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Abstract: Nemaline myopathy (NM) is one of the most common forms of congenital myopathy
and it is identified by the presence of “nemaline bodies” (rods) in muscle fibers by histopatholog-
ical examination. The most common forms of NM are caused by mutations in the Actin Alpha 1
(ACTA1) and Nebulin (NEB) genes. Clinical features include hypotonia and muscle weakness. Un-
fortunately, there is no curative treatment and the pathogenetic mechanisms remain unclear. In this
manuscript, we examined the pathophysiological alterations in NM using dermal fibroblasts derived
from patients with mutations in ACTA1 and NEB genes. Patients’ fibroblasts were stained with
rhodamine–phalloidin to analyze the polymerization of actin filaments by fluorescence microscopy.
We found that patients’ fibroblasts showed incorrect actin filament polymerization compared to
control fibroblasts. Actin filament polymerization defects were associated with mitochondrial dys-
function. Furthermore, we identified two mitochondrial-boosting compounds, linoleic acid (LA)
and L-carnitine (LCAR), that improved the formation of actin filaments in mutant fibroblasts and
corrected mitochondrial bioenergetics. Our results indicate that cellular models can be useful to
study the pathophysiological mechanisms involved in NM and to find new potential therapies.
Furthermore, targeting mitochondrial dysfunction with LA and LCAR can revert the pathological
alterations in NM cellular models.

Keywords: nemaline myopathy; actin polymerization; mitochondria; linoleic acid; L-carnitine

1. Introduction

Congenital myopathies are a group of genetic muscle diseases that are classified based
on the histopathological features observed on muscle biopsy [1]. Nematine myopathy
(NM) is a congenital musculoskeletal condition characterized by the presence of inclusions
in muscle fibers known as “nemaline rods” [2]. This pathology contains a wide genetic
heterogeneity, since multiple mutations in different genes that produce a similar phenotype
have been identified [3]. Its incidence is approximately 1 in 50,000 live births.

The International European Neuromuscular Group classifies NM into six clinical sub-
types based on the severity, age of onset, and degree of muscle weakness: severe congenital
(neonatal), Amish, intermediate congenital, typical congenital, childhood onset, and adult
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onset [4]; of these, the most common subtype corresponds to the typical congenital sub-
type [5]. The most typical clinical manifestation is defined by a generalized weakness or
hypotonia that mostly affects the proximal limb, axial and facial muscles, and that begins
in early infancy or childhood. Additional features include skeletal deformities, dysmorphic
fascia, arched high palate, and respiratory distress with respiratory tract infections [1].
The natural history of the disease is usually static or very slowly progressive and many
of the patients can lead normal lives. Serious clinical complications are almost always
secondary to respiratory deficiency and sometimes to cardiological problems. In most cases,
cardiomyopathy develops in adulthood, while it rarely occurs in childhood [6].

There are 14 known causative genes of NM [7]. Mutations in the ACTA1 and NEB
genes, which code for actin alpha 1 (ACTA1) and nebulin (NEB) proteins, respectively,
critical components of the sarcomeric thin filament, result in the most prevalent types of
NM. More specifically, it is predicted that mutations in the NEB gene account for over 50%
of cases of NM, whereas mutations in the ACTA1 gene account for 15–25% of cases [8]. NEB,
known as the giant actin-binding protein because it has a molecular weight of 600–800 kDa,
plays a very important role in stabilizing and regulating the length of the actin filament [9].
ACTA1 is the actin isoform predominantly found in the thin filaments of skeletal muscles
and essential, together with myosin, for muscle contraction [10].

The diagnosis is established from the clinical suspicion, since paraclinical studies such
as creatinine kinase levels may be normal or slightly elevated and electromyography may
show non-specific myopathic changes. The diagnosis is confirmed histopathologically by
muscle biopsy analysis, in which characteristic rod bodies (nemaline bodies) are found
in the sarcoplasm, evidenced by modified Gomori stain [1]. Currently, due to advances
in genetic tools, it is increasingly common for the diagnosis to be made or confirmed by
molecular genetic study for mutations in the genes known to cause the disease. Rods
have been also detected in different cell culture lines, such as NIH3T3 fibroblasts or C2C12
myoblasts [11–14]. Specifically, both Costa et al. and Vandamme et al. demonstrated that
NIH3T3 fibroblasts transfected with NM mutations presented cellular defects typical of the
disease such as cytoplasmic actin aggregates and the formation of nemaline bodies or rods
that are observed in patient skeletal muscle fibers [12,14].

The etiology of the disease remains unclear. The accumulation of nemaline bodies by
itself does not explain the muscle weakness characteristic of the disease and could be only
a secondary phenomenon of the main pathogenic process. In fact, no correlation has been
observed between the severity of the disease and the degree of accumulation of nemaline
bodies [12]. In addition to nemaline bodies, pathological defects have also been observed in
skeletal muscle fibers both in mouse models and in patients with NM: abundant, unevenly
spaced, and with irregular morphology nuclei; interrupted nuclear envelope; impaired
chromatin arrangement; and cytoskeletal disorganization [15]. Due to the important
function of the nuclear form and the envelope in the control of gene expression, and of the
cytoskeleton in preserving the integrity and stability of the muscle fiber, it is likely that
these alterations are responsible for some distinctive features of the disease, such as the
disorder of the contractile filaments and the altered mechanical properties.

The disease has also been associated with mitochondrial dysfunction, specifically, with
complex I dysfunction or deficiency [16]. One hypothesis proposes that by disrupting the
integrity of the thin filaments and, consequently, disrupting normal muscle function, less
energy is used and there is a “downregulation” of complex I activity and, therefore, adeno-
sine triphosphate (ATP) production [16]. In addition, regarding the formation of nemaline
rods, a high number of rods were found in some patients with complex I deficiency [17].
It has been seen that the formation of these can be induced in muscle and non-muscle
cells in vitro by several different cellular stressors [18]. These data suggest that metabolic
alterations during the formation and turnover of sarcomeres may induce the formation
of nemaline rods. However, it is still unclear how these two pathological phenomena are
related. Furthermore, interactions between mitochondria and the actin cytoskeleton have
been linked to essential functions of this organelle [19]. Thus, actin filaments primarily
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modulate mitochondrial dynamics [20,21], trafficking, and autophagy [22] but also mi-
tochondrial biogenesis and metabolism [23]. Therefore, it is reasonable to deduce that
the actin polymerization defects in NM such as ACTA1 and NEB mutations may affect
mitochondrial function.

In order to achieve a deeper understanding of the mechanisms behind the disease’s
development, animal and cell models are needed. Currently, animal and in vitro models of
NM are being explored, specifically mouse and zebrafish models [24]. Regarding cellular
models, in addition to in vitro contraction studies of muscle fibers [25], functional studies
have been conducted on specific genetic mutations and their proteins in several cell lines,
such as NIH3T3 fibroblasts, C2C12 myoblasts, or Sol 8 myogenic cells that differentiate
into myotubes [13,26]. Most patient mutations studied by cell transfection reveal cellular
defects typical of the disease, such as actin aggregates and the formation of nemaline bodies
seen in patients’ muscle biopsies. On the other hand, regarding human cell lines of the
disease, recently, two isogenic lines of induced pluripotent stem cells (iPSCs) derived from
a patient with severe nemaline myopathy with a dominant heterozygous mutation in the
ACTA1 gene have been achieved [27]. Alternatively, patient-derived skin fibroblasts can be
easily obtained by small biopsies of the skin in a non-invasive way, have a great capacity
for division, and harbor the specific mutations of the patients [28].

In this manuscript, we have evaluated whether fibroblasts derived from NM patients
carrying ACTA1 and NEB mutations can be useful cellular models for studying disease
pathophysiology. The work is based on the hypothesis that both affected proteins, ACTA1
and NEB, may participate in the formation and stabilization of actin filaments and, there-
fore, alterations of actin polymerization can be visualized in patient-derived fibroblasts.
In addition, we examined the consequences of actin polymerization defects on mitochon-
drial function. Finally, we also evaluated the correction of all pathological alterations by
mitochondrial-targeting compounds such as linoleic acid (LA) and L-carnitine (LCAR).

