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Abstract 

 This paper presents a procedure to add broader diversity at the beginning of the evolutionary 

process. It consists of creating two initial populations with different parameter settings, evolving them for 

a small number of generations, selecting the best individuals from each population in the same proportion 

and combining them to constitute a new initial population. At this point the main loop of an evolutionary 

algorithm is applied to the new population. The results show that our proposal considerably improves 

both the efficiency of previous methodologies and also, significantly, their efficacy in most of the data 

sets. We have carried out our experimentation on twelve data sets from the UCI repository and two 

complex real-world problems which differ in their number of instances, features and classes. 
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1. Introduction 

Maintaining diversity in early generations is a crucial task in evolutionary 

algorithms (EAs) because it can affect not only the convergence speed but also the 

quality of the final solution. A diverse population is preferable at the beginning of the 
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algorithm and a more condensed one at the end of the search (Maaranen, Miettinen, & 

Mäkelä, 2004). However, to date the issue of population initialization has received 

surprisingly little attention in EA literature while, on the other hand, the topic of 

operators and the representation of individuals has been amply covered. On a lower 

abstraction level, we must think about how the individuals that constitute the population 

are generated. In most cases, as in this paper, in evolutionary computation (EC) a 

pseudo-random number generator is employed, although it is often expressed as “the 

population is generated randomly”; the idea behind this kind of generators is to obtain a 

set of values that imitates a random sequence (Maaranen, Miettinen, & Penttinen, 

2007). 

Another question, associated with diversity throughout the evolutionary process, is: 

does it create only one population or various populations? The issue of generating 

various populations has also been discussed previously. Wang et al. (Wang, Zheng, & 

Tang, 2002) present the idea that some populations undergo the application of different 

mutation operators; next, all the individuals are mixed and split into several populations, 

each then undergoing the application of yet another mutation operator. In (De Garis, 

1990), an iterative scheme with several fitness functions is proposed, so that the 

population evolves by means of a GA using the first fitness function, then the resulting 

population is employed as the current population in a GA that uses the second fitness 

function and so on. Generally, the populations explore several areas in the search space 

by means of different seeds. The number of populations may vary and there is no single 

common accepted value.  

In the context of artificial neural networks (ANNs), our proposal, which will be 

described in detail in continuation, diversifies the architecture of the neural network at 

the beginning of the evolutionary process. The first stage consists of creating two 

populations with different features (the maximum number of nodes in the hidden layer, 

so the topology will be different), evolving them with identical parameter values of the 

EA, for a small number of generations, selecting the best individuals from each 

population in the same proportion and combining them to constitute a new population. 

In the second stage, the main loop of the standard EA used will be applied to the new 

population. In this way, the population has wider diversity due to the different 

topologies found in the neural networks. The initial short training leads to random 

individuals to explore possible promising areas in two directions, since there are two 

different populations. After that, individuals with different topologies coexist and the 
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more suitable ones will remain. To be coherent with our previous work (Tallón-

Ballesteros, Gutiérrez-Peña, & Hervás-Martínez, 2007) we have used two populations 

in the first phase that will be merged into one. In this way we can better analyse 

previous and current performances. We will compare the accuracy, complexity and 

efficiency of two previous experiments with a current one for all the problems under 

consideration. 

The issue of diversity is very important in EC. Evolution, by definition, requires 

diversity, which refers to the (genetic) variation in population members (Amor & 

Rettinger, 2005; Heitkoetter & Beasley, 2001). Diversity is valuable since new areas of 

the search space are explored, without which the search could remain trapped in a local 

optimum (Chop & Calvert, 2005). Actually a high diversity implies that the population 

covers a larger part of this space (Ursem, 2002). A common view of the evolutionary 

process is that diversity enhances the performance of a population by providing more 

opportunities for evolution. A homogeneous population offers no advantage for 

improvement as the entire population is focused in a particular portion of the search 

space. By contrast, a diverse population will simultaneously sample a large area of 

search space, providing the opportunity to locate different, potentially better, solutions 

(Curran & O’Riordan, 2006). Diversity can be considered at different stages, basically 

in the first steps of evolution or throughout the evolutionary phase. This paper focuses 

on the former, although there are several papers that consider the latter. A great deal of  

research has established diversity as a target to promote, maintain or reintroduce into 

evolving populations of solutions in order to achieve maximum performance (Curran & 

O’Riordan, 2006). In Amor & Rettinger (2005), there are some references to studies 

referring to the above aspects. As previously mentioned, diversity can be considered in 

the evolutionary stage. For instance, with respect to the selection stage, rank scaling 

(Goldberg, 1989) is a sample. In the replacement phase, several proposals have been put 

forward, like the hybrid replacement scheme proposed by Lozano et al. (Lozano, 

Herrera, & Cano, 2008) or crowding methods (Mahfoud, 1995). High diversity does not 

imply better GA performance; this is closely related to the question of exploration 

versus exploitation, but enforcing diversity in the early phases of evolution ensures a 

broad exploration of the search space (Amor & Rettinger, 2005). 

Our objective is to improve the efficiency (measured by means of the number of 

evaluations) and efficacy, if possible, of the previous models that have been employed 

to date by us. The training of databases, which have different numbers of patterns, 
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features and classes, is dealt with by means of ANNs to evaluate the methodology 

proposed. The computational cost is very high if EAs with different parameter settings 

are employed for the training of the above-mentioned networks. It is convenient to 

change the usual way of generating network models and, thus obtain enough diverse 

ones with respect to the architecture in the first generations of the evolution. So, instead 

of using the methodology in (Martínez-Estudillo, Martínez-Estudillo, Hervás-Martínez, 

& García-Pedrajas, 2006) that consists of generating 10*N neural networks randomly 

with a maximum fixed number of nodes in the hidden layer, sorting them according to 

their fitness and choosing the best N ones to constitute the initial population, we present 

the idea of creating two populations. Each population has a different maximum number 

of nodes in the hidden layer, and is evolved for a small number of generations in order 

to subsequently merge the best half of individuals of each one into a single population; 

then we apply the standard evolution process of the EA employed to date for 

classification by means of product unit neural networks (PUNN) (Martínez-Estudillo, 

Hervás-Martínez, Gutiérrez-Peña, Martínez-Estudillo, & Ventura-Soto, 2006). 

In this way, the training time will be reduced because the population will be much 

more diverse. Moreover it will not be necessary to apply the full evolutionary process to 

some populations with different numbers of nodes in the hidden layer. Only there is 

more than one population in the first step of the evolution; next we merge individuals 

with different topologies into one. This methodology is more recommendable in the 

case of data sets with a great number of patterns, given that the processing time is very 

high for a complete configuration with a reasonable number of iterations for a proper 

number of generations. Logically, it is not usual to carry out experiments with a single 

configuration but with a number of them, resulting in a computationally-intensive 

procedure. The advantage of our proposal is that all individuals do not present a fixed 

architecture, but a flexible topology between two possible ones. The performance will 

not be so dependent on parameter tuning, in the sense that the maximum number of 

hidden nodes in an individual can fluctuate between two user-defined values over the 

course of the evolution.  

