
 1

 “This is an Accepted Manuscript of an article published in Tallón-Ballesteros,

A. J., & Hervás-Martínez, C. (2011). A two-stage algorithm in evolutionary

product unit neural networks for classification. Expert Systems with

Applications, 38(1), 743-754., available at:

https://doi.org/10.1016/j.eswa.2010.07.028”

A Two-Stage Algorithm in Evolutionary Product
Unit Neural Networks for Classification

Antonio J. Tallón-Ballesterosa,*, César Hervás-Martínezb

aDepartment of Languages and Computer Systems, University of Seville. Reina
Mercedes Avenue. Seville, 41012 Spain

bDepartment of Computer Science and Numerical Analysis, University of Córdoba.
Campus of Rabanales, Albert Einstein Building. Córdoba, 14071 Spain

Abstract

 This paper presents a procedure to add broader diversity at the beginning of the evolutionary

process. It consists of creating two initial populations with different parameter settings, evolving them for

a small number of generations, selecting the best individuals from each population in the same proportion

and combining them to constitute a new initial population. At this point the main loop of an evolutionary

algorithm is applied to the new population. The results show that our proposal considerably improves

both the efficiency of previous methodologies and also, significantly, their efficacy in most of the data

sets. We have carried out our experimentation on twelve data sets from the UCI repository and two

complex real-world problems which differ in their number of instances, features and classes.

Keywords

Artificial neural networks; Product units; Evolutionary algorithms; Classification; Population

diversity.

1. Introduction

Maintaining diversity in early generations is a crucial task in evolutionary

algorithms (EAs) because it can affect not only the convergence speed but also the

quality of the final solution. A diverse population is preferable at the beginning of the

* Corresponding author. Tel: +34 954556237; fax: +34 954557139.

 Email addresses: atallon@us.es (A.J. Tallón-Ballesteros), chervas@uco.es (C. Hervás-Martínez).

https://doi.org/10.1016/j.eswa.2010.07.028

 2

algorithm and a more condensed one at the end of the search (Maaranen, Miettinen, &

Mäkelä, 2004). However, to date the issue of population initialization has received

surprisingly little attention in EA literature while, on the other hand, the topic of

operators and the representation of individuals has been amply covered. On a lower

abstraction level, we must think about how the individuals that constitute the population

are generated. In most cases, as in this paper, in evolutionary computation (EC) a

pseudo-random number generator is employed, although it is often expressed as “the

population is generated randomly”; the idea behind this kind of generators is to obtain a

set of values that imitates a random sequence (Maaranen, Miettinen, & Penttinen,

2007).

Another question, associated with diversity throughout the evolutionary process, is:

does it create only one population or various populations? The issue of generating

various populations has also been discussed previously. Wang et al. (Wang, Zheng, &

Tang, 2002) present the idea that some populations undergo the application of different

mutation operators; next, all the individuals are mixed and split into several populations,

each then undergoing the application of yet another mutation operator. In (De Garis,

1990), an iterative scheme with several fitness functions is proposed, so that the

population evolves by means of a GA using the first fitness function, then the resulting

population is employed as the current population in a GA that uses the second fitness

function and so on. Generally, the populations explore several areas in the search space

by means of different seeds. The number of populations may vary and there is no single

common accepted value.

In the context of artificial neural networks (ANNs), our proposal, which will be

described in detail in continuation, diversifies the architecture of the neural network at

the beginning of the evolutionary process. The first stage consists of creating two

populations with different features (the maximum number of nodes in the hidden layer,

so the topology will be different), evolving them with identical parameter values of the

EA, for a small number of generations, selecting the best individuals from each

population in the same proportion and combining them to constitute a new population.

In the second stage, the main loop of the standard EA used will be applied to the new

population. In this way, the population has wider diversity due to the different

topologies found in the neural networks. The initial short training leads to random

individuals to explore possible promising areas in two directions, since there are two

different populations. After that, individuals with different topologies coexist and the

 3

more suitable ones will remain. To be coherent with our previous work (Tallón-

Ballesteros, Gutiérrez-Peña, & Hervás-Martínez, 2007) we have used two populations

in the first phase that will be merged into one. In this way we can better analyse

previous and current performances. We will compare the accuracy, complexity and

efficiency of two previous experiments with a current one for all the problems under

consideration.

The issue of diversity is very important in EC. Evolution, by definition, requires

diversity, which refers to the (genetic) variation in population members (Amor &

Rettinger, 2005; Heitkoetter & Beasley, 2001). Diversity is valuable since new areas of

the search space are explored, without which the search could remain trapped in a local

optimum (Chop & Calvert, 2005). Actually a high diversity implies that the population

covers a larger part of this space (Ursem, 2002). A common view of the evolutionary

process is that diversity enhances the performance of a population by providing more

opportunities for evolution. A homogeneous population offers no advantage for

improvement as the entire population is focused in a particular portion of the search

space. By contrast, a diverse population will simultaneously sample a large area of

search space, providing the opportunity to locate different, potentially better, solutions

(Curran & O’Riordan, 2006). Diversity can be considered at different stages, basically

in the first steps of evolution or throughout the evolutionary phase. This paper focuses

on the former, although there are several papers that consider the latter. A great deal of

research has established diversity as a target to promote, maintain or reintroduce into

evolving populations of solutions in order to achieve maximum performance (Curran &

O’Riordan, 2006). In Amor & Rettinger (2005), there are some references to studies

referring to the above aspects. As previously mentioned, diversity can be considered in

the evolutionary stage. For instance, with respect to the selection stage, rank scaling

(Goldberg, 1989) is a sample. In the replacement phase, several proposals have been put

forward, like the hybrid replacement scheme proposed by Lozano et al. (Lozano,

Herrera, & Cano, 2008) or crowding methods (Mahfoud, 1995). High diversity does not

imply better GA performance; this is closely related to the question of exploration

versus exploitation, but enforcing diversity in the early phases of evolution ensures a

broad exploration of the search space (Amor & Rettinger, 2005).