2. Materials and Methods
2.1. Reagents

The following antibodies were acquired from Abcam (Cambridge, United Kingdom):
alpha skeletal muscle actin (ab28052), alpha tubulin (ab7291), NADH:ubiquinone oxi-
doreductase subunit A9 (NDUFA9) (ab14713), cytochrome c oxidase subunit IV (COXIV)
(ab14744), ATP synthase F1 subunit alpha (ATP5F1A) (ab1478), voltage-dependent anion
channel 1 (VDAC1) (ab14734), and superoxide dismutase 2 (SOD2) (ab68155). The fol-
lowing antibodies were purchased from Invitrogen (Thermo Fisher Scientific (Whaltham,
MA, USA)): Rho (A, B, C) (PAI-338), Rho-associated protein kinase 1 (ROCK1) (PA5-22262),
phospho-ROCK1 (PA5-36763), and NADH:ubiquinone oxidoreductase core subunit S1
(NDUFS1) (PA5-22309). RhoA (8789S), vimentin (D21H3), and glutathione peroxidase 4
(GPX4) (52455S) were purchased from Cell Signaling (Danvers, MA, USA). Antibodies for
beta actin (MBS448085) and mitochondrially encoded NADH:ubiquinone oxidoreductase
core subunit 1 (Mt-ND1) (6888S) were purchased from MyBioSource (San Diego, CA, USA).
Cytochrome b-c1 complex subunit 2 (UQCR2) was supplied from US Biological (Salem, MA,
USA). The following antibodies were acquired from Santa Cruz Biotechnology (Santa Cruz,
CA, USA): dynamin-related protein 1 (DRP1) (sc-32898), succinate dehydrogenase complex
iron–sulfur subunit B (SDHB) (sc-271548), and superoxide dismutase 1 (SOD1) (sc-101523).
Optic atrophy type 1 (OPA1) (HPA036926) was acquired from Sigma-Aldrich (San Luis,
MO, USA). Novus Biologicals (Centennial, CO, USA) provided mitochondrially encoded
cytochrome c oxidase subunit 2 (Mt-CO2) (NBP1-778220). Trypsin, dimethyl sulfoxide
(DMSO), saponin, Tris base, 4′,6-diamidino-2-phenylindole (DAPI), tetramethylethylenedi-
amine (TEMED), Dulbecco’s modified Eagle’s medium (DMEM) 4.5 g/L and 1 g/L glucose,
L-glutamine, pyruvate (Gibco), penicillin:streptomycin 10,000:10,000 (Gibco), fetal bovine
serum (FBS) (Gibco), Mowiol 4-88 Mw (Sigma Chemical Co. (St. Louis, MO, USA)) were
used. Bovine serum albumin (BSA) (Santa Cruz Biotechnology (Santa Cruz, CA, USA))
was used. A PierceTM BCA Protein Assay Kit (Fisher Scientific, Waltham, MA, USA) was
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used. A Rho Activation Assay Kit (Rf. 8820) (Cell Signaling Technology (Danvers, MA,
USA)) was used. Rhodamine–phalloidin reagent (Abcam (Cambridge, UK)) was used.
Acrylamide 37.5:1 solution, Clarity TM Western ECL substrate, electrophoresis buffer (TGS),
sodium dodecyl sulfate (SDS), Triton X-100, blot buffer (TG), Tween 20, DC Protein Assay
Reagent A, B, S (Bio-Rad Laboratories Inc. (Hercules, CA, USA)) were used. 2-Isopropanol,
ethanol, methanol, sodium chloride (NaCl), ammonium persulfate (APS), glacial acetic acid,
potassium hydroxide (KOH), potassium chloride (KCL) (Panreac (Barcelona, Spain)), and
Protease Inhibitor Cocktail (Roche (F. Hoffmann-La Roche Ltd., Basel, Switzerland)) were
used. L-carnitine (sc-205727), Y27632 (sc-3536), and paraformaldehyde (PFA) (sc-25326B)
were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Sigma-Aldrich
(San Luis, MO, USA) supplied linoleic acid (L1376).

2.2. Patients and Cell Culture

Four cell lines of fibroblasts derived from skin biopsies of patients from the Pediatric
Department of Hospital Universitario Virgen del Rocío, Sevilla, Spain were used. Fibroblast
cell lines were isolated according to a previously described protocol [29]. Two control
lines of primary human skin fibroblasts were acquired from ATCC. Patient 1 (P1) presents
a heterozygous pathogenic variant c.133G > T (p.Val45Phe) in ACTA1 that results in a
missense variant. The second patient (P2) is also heterozygous with changes in position
c.760A > T (p.Asn254Tyr) in the ACTA1 gene. The third patient (P3) presents heterozy-
gous pathogenic variants c.10321A > C (p.Thr3441Pro) and c.13669C > T (pArg4557*) in
NEB. The fourth patient (P4) presents heterozygous pathogenic variants c.24407_24410dup
(p.Leu8137Phefs*18) and c.8425C > T (p.Arg2809*) in NEB.

Control values were represented as mean ± SD of two control lines. Fibroblasts
were grown in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco™, ThermoFisher
Scientific, Waltham, MA, USA) supplemented with 10% FBS (Gibco™, ThermoFisher
Scientific, Waltham, MA, USA) and 100 mg/mL penicillin/streptomycin. Fibroblasts were
cultured under conditions of 37 ◦C and 5% CO2. Experiments were performed with less
than 12-passage fibroblast cultures.

2.3. Immunoblotting

Standard procedures were followed to conduct the Western blotting [30]. Subsequently
protein transfer, the membrane was incubated with various primary antibodies diluted
1:1000 and then with the corresponding secondary antibody coupled to horseradish peroxi-
dase (HRP) at a 1:10,000 dilution. The Immun-Star HRP substrate kit (Biorad Laboratories
Inc., Hercules, CA, USA) was used to identify particular proteins.

2.4. Real-Time Quantitative PCR (qPCR)

ACTA1 and NEB gene expression in fibroblasts was analyzed by qPCR using mRNA
extracts. Using TrizolTM (Invitrogen, Carlsbad, CA, USA), mRNA was extracted in accor-
dance with the manufacturer’s instructions. To obtain complementary DNA (cDNA),
the Iscript cDNA synthesis Kit (Bio-Rad, Hercules, CA, USA) was used to retrotran-
scribe RNA. TB GreenTM Premix Ex TaqTM (Takara Bio Europe S.A.S., Saint-Germain-
en-Laye, France) was used for qPCR. To accurately quantify gene expression, a CFX Con-
nect Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA) was used. The
forward and reverse primers for ACTA1 were 5′-CCATTTATGAGGGCTACGCG-3′ and
5′-CAGCTTCTCCTTGATGTCGC-3′, respectively, each of which amplified a 158-nucleotide
sequence. The forward and reverse NEB primers were 5′-GAAACCAGACCACAGCCTTG-
3′ and 5′-TAGGGCATCTTTCACCGTGT-3′, respectively, amplifying a 224-nucleotide se-
quence. As a housekeeping control gene, human α-Tubulin was used and the primers were
5′-GCAGCATTTGTAGCAGGTGA-3′ (forward primer) and 3′-GCATTGCCAATCTGGACAC-
5′ (reverse primer). Prior to gel electrophoresis, PCR was used to validate each primer pair,
ensuring that the correct product was amplified.
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2.5. Active RhoA Assay

Fibroblasts were grown in 75 cm2 flasks in DMEM containing 10% FBS. According
to the manufacturer’s recommendations, media were removed, cells were washed twice
using ice-cold PBS 1×, and the cell lysate was collected using lysis/binding/wash buffer
supplemented with a 1x protease inhibitor cocktail provided by the Active Rho Detection
Kit (Cell Signaling Technology, Danvers, MA, USA, Cat. 8820). After centrifuging at
16,000× g at 4 ◦C for 15 min, lysate protein concentration was determined using a BCA
Protein Assay Kit and 1 mg/mL lysate in 1x lysis/binding/wash buffer was prepared.
After making the cell lysate stock, protein then was incubated with GST Rhotekin-RBD
affinity beads at 4 ◦C for 1 h with gentle rocking. Bound proteins (active RhoA form) were
washed and prepared with SDS Sample Buffer and then Western blotting analysis was
carried out according to the previously mentioned protocol.

2.6. Immunofluorescence Microscopy

Fibroblasts were cultured on 1 mm wide glass coverslips (Goldseal No. 1) for 24–48 h
in DMEM supplemented with 20% FBS. Cells were rinsed once with PBS 1×, fixed in 4%
PFA for five minutes at room temperature, and permeabilized for ten minutes in 0.1%
saponin. Then, fibroblasts were blocked with blocking solution (1% BSA in PBS 1×). For
immunostaining, glass coverslips were incubated with primary antibodies diluted 1:100
and prepared in blocking solution overnight at 4 ◦C. Unbound antibodies were removed
by washing the coverslips with PBS 1× (three times, for five minutes). The secondary
antibody, a FITC-labeled goat anti-mouse antibody or tetramethyl rhodamine goat anti-
rabbit (Molecular Probes), diluted 1:400 and prepared in blocking solution, was added and
incubated for two hours at room temperature. Coverslips were then rinsed with PBS 1×
for five minutes, incubated for one minute with PBS 1× containing DAPI (1 µg/mL), and
washed with PBS 1× (three five-minute washes). Finally, the coverslips were mounted
onto microscope slides using Mowiol aqueous mounting medium. Samples were analyzed
using a DeltaVision system (Applied Precision; Issaquah, WA, USA) with an Olympus
IX-71 microscope (Olympus Corporation, Shinjuku, Tokyo, Japan). Colocalization was
analyzed by Pearson correlation coefficient calculated with the DeltaVision system.