  Several runs of the algorithm have been performed to smooth the stochastic 

character of the EAs using mean values in order to complete a statistical analysis of the 

results obtained. After presenting the results and the number of EA evaluations with 

both earlier and current methodologies, there will be an analysis to determine whether 

the performance of the solutions improves quality-wise with respect to the Correct 
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Classification Ratio (CCR) obtained with our previous methodology, and if the 

complexity with respect to the number of connections does as well. In order to do this, 

statistical tests will be used to compare the mean performances of the CCR and the 

mean number of connections obtained with both the proposed methodology and the 

standard method. Finally, there will be a comparison of both methodologies, that use 

PUNN, and other techniques that employ neural networks based on sigmoidal and radial 

basis functions. There is also a general review of the results obtained with other neural 

networks or classical/modern machine learning approaches. 

This paper is organized as follows: Sect. 2 describes some concepts about PUNN 

and the EA; Sect. 3 presents the description of our proposal; Sect. 4 details the 

experimentation process; then Sect. 5 shows and analyzes the results obtained; finally, 

Sect. 6 states the concluding remarks. 

2. Methodology 

2.1. Product unit neural networks 

Many different types of neural network architectures have been used, but the most 

popular one has been the single-hidden-layer feed-forward network. Amongst the 

numerous algorithms for training neural networks in classification problems, our 

attention focuses on evolutionary artificial neural networks (EANNs). EANNs have 

been a key research area in the past decade providing an improved platform for 

optimizing network performance and architecture (number of hidden nodes and number 

of connections) simultaneously.  

Up to now, designing topologies is still very much a human expert’s job. It depends 

heavily on expert experience and a tedious trial-and-error process. There is no 

systematic way to automatically design a near-optimal architecture for a given task 

(Yao, 1999). Design of the optimal architecture for an ANN can be formulated as a 

search problem in the architecture space where each point represents one. Given some 

performance (optimality) criteria, e.g., lowest training error, lowest network complexity 

based on the number of connections, etc., about topologies, the performance level of all 

of them forms a discrete surface in the space. The optimal topology design is equivalent 

to finding the highest point on this surface (Yao & Liu, 1997). 

Miller et al. (Miller, Toddm, & Hegde, 1989) proposed that EC was a very good 

candidate for searching the space of architectures because the fitness function associated 
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with that space is complex, noisy, non-differentiable, multi-modal and deceptive. Since 

then, many evolutionary programming methods have been developed to evolve ANNs, 

for instance, those by (Yao & Liu, 1997) and (Yao, 1999). 

The methodology employed here consists of the use of an EA as a tool for learning 

the architecture and weights of a PUNN model (Martínez-Estudillo, Martínez-Estudillo, 

Hervás-Martínez, & García-Pedrajas, 2006; Martínez-Estudillo, Hervás-Martínez, 

Gutiérrez-Peña, Martínez-Estudillo, & Ventura-Soto, 2006). This class of multiplicative 

neural networks comprises such types as sigma-pi networks and product unit networks. 

Some of the advantages of PUNN are increased information capacity and the ability to 

form higher-order combinations of inputs (Durbin & Rumelhart, 1989). Besides that, it 

is possible to obtain upper bounds of the Vapnik-Chervonenkis dimension of PUNN 

similar to those obtained for sigmoidal neural networks (Schmitt, 2001). Finally, it is a 

straightforward consequence of the Stone-Weierstrass Theorem to prove that PUNN are 

universal approximators (Martínez-Estudillo, Martínez-Estudillo, Hervás-Martínez, & 

García-Pedrajas, 2006). Despite these advantages, product-unit based networks have a 

major drawback. Networks based on product units (PUs) have both more local minima 

and more probability of becoming trapped in them (Ismail & Engelbrecht, 2000). The 

main reason for this difficulty is that small variations in the exponents can cause large 

changes in the total error surface.  

Several efforts have been made to carry out learning methods for PUs. Janson and 

Frenzel (1993) developed a GA for evolving the weights of a network based on PUs 

with a predefined architecture. The major problem with this kind of algorithm is how to 

obtain the optimal architecture before-hand (Ismail & Engelbrecht, 2000). 

Unfortunately, up to the present, the problem of designing a near optimal ANN 

architecture for an application remains unsolved. Abraham (2004) presents MLEANN 

(meta-learning EANN), an adaptative computational framework based on evolutionary 

computation for automatic design of optimal ANNs. However, this paper defines two 

types of experiments, and it is necessary to supply the number of hidden nodes as a 

user-specified parameter. The first one is more flexible, in the sense that the topology is 

indicated with a number of hidden nodes that ranges between 5 and 16. The 

disadvantage of using an EA in the training of PUNN is that the processing time could 

be too great with respect to the dimension of the features’ space and to the number of 

classes in a concrete classification problem under consideration. Thus, our proposal tries 

to ease and speed up the way of finding a good topology regarding previous works. So, 
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it does not define a fixed architecture, but one that combines individuals that present 

two different values of hidden nodes. 

Fig. 1 shows the structure of a PUNN model for a bi-classification problem; this is 

a three-layer architecture, that is, k nodes in the input layer, m ones and a bias one in the 

hidden layer and one node in the output layer. The topologies will be indicated by 

means of the numbers of nodes in each layer from input to output given as a sequence: 

Number of inputs: number of nodes in the hidden layer: number of nodes in the output 

layer. So, in Fig. 1 we have a k:m:1 architecture.  
 

Fig. 1. Structure of a PUNN model for a bi-classification problem. 

 

The transfer function of each node in the hidden and output layers is the identity 

function. Thus, the functional model obtained by each of the nodes in the output layer is 

given by: 
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2.2. Evolutionary algorithm 

We use an EA to design the structure and learn the weights of PUNN. The search 

begins with a random initial population and, for each iteration, the population is 

modified using a population-update algorithm. The population is subjected to the 

operations of replication and mutation. Crossover is not used due to its potential 

disadvantages in evolving artificial networks (Angeline, Saunders, & Pollack, 1994; 

Yao & Liu, 1997). With these features the algorithm falls into the class of evolutionary 

programming. We have a classification problem and the general scheme of the EA is the 

following: 
 

Fig. 2. Pseudocode of the EA. 

 

Next, we are going to explain the main aspects of the EA: 

1) Notation, data, input and output parameters and variables 

We have indicated the keywords in boldface and the functions in italics. Comments 

are preceded by a double-slash (//). The necessary data is a training set with the 

instances of a classification problem. The main parameters of the EA are the maximum 

number of generations (gen) and the number of nodes in the hidden layer (neu). The 
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remaining parameters will be described further on. At the end of the EA, it returns the 

best PUNN model with neu nodes in the hidden layer. The variables used are the 

number of the current generation (t), the last generation (last_generation) and two 

arrays, one with the individuals of the evolving population and the other with the fitness 

of each individual. 

 

2) Representation of the individuals 

Regarding the representation of individuals, the EA treats the population like a set 

of PUNN models. An object-oriented approach has been adopted and the algorithm 

deals directly with the ANN phenotype. Each connection is specified by a binary value 

indicating if the connection exists, and a real value representing its weight. As the 

crossover is not considered, this object-oriented representation does not assume a fixed 

order between any hidden nodes. All the individuals in the population have the same 

maximum number of neurons in the hidden layer. The concrete value must be indicated 

as an EA input and this will clearly affect the performance and complexity of the neural 

network. Obtaining the optimal value is a challenge.  

