The rows are previously sorted by VarType
and Address. Both new columns allow for significatively
faster search speeds.

Synchronization and value updates are made in two dif-
ferent ways each. Regarding synchronization, the user can
synchronize manually (calling the updateHomeIO method
on demand), or configuring an included timer that calls the
update method on their behalf, which performs the update
operation in the background with each trigger (mentioned
in section 3.2).

A first approach for the values updates is just fetching
every entry in the devices table, which is considerably
slow. However, a listener handler for each Memory Type
has been implemented. They wait for value changed flags
and extract and process only changed devices, contained in
the event data between update operations. This saves ac-
cessing the API for values that have remained unchanged.
The full table update approach remains useful for checking
smaller sets of devices in terms of API calls (see sec-
tion 3.3).

Most methods implemented use name-pair arguments,
which can be used to the user’s advantage:

• Most optional arguments are configuration argu-
ments, with a default behavior already defined;

• Some methods can also assume a default behavior
when called with no arguments, providing custom
versatility when arguments are present. For example
readValues will read all values from Home I/O unless
the user specifies a set of devices to read.

3.2 Functionalities

This section is a succinct revision of the attributes and
methods for the HomeIO class. Extensive documentation
is available in the code at the GitHub repository.

A HomeIO object has two main table attributes: BaseData
and FullData. Both are similar, but FullData is the only
table that contains values from Home I/O, for performance
concerns. All other attributes are a collection of pre-made
classifications for all devices. This makes finding them
easier, but a given device may appear in more than one
of these collections:

• Types to classify all devices by Memory Type or Data
Type, or both;

• Zones to classify all devices by the Zone they are
physically placed (A to O or "-" for None);

• Devices to classify all devices by what type of de-
vices they physically are (Light Switches, Brightness
Sensors...) Heater and Lights have separate entries
for their Bool and Float behaviors;

• Special has some special categories that could be of
particular interest:

· InputsNO for Normally Open contacts;
· InputsNC for Normally Closed contacts;
· Inputs10V for Inputs in range 0− 10 V ;
· Outputs10V for Outputs in range 0− 10 V ;
· ConflictInputs for Inputs that should not coexist

simultaneously (such as Up/Down Switches driv-
ing the same Roller Shades);

· ConflictOutputs for Outputs that should not co-
exist simultaneously (such as Roller Shades Up
and Down);

· BoolFloatOutputs for devices that work both in
Bool and Float mode, to prevent conflicts caused
by using both at the same time.

There are other two attributes whose purpose is to hold
configurations and communications variables, not Home
I/O devices:

• Config, for the attributes used to save configurations;
• Comm, for process communications objects such as

listener handles or the timer, in case they are used.

Also, a list of all the methods follows, which have been
classified by their functionality:

Object construction These methods are related to the
construction of the object:

• HomeIO : Constructor method for the HomeIO
object. All other methods in this subsection are
called only by this method. By default it looks for
EngineIO.dll and homeio_full.xlsx on the same
directory, listeners are enabled and timer is disabled;

• connectHomeIO : Function wrapper for linking the
EngineIO.dll library;

• readExcelData : Reads the list of devices from the
Excel file;

• changePower10V : Adapts power for 0 − 10 V
Float Outputs (divide max power by 10). Makes
calculations easier for the estimatePower method;

• splitData : Splits all data read from the Excel file in
the previously mentioned categories.

Shared memory update For updating the current copy of
the Memory Map:

• updateHomeIO : Function wrapper for calling the
instance update of the Memory Map.

Listener and timer event handlers These are called when
an event happens to the listeners or the timer, if active:

• OnTimerCall : Triggers when the timer times out.
Runs a check on Home I/O then launches an update
that will trigger the listener events to refresh all
changed values;

• OnTimerCallNoListener : Same as OnTimerCall,
but manually updating all values by using the read-
Values method;

• OnValuesChanged : Triggered by the listeners when
values are changed in Home I/O. Sends all data to the
updateFromEvent for centralized processing.