2.7. Immunofluorescence Staining of Cytoskeletal F-Actin

Briefly, fibroblasts were seeded on 1 mm wide coverslips (Goldseal No. 1) for 24–48 h
in DMEM supplemented with 10% FBS. Next day, after reaching to 50% confluency, cells
were fixed with 4% PFA for 10 min at room temperature and permeabilized with saponin at
0.1% for 15 min. Then, cells were washed with PBS 1× twice and incubated with rhodamine–
phalloidin, a high-affinity F-actin probe conjugated with a red-orange fluorescent dye, at a
concentration of 1 µg/mL for 30 min. After incubation, cells were washed with PBS 1×
three times and incubated with DAPI at 1 µg/mL for 5 min for nuclei staining. Subsequently,
cells were washed three times with PBS 1× for 5 min. Finally, the coverslips were mounted
on microscope slides with Mowiol aqueous mounting medium. After staining, images
were acquired by a DeltaVision system with an Olympus IX-71 fluorescence microscope
using a 40× oil objective. The analysis of images was carried out by Fiji-ImageJ software
(version 2.9.0/1.53t).

In order to evaluate the state of actin filaments, the percentage of cells with correct
actin polymerization and the length of actin filaments present in each cell were examined.
To estimate the percentage of cells with correct actin polymerization for each patient,
three counts of 100 cells per sample were performed; the values of these counts were
compared among themselves and between the different samples. Cells with correct actin
polymerization were considered those cells that presented actin filaments similar to those
presented by control cells. The lengths of actin filaments present in each cell were measured
by Fiji-ImageJ software. Specifically, actin filament length measurements were made using
the software’s options “Set scale” and “Measure”. The first option allows configuration of
the exact scale according to the objective with which images were taken, ensuring that the
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relationship between pixel size and micrometers is correct. The option “Measure” works
like a ruler and allows determination of the length in micrometers of any structures.

To execute this, the filaments of 30 cells of each cell line were measured in triplicate.
The actin filament length values represented in the figures are expressed as the average of
the measured filament lengths.

2.8. Bioenergetics and Oxidative Stress Analysis

Mitochondrial respiratory function of control and NM fibroblasts was determined
using a mitostress test assay by an XF24 extracellular flux analyzer (Seahorse Bioscience,
Billerica, MA, USA). Cells were cultured at a density of 15,000 cells/well in XF24 cell
culture plates and in combination with 150 µL of growth medium (DMEM supplemented
with 20% FBS) under conditions of 37 ◦C and 5% CO2. After 24 h of incubation, growth
medium from each well was discarded, leaving only 50 µL of media. After that, 450 µL
of assay medium (500 µL total) was added to each well after cells had been washed twice
with 1 mL of pre-warmed assay medium (XF base medium supplemented with 10 mM
glucose, 1 mM glutamine, and 1 mM sodium pyruvate; pH 7.4). For one hour, fibroblasts
were incubated in a 37 ◦C incubator without CO2 to allow pre-equilibrating with the
assay medium. Mitochondrial functionality was examined by sequential injection of four
substances that affect bioenergetics. The four compounds were injected at the following
final concentrations: 2 µM FCCP (carbonyl cyanide-4-trifluoromethoxy-phenylhydrazone),
1 µM, oligomycin, and 2.5 µM antimycin A/rotenone. Preliminary experiments were
conducted to determine the optimal cell seeding density, as well as the best concentration
of each inhibitor and uncoupler. In each experiment, a minimum of five wells were used
per treatment. This assay allowed for an estimation of important mitochondrial parameters
such as basal and maximal respiration, ATP production, and spare respiratory capacity.
Results obtained by the XF24 analyzer were normalized based on the number of cells
seeded (15,000 cells). To check if the number of cells was still stable, cell counting of each
well was performed using the BioTekTM CytationTM 1 Cell Imaging Multi-Mode Reader
before and after the assay.

2.9. Mitotracker Staining: Analysis of Mitochondrial Network

Mitochondrial membrane potential (∆Ψm) was assessed in fibroblasts by fluorescence
microscopy analyzing the fluorescence intensity derived from MitoTracker Red CMXRos
staining (100 nM, 45 min, 37 ◦C) by Fiji-ImageJ software. ∆Ψm/fluorescence intensity was
determined in 100 cells in three different experiments.

The degree of mitochondrial fragmentation was determined using the Fiji software.
To determine the number of small, rounded mitochondria per cell, a total of 100 cells from
three different experiments were used for each experimental condition. The percentage of
rounded/tubular mitochondria, the degree of circularity, and the length or ratio between the
major and minor axis of the mitochondrion were considered [31]. Specifically, high-quality
40× images were analyzed by Fiji-ImageJ software and a threshold image was applied
to select only the mitochondrial network. To determine percentages of rounded/tubular
mitochondria, the software’s option “Analyze particles” was used, analyzing size particles
and circularity. For rounded mitochondria, a size of 0.2–0.9 was chosen. In the case of
tubular mitochondria, a size of 0.9–infinity was chosen. For both determinations, images
were acquired by a DeltaVision system with an Olympus IX-71 fluorescence microscope
using 40×/60× oil objectives.

2.10. Measurement of Intracellular Reactive Oxygen Species (ROS) Generation

According with the manufacturer’s instructions, MitoSOX™ Red at 5 µM was used to
measure the fibroblasts’ mitochondrial superoxide production. Previously, cells were grown
on coverslips until reaching 80% confluency. Mitochondrial localization of MitoSOX™ Red
signal was confirmed in conjunction with MitoTracker™ Deep Red FM staining (at 100 nM,
45 min, 37 ◦C), an in vivo mitochondrial membrane-potential-independent probe. Cells’
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nuclei were stained with DAPI at 1 µg/mL. After staining, images were generated by
a DeltaVision system with an Olympus IX-71 fluorescence microscope using a 40× oil
objective. Images were analyzed by Fiji-ImageJ software.

2.11. Statistics

Statistical analysis was conducted in accordance with our research group’s previous
description [27]. In situations where there were few events (n < 30), we employed non-
parametric statistics that do not make any distributional assumptions [28]. In these cases,
multiple groups were compared using a Kruskal–Wallis test. We used parametric tests
when the number of events was greater (n > 30). In these instances, a one-way ANOVA
was used to compare multiple groups. Statistical analyses were conducted using GraphPad
Prism 9.2 (GraphPad Software, San Diego, CA, USA). The information is presented as the
mean ± SD values or as an example from three independent experiments. p-values of less
than 0.05 were considered significant.

3. Results
3.1. NM Fibroblasts Present Alterations in Actin Alpha 1 (ACTA1) and Nebulin (NEB)
Expression Levels

First, we analyzed ACTA1 and NEB protein expression levels in control and NM-
patient-derived fibroblasts (P1 and P2 harboring ACTA1 mutations; and P3 and P4 carrying
NEB mutations). As shown by immunofluorescence microscopy in Figure 1A,B, ACTA1
expression levels were markedly reduced in P1 and P2 cells, while NEB (Figure 2A,B)
expression levels were reduced in P3 and P4. Interestingly, ACTA1 immunostaining
colocalized with actin filaments in control cells but not in mutant cells.
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between ACTA1 signal and F-actin staining by rhodamine–phalloidin was analyzed by Pearson 
correlation coefficient. Pearson correlation coefficient was calculated with a DeltaVision system. A 
positive correlation was considered when Pearson coefficient > 0.75. (B) Quantification of ACTA1 
signal. Images were taken using a 60× lens and processed by ImageJ software. *** p < 0.001 between 
NM and control cells. Scale bars = 20 µm; n.s = no significant. 

 
Figure 2. NEB expression levels by immunofluorescence microscopy in control and NM cells. (A) 
Control (C1) and NM cells (P1, P2, P3, and P4) were immunostained against NEB and visualized 
under a widefield fluorescence microscope. Nuclei were revealed by DAPI staining. (B) Quantifi-

Figure 1. ACTA1 expression levels by immunofluorescence microscopy in control and NM cells.
(A) Control (C1) and NM cells (P1, P2, P3, and P4) were immunostained against ACTA1 and visual-
ized under a fluorescence microscope. Nuclei were revealed by DAPI staining. The colocalization
between ACTA1 signal and F-actin staining by rhodamine–phalloidin was analyzed by Pearson
correlation coefficient. Pearson correlation coefficient was calculated with a DeltaVision system. A
positive correlation was considered when Pearson coefficient > 0.75. (B) Quantification of ACTA1
signal. Images were taken using a 60× lens and processed by ImageJ software. *** p < 0.001 between
NM and control cells. Scale bars = 20 µm; n.s = no significant.



Antioxidants 2023, 12, 2023 8 of 31

Antioxidants 2023, 12, x FOR PEER REVIEW 8 of 32 
 

 
Figure 1. ACTA1 expression levels by immunofluorescence microscopy in control and NM cells. 
(A) Control (C1) and NM cells (P1, P2, P3, and P4) were immunostained against ACTA1 and visu-
alized under a fluorescence microscope. Nuclei were revealed by DAPI staining. The colocalization 
between ACTA1 signal and F-actin staining by rhodamine–phalloidin was analyzed by Pearson 
correlation coefficient. Pearson correlation coefficient was calculated with a DeltaVision system. A 
positive correlation was considered when Pearson coefficient > 0.75. (B) Quantification of ACTA1 
signal. Images were taken using a 60× lens and processed by ImageJ software. *** p < 0.001 between 
NM and control cells. Scale bars = 20 µm; n.s = no significant. 