3) Error and fitness functions 

We have considered a standard softmax activation function, associated with the g 

network model, given by:  

1
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where L is the number of classes in the problem, ( )jf x  is the output of node j for 

pattern x  and ( )jg x  is the probability that this pattern belongs to class j. Taking this 

into account, a function of cross-entropy error is used to evaluate a network g with the 

instances of a problem, which is reflected in the following expression:  

1 1
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and substituting gj defined in (2), 
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where j
iy  is the target value for class j with pattern ix  ( j

iy  = 1 if ix  ∈ class j and j
iy  = 

0 otherwise), ( )j if x  is the output value of the neural network for the output neuron j 
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with pattern ix , N the number of patterns and L the number of classes. Observe that 

softmax transformation produces positive estimates that sum to one and therefore the 

outputs can be interpreted as the conditional probability of class membership. On the 

other hand, the probability for one of the classes does not need to be estimated because 

of the normalization condition. Usually, one activation function is set to zero; in this 

work ( ) 0L if =x  and we reduce the number of parameters to estimate. Thus, the number 

of nodes in the output layer is equal to the number of classes minus one in the problem. 

Since the EA objective is to minimise the chosen error function, a fitness function 

is used in the form ( ) 1( ) 1 ( )A g l g −= + .  

4) Initialisation of the population 

At the beginning of the EA, 10*N individuals are generated randomly (step 2) by 

means of a pseudo-random number generator, N being the population size; in the 

current paper it is equal to 1000. Next, all individuals are evaluated, sorted by 

decreasing fitness and the best N ones will compose the initial population (steps 3-5). 

5) Stop condition 

The main loop of the EA is repeated until the maximum number of generations 

(gen) is reached or until the best individual or the population mean fitness do not 

improve during gen-without-improving generations (20 in this paper). 

6) Parametric mutation 

Parametric mutation changes the value of the model coefficients (step 9) and 

consists of a simulated annealing algorithm. The severity of a mutation of an individual 

g in the population is dictated by the temperature ( )T g , given by 

( ) 1 ( ), 0 ( ) 1T g A g T g= − ≤ < . Parametric mutation is accomplished for each exponent 

jiw  and coefficient l
jβ  of the model with Gaussian noise, where the variance depends 

on the temperature:  

1( 1) ( ) ( )          1,  ...,       1,  ...,  ji jiw t w t t j k i mξ+ = + = =                                                (5) 

2( 1) ( ) ( )          0,  ...,       0,  ...,  1l l
j jt t t j m l Lβ β ξ+ = + = = −                                                    (6) 

where ( ) (0, ( ))k kt N T gξ α∈  1, 2k = , represents a one-dimensional normally distributed 

random variable with mean 0 and variance ( )· ( )k t T gα , and t is the t-th generation. It 

should be pointed out that the modification of the exponents jiw  is different from the 

change of the coefficients l
jβ , therefore 1 2α α<< . The effect of a mutation on the 
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weight from an input-variable to a hidden node is greater than from a hidden node to an 

output node, so the changes in exponents jiw  should be smaller than in the coefficients 

l
jβ . Since 2α  acts on the coefficients of the output-layer, this parameter controls the 

diversity of the individuals in the population. 2α  is multiplied by the network 

temperature, so at the beginning there is a high temperature to be able to move from one 

solution to another with a very different fitness, but in the end the temperature is low, so 

with 2α  higher values, greater diversity can be achieved. With a 1α  high-value, the 

algorithm may be made to reach a premature convergence. In our case, since this is a 

classification problem, the evolution process must be short. That is why an evolutionary 

mechanism must be selected for parameters 1α  and 2α  that converge toward optimum 

values more quickly. Rechenberg’s 1/5 success rule has been applied (Rechenberg, 

1973). 

7) Structural mutation  

This implies a modification in the structure of the model (step 10) and allows 

different regions in the search space to be explored while helping to maintain the 

diversity of the population. There are five different structural mutations, the first four 

ones are similar to those in the GNARL model (Angeline, Saunders, & Pollack, 1994): 

node addition, node deletion, connection addition, connection deletion and node fusion. 

All the above mutations are made sequentially in the given order, with probability 

( )T g , in the same generation on the same network. If probability does not select a 

mutation, one of the mutations is chosen at random and applied to the network.  

8) Summary of the parameters of the EA 

To complete the specification of the EA, we will now explain some EA parameters 

or features. As stated above, the values of specific parameters like the maximum 

number of generations (gen), the number of neurons in the hidden layer (neu) must be 

indicated in the EA as input values. There are no typical values for them, so the 

difficulty lies in determining good values. Also, the performance of the EA depends 

above all on these values. Finally, to conclude this section Table 1 describes the values 

of some general EA parameters. 

 
Table 1  

General EA parameters/features. 
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3. Proposal description 

In (Tallón-Ballesteros, Gutiérrez-Peña, & Hervás-Martínez, 2007), we proposed an 

experimental design distribution (EDD) that will be our starting point here. This 

consists of distributing some parameters, either of the network topology or of the EA, as 

the number of nodes in the hidden layer, the number of generations and the output-

variance value (α2), over some computing nodes; each set of concrete values of previous 

parameters is called a configuration. To do this, an initial configuration, called the base 

configuration, is defined and it is modified with new values in one/two parameters in 

each of the computing nodes. Thus, once the modifications have been made, each of the 

processing nodes will run the EA with a different configuration. Proposals were 

presented to distribute two/three parameters, although this paper continues in the line of 

distributing three parameters. In our previous study, there were eight different 

configurations of the EA working with the same data set, four of them undergoing long 

training while the remaining ones were shorter.  

At present, as our main goal is to improve efficiency without losing efficacy, our 

attention is focused on the experiments with a long training time. It is equivalent to 

saying that our interest now lies in distributing two parameters, neu and 2α . This 

decision was adopted because these parameters have a great impact on the performance 

of the classifier. Table 2 presents the description of the EDD configurations related to 

this paper. In these configurations the gen parameter takes the value indicated as the 

input to the EA. In this situation four different EA configurations are run, combining 

two different values for each of the parameters. 

 
Table 2  

Description of the EDD configurations. 

 

The current paper presents a procedure called the Two-Stage Evolutionary 

Algorithm (TSEA). First of all, a number of neurons is fixed in the hidden layer, neu. 

The first stage consists of generating two populations of size N, respectively with neu 

and neu+1 nodes. These populations evolve for 0.1*gen generations. Afterwards, the 

best N/2 individuals in each population are selected and merged into a new population 

of size N. In the second stage, the main loop of the standard EA is applied to the new 

population. The parameters are defined as N, the size of the population; gen, the 
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maximum number of generations; and neu, the maximum number of nodes in the 

hidden layer. The values of these parameters are explained further on. Fig. 3 and Fig. 4 

present the TSEA scheme and pseudocode. 
 

Fig. 3. Scheme of the TSEA. 

 

Fig. 4. Pseudocode of the TSEA. 

 

In the previous model, two full independent experiments (steps a) and b) of Fig. 5) 

had to be run, one with each of the architectures, for gen generations. With the current 

proposal, however, each of the architectures only has to be run for a few generations 

(0.1*gen) followed by a full evolutionary cycle to a new population (step c)) that 

combines individuals from both topologies. Concerning the number of generations, 

previously 2*gen were needed with EDD, while now only 1.2*gen is needed with 

TSEA. 