Read/Write from Home I/O Methods that directly read
or write values to the shared Memory Map copy. Must be
used sparingly because of the API access times. Remember
that the main point is that these methods accept more
than one value at once:

• updateFromEvent : Reads and updates FullData
with the values changed that were sent by the listener
trigger functions;

• readValues: Reads and updates FullData for a spec-
ified list of values from the shared Memory Map. If
no list of values is specified, reads the whole list of
values available;

• setValues: Sends values to be written in the shared
Memory Map. Ensures these values are Outputs and
can sanitize them in the appropriate range (0 or 1 for
Bool ; between 0 and 10 for the 10 V Float devices).
Also can check for Bool-Float conflicts.

Getting existent values These methods do not interact
with the API, so they can be used without a significant
impact on performance:

• getRows: Gets full rows from FullData property,
from rows given from BaseData. Makes the check and
calls getRowsFromRowIDs;

• getRowsFromRowIDs: Gets full rows from Full-
Data, from a list of given RowIDs;

• getValues: Gets only the Value column from Full-
Data property, from rows given from BaseData.
Makes the check and calls getValuesFromRowIDs;

• getValuesFromRowIDs: Gets only the Value col-
umn from FullData, from a list of given RowIDs;

• estimatePower : Estimates current instantaneous
power consumption for all devices in the simulated
home (Wtotal =

∑
i Vi ·Poweri). Useful when working

without connecting to Home I/O.

Check methods Methods used for checking to avoid
errors in the future:

• checkHomeIO : Checks if Home I/O is active and
running and warns otherwise;

• checkMember : Wrapper of MATLAB’s ismember
for this object’s tables;

• mustMember : Wrapper of MATLAB’s mustBe-
Member for this object’s tables.

Default Behavior change For informing MATLAB about
how to save, load and delete HomeIO objects:

• saveobj : Saves the configuration to be able recreate
the HomeIO object later;

• loadobj : Recreates a HomeIO object from a previ-
ously saved HomeIO object;

• delete : Disables special behavior items (listeners,
timer) if existent, then unlinks the Memory Map to
allow proper destruction of the HomeIO object.

9592 Javier Jiménez et al. / IFAC PapersOnLine 56-2 (2023) 9588–9593

3.3 Limitations

The main drawback for synchronizing the full list of
devices is the time it takes to access the EngineIO.dll
API, which is slow via MATLAB. Using listener handlers
to reduce API calls for unchanged devices requires to
dedicate about 6 ms for each call of the updateFromEvent
method 1). This happens at least for Inputs and Memories
if no Outputs are changed, leaving very little time for other
tasks in case of working frame-by-frame, with 16ms per
frame @60fps. In practice, this means that there might be
difficulties to run Matlab with simulations in Home I/O
that are accelerated at more than ×500.

Also, comparison between table rows is slow as the
HomeIO tables have 9-10 fields, half of them are texts. For
this reason and to avoid big speed impacts (others than
API access), the checkMember and mustMember accept
table rows and send just the RowIDs for checking. A basic
column vector of device IDs should be sent to the ismember
and mustBeMember functions if skipping the wrappers.

4. CODE EXAMPLES

Two code examples are uploaded in the GitHub page for
this framework: a thermal identification of the home and
the regulation of the temperature of the simulated house
using MPC and MATLAB. This code can be run efficiently
in MATLAB and we were able to accelerate the simulation
of the house in Home I/O by setting its speed at ×500,
with a sample time of 30 simulated seconds.

Also, notation is reversed here: for the control user, an
input is a controllable device (which are labelled Outputs
in Home I/O) and an output become a measurable state
(Inputs in Home I/O).

4.1 Thermal identification of the home

This example identifies the thermal behavior of the simu-
lated home for all rooms with a heater by employing step
response identification methods. In particular, a model
for the home can be identified via MATLAB’s System
Identification Toolbox (The MathWorks, Inc., 2021b) after
recording all temperatures from a sequence of steps.

In real-time simulation, the thermal behavior follows a
model that takes into account radiation phenomena and
the physical properties of building materials (Riera and
Vigário, 2017), none of which are modifiable by the user,
although they all influence the behavior identified.

Here, we have selected as control inputs all heaters (nu =
12) and as outputs the temperatures in Kelvin of all the
corresponding rooms (nx = 11). Also, disturbances are
modelled as the outer air temperature and the outside
brightness (nd = 2). Likewise, the Memory date and
time data are saved for convenience and representation
(nother = 1). So, the total data being tracked is 26 devices.