 
Figure 2. NEB expression levels by immunofluorescence microscopy in control and NM cells. (A) 
Control (C1) and NM cells (P1, P2, P3, and P4) were immunostained against NEB and visualized 
under a widefield fluorescence microscope. Nuclei were revealed by DAPI staining. (B) Quantifi-

Figure 2. NEB expression levels by immunofluorescence microscopy in control and NM cells.
(A) Control (C1) and NM cells (P1, P2, P3, and P4) were immunostained against NEB and vi-
sualized under a widefield fluorescence microscope. Nuclei were revealed by DAPI staining.
(B) Quantification of NEB signal. Images were taken using a 40× lens and processed by ImageJ
software. *** p < 0.001 between NM and controls cells. Scale bars = 20 µm.

Reduced expression levels of ACTA1 were confirmed by Western blotting analysis
(Figure 3A,B). Low protein expression levels of mutant proteins were associated with a re-
duction in ACTA1 transcript levels in P1 and P2 mutant fibroblasts (Figure 4A). Interestingly,
expression levels of β-actin (cytoplasmic actin isoform and component of microfilaments)
were upregulated both in ACTA1 and NEB mutant fibroblasts (Figure 3C,D).
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Moreover, NEB transcripts levels in P3 and P4 were confirmed, suggesting a de-
crease in gene expression of affected genes or an increase in mutant transcript degrada-
tion in NM cells (Figure 4A,B). Remarkably, NEB transcripts levels in ACTA1 mutant 
cells (P1, P2) were significantly higher than the expression levels shown by control cells 
(** p-value < 0.01), suggesting that NEB overexpression may be acting as a compensation 
mechanism for defects in ACTA1 (Figure 4B). 

Figure 3. Protein expression levels of α-actin and β-actin NM cells. (A) Cellular extracts from controls
(C1 and C2) and NM patient cell lines P1, P2, P3, and P4 were subjected to immunoblotting analysis.
An SDS polyacrylamide gel was used to separate protein extracts (50 µg), then the samples were
immunostained using antibodies against ACTA1 and α-tubulin, which was used as a loading control.
(B) Densitometry of the Western blotting. (C) Cellular extracts from controls (C1 and C2) and NM
patient cell lines P1, P2, P3, and P4 were subjected to immunoblotting analysis. An SDS polyacry-
lamide gel was used to separate protein extracts (50 µg), then the samples were immunostained using
antibodies against β-actin and α-tubulin, which was used as a loading control. (D) Densitometry of
the β-actin Western blotting. Data represent the mean ± SD of three separate experiments. * p < 0.05,
*** p < 0.001 between NM cells and controls. a.u., arbitrary units.
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Figure 4. ACTA1 and NEB transcript expression levels in control and NM cells. (A) ACTA1 gene
expression quantified by RT-PCR. Results were normalized to α-Tubulin gene expression. (B) NEB
gene expression quantified by RT-PCR. Results were normalized to α-Tubulin gene expression. Data
represent the mean ± SD of three separate experiments. ** p < 0.01, *** p < 0.001 between NM cells
and controls.

Moreover, NEB transcripts levels in P3 and P4 were confirmed, suggesting a decrease
in gene expression of affected genes or an increase in mutant transcript degradation in NM
cells (Figure 4A,B). Remarkably, NEB transcripts levels in ACTA1 mutant cells (P1, P2) were
significantly higher than the expression levels shown by control cells (** p-value < 0.01),
suggesting that NEB overexpression may be acting as a compensation mechanism for
defects in ACTA1 (Figure 4B).

3.2. NM-Patient-Derived Fibroblasts Show Defects in Actin Filament Polymerization

Cell staining with rhodamine–phalloidin showed that fibroblasts derived from NM
patients have marked defects in the polymerization of actin filaments. Thus, mutant
fibroblasts of P1 and P2 harboring ACTA1 mutations and P3 and P4 harboring NEB mu-
tations displayed unstructured actin filaments of shorter length than control fibroblasts
(Figure 5A,B). In addition, the analysis revealed that the percentage of NM fibroblasts with
correct actin filament polymerization was much lower than in control cells (Figure 5C). P1
fibroblasts showed a more severe defect in actin filament polymerization (only 7% of P1
fibroblasts showed a correct actin polymerization).

NM-patient-derived fibroblasts did not show alterations in the level of expression
of other cytoskeletal proteins. Thus, the analysis of expression of vimentin (component
of the intermediate filaments) and α-tubulin (component of microtubules) did not reveal
significant differences in mutant fibroblasts compared to control fibroblasts (Supplementary
Figure S1A,B).

3.3. RhoA/ROCK Pathway Is Overactivated in NM Fibroblasts

As the RhoA/ROCK pathway plays an essential role in actin polymerization [32,33],
we next examined the expression levels of RhoA, active RhoA, ROCK1, and phosphory-
lated ROCK1. NM mutant cells P1, P2, P3, and P4 showed increased activation of active
RhoA and phosphorylated ROCK1, indicating overactivation of the RhoA/ROCK pathway
(Figure 6A,B). Interestingly, control cells treated with Y-27632, a ROCK inhibitor, mimicked
the actin polymerization defects found in NM cells (Supplementary Figure S2A,B), suggest-
ing that RhoA/ROCK pathway overactivation is a compensatory mechanism to increase
actin polymerization in ACTA1 and NEB mutations.

3.4. NM Fibroblasts Display Alterations in Mitochondrial Bioenergetics and Network Morphology

Since the actin cytoskeleton and the correct actin filament polymerization are essential
for mitochondrial function [16], we further investigated mitochondrial bioenergetics in NM
fibroblasts. For that purpose, mitochondrial bioenergetics parameters were examined in
control and NM fibroblasts (Figure 7). Compared to control cells, fibroblasts derived from
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patients P1, P2, P3, and P4 had decreased basal, maximum, and spare respiration as well
as lower mitochondrial ATP generation. These findings indicated that mutant fibroblasts
showed a significant mitochondrial dysfunction.
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Figure 5. Actin staining by rhodamine–phalloidin of control and NM fibroblasts. (A) Control and
NM fibroblasts, P1 and P2 (mutation in ACTA1) and P3 and P4 (mutation in NEB), were stained
with rhodamine–phalloidin and visualized under a widefield fluorescence microscope. Nuclei were
revealed by DAPI staining. NM fibroblasts (P1, P2, P3, and P4) presented smaller and unstructured
actin filaments compared to control fibroblasts. Images were taken using a 40× lens and processed
by ImageJ software. (B) Measurement of the length of actin filaments (µm). The length of the actin
filaments was measured in triplicate with ImageJ software in 30 images. (C) Percentage of cells
with correct actin polymerization. Three counts of 100 cells per sample were performed. * p < 0.05,
** p < 0.01 between NM and controls cells. Scale bar = 20 µm.

After labeling mitochondria with MitotrackerTM Red CMXRos, we proceeded to
investigate the morphology of the mitochondrial network by fluorescence microscopy.
Figure 8A illustrates representative images of the mitochondrial shape. A total of 100 cells
were quantified for each condition (Figure 8B). The mitochondrial network morphology of
mutant fibroblasts (P1, P2, P3, and P4) showed the presence of depolarized and fragmented
mitochondria. Therefore, mitochondrial fragmentation was evaluated calculating the
percentage of rounded and tubular mitochondria. Comparing NM cells to control cells,
we found a significant decrease in tubular mitochondria (Figure 8C). Carbonyl cyanide
monochlorophenylhydrazon (CCCP), 100 µM, was applied to control cells for four hours
as a positive control of mitochondrial depolarization.

As the actin cytoskeleton plays a fundamental role in the regulation of mitochondrial
dynamics [19], we next evaluated the expression levels of DRP1 and OPA1, the main pro-
teins involved in mitochondrial fission and fusion processes, respectively. NM mutant cells
P1, P2, P3, and P4 showed increased expression levels of DRP1 and reduced levels of OPA1
in comparison with control cells, indicating an imbalance between mitochondrial fission
and fusion processes (Figure 8D,E). These results agree with the fragmented mitochondrial
network (Figure 8A) and the reduced percentages of tubular mitochondria and increased
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percentages of rounded mitochondria (Figure 8C) presented by NM cells compared to
control cells.
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Figure 6. Expression level of RhoA/ROCK pathway in NM cells. (A) Cellular extracts from controls
(C1 and C2) and NM patient cell lines P1, P2, P3, and P4 were subjected to immunoblotting analysis.
An SDS polyacrylamide gel was used to separate protein extracts (50 µg), then the samples were
immunostained using antibodies against Rho (A, B, C), RhoA, active RhoA purified by the Active Rho
Detection Kit as described in the Material and Methods, ROCK1, phospho-ROCK1, and α-tubulin,
which was used as a loading control. (B) Densitometry of the Western blotting. For control cells (C1
and C2), data are the mean ± SD of the two control cell lines. Data represent the mean ± SD of three
separate experiments. ** p < 0.01, *** p < 0.001 between NM and controls cells. a.u., arbitrary units.