The features of TSEA are the following: 

– PUNN have been employed with: a number of neurons in the input layer equal to 

the number of variables in the problem; a hidden layer with a number of nodes that 

depends on the data set to be classified; and the number of nodes in the output layer 

equal to the number of classes minus one because a softmax-type probabilistic 

approach has been used.  
– Two populations have been generated with 1000 individuals in each of the 

experiments. 
– Each of the populations is evolved for 0.1*gen generations, whose concrete value 

depends on the data set. Once this short evolutionary process has been carried out, 

the best 500 individuals in each population are selected and are merged to 

constitute the new population numbering 1000. This new population will evolve for 

gen generations. 

– Two experiments have been performed for each problem, where two different 

values have been used for 2α , associated with the residual of the updating 

expression of the output-layer weights. Thus, two different configurations have 

been considered. Table 3 describes them and the values employed for each of the 

most relevant parameters. 
 

Fig. 5. Structure of a PUNN model with TSEA. 
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Table 3  

Description of the TSEA configurations. 

 

4. Experimentation  

4.1. Data sets  

 Table 4 summarizes the data sets employed. Most of them are publicly available at 

the UCI repository (Asuncion & Newman, 2007) and the last two concern complex real-

world problems. The following fourteen have been used: Statlog (Australian credit 

approval), Balance scale, breast Cancer Wisconsin, Heart disease (Cleveland), 

Hepatitis, Horse colic, Thyroid disease (allhypo, Hypothyroid), Ionos (Ionosphere), 

Liver disorders, Thyroid disease (Newthyroid), Pima Indians diabetes and Waveform 

database generator (version 2) regarding the UCI data sets, and BTX and Listeria 

monocytogenes as real-world problems.  

 
Table 4  

Summary of the data sets used. 

 

BTX is a multi-class classification problem in the environment for different types 

of drinking waters (Hervás, Silva, Gutiérrez, & Serrano, 2008). The data set was 

obtained using a set of 63 drinking water samples spiked with individual standards of 

Benzene, Toluene or Xylene as well as with binary or ternary mixtures of them at 

concentrations between 5 and 30 µg/l, which constitutes an overall data set composed of 

seven different classes of contaminated drinking water samples with the same number 

of patterns. 

Listeria monocytogenes is a bi-class problem in predictive microbiology. It has 

been a serious issue that has concerned food industries due to its ubiquity in the natural 

environment (Beuchat, 1996; Fenlon, Wilson, & Donachie, 1996) and the specific 

growth conditions of the pathogen that lead to its high prevalence in different kinds of 

food products. One impetus for this research was the problem of listeriosis 

(Tienungoon, Ratkowsky, McMeekin, & Ross, 2000), and different strategies were 

proposed to limit levels of contamination at the time of consumption to less than 100 

CFU/g (European Commission, (Commission, 1999)). A fractional factorial design was 
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followed in order to find out the growth limits of Listeria monocytogenes. Data were 

collected (Valero, Hervás, García-Gimeno, & Zurera, 2007) at citric and ascorbic acid 

concentrations between 0 and 0.4% (w/v) at intervals of 0.05%, at 4º, 7º, 10º, 15º and 

30º C and pH levels of 4.5, 5, 5.5 and 6.  This data set was divided so that 305 

conditions covering the extreme domain of the model were chosen for training, and 234 

conditions were selected within the range of the model to test its generalization 

capacity. Among the different conditions tested, there were 240 no-growth cases and 

299 growth cases.  

The size of the data sets ranges from almost one hundred to five thousand. The 

number of features depends on the problem and varies between three and forty, while 

the number of classes is between two and seven. The column labelled Inputs represents 

the number of input nodes in the PUNN model. Since we are using neural networks, all 

nominal variables have been converted to binary ones; due to this, sometimes the 

number of inputs is greater than the number of features. Also, the missing values have 

been replaced in the case of nominal variables by the mode or, when concerning 

continuous variables, by the mean, considering the full data set. 

4.2. Validation technique and parameters employed 

The experimental design uses the cross validation technique called hold-out that 

consists of splitting the data into two sets: a training and a test set. The former is 

employed to train the neural network and the latter is used to test the training process 

and to measure neural network generalization capability. In our case, the size of the 

training set is 3n/4 and that of the test set is approximately n/4, where n is the number of 

patterns in the problem; these percentages are similar to those used in (Prechelt, 1994). 

We have employed a stratified holdout where the two sets are stratified (Kohavi, 1995) 

so that the class distribution of the samples in each set is approximately the same as in 

the original data set. The proportions do not match in Listeria because the data is 

prearranged in two sets due to their specific features. 

The concrete values of the neu and gen parameters depend on the data set and are 

shown in Table 5. The decision about the number of neurons is a very difficult task in 

the scope of neural networks. The performance of the classifier might be better with 

other values, but determining the optimal values is a challenge. With respect to the 

number of generations, we have defined three kinds of values: small (100-150), medium 

(300) and large (500). Again, the optimal number is unknown; however the algorithm 
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has a stop criterion to avoid evolving up to the maximum number of generations if there 

is no improvement. We have given values of our choice to the two parameters 

depending on the complexity of the data set (number of classes, inputs, instances,…). 
 

Table 5  

Values of the TSEA and/or EDD parameters depending on the data set. 

 

5. Results 

First of all, this section presents the results obtained with respect to the CCR in the 

test set, CCRG, with EDD and TSEA. As mentioned previously, the topologies are 

indicated as a sequence where the values will be separated by a colon. With TSEA, the 

number of nodes in the hidden layer for each data set belongs to one interval, given that 

the number of nodes will be different in each of the two populations that are combined. 

Thus, the second value will be an interval. 

After that, a statistical analysis compares TSEA versus EDD. Next, the results of a 

second experiment are shown where other models of neural networks have been 

considered in order to determine the general performance of the PUNN.  

Finally, we report a summary of the results obtained with a variety of classifiers, 

from the scope of neural networks or classical/modern machine learning. In most cases, 

it has been possible to conduct the experiments, so the partitions of the data sets are the 

same. 

5.1. Results applying EDD and TSEA 

The results obtained by applying the EDD (Tallón-Ballesteros, Gutiérrez-Peña, & 

Hervás-Martínez, 2007) are presented, along with those obtained with TSEA. In the 

case of EDD, the parameters that are distributed throughout the processing nodes are the 

number of hidden-layer nodes, the maximum number of generations and the variance 

value (α2). There were 8 configurations, denoted in the following way: 1, 2 … 8.  As 

already mentioned, this paper only deals with the four configurations with the longest 

training process; the values of the parameters of each of them can be seen in Table 2, 

Sect. 3. In TSEA, the two existing configurations are 1* and 2*. The configurations 1 

and 2 of EDD are equivalent to 1*, and analogously 3 and 4 are equivalent to 2*. 
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Table 6 shows the mean and standard deviation of the CCRG and the number of 

connections for each data set for a total of 30 runs or iterations. The best results 

regarding accuracy and complexity (measured in number of connections) appear in 

boldface for each data set. Table 6 depicts the generalization results obtained with EDD 

and TSEA methodologies. From the analysis of the data, it can be concluded, from a 

purely descriptive point of view, that the TSEA method obtains the best result in mean 

of the CCRG for all data sets. The differences have to be considered to be between the 

mean value of CCRG obtained with TSEA and the mean values of the two equivalent 

configurations in EDD. For instance, in Balance the results obtained with configuration 

1* with 5-6 neurons surpass configurations 1 and 2 with populations of only 5 or 6 

neurons. The mean number of connections often increases in TSEA configurations, 

corresponding to those where improvements in CCRG results are produced with respect 

to equivalent configurations. 