Since the thermal dynamics are slow, each heater remains
active for two full simulated days, followed by a relaxation
period of other two days. This pattern is done for each of
1 On a Windows 10 Home 64 bits, 16 GB RAM, 11th Gen Intel(R)
Core(TM) i5-11400H @ 2.70GHz system

the nu heaters until a final two-day period without any
heater active is performed. This results in a total 50 simu-
lation days, or approximately 150 minutes of simulation at
×500 speed. Some diagnostics are also collected to check
whether the simulation has been successfully completed.

Once the simulation ends, data are deoffseted and a MIMO
system is identified in canonical form 2 as

xt+1 = Acxt +Bcut, (1)
considering Cc = Inx

and Dc = 0. The inputs for
identifying the system are the control inputs (heaters) plus
the disturbances (outer temperature and brightness); and
the outputs are the measured temperatures.

4.2 Model Predictive Control of temperatures

In the second example, the previously developed model is
fed to an MPC controller that has been adapted from Ca-
macho and Alba (2013). Here, input matrix Bc of Eq. 1 is
split considering the controllable inputs and disturbances:

• Bu ∈ Rnx×nu is the control input matrix.
• Bd ∈ Rnx×nd is the disturbance input matrix.

The physical limits of the system are taken into account
as constraints:

• xmin = −offset (i.e., xmin = 0K for room tempera-
tures),

• umin < u < umax (0− 10 V as per documentation).

The MPC optimizes a quadratic stage cost during a
horizon of Np = 30 time steps with weighting matrices
Q = I and R = 0.001 · I, where I is the identity matrix of
the corresponding size. Therefore, we have the stage cost:
ℓ(x(k), u(k)) = (e(k))TQ(e(k)) + (u(k))TR(u(k)), (2)
where e(k) = ref(k)− x(k).

The optimization problem for the MPC across the predic-
tion horizon and adding the restrictions is:

min
u(k)...u(k+Np−1)

Np−1∑
l=0

ℓ(x(k + i), u(k + i)) (3)

subject to
x(l + 1) = Ac · x(l) +Bu · u(l) +Bd · d(l), (4)
xmin < x(l) l = 1, 2, . . . , Np, (5)
umin < u(l) < umax l = 0, 1, . . . , Np − 1, (6)
x(0) = x(k), (7)
where x(k) represents the current measurement of the
state.

The MPC been implemented via YALMIP (Löfberg, 2004)
bridge with Gurobi solver (Gurobi Optimization, LLC,
2022) and the constrained optimization problem is solved
at each time step following a receding horizon fashion
so that only the first optimized input of the sequence is
actually applied to Home I/O. Diagnostics are also saved
to track the performance in each step.

As a reference for this example, we can see in Figure 3
the result of incrementing all rooms’ temperature reference
by 10 ºC with respect to the operation point (which is
substracted in the plots).
2 As Home I/O rooms are named A to N, a subscript is added to
state space matrices Ac, Bc, Cc, Dc to avoid ambiguity

 Javier Jiménez et al. / IFAC PapersOnLine 56-2 (2023) 9588–9593 9593

3.3 Limitations

The main drawback for synchronizing the full list of
devices is the time it takes to access the EngineIO.dll
API, which is slow via MATLAB. Using listener handlers
to reduce API calls for unchanged devices requires to
dedicate about 6 ms for each call of the updateFromEvent
method 1). This happens at least for Inputs and Memories
if no Outputs are changed, leaving very little time for other
tasks in case of working frame-by-frame, with 16ms per
frame @60fps. In practice, this means that there might be
difficulties to run Matlab with simulations in Home I/O
that are accelerated at more than ×500.

Also, comparison between table rows is slow as the
HomeIO tables have 9-10 fields, half of them are texts. For
this reason and to avoid big speed impacts (others than
API access), the checkMember and mustMember accept
table rows and send just the RowIDs for checking. A basic
column vector of device IDs should be sent to the ismember
and mustBeMember functions if skipping the wrappers.

4. CODE EXAMPLES

Two code examples are uploaded in the GitHub page for
this framework: a thermal identification of the home and
the regulation of the temperature of the simulated house
using MPC and MATLAB. This code can be run efficiently
in MATLAB and we were able to accelerate the simulation
of the house in Home I/O by setting its speed at ×500,
with a sample time of 30 simulated seconds.