Mitochondrial dysfunction in mutant cells was also corroborated by examining mito-
chondrial protein expression levels (Figure 9A). Thus, expression levels of mitochondrial
protein subunits NDUFA9 (complex I), NDUFS4 (complex I), mtND1 (complex I), SDHB
(complex II), UQCRC2 (complex III), mtCOX2 (complex IV), COX4 (complex IV), ATP5A
(complex V), and VDAC1 were significantly downregulated in NM mutant cells with
respect to control cells.

3.5. NM-Patient-Derived Fibroblasts Present Increased ROS and Alterations in Antioxidant
Enzyme Expression Levels

As mitochondrial dysfunction is related to an increase in oxidative stress and reac-
tive oxygen species (ROS) production, we also studied the mitochondrial ROS generation
by MitoSOX™ and the protein expression levels of antioxidant enzymes. Thus, NM
cells showed a significant mitochondrial ROS overproduction compared to control cells
(Figure 10A,B). Furthermore, the protein expression levels of cytoplasmic superoxide dis-
mutase (SOD1), mitochondrial superoxide dismutase (SOD2), and glutathione peroxidases
(GPX4) were also reduced in NM fibroblasts, suggesting that the enzymatic antioxidant
system is downregulated in mutant NM cells (Figure 10C,D).

3.6. Supplementation with Linoleic Acid (LA) and L-Carnitine (LCAR) Restores
Actin Polymerization

After an initial pharmaceutical screening aiming to identify commercial supple-
ments able to restore actin polymerization patterns in mutant cells, we selected two well-
known mitochondrial-boosting compounds: LA and LCAR. Treatment with 5 µM LA and
10 µM LCAR for 7 days significantly improved actin filament polymerization in NM cells
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(Figure 11A). Thus, supplementation with both compounds separately and in combination
significantly increased both the percentage of cells with correct actin polymerization and the
length of the actin filaments in P1, P2, P3, and P4 fibroblasts (Figure 11B,C). LA and LCAR
concentrations were chosen considering the efficiency in recovering actin polymerization
in dose–response curve assays (Supplementary Figures S3–S6).
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Figure 7. Bioenergetics analysis of control and NM fibroblasts. NM fibroblasts (P1, P2, P3, and P4)
and controls (C1 and C2) were examined for basal and maximum respiration, mitochondrial ATP
generation, and spare respiratory capacity measured using the Seahorse analyzer. The results were
standardized to 15,000 cells according to the instructions in the Material and Methods. ** p < 0.01,
*** p < 0.001 between NM and controls cells.

3.7. Supplementation with LA and LCAR Improves Mitochondrial Bioenergetics

We further examined the effect of LA and LCAR supplementation on mitochondrial
function in NM fibroblasts using the bioenergetic profile provided by the Seahorse analyzer.
Thus, mitochondrial bioenergetic parameters were examined in control and NM fibroblasts
P1 (Figure 12A) and P3 (Figure 12B) treated and untreated with LA and LCAR. Supplemen-
tation with LA and LCAR individually or in combination was able to correct the reduced
basal, maximal, and spare respiration, as well as mitochondrial ATP production in both
ACTA1 (P1) and NEB (P3) mutant fibroblasts.
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from controls (C1 and C2) and NM patient cell lines P1, P2, P3, and P4 were subjected to im-
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was used as a loading control. (E) Densitometry of the Western blotting. For controls cells (C1 and 
C2), data are the mean ± SD of the two control cell lines. Data represent the mean ± SD of three 

Figure 8. Mitochondrial polarization and network in control and NM cells. (A) Representative
images of control (C1) and NM fibroblasts (P1, P2, P3, and P4) stained with MitoTrackerTM Red
CMXRos and visualized under a widefield fluorescence microscope. Nuclei were revealed by DAPI
staining; 100 µM CCCP was used for 4 h as a positive control of mitochondrial depolarization in
control cells. Rounded small mitochondria are marked with white arrows and tubular mitochondria
are marked with green arrows in P3 and P4. Images were taken using a 100× lens and processed
by ImageJ software. Scale bar = 20 µm. (B) Fluorescence quantification of MitoTracker signal. Data
represent the mean ± SD of three separate experiments (at least 100 cells for each condition and
experiment were analyzed). (C) Quantification of tubular and rounded percentages of mitochondria
in control and NM fibroblasts. Data represent the mean ± SD of three separate experiments (at least
100 cells for each condition and experiment were analyzed). (D) Cellular extracts from controls (C1
and C2) and NM patient cell lines P1, P2, P3, and P4 were subjected to immunoblotting analysis.
An SDS polyacrylamide gel was used to separate protein extracts (50 µg), then the samples were
immunostained using antibodies against DRP1, OPA1, and α-tubulin, which was used as a loading
control. (E) Densitometry of the Western blotting. For controls cells (C1 and C2), data are the
mean ± SD of the two control cell lines. Data represent the mean ± SD of three separate experiments.
** p < 0.01, *** p < 0.001 between NM cells and controls; a p < 0.05, aaa p < 0.001 between the presence
and the absence of CCCP. a.u.: arbitrary units.
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Enzyme Expression Levels 

As mitochondrial dysfunction is related to an increase in oxidative stress and reac-
tive oxygen species (ROS) production, we also studied the mitochondrial ROS generation 
by MitoSOX™ and the protein expression levels of antioxidant enzymes. Thus, NM cells 
showed a significant mitochondrial ROS overproduction compared to control cells (Fig-
ure 10A,B). Furthermore, the protein expression levels of cytoplasmic superoxide dis-
mutase (SOD1), mitochondrial superoxide dismutase (SOD2), and glutathione peroxi-
dases (GPX4) were also reduced in NM fibroblasts, suggesting that the enzymatic anti-
oxidant system is downregulated in mutant NM cells (Figure 10C,D). 

Figure 9. Mitochondrial protein expression levels in control and NM cells. (A) Cellular extracts from
controls (C1 and C2) and NM patient cell lines P1, P2, P3, and P4 were subjected to immunoblotting
analysis. An SDS polyacrylamide gel was used to separate protein extracts (50 µg), thens the samples
were immunostained using antibodies against NDUFA9 (complex I), NDUFS4 (complex I), mtND1
(complex I), SDHB (complex II), UQCRC2 (complex III), mtCO2 (complex IV), COX4 (complex IV),
ATP5A (complex V), and VDAC1. α-Tubulin was used as a loading control. (B) Densitometry of the
Western blotting. For controls cells (C1 and C2), data are the mean ± SD of the two control cell lines.
Data represent the mean ± SD of three separate experiments. ** p < 0.01, *** p < 0.001 between NM
and controls cells. a.u., arbitrary units.

Improvement of mitochondrial bioenergetics in mutant cells under LA and LCAR sup-
plementation was also accompanied by a significant restoration of mitochondrial membrane
potential and mitochondrial network morphology (Figure 13A). Furthermore, supplemen-
tation also restored the reduction in the percentages of tubular mitochondria found in NM
cells compared to control cells (Supplementary Figure S7).

In addition, LA and LCAR treatment notably increased mitochondrial protein ex-
pression levels (Figure 14 and Supplementary Figures S8–S11) and significantly reduced
mitochondrial ROS production in NM cells (Supplementary Figure S12), thus confirming
the improvement of mitochondrial function.

3.8. Supplementation with LA and LCAR Corrects RhoA/ROCK Pathway Overactivation

Next, to assess the effect of LA and LCAR on RhoA/ROCK pathway NM fibroblasts,
we determined the expression levels of total RhoA, active RhoA, and downstream proteins
(ROCK1 and pROCK1) in P1 and P3 NM fibroblasts (Figure 15A,B).