 
Table 6  

Results obtained in fourteen data sets applying EDD and TSEA. 

 

Furthermore, another advantage is that approximately 40% fewer evaluations per 

iteration are needed with TSEA to get results comparable to those previously obtained 

with EDD. Now in this joint experiment, there are two types of individuals in the same 

population, with neu and neu+1 nodes without duplicating the total size of the 

population; in the past, these two experiments were carried out separately. The mean 

number of evaluations per iteration with EDD is given by: 

( ) _ *10 0.9* _ *evalutions EDD pop size pop size gen= +                                             (7)     

where pop_size is the population size and gen the maximum number of generations. 

On the other hand, with TSEA the expression is the following:                                                                

( ) ( _ *10 0.9* _ *0.1* )*2 0.9* _ *evalutions TSEA pop size pop size gen pop size gen= + +   (8) 

As stated before, only one experiment with TSEA is needed, while two are 

necessary with EDD. Table 7 shows the mean numerical values of the number of 

evaluations per iteration for all the data sets concerned in the single TSEA experiment 

and the two EDD ones, which are equivalent, along with the reduction percentage in the 

number of evaluations. This percentage ranges from 36% to 39%, depending on the 

number of generations for each data set. 
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Table 7  

Mean number of evaluations per iteration with TSEA and EDD and percentage of reduction. 

 

5.2. Statistical analysis 

In this section we will perform an ANalysis Of VAriance (ANOVA) for the 

CCRG, for each data set and determine if there are significant differences between 

the numbers of nodes considered or the values of 2α  for the underlying models.  

These two factors are not independent so an analysis will be carried out using all 

possible pairs (N, A) of the Cartesian product of the two sets. For each pair, or 

cell, 30 runs of the EA have been performed with different random seeds. Table 6 

shows the mean and standard deviation values obtained in these runs.  

5.2.1. Accuracy and complexity analysis 

First of all, hypothesis tests are performed to try to determine the mean effect of 

each term on the CCRG of the best individuals in the last generation for each run. Tests 

have been carried out for every factor and for the interaction among factors. A normal 

distribution can be assumed for all the variables contrasted, because the p-values of the 

Kolmogorov-Smirnov (K-S) test are over a significance coefficient of 0.05. Thus, the 

results have been studied by means of an analysis of variance ANOVA II (Dunn & 

Clark, 1974; Miller, 1981; Snedecor & Cochran, 1980) with the CCRG of the best 

individuals for each run, and CCR as the test variable. This CCR is obtained 

independently in 30 runs and depends on two fixed factors and their interaction. The 

linear model has the form: 

     1, 2,3;  1, 2  1,...,30ijk i j ij ijkCCR N A NA for i j and kµ ε= + + + + = = =                     (9) 

where the parameter µ  is the global mean of the model. Ni is the effect on CCR of the 

i-th level of factor N, the number of nodes in the hidden layer, where N1 = neu, N2 = 

neu+1 and N3 = (neu, neu+1); Aj is the effect on CCR of the j-th level of factor 2α , 

where A1 = 1 and A2 = 1.5; NAij represents the effect of the interaction between 

different values of the number of nodes and the 2α . Finally, εijk are error variables 

associated with effects on the CCR, other factors not observed in the experiment 

and, for those not present in the linear model and/or observation error, measure 
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error, etc. The variation in experimental results from CCR is explained by the effects of 

different levels in the factors of the model and their interaction.  

In a second step, if there are significant differences in mean CCRG, a 

comparison test of CCRG means will be performed for each data set in order to see 

if the TSEA methodology supplies significantly better values in accuracy 

(measured in CCR) than EDD.  

For the A factor, associated with the 2α  value, a student’s t-test was performed in 

order to ascertain whether the differences in CCR mean between the two different 

values of 2α  considered were significant. For factor N, there is a multiple comparison 

test of the average CCR obtained with the three different levels to determine whether 

there are significant differences. Thus, 90 simulations were done, corresponding to the 

30 runs of each level.  

The p-values, p*, in Table 8 of each term of the linear model show that the number 

of nodes in the hidden layer significantly affects the CCRG mean in seven data sets at a 

significance level of 5%, for instance, in the Heart data set p-value=0.008 (see the 

second column in Table 8). If now the effect of the A factor is taken into consideration, 

it can be inferred that for the Liver and Pima data sets, there exists a significant effect in 

the mean of CCR based on 2α  values (p-values 0.035 and 0.001 are lower than 0.050). 

With respect to interactions among the factors, the fourth column in Table 8, NA, shows 

that only for the Liver, Waveform and Listeria data sets does a significant effect exist in 

the mean of the CCR based on that interaction (p-values 0.028, 0.001 and 0.016 are 

lower than 0.050). In the remaining data sets, the effect of this interaction has been 

added to the error term and the Snedecor’s F tests have been redone (this situation is 

indicated in Table 8 with a – sign). 

 
Table 8  

p-values of the F test of the ANOVA II methodology for the means of the CCRG and the number of 

connections. 
 

Regarding the complexity, a similar analysis of variance ANOVA II with the 

number of connections has been done. The p-values, p* < 0.050, of factor N in the 

linear model (see Table 8) indicate that there are significant differences between the 

mean values of the number of connections for each architecture used for each data set, 

whereas there are not significant differences in the average of connections depending on 
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the parameter 2α  except for the Balance, Newthyroid and Listeria data sets (p-values 

are 0.018, 0.003 and 0.001). As for the interaction between the two factors, it is 

significant for the Heart, Horse, Newthyroid, Pima and Listeria data sets, which indicate 

that N and α2 values are affected when these act jointly on the mean of the number of 

connections of network models. 

Generally speaking, we can conclude that the TSEA methodology improves the 

CCR values throughout the test set in the majority of the data sets and, for a great deal 

of them, quite significantly. The number of connections increases in a significant way. 

5.3. Product versus sigmoidal units and radial basis function neural 
networks 

This section involves a comparison in performance (measured in CCRG) between 

neural networks based on product units, sigmoidal units and radial basis functions. For 

this comparison four methodologies have been used: the traditional MLP model 

(Bishop, 1995) with a learning Back-Propagation method (BP); the RBF model 

(Howlett & Jain, 2001); the PUs with EDD methodology (EDD); and the PUs with 

TSEA methodology (TSEA). These methods were run with all the data sets in question. 

We have used the Weka tool (Witten & Frank, 2005) to run algorithms BP and RBF. 

The parameters for BP were the following: learning rate 0.3η =  and momentum 

0.2α = . The number of epochs was adjusted in each data set. Regarding the topology 

of the models (number of hidden nodes), in the case of MLP and RBF we have 

considered default topology. In EDD and TSEA we deal with the best topology that we 

have reported in this paper. The number of runs for MLP and RBF was 30. 

Table 9 includes the results of TSEA, EDD, MLP and RBF methodologies for all 

data sets. The best results in CCRG for each data set are shown in boldface. 
 