Also, notation is reversed here: for the control user, an
input is a controllable device (which are labelled Outputs
in Home I/O) and an output become a measurable state
(Inputs in Home I/O).

4.1 Thermal identification of the home

This example identifies the thermal behavior of the simu-
lated home for all rooms with a heater by employing step
response identification methods. In particular, a model
for the home can be identified via MATLAB’s System
Identification Toolbox (The MathWorks, Inc., 2021b) after
recording all temperatures from a sequence of steps.

In real-time simulation, the thermal behavior follows a
model that takes into account radiation phenomena and
the physical properties of building materials (Riera and
Vigário, 2017), none of which are modifiable by the user,
although they all influence the behavior identified.

Here, we have selected as control inputs all heaters (nu =
12) and as outputs the temperatures in Kelvin of all the
corresponding rooms (nx = 11). Also, disturbances are
modelled as the outer air temperature and the outside
brightness (nd = 2). Likewise, the Memory date and
time data are saved for convenience and representation
(nother = 1). So, the total data being tracked is 26 devices.

Since the thermal dynamics are slow, each heater remains
active for two full simulated days, followed by a relaxation
period of other two days. This pattern is done for each of
1 On a Windows 10 Home 64 bits, 16 GB RAM, 11th Gen Intel(R)
Core(TM) i5-11400H @ 2.70GHz system

the nu heaters until a final two-day period without any
heater active is performed. This results in a total 50 simu-
lation days, or approximately 150 minutes of simulation at
×500 speed. Some diagnostics are also collected to check
whether the simulation has been successfully completed.

Once the simulation ends, data are deoffseted and a MIMO
system is identified in canonical form 2 as

xt+1 = Acxt +Bcut, (1)
considering Cc = Inx

and Dc = 0. The inputs for
identifying the system are the control inputs (heaters) plus
the disturbances (outer temperature and brightness); and
the outputs are the measured temperatures.

4.2 Model Predictive Control of temperatures

In the second example, the previously developed model is
fed to an MPC controller that has been adapted from Ca-
macho and Alba (2013). Here, input matrix Bc of Eq. 1 is
split considering the controllable inputs and disturbances:

• Bu ∈ Rnx×nu is the control input matrix.
• Bd ∈ Rnx×nd is the disturbance input matrix.

The physical limits of the system are taken into account
as constraints:

• xmin = −offset (i.e., xmin = 0K for room tempera-
tures),

• umin < u < umax (0− 10 V as per documentation).

The MPC optimizes a quadratic stage cost during a
horizon of Np = 30 time steps with weighting matrices
Q = I and R = 0.001 · I, where I is the identity matrix of
the corresponding size. Therefore, we have the stage cost:
ℓ(x(k), u(k)) = (e(k))TQ(e(k)) + (u(k))TR(u(k)), (2)
where e(k) = ref(k)− x(k).

The optimization problem for the MPC across the predic-
tion horizon and adding the restrictions is:

min
u(k)...u(k+Np−1)

Np−1∑
l=0

ℓ(x(k + i), u(k + i)) (3)

subject to
x(l + 1) = Ac · x(l) +Bu · u(l) +Bd · d(l), (4)
xmin < x(l) l = 1, 2, . . . , Np, (5)
umin < u(l) < umax l = 0, 1, . . . , Np − 1, (6)
x(0) = x(k), (7)
where x(k) represents the current measurement of the
state.

The MPC been implemented via YALMIP (Löfberg, 2004)
bridge with Gurobi solver (Gurobi Optimization, LLC,
2022) and the constrained optimization problem is solved
at each time step following a receding horizon fashion
so that only the first optimized input of the sequence is
actually applied to Home I/O. Diagnostics are also saved
to track the performance in each step.

As a reference for this example, we can see in Figure 3
the result of incrementing all rooms’ temperature reference
by 10 ºC with respect to the operation point (which is
substracted in the plots).
2 As Home I/O rooms are named A to N, a subscript is added to
state space matrices Ac, Bc, Cc, Dc to avoid ambiguity

Fig. 3. Temperature evolutions (up) and control signals
(down) from the operating point after a 10 ºC step
in the reference for rooms A, D, E, G, H. The other
rooms are omitted in the plot.

As expected, this MPC control scheme tries to reach the
target temperature as soon as possible, neglecting the cost
for control efforts since reference tracking has been made
more important.