Results showed that LA and LCAR individually or in combination reduced the activa-
tion of RhoA and key essential downstream proteins such as pROCK1 both in ACTA1 (P1)
and NEB (P3) fibroblasts.
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Polymerization 

After an initial pharmaceutical screening aiming to identify commercial supple-
ments able to restore actin polymerization patterns in mutant cells, we selected two 
well-known mitochondrial-boosting compounds: LA and LCAR. Treatment with 5 µM 
LA and 10 µM LCAR for 7 days significantly improved actin filament polymerization in 
NM cells (Figure 11A). Thus, supplementation with both compounds separately and in 
combination significantly increased both the percentage of cells with correct actin 
polymerization and the length of the actin filaments in P1, P2, P3, and P4 fibroblasts 
(Figure 11B,C). LA and LCAR concentrations were chosen considering the efficiency in 
recovering actin polymerization in dose–response curve assays (Supplementary Figure 
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Figure 10. Expression levels of ROS and antioxidant enzymes in NM cells. (A) Representative
images of control (C1) and NM fibroblasts (P1, P2, P3, and P4) stained with MitoSOX™ Red and
MitoTrackerTM DeepRed. Nuclei were revealed by DAPI staining. Images were taken under a wide-
field fluorescence microscope using a 40× lens and processed by ImageJ software. Scale bar = 20 µm.
(B) Fluorescence quantification of MitoSOX™ Red signal. Data represent the mean ± SD of three sep-
arate experiments (at least 100 cells for each condition and experiment were analyzed). (C) Cellular
extracts from controls (C1 and C2) and NM patient cell lines P1, P2, P3, and P4 were subjected to
immunoblotting analysis. An SDS polyacrylamide gel was used to separate protein extracts (50 µg),
then the samples were immunostained using antibodies against SOD1, SOD2, and GPX4. α-Tubulin
was used as a loading control. (D) Densitometry of the Western blotting. For control cells (C1 and
C2), data are the mean ± SD of the two control cell lines. Data represent the mean ± SD of three
separate experiments. ** p < 0.01, *** p < 0.001 between NM and controls cells. a.u., arbitrary units.
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blasts, P1 and P2 (mutation in ACTA1) and P3 and P4 (mutation in NEB) stained with rhodamine–
phalloidin. Images were taken using a 40x lens and processed by ImageJ software. Scale bar = 20 
µm. (B) Measurements of the length of actin filaments (𝜇m). The length of the actin filaments was 
measured in triplicate with ImageJ software in 30 images. (C) Percentages of cells with correct actin 

Figure 11. Effect of LA and LCAR on actin polymerization in control and NM cells. Control and NM
fibroblasts were treated with 5 µM LA and 10 µM LCAR individually or in combination (Cocktail) for
7 days. (A) Representative images of treated and untreated (-) control and NM fibroblasts, P1 and P2
(mutation in ACTA1) and P3 and P4 (mutation in NEB) stained with rhodamine–phalloidin. Images
were taken using a 40× lens and processed by ImageJ software. Scale bar = 20 µm. (B) Measurements
of the length of actin filaments (µm). The length of the actin filaments was measured in triplicate
with ImageJ software in 30 images. (C) Percentages of cells with correct actin polymerization. Three
counts of 100 cells per sample were performed. ** p < 0.01 between NM and control cells; a p < 0.05,
aa p < 0.01 between untreated (-) and treated NM cells.
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respiratory capacity were determined in controls (C1 and C2) and NM fibroblasts (P1 and P3) by 
using the Seahorse analyzer and normalized to 15,000 cells as described in the Material and 
Methods. (A) Corresponding with P1; (B) corresponding with P3. Data represent the mean ± SD of 
three separate experiments. *** p < 0.001 between NM and controls cells; aa p < 0.01, aaa p < 0.001 be-
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Figure 12. Effect of LA and LCAR on bioenergetics of control and NM fibroblasts. Control (C1) and
NM fibroblasts (P1 and P3) were treated (+) with 5 µM LA and 10 µM LCAR individually or in
combination for 7 days. Basal and maximal respiration, mitochondrial ATP production, and spare
respiratory capacity were determined in controls (C1 and C2) and NM fibroblasts (P1 and P3) by
using the Seahorse analyzer and normalized to 15,000 cells as described in the Material and Methods.
(A) Corresponding with P1; (B) corresponding with P3. Data represent the mean ± SD of three
separate experiments. *** p < 0.001 between NM and controls cells; aa p < 0.01, aaa p < 0.001 between
untreated (−) and treated NM cells.
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cells. Control (C1) and NM fibroblasts (P1, P2, P3, and P4) were treated (+) with 5 μM LA and 10 μM 
LCAR individually or in combination (Cocktail) for 7 days. (A) Representative images of untreated 
and treated control (C1) and NM fibroblasts (P1 and P2) stained with MitoTrackerTM Red CMXRos, 
an in vivo mitochondrial membrane-potential-dependent probe. Images were taken using a 40x 
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Figure 13. Effect of LA and LCAR on mitochondrial polarization and network in control and NM
cells. Control (C1) and NM fibroblasts (P1, P2, P3, and P4) were treated (+) with 5 µM LA and 10 µM
LCAR individually or in combination (Cocktail) for 7 days. (A) Representative images of untreated
and treated control (C1) and NM fibroblasts (P1 and P2) stained with MitoTrackerTM Red CMXRos,
an in vivo mitochondrial membrane-potential-dependent probe. Images were taken using a 40×
lens and processed by ImageJ software. Scale bar = 20 µm. (B–E) Fluorescence quantification of
MitoTracker signal. Data represent the mean ± SD of three separate experiments (at least 100 cells for
each condition and experiment were analyzed). ** p < 0.01 between NM and controls cells; aa p < 0.01
between untreated (−) and treated NM cells. a.u.: arbitrary units.
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and NM patient cell lines P1 and P2 were subjected to immunoblotting analysis. (B) Cellular ex-
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An SDS polyacrylamide gel was used to separate protein extracts (50 µg), then the samples were 
immunostained using antibodies against NDUFA9, SDHB, UQCR2, Mt-CO2, ATP5F1A, VDAC, 
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Supplementary Figures 8–11). 

3.8. Supplementation with LA and LCAR Corrects RhoA/ROCK Pathway Overactivation 
Next, to assess the effect of LA and LCAR on RhoA/ROCK pathway NM fibroblasts, 

we determined the expression levels of total RhoA, active RhoA, and downstream pro-
teins (ROCK1 and pROCK1) in P1 and P3 NM fibroblasts (Figure 15A,B). 

Results showed that LA and LCAR individually or in combination reduced the ac-
tivation of RhoA and key essential downstream proteins such as pROCK1 both in ACTA1 
(P1) and NEB (P3) fibroblasts. 

Figure 14. Effect of LA and LCAR on mitochondrial protein expression levels in control and NM
cells. Control (C1) and NM fibroblasts (P1, P2, P3, and P4) were treated with 5 µM LA and 10 µM
LCAR individually or in combination (Cocktail, CK) for 7 days. (A) Cellular extracts from control
and NM patient cell lines P1 and P2 were subjected to immunoblotting analysis. (B) Cellular
extracts from control and NM patient cell lines P3 and P4 were subjected to immunoblotting analysis.
An SDS polyacrylamide gel was used to separate protein extracts (50 µg), then the samples were
immunostained using antibodies against NDUFA9, SDHB, UQCR2, Mt-CO2, ATP5F1A, VDAC,
OPA1, and DRP1. α-Tubulin was used as a loading control. (Densitometry of the Western blotting
Supplementary Figures S8–S11).
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lines. Data represent the mean ± SD of three separate experiments. * p < 0.05, ** p < 0.01 between 
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Figure 15. Effect of LA and LCAR on RhoA/ROCK pathway activation in control and NM cells.
Control (C1) and NM fibroblasts (P1 and P2) were treated with 5 µM LA and 10 µM LCAR individually
or in combination for 7 days. (A) Cellular extracts from control and NM patient cell lines P1 and
P2 were subjected to immunoblotting analysis. An SDS polyacrylamide gel was used to separate
protein extracts (50 µg), then the samples were immunostained using antibodies against RhoA, active
RhoA purified by Active Rho Detection Kit as described in the Material and Methods, ROCK1,
phospho-ROCK1, and α-tubulin, which was used as a loading control. (B) Densitometry of the
Western blotting. For controls cells (C1 and C2), data are the mean ± SD of the two control cell lines.
Data represent the mean ± SD of three separate experiments. * p < 0.05, ** p < 0.01 between treated
and untreated (-) cells. a p < 0.05, aa p < 0.01, aaa p < 0.001 between untreated (-) and treated NM cells.
a.u.: arbitrary units.

4. Discussion

Nemaline myopathy (NM) encompasses a large spectrum of rare genetic myopathies
characterized by hypotonia, weakness, and depressed or absent deep tendon reflexes.
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Histology examination of muscle biopsy typically shows the presence of nemaline rods.
In this work, we explored the pathophysiological alterations in NM using patient-derived
fibroblasts carrying ACTA1 and NEB mutations. Mutant fibroblasts manifest alterations in
actin filament polymerization associated with mitochondrial dysfunction. In addition, we
identified two compounds, linoleic acid (LA) and L-carnitine (LCAR), that restored actin
polymerization and corrected bioenergetics deficiency in both ACTA1 and NEB mutant
fibroblasts. Actin is a highly conserved and extensively distributed protein which is
involved in many different biological processes and is essential to the cytoskeleton. Actin
is involved in cell migration, cell division, and organelle transport in addition to giving
the cell structural support [34,35]. Actin’s role was first described in muscle contraction in
1942 by A. Szent-Györgyi [36]. Actin is found in two different forms: G-actin and F-actin.
Specifically, G-actin is the globular monomeric actin that polymerizes to form filamentous
F-actin [37].