Table 9  

Results of the comparison with other techniques. 

 

From a purely descriptive analysis of the results, it can be concluded that the 

TSEA method obtains the best result for nine data sets, the RBF methodology yields the 

highest performance for four data sets, whereas MLP only does so for one data set. 

Furthermore, the TSEA method obtains the best mean ranking ( 1.57R = ), followed by 
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the EDD method ( 2.64R = ), and reports the highest mean accuracy ( 87.85%GCCR = ) 

followed by the EDD method ( 87.38%GCCR = ). The mean accuracy and ranking 

obtained by the TSEA and EDD are higher than those obtained by MLP and RBF, 

which confirms the best accuracy of the product units. 

To determine the statistical significance of the differences in rank observed for 

each method in the different data sets, a non-parametric Friedman test (Friedman, 1937) 

has been carried out with the CCRG ranking of the best models as the test variable (since 

a previous evaluation of the CCRG values results in rejecting the normality and the 

equality of the variances hypothesis). The null-hypothesis states that all algorithms are 

equivalent and so their ranks ( iR ) should be equal. The test shows that the effect of the 

method used for classification is statistically significant at a significance level of 5%, as 

the confidence interval is 0 0.05(0,  2.84)C F= =  with a F-distribution with 3 and 39 

degrees of freedom, and the F-distribution statistical value (Iman & Davenport, 1980) is 

0* 4.08F C= ∉ . Consequently, we reject the null-hypothesis; thus it implies the 

existence of significant differences in the performances of all the methods considered. 

On the basis of this rejection, a post-hoc non-parametric Bonferroni-Dunn test 

(Hochberg & Tamhane, 1987) was applied with the best performing algorithm TSEA as 

the control method. The results of the Bonferroni-Dunn test for 0.1α =  and 0.05α =  

can be seen in Table 10 using the corresponding critical values for the two-tailed 

Bonferroni-Dunn test. 
 

Table 10  

Critical difference values, mean ranking and differences of rankings of the Bonferroni-Dunn test, using 

TSEA as the control method. 

 

The TSEA method obtains a significantly higher ranking of CCRG when 

compared to all the methods and none of the remaining methods obtain significantly 

higher rankings when compared to each other. Consequently, the TSEA method obtains 

a significantly higher performance than the three methods, EDD, MLP and RBF, which 

justifies the proposal.  

Therefore, we can conclude that the results obtained by TSEA make it a very 

competitive method when compared to the other neural network learning schemes 

previously mentioned. 



 21 

5.4. Results obtained with a variety of classifiers  

Now, a general review can be made of the results obtained with another kind of 

neural networks and other machine learning algorithms. In the literature a huge amount 

of tests have been carried out with some of the data sets here considered. However, in 

some cases the classifier attribute is different, the number of instances is not the same, 

since some have been removed, or even the number of features does not match; the 

result is not included for those situations. The method of cross-validation is different in 

many papers, so the comparison is not as fair as we would like. Our purpose is to view 

some of the methods that have been tested with some of the data sets dealt with in the 

current paper. Regarding neural networks, only those methods using the same number 

of inputs as ours are considered. These methods are TSEA, EDD, HMOEN_HN (Goh, 

Teoh, & Tan, 2008), HMOEN_L2 (Goh, Teoh, & Tan, 2008), MLP, RBF and SONG 

(Inoue & Narishina, 2005). Other classical or modern machine learning algorithms have 

been included: C4.5 (Quinlan, 1993), k-nearest neighbours (k-NN) (Cover & Hart, 

1967; Aha, Kibler, & Albert, 1991), PART (Frank & Witten, 1998) and SVM (Vapnik, 

1995). Since, MLP, RBF, C4.5, k-NN, PART and SVM are implemented in Weka tool 

(Witten & Frank, 2005), the same cross-validation is used as in the current proposal and 

in our previous work, thus the same instances in each of the partitions; regarding the 

parameters, the algorithms have been run with the default values. We have reported the 

best accuracy in k-NN where k is 1, 3, 5, 7 or 9. For the remaining methods cited above, 

it is not possible to conduct the experiments, because the implementations are not 

publicly available. There does not exist one method that performs really well with all 

data sets; depending on the data set, the best classifier belongs to either the neural 

networks approach or to the classical/modern machine learning. In Table 11 the results 

are summarized; the best ones in boldface and in italics, the second best ones, as well as 

the averages of the methods run by us with all data sets.  

 
Table 11  

Summary of the results in fourteen data sets comparing TSEA to existing works related to neural 

networks or classical/modern machine learning approaches. 
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6. Conclusions 

The aim of this paper is to tackle multi-classification problems using neural 

networks based on product units, but at a lower computational cost than that used in 

algorithms proposed in previous works. Our basic assumption is that it is good to 

employ a methodology based on a population with more diverse models regarding 

network architectures and this produces an improvement in efficiency, mantaining good 

results.  

The TSEA is applied to solve fourteen classification problems, twelve from the 

UCI repository and two real-world problems, with a great deal of variety in the number 

of instances, features and classes. The results confirm that our approach obtains 

promising results, achieving a high classification rate level in the data sets at a lower 

computational cost. 

Experimental studies have been performed to determine if different values in the 

number of nodes in the hidden layer and 2α  significantly affect performance. 

The EA has been run with PUs using, on one hand, the standard EA applying EDD, 

and on the other hand, TSEA, a method that significantly reduces the computational 

cost measured by means of the number of EA evaluations. Once we have performed the 

statistical analysis (see Table 8), we conclude that TSEA maintains enough robust 

CCRG values and, in a considerable number of data sets, significantly higher ones. 

In order to analyze performance with respect to efficacy, these two methodologies 

for the generation of PUNN models have been compared to other network models. The 

former have sigmoidal basis units and it is a model trained with a BP algorithm (MLP) 

whereas the latter is model trained with RBF networks. 

According to the above results, our learning methodology of neural networks, 

TSEA, is seen to considerably improve efficiency and significantly efficacy in most of 

the data sets with respect to the EDD methodology. TSEA obtains a significantly better 

ranking compared to EDD, MLP and RBF. We have also summarized the results 

obtained with other kinds of neural networks and classical/modern machine learning 

algorithms. 
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Tables 

Table 1  

General EA parameters/features. 

Parameter/Feature Value 
Population size (N) 1000 
gen-without-improving 20 

Interval for the exponents jiw / coefficients l
jβ  [-5, 5] 

Initial values of 1α  and 2α  0.5 and 1 respectively 

Normalization of the input data [1, 2] 
Number of nodes in node addition and node deletion operators [1, 2] 

 
Table 2  

Description of the EDD configurations. 

Configuration Num. of  
Neurons (neu) 

Max. Num. of  
Generations 

α2 
 

1 neu gen 1 
2 neu + 1 gen 1 
3 neu gen 1.5 
4 neu +1 gen 1.5 

 

Table 3  

Description of the TSEA configurations. 