5. CONCLUSION

A MATLAB framework to write scripts that can interact
with the simulated smart home provided by the software
Home I/O has been presented. This prevents human
mistakes by easing the access to simulated devices via
code, which allows to exploit the power of MATLAB as
a teaching and research instrument.

The proposed framework can be very useful for different
courses in engineering degrees. Some potential applications
of our framework are the modeling and control of the ther-
mal dynamics a virtual homes, which can be of interest,
e.g., for courses in control and smart home technologies.

Nevertheless, a variety of improvements still remain open.
For example, in further works, the framework could include
the operation at ×5000 speed simulation that Home I/O
provides. It could also be interesting to extend the different
uses of the framework proposed.

Finally, the code developed can be downloaded freely from
a Github repository, with new functions being currently
under development.

REFERENCES

Camacho, E.F. and Alba, C.B. (2013). Model predictive
control. Springer science & business media.

Čech, M. and Vosáhlo, M. (2022). Digital twins and hil
simulators in control education–industrial perspective.
IFAC-PapersOnLine, 55(17), 67–72.

Gurobi Optimization, LLC (2022). Gurobi Optimizer
Reference Manual. URL https://www.gurobi.com.

Löfberg, J. (2004). Yalmip : A toolbox for modeling and
optimization in matlab. In In Proceedings of the CACSD
Conference. Taipei, Taiwan.

Real Games, Unipessoal Lda (2022a). Home I/O Doc-
umentation. Gondomar, Porto, Portugal. URL
https://docs.realgames.co/homeio/en/.

Real Games, Unipessoal Lda (2022b). Home I/O Doc-
umentation (in French). Gondomar, Porto, Portugal.
URL https://docs.realgames.co/homeio/fr/.

Riera, B., Annebicque, D., and Vigário, B. (2016a).
Home i/o: an example of human-machine
systems concepts applied to stem education.
IFAC-PapersOnLine, 49(19), 233–238. doi:
https://doi.org/10.1016/j.ifacol.2016.10.530. 13th
IFAC Symposium on Analysis, Design, and Evaluation
ofHuman-Machine Systems HMS 2016.

Riera, B., Emprin, F., Annebicque, D., COLAS, M., and
Vigário, B. (2016b). Home i/o: a virtual house for
control and stem education from middle schools to
universities. IFAC-PapersOnLine, 49(6), 168–173. doi:
https://doi.org/10.1016/j.ifacol.2016.07.172. 11th IFAC
Symposium on Advances in Control Education ACE
2016.

Riera, B., Philippot, A., and Annebicque, D.
(2019). Teaching the first and only logic
control course with home i/o and scratch
2.0. IFAC-PapersOnLine, 52(9), 109–114. doi:
https://doi.org/10.1016/j.ifacol.2019.08.133. 12th
IFAC Symposium on Advances in Control Education
ACE 2019.

Riera, B., Ranger, T., Saddem, R., Emprin, F., Chemla,
J.P., and Philippot, A. (2020). Experience feed-
back and innovative pedagogical applications with
home i/o. IFAC-PapersOnLine, 53(2), 17610–17615.
doi:https://doi.org/10.1016/j.ifacol.2020.12.2676. 21st
IFAC World Congress.

Riera, B. and Vigário, B. (2017). Home i/o and fac-
tory i/o: a virtual house and a virtual plant for con-
trol education. IFAC-PapersOnLine, 50(1), 9144–9149.
doi:https://doi.org/10.1016/j.ifacol.2017.08.1719. 20th
IFAC World Congress.

Screpanti, L., Scaradozzi, D., Gulesin, R., and Ciuccoli,
N. (2022). Control engineering and robotics since
primary school: an infrastructure for creating the digital
twin model of the learning class. IFAC-PapersOnLine,
55(17), 267–272.

Sicardo, J.J., Mosquera, E.M., and Maestre,
J.M. (2022). A simple framework for
working with matlab and home i/o. URL
https://github.com/GESVIP/matlab-homeio.

The MathWorks, Inc. (2021a). MATLAB
version 9.11.0.1809720 (R2021b) Update 1.
Natick, Massachusetts, United States. URL
https://mathworks.com/.

The MathWorks, Inc. (2021b). System Identification
Toolbox. Natick, Massachusetts, United States. URL
https://mathworks.com/products/sysid.html.