Specifically, higher mammals express six different isoforms of actin [38]. There are
groups of structurally related genes with highly homologous nucleotide sequences that
share a common precursor code for different isoforms of actin [39]. Actin isoforms differ
by four amino acid residues localized at positions 1, 2, 3, and 9 of the N-terminus [38]. Six
human actin genes, α-skeletal (ACTA1), α-cardiac (ACTC1), α-smooth muscle (ACTA2), γ-
smooth muscle (ACTG2), β-cytoplasmic (ACTB), γ-cytoplasmic (ACTG1)—are localized on
the different chromosomes [40]. The seventh actin isoform, β-actin-like protein 2 (ACTBL2),
has been recently identified. It is a member of the non-muscle actin class, along with γ-
and β-cytoplasmic actins, but its expression is extremely low [41]. Cytoplasmic actins are
expressed in mammalian cells in various proportions [42]. In particular, cytoplasmic β-
and γ-actins are the isoforms mainly expressed in fibroblasts. However, it is well known
that actin isoforms can act redundantly [43–45]. For example, Tondeleir et al. demonstrated
that impaired migration of mouse embryonic fibroblasts caused by ablation of the β-actin
isoform can be restored by an upregulation of α- and γ-actin isoforms, suggesting that these
isoforms can work redundantly and thus compensate for each other’s loss [45]. Moradi et al.
also showed how depletion of each actin isoform (α-actin, β-actin, or γ-actin) might induce
a compensatory upregulation of other isoforms in motor neurons [43].

Specifically, in our study we have shown that ACTA1 mutant fibroblasts (P1, P2) had
reduced levels of both gene expression of the ACTA1 gene and α-actin protein expression
levels compared to control cells (Figures 1, 3 and 4A). However, both ACTA1 and NEB
fibroblasts showed defects in actin filament polymerization (Figure 5) and increased protein
expression levels of the β-actin isoform in comparison with control cells (Figure 3C,D).
Therefore, as has been previously described, a compensatory effect of actin isoforms could
be occurring in the case of our mutant cells. The elevated protein expression levels of
β-actin shown by mutant cells compared to control could be acting as a compensatory
mechanism to correct the defects in actin filament polymerization presented by ACTA1
and NEB mutant fibroblasts.

On the other hand, nebulin (NEB) is a giant filamentous protein with a size from
600 to 900 kDa that is an essential part of the thin filament in skeletal muscle. Many
of its functions are still mostly unknown due to its size and the difficulty in obtaining
nebulin in its native state from muscle [46]. However, nebulin is crucial in the regulation
of actin filament length, the interaction between actin and myosin, myofilament calcium
sensitivity, and, consequently, in the control of muscle contraction. Particularly, in our
study we have shown that NEB mutant fibroblasts (P3, P4) had reduced levels of both gene
expression of the NEB gene and nebulin protein expression levels compared to control cells
(Figures 2 and 4B). Curiously, NEB transcript levels in ACTA1 mutant cells (P1, P2) were
significantly higher than the expression levels shown by control cells (Figure 4B). Numerous
previously published studies have demonstrated that there is a strict regulation between
actin and nebulin. Specifically, nebulin expression is modified by α-actin mutations, nebulin
may appear altered as a result of a primary defect in α-actin that severely disrupts the
sarcomeric thin filament, and, additionally, the binding of nebulin to F-actin may also
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be affected by nebulin mutations [26,47,48]. Therefore, our results suggest that NEB
overexpression in ACTA1 mutant cells (P1, P2) may be acting as a compensation mechanism
for defects in ACTA1, due to the important role nebulin plays in regulating the length of
and stabilizing actin filaments.

In our study, we have demonstrated for the first time that both actin alpha 1 (ACTA1)
and nebulin (NEB) are expressed in dermal fibroblasts, allowing the investigation of patho-
logical alterations induced by mutant proteins in an easy-to-use cellular model. In addition,
both proteins indeed participate in actin filament polymerization in dermal fibroblasts since
both mutant proteins ACTA1 and NEB caused defects in actin polymerization in NM cells.

One interesting finding in our work is that NM-patient-derived fibroblasts exhib-
ited alterations in mitochondrial network morphology associated with downregulation
of the expression levels of mitochondrial proteins and deficient mitochondrial bioener-
getics, suggesting a marked mitochondrial dysfunction. Mitochondria are organelles that
undergo dynamic changes through fission (division into two or more independent or-
ganelles) and fusion (formation of a single structure) events, biogenesis, and mitophagy
(clearance of damaged organelles) [49,50]. Referred to as mitochondrial quality control,
these processes regulate the number, shape, and turnover of mitochondria, respectively [51].
In mammalian cells, dynamin-related protein 1 (DRP1), mitofusin 1 (MFN1), mitofusin
2 (MFN2), and optic atrophy protein 1 (OPA1) regulate the adaptive alterations known
as mitochondrial fusion and fission cycles [52]. It has been observed that mitochondrial
fission is a prerequisite for mitophagy and contributes to mitochondrial apoptosis, whereas
mitochondrial fusion enhances mitochondrial metabolism [53]. Mitophagy removes se-
lectively old or dysfunctional mitochondria through sequestration and engulfment for
the subsequent lysosomal degradation [54] and it is also enhanced by different stresses,
such as oxidative damage, hypoxia, mitochondrial depolarization, or mitochondrial DNA
damage [55,56]. Accumulating evidence reveals that mitophagy is necessary to preserve
skeletal muscle plasticity by controlling mitochondrial biogenesis turnover, and mitochon-
drial proteostasis [57,58], in order to increase mitochondrial activity and remodeling during
early myogenic differentiation [59–61].

Is well known that actin polymerization is crucial for mitochondrial function. Specifi-
cally, mitochondrial fission is stimulated by actin polymerization from the endoplasmic
reticulum via formin INF2, while other forms of mitochondrial fission are dependent on
actin polymerization that is mediated by the Arp2/3 complex [62]. Actin can both pro-
mote and impede mitochondrial motility. More investigation is necessary to understand
the precise mechanisms, as the parameters governing actin’s mitochondrial localization
during these processes remain poorly known. Investigations are also being conducted on
the entry of actin nucleators and other actin-binding proteins into mitochondria during
actin-dependent activities [62].

Cytoskeletal components, particularly microtubules and F-actin, work collaboratively
to control the morphology, mitophagy, and fission/fusion mitochondrial processes in
response to extracellular stimuli or stressors [63]. Mitochondrial motility is also dependent
on the coordinated action of cytoskeletal elements, especially microtubules and F-actin,
which distribute and anchor the organelles to the proper locations within the cell [64].
Specifically, it has been proposed that changes to the cytoskeleton may affect mitochondria,
leading to functional modifications in the organelle. The primary role of mitochondria
in cells is energy production, which is closely correlated with the regulation of their
morphology, organization, and distribution by the cytoskeleton [65]. Thus, cytoskeletal
abnormalities of actin polymerization in NM can subsequently lead to impairments in
mitochondrial respiration, thereby accelerating disease progression.

The process of mitochondrial fission involves the formation of ring-shaped DRP1
oligomers on the outer membrane of the mitochondria, which are then constricted by
hydrolysis [66]. In order to facilitate the subsequent recruitment of dynamin-2, which
coordinates membrane scission, DRP1 rings tighten and constrict mitochondria [67]. Never-
theless, in order to reduce their cross-sectional diameter, mitochondria must first go through
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a pre-constriction step because they are frequently thicker than DRP1 rings. Endoplasmic
reticulum (ER) tubules are wrapped and tightened around mitochondria to produce this
pre-constriction. Growing evidence points to actin polymerization as the primary force
behind the ER’s bending around the mitochondria [68,69].

In addition, F-actin at Mito/ER contacts may prime DRP1 to form functional oligomers
on the mitochondrial outer membrane [70]. DRP1 activity is greatly increased in the
presence of actin filaments, according to in vitro GTPase assays [70]. These findings sug-
gest that filamentous actin is an important regulator of inner and outer mitochondrial
membrane fission.

Moreover, the actin cytoskeleton controls the movement of mitochondria in simple
eukaryotes like budding yeast [71] and is necessary for the accurate inheritance of mitochon-
dria during cytokinesis [72]. Microtubules in metazoans are responsible for coordinating
long-distance mitochondrial movement, but the actin cytoskeleton is also involved in regu-
lating mitochondrial distribution, coordinating anchoring, and coordinating short-distance
mitochondrial motility [63].

Furthermore, the expression and maintenance of mtDNA are significantly influenced
by the actin cytoskeleton [73]. The mammalian mitochondrial DNA genome (mtDNA) con-
tains 37 genes organized in compact DNA:protein complexes known as nucleoids [74,75],
whose expression requires a precise coordination with the nuclear genome [76]. In yeast,
the ER–mitochondria encounter structure (ERMES) complex controls the stability and
arrangement of mtDNA in nucleoids in an actin-dependent way [77]; in mammals, the
distribution, division, and active transport of mitochondrial nucleoids by microtubules
are regulated by mitochondria endoplasmic reticulum contact sites (MERCs), which are
spatially linked to these nucleoids [78]. Further, recent super-resolution microscopy-based
studies probed the existence of β-actin-containing structures within the mitochondrial
matrix [79].