Configuration Num. of Neurons 
in each population 

Size of each  
population  

Num. of Generations 
in each population α2 

1* neu and neu+1 1000 0.1*gen 1 
2* neu and neu+1 1000 0.1*gen 1.5 

 
Table 4  

Summary of the data sets used. 
Data set Total Patterns Training Patterns Test Patterns Features Inputs Classes 

Australian 690 517 173 14 51 2 
Balance 625 469 156 4 4 3 
Cancer 699 525 174 10 9 2 
Heart 303 227 76 13 26 2 
Hepatitis 155 117 38 19 19 2 
Horse 368 276 92 27 83 2 
Hypothyroid 3772 2829 943 29 29 4 
Ionos 351 263 88 34 34 2 
Liver 345 259 86 6 6 2 
Newthyroid 215 161 54 5 5 3 
Pima 768 576 192 8 8 2 
Waveform 5000 3750 1250 40 40 3 
BTX 63 42 21 3 3 7 
Listeria 539 305 234 4 4 2 
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Table 5  

Values of the TSEA and/or EDD parameters depending on the data set. 

Data set Num. of   
Neurons (neu) 

Num. of Neurons in each  
Population (neu and neu+1) 

Max. Num. of  
Generations (gen) 

Num. of Generations 
in each population 

Australian 4 4 and 5 100 10 
Balance 5 5 and 6 150 15 
Cancer 2 2 and 3 100 10 
Heart 3 3 and 4 300 30 
Hepatitis 3 3 and 4 100 10 
Horse 4 4 and 5 300 30 
Hypothyroid 3 3 and 4 500 50 
Ionos 4 4 and 5 500 50 
Liver 4 4 and 5 300 30 
Newthyroid 3 3 and 4 300 30 
Pima 3 3 and 4 120 12 
Waveform 3 3 and 4 500 50 
BTX 5 5 and 6 500 50 
Listeria 4 4 and 5 300 30 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 29 

Table 6  

Results obtained in fourteen data sets applying EDD and TSEA. 

Data set Configuration  
(Topology) 

CCRG 
Mean±SD 

Mean Num. 
of 

Conn.±SD 
Data set Configuration  

(Topology) 
CCRG  
Mean±SD 

Mean Num. 
of  
Conn.±SD 

Australian 

1 (51:4:1) 87.63±1.49 49.93±13.97 

Ionos 

1 (34:4:1) 92.31±2.23 39.63±7.53 
2 (51:5:1) 87.32±1.66 52.47±13.36 2 (34:5:1) 92.50±2.28 49.37±8.97 
1* (51:[4,5]:1) 88.11±1.56 43.50±15.34 1* (34:[4,5]:1) 91.51±1.88 33.67±6.45 
3 (51:4:1) 87.70±1.45 49.83±13.27 3 (34:4:1) 91.85±2.48 37.53±7.21 
4 (51:5:1) 87.63±1.54 53.90±16.59 4 (34:5:1) 93.06±1.87 48.90±9.74 
2* (51:[4,5]:1) 88.68±1.10 38.00±11.52 2* (34:[4,5]:1) 93.22±1.92 38.80±7.23 

Balance 

1 (4:5:2) 95.30±1.47 22.87±2.52 

Liver 

1 (6:4:1) 73.87±2.21 18.43±1.94 
2 (4:6:2) 95.15±0.98 25.23±2.22 2 (6:5:1) 73.56±1.97 21.47±2.85 
1* (4:[5,6]:2) 96.20±1.06 24.83±2.36 1* (6:[4,5]:1) 74.61±2.00 19.83±2.15 
3 (4:5:2) 95.04±1.41 23.37±3.06 3 (6:4:1) 72.20±3.22 17.37±2.47 
4 (4:6:2) 95.62±1.16 26.67±3.29 4 (6:5:1) 73.64±3.23 22.17±2.59 
2* (4:[5,6]:2) 95.62±1.12 25.87±3.04 2* (6:[4,5]:1) 72.36±1.51 20.23±1.38 

Cancer 

1 (9:2:1) 98.49±0.61 12.23±1.50 

Newthyroid 

1 (5:3:2) 94.44±0.68 16.97±2,58 
2 (9:3:1) 98.97±0.38 15.80±1.73 2 (5:4:2) 94.75±0.98 21.80±2.92 
1* (9:[2,3]:1) 98.74±0.61 16.40±2.44 1* (5:[3,4]:2) 94.88±0.93 20.10±2.28 
3 (9:2:1) 98.51±0.49 11.97±1.79 3 (5:3:2) 94.81±0.89 17.30±2.56 
4 (9:3:1) 98.72±0.60 16.23±2.49 4 (5:4:2) 94.75±1.38 22.77±3.00 
2* (9:[2,3]:1) 98.98±0.54 15.90±2.01 2* (5:[3,4]:2) 94.19±1.92 15.37±1.97 

Heart 

1 (26:3:1) 82.18±2.36 33.47±6.97 

Pima 

1 (8:3:1) 77.33±2.36 13.53±2.39 
2 (26:4:1) 82.36±2.98 40.13±7.99 2 (8:4:1) 78.61±1.88 18.60±3.04 
1* (26:[3,4]:1) 83.68±2.57 41.77±8.73 1* (8:[3,4]:1) 78.63±1.33 13.73±2.77 
3 (26:3:1) 82.32±3.08 30.67±8.73 3 (8:3 :1) 76.96±1.67 13.73±1.91 
4 (26:4:1) 81.97±3.05 44.33±10.05 4 (8:4:1) 77.69±1.79 17.37±2.20 
2* (26:[3,4]:1) 83.64±2.33 45.67± 6.15 2* (8:[3,4]:1) 77.69±1.33 15.83±2.59 

Hepatitis 

1 (19:3:1) 84.47±4.49 27.23±4.53 

Waveform 

1 (40:3:2) 81.43±2.10 30.75±6.73 
2 (19:4:1) 85.52±4.67 35.90±5.21 2 (40:4:2) 82.78±0.64 48.63±9.36 
1* (19:[3,4]:1) 85.79±4.51 31.67±5.63 1* (40:[3,4]:2) 84.46±0.92 43.13±5.72 
3 (19:3:1) 84.47±4.55 26.80±4.01 3 (40:3:2) 82.05±1.64 36.25±7.78 
4 (19:4:1) 84.29±5.33 36.53±6.65 4 (40:4:2) 84.32±1.73 43.25±5.73 
2* (19:[3,4]:1) 83.68±3.87 33.63±3.93 2* (40:[3,4]:2) 82.01±1.48 40.88±12.86 

Horse 

1 (83:4:1) 86.41±2.38 82.60±15.38 

BTX 

1 (3:5:6) 79.04±6.32 39.53±3.41 
2 (83:5:1) 85.18±2.57 108.10±24.13 2 (3:6:6) 77.61±7.09 43.57±3.77 
1* (83:[4,5]:1) 85.50±2.97 89.70±27.35 1* (3:[5,6]:6) 79.68±7.39 38.27±5.17 
3 (83:4:1) 85.72±2.43 84.67±22.05 3 (3:5:6) 78.73±5.26 39.47±3.57 
4 (83:5:1) 85.57±3.60 107.97±20.32 4 (3:6:6) 77.14±4.90 44.90±3.66 
2* (83:[4,5]:1) 86.59±2.38 99.17±25.15 2* (3:[5,6]:6) 81.11±6.55 38.93±3.79 

Hypothyroid 

1 (29:3:3) 95.27±0.77 31.13±6.38 

Listeria 

1 (4:4:1) 87.20±1.71 14.93±1.48 
2 (29:4:3) 95.32±0.58 39.63±8.78 2 (4:5:1) 87.45±1.14 18.63±1.73 
1* (29:[3,4]:3) 95.37±0.40 42.00±7.41 1* (4:[4,5]:1) 86.54±1.67 14.63±1.73 
3 (29:3:3) 94.96±0.62 34.38±2.92 3 (4:4:1) 86.66±1.82 15.03±1.59 
4 (29:4:3) 95.16±0.32 33.50±7.65 4 (4:5:1) 86.98±1.72 18.33±1.92 
2* (29:[3,4]:3) 94.94±0.25 43.00±8.45 2* (4:[4,5]:1) 87.68±1.06 17.43±1.52 
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Table 7  

Mean number of evaluations per iteration with TSEA and EDD and percentage of reduction. 

Data set TSEA EDD Reduction Data set TSEA EDD Reduction 
Australian  128000 200000 36% Ionos 560000 920000 39% 
Balance 182000 290000 37% Liver 344000 560000 39% 
Cancer 128000 200000 36% Newthyroid 344000 560000 39% 
Heart 344000 560000 39% Pima 149600 236000 37% 
Hepatitis 128000 200000 36% Waveform 560000 920000 39% 
Horse 344000 560000 39% BTX 560000 920000 39% 
Hypothyroid 560000 920000 39% Listeria 344000 560000 39% 

 
Table 8  

p-values of the F test of the ANOVA II methodology for the means of the CCRG and the number of 

connections. 

Data set CCRG Num. of  Connections Data set CCRG Num. of  Connections 
 F test F test  F test F test 
 N A NA N A NA  N A NA N A NA 
Australian 0.002 0.147 _ 0.000 0.510 _ Ionos 0.098 0.257 _ 0.000 0.468 _ 
Balance 0.004 0.508 _ 0.000 0.018 _ Liver 0.417 0.001 0.028 0.000 0.974 _ 
Cancer 0.001 0.694 _ 0.000 0.713 _ Newthyroid 0.536 0.648 _ 0.000 0.003 0.000 
Heart 0.008 0.569 _ 0.000 0.150 0.033 Pima 0.006 0.035 _ 0.000 0.343 0.002 
Hepatitis 0.831 0.171 _ 0.000 0.342 _ Waveform 0.003 0.825 0.001 0.001 0.776 _ 
Horse 0.394 0.954 _ 0.000 0.264 0.033 BTX 0.035 0.823 _ 0.000 0.182 _ 
Hypothyroid 0.662 0.085 _ 0.002 0.769 _ Listeria 0.591 0.916 0.016 0.000 0.001 0.000 
 
Table 9  

Results of the comparison with other techniques. 

Method Data set 
 Australian Balance Cancer Heart Hepatitis Horse Hypothyroid 
TSEA 88.68±1.10 96.20±1.06 98.98±0.54 83.68±2.57 85.79±4.51 86.59±2.22 95.37±0.40 
EDD 87.70±1.45 95.62±1.16 98.97±0.38 82.36±2.98 85.52±4.67 86.41±2.38 95.32±0.58 
MLP 84.10±1.48 93.78±1.81 97.81±0.47 84.82±2.55 84.73±2.08 88.51±1.57 94.39±0.32 
RBF 75.84±2.04 88.27±1.83 97.20±0.25 86.75±2.39 89.30±2.29 80.47±1.38 92.83±0.56 
Method Data set 
 Ionos Liver Newthyroid Pima Waveform BTX Listeria 
TSEA 93.22±1.92 74.61±2.00 94.88±0.93 78.63±1.33 84.46±0.92 81.11±6.55 87.68±1.06 
EDD 93.06±1.87 73.87±2.21 94.81±0.90 78.61±1.88 84.32±1.73 79.04±6.32 87.45±1.14 
MLP 89.12±1.54 65.65±3.35 97.08±1.40 75.94±2.13 84.85±0.96 54.12± 8.10 84.49±1.70 
RBF 92.46±0.70 57.17±3.43 98.27±0.47 77.34±2.17 87.29±0.07 80.95±0.00 83.70±0.00 
  ( ) 87.85GCCR TSEA = ;     ( ) 87.38GCCR EDD = ;     ( ) 84.24GCCR MLP = ;     ( ) 84.85GCCR RBF =  
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Table 10  

Critical difference values, mean ranking and differences of rankings of the Bonferroni-Dunn test, using 

TSEA as the control method. 

 

Method R  Difference with TSEA 

TSEA (1) 1.57R =  _ 

EDD (2) 2.64R =  
(2) (1) 1.07R R− = °  

MLP (3) 2.86R =  
(3) (1) 1.29*R R− =  

RBF (4) 2.93R =  (4) (1) 1.36*R R− =  

 ( 0.1) ( 0.05)1.04;  1.17CD CDα α= == =  

*: Statistically significant difference with 0.05α =  
° :  Statistically significant difference with 0.1α =  

(1): TSEA;  (2): EDD;  (3): RBF;  (4): MLP 

CD: Critical Difference 

 
Table 11  

Summary of the results in fourteen data sets comparing TSEA to existing works related to neural 

networks or classical/modern machine learning approaches. 

Method Australian Balance Cancer Heart Hepatitis Horse Hypothyroid 
TSEA 88.68 96.20 98.98 83.68 85.79 86.59 95.37 
EDD 87.70 95.62 98.97 82.36 85.52 86.41 95.32 
HMOEN_HN - - 96.82 - 75.51 - - 
HMOEN_L2 - - 96.30 - 80.30 - - 
MLP 84.10 93.78 97.81 84.82 84.73 88.51 94.39 
RBF 75.84 88.27 97.20 86.75 89.30 80.47 92.83 
SONG - 87.80 97.40 - - - - 
C4.5 86.71 83.33 97.13 75.00 84.21 88.04 99.15 
k-NN 85.55 91.67 98.85 82.89 86.84 88.04 94.06 
PART 84.97 85.26 97.13 80.26 81.58 85.87 98.83 
SVM 88.44 88.46 98.28 82.89 89.47 88.04 93.85 
Method Ionos Liver Newthyroid Pima Waveform BTX Listeria 
TSEA 93.22 74.61 94.88 78.63 84.46 81.11 87.68 
EDD 93.06 73.87 94.81 78.61 84.32 79.04 87.45 
HMOEN_HN - 68.94 - 75.36 - - - 
HMOEN_L2 - 68.00 - 78.50 - - - 
MLP 89.12 65.65 97.08 75.94 84.85 54.12 84.49 
RBF 92.46 57.17 98.27 77.34 87.29 80.95 83.70 
SONG 91.20 68.50 97.20 76.40 - - - 
C4.5 92.05 68.60 96.30 74.48 76.40 80.95 85.93 
k-NN 90.91 63.95 94.44 75.00 81.12 76.19 85.93 
PART 95.45 61.63 92.59 74.48 78.16 80.95 86.67 
SVM 88.64 58.14 88.89 78.13 88.80 61.90 80.74 

  ( ) 87.85GCCR TSEA = ;  ( ) 87.38GCCR EDD = ;  ( ) 84.24GCCR MLP = ;  ( ) 84.85GCCR RBF =  

  ( 4.5) 84.88GCCR C = ;  ( ) 85.39GCCR k NN− = ;  ( ) 84.56GCCR PART = ;  ( ) 83.91GCCR SVM =  

 