Additionally, altered mtDNA mass and nucleoid organization, as well as stress induced
by a reduction in mitochondrial membrane potential (∆Ψ), were more common in β-actin-
deficient human cells, suggesting a regulatory role for β-actin in mtDNA transcription and
quality control [80]. In addition to actin, myosin II has also been associated with isolated
mitochondrial nucleoids, and its silencing results in mtDNA alterations [73]. These data
support the role of actin and actin-binding proteins in mitochondrial nucleoid segregation
and mtDNA transcription and preservation, likely through formation of a “mitoskeleton”
network supporting mtDNA inheritance.

Additionally, the complete activation of metabolic pathways that subsequently control
mitochondrial function depends on actin filaments. For example, direct binding of gly-
colytic enzymes like glyceraldehyde phosphate dehydrogenase or aldolase to F-actin can
activate them [81]. Interestingly, actin regulates cytochrome c retention between respiratory
chain complexes III and IV in brain mitochondria via direct association with both com-
plexes, and inhibition of actin polymerization with cytochalasin b increased mitochondrial
respiration via increased complex IV activity [82]. Recently, proteomic analysis using
NEB [83] and ACTA1 [84] mouse models showed alterations in several cellular processes
and functions, including mitochondrial dysfunction and changes in energetic metabolism
and stress-related pathways. Abnormal mitochondrial distribution, reduced mitochondrial
respiratory function, increased mitochondrial membrane potential, and abnormally low
ATP content were all revealed by structural and functional studies.

In our work, we have also identified two compounds, LA and LCAR, that by improv-
ing mitochondrial bioenergetics were able to restore actin polymerization.

LA is a carboxylic acid composed of 18 carbon atoms and three cis double bonds
(18:2ω6). It is an essential fatty acid required by the human body and must therefore be
consumed through the diet [85,86]. Pharmacological studies have shown that LA has a
wide range of pharmacological effects such as anti-metabolic syndrome, anti-inflammatory,
anti-cancer, antioxidant, neuroprotection, and the regulation of the intestinal flora [87–89].
LA is a major component of cardiolipin (CL), which is a specific inner-mitochondrial
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membrane phospholipid that is important for optimal mitochondrial function including
respiration and energy production [90]. Furthermore, this phospholipid participates in mor-
phology and stability of mitochondrial cristae, fission- and fusion-mediated mitochondrial
quality control and dynamics, mitophagy, mitochondrial biogenesis and protein import,
and multiple mitochondrial steps of the apoptotic process [90]. CL is particularly prone
to peroxidation, an event that may affect many CL-dependent reactions and processes,
due to its high content of unsaturated fatty acids and its location in the IMM near elec-
tron transport chain (ETC) complexes, the main sites of reactive oxygen species (ROS)
production [91–93]. Furthermore, oxidized CL accumulation in the OMM serves as an
important signaling platform during the apoptotic process, resulting in the opening of the
mitochondrial permeability transition pore (mPTP) and the release of cytochrome c (cyt c)
from mitochondria to the cytosol [94,95].

Specifically, CL and its LA content are known to be positively associated with cy-
tochrome c oxidase (COX) activity [96], thereby making this lipid molecule an essential
factor related to mitochondrial health and function. Structural studies have shown that
CL is important for stabilization (i.e., the assembly of complex subunits) of mitochondrial
oxidative phosphorylation (OXPHOS) complex I (CI), complex II (CII), complex III (CIII),
and complex IV (CIV) [97–100]. On the other hand, a decrease in CL levels by low dietary
intake of LA promotes the disassembly of these mitochondrial OXPHOS complexes [101].
In contrast, an LA-enriched diet increased mitochondrial CL and OXPHOS protein lev-
els [102]. Additionally, it was recently discovered that cardiolipin is necessary for the
respiratory chain to organize into supramolecular assemblies [103]. Furthermore, incuba-
tion of cells with different concentrations of LA led to a dose- and time-dependent increase
in cardiolipin levels [104].

It is possible that supplementing with LA by raising cardiolipin levels will have a ben-
eficial effect on the activity of many different mitochondrial proteins and enzymes, such as
the complexes involved in oxidative phosphorylation (OXPHOS) and the electron transport
chain (ETC), thereby enhancing mitochondrial dynamics and function. Furthermore, LA
stimulates mitochondrial biogenesis signaling by the upregulation of PPARγ coactivator
1α (PGC-1α) in C2C12 cells [105].

In addition to its cardiolipin-dependent actions, LA also promotes an increase in fascin
expression, an actin crosslinker globular protein that generates actin bundles built of paral-
lel actin filaments, which mediate formation and stability of cellular protrusions including
microspikes, stress fibers, membrane ruffles, and filopodia [106]. Accordingly, LA is found
to promote phagocytic cup formation and membrane ruffling along with cytoskeletal reor-
ganization in microglia [107]. Furthermore, LA has many effects on cytoskeleton proteins
in general and actin filaments in particular. For instance, it has been observed that LA
promotes cell migration by modulating the microtubule dynamics and actin cytoskeleton
remodeling at the forefront of the cell by formation of lamellipodia [108]. Moreover, LA
may activate the RhoA/ROCK pathway and, therefore, may facilitate actin polymerization.
Thus, it has been shown that LA increased intercellular adhesion molecule 1 (ICAM-1)
expression and phosphorylation of ROCK and myosin phosphatase target subunit 1 (MYPT-
1), a distal signal of ROCK [109]. However, the direct effect of LA supplementation on the
RhoA/ROCK pathway in NM cellular models needs further investigation.

On the other hand, LCAR is an available dietary supplement which is required for the
translocation of fatty acids into the mitochondrial compartment for β-oxidation [110,111].
LCAR also has the potential to increase mitochondrial biogenesis by increasing the gene
expression of various mitochondrial components and maintaining their function by supply-
ing their respective substrates and protecting them from insults such as the accumulation
of toxic products or reactive radicals [112,113]. Therefore, LCAR as a natural compound
that can enhance cellular energy transduction may have therapeutical potential in NM.
Studies in recent years have demonstrated the protective effects of LCAR treatment on
mitochondrial functions [113]. Consistent with this hypothesis, a premature boy with a con-
genital form of nemaline myopathy due to mutation in the ACTA1 gene showed decreased
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LCAR levels in the eighth week of life. After sufficient oral LCAR substitution he improved
gradually [114]. Furthermore, LCAR ameliorates congenital myopathy in a tropomyosin
3 de novo mutation transgenic zebrafish [115]. In addition, LCAR significantly reduced
statin-induced myopathy [116] and skeletal muscle atrophy in rats [117]. Moreover, LCAR
improved exercise performance in human patients with mitochondrial myopathy [118]
and may prevent age-associated muscle protein degradation and regulate mitochondrial
homeostasis [119].

During cycles of actin assembly and disassembly, actin monomers polymerize into
filaments in an adenosine-triphosphate (ATP)-bound state, and the polymerization of actin
is followed by the irreversible hydrolysis of ATP to adenosine diphosphate (ADP) and
phosphate (6). Thus, in eukaryotic cells, the actin cytoskeleton’s turnover between its
monomeric and filamentous forms is an ATP-dependent process and a significant energy
drain. For this reason, it is not surprising that lower ATP levels slow actin polymerization
since ATP is essential for actin polymerization. Reduced ATP levels most likely cause
an abundance of ADP-G-actin versus ATP-G-actin. The lower actin polymerization rate
observed in the ATP-deficient cells may be explained by the fact that ADP-G-actin polymer-
izes at a substantially slower rate than ATP-G-actin [120,121]. Actin filament assembly and
dynamic behavior are mediated in large part by binding with ATP and ATP hydrolysis.

In addition, RhoA activity, which regulates actin polymerization, decreased in parallel
with the concentration of ATP and GTP during depletion by mitochondrial inhibitors and
recovered rapidly when cells were returned to normal culture conditions [122], suggesting
that ATP and GTP levels modulate RhoA activation.

In this regard, mitochondrial dysfunction in NM cells may cause ATP deficiency and
aggravate the impairment of actin polymerization. LCAR and/or LA supplementation
may boost mitochondrial ATP formation and consequently may facilitate actin filament
formation by increasing actin monomers bound to ATP and RhoA activation by increasing
GTP levels.

5. Conclusions

In conclusion, our findings demonstrate that fibroblasts derived from NM patients are
useful cellular models to achieve a better understanding of the disease and to evaluate the
effectiveness of pharmacological compounds. Furthermore, we confirm the close relation-
ship between actin cytoskeleton and mitochondrial function. Supplementation with LA
or/and LCAR was able to restore actin polymerization and correct mitochondrial dysfunc-
tion in NM cells. Further studies are required to assess the benefit of both compounds in
sarcomere organization and skeletal muscle contraction. Patient-derived cellular models
may complement ACTA1 and NEB mouse and zebrafish models and enable the evaluation
of genomic or pharmacological therapies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox12122023/s1, Figure S1: Expression level of cytoskeletal
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