Our objective is to improve the efficiency (measured by means of the number of

evaluations) and efficacy, if possible, of the previous models that have been employed

to date by us. The training of databases, which have different numbers of patterns,

 4

features and classes, is dealt with by means of ANNs to evaluate the methodology

proposed. The computational cost is very high if EAs with different parameter settings

are employed for the training of the above-mentioned networks. It is convenient to

change the usual way of generating network models and, thus obtain enough diverse

ones with respect to the architecture in the first generations of the evolution. So, instead

of using the methodology in (Martínez-Estudillo, Martínez-Estudillo, Hervás-Martínez,

& García-Pedrajas, 2006) that consists of generating 10*N neural networks randomly

with a maximum fixed number of nodes in the hidden layer, sorting them according to

their fitness and choosing the best N ones to constitute the initial population, we present

the idea of creating two populations. Each population has a different maximum number

of nodes in the hidden layer, and is evolved for a small number of generations in order

to subsequently merge the best half of individuals of each one into a single population;

then we apply the standard evolution process of the EA employed to date for

classification by means of product unit neural networks (PUNN) (Martínez-Estudillo,

Hervás-Martínez, Gutiérrez-Peña, Martínez-Estudillo, & Ventura-Soto, 2006).

In this way, the training time will be reduced because the population will be much

more diverse. Moreover it will not be necessary to apply the full evolutionary process to

some populations with different numbers of nodes in the hidden layer. Only there is

more than one population in the first step of the evolution; next we merge individuals

with different topologies into one. This methodology is more recommendable in the

case of data sets with a great number of patterns, given that the processing time is very

high for a complete configuration with a reasonable number of iterations for a proper

number of generations. Logically, it is not usual to carry out experiments with a single

configuration but with a number of them, resulting in a computationally-intensive

procedure. The advantage of our proposal is that all individuals do not present a fixed

architecture, but a flexible topology between two possible ones. The performance will

not be so dependent on parameter tuning, in the sense that the maximum number of

hidden nodes in an individual can fluctuate between two user-defined values over the

course of the evolution.

 Several runs of the algorithm have been performed to smooth the stochastic

character of the EAs using mean values in order to complete a statistical analysis of the

results obtained. After presenting the results and the number of EA evaluations with

both earlier and current methodologies, there will be an analysis to determine whether

the performance of the solutions improves quality-wise with respect to the Correct

 5

Classification Ratio (CCR) obtained with our previous methodology, and if the

complexity with respect to the number of connections does as well. In order to do this,

statistical tests will be used to compare the mean performances of the CCR and the

mean number of connections obtained with both the proposed methodology and the

standard method. Finally, there will be a comparison of both methodologies, that use

PUNN, and other techniques that employ neural networks based on sigmoidal and radial

basis functions. There is also a general review of the results obtained with other neural

networks or classical/modern machine learning approaches.

This paper is organized as follows: Sect. 2 describes some concepts about PUNN

and the EA; Sect. 3 presents the description of our proposal; Sect. 4 details the

experimentation process; then Sect. 5 shows and analyzes the results obtained; finally,

Sect. 6 states the concluding remarks.

2. Methodology

2.1. Product unit neural networks

Many different types of neural network architectures have been used, but the most

popular one has been the single-hidden-layer feed-forward network. Amongst the

numerous algorithms for training neural networks in classification problems, our

attention focuses on evolutionary artificial neural networks (EANNs). EANNs have

been a key research area in the past decade providing an improved platform for

optimizing network performance and architecture (number of hidden nodes and number

of connections) simultaneously.

Up to now, designing topologies is still very much a human expert’s job. It depends

heavily on expert experience and a tedious trial-and-error process. There is no

systematic way to automatically design a near-optimal architecture for a given task

(Yao, 1999). Design of the optimal architecture for an ANN can be formulated as a

search problem in the architecture space where each point represents one. Given some

performance (optimality) criteria, e.g., lowest training error, lowest network complexity

based on the number of connections, etc., about topologies, the performance level of all

of them forms a discrete surface in the space. The optimal topology design is equivalent

to finding the highest point on this surface (Yao & Liu, 1997).

Miller et al. (Miller, Toddm, & Hegde, 1989) proposed that EC was a very good

candidate for searching the space of architectures because the fitness function associated

 6

with that space is complex, noisy, non-differentiable, multi-modal and deceptive. Since

then, many evolutionary programming methods have been developed to evolve ANNs,

for instance, those by (Yao & Liu, 1997) and (Yao, 1999).

The methodology employed here consists of the use of an EA as a tool for learning

the architecture and weights of a PUNN model (Martínez-Estudillo, Martínez-Estudillo,

Hervás-Martínez, & García-Pedrajas, 2006; Martínez-Estudillo, Hervás-Martínez,

Gutiérrez-Peña, Martínez-Estudillo, & Ventura-Soto, 2006). This class of multiplicative

neural networks comprises such types as sigma-pi networks and product unit networks.

Some of the advantages of PUNN are increased information capacity and the ability to

form higher-order combinations of inputs (Durbin & Rumelhart, 1989). Besides that, it

is possible to obtain upper bounds of the Vapnik-Chervonenkis dimension of PUNN

similar to those obtained for sigmoidal neural networks (Schmitt, 2001). Finally, it is a

straightforward consequence of the Stone-Weierstrass Theorem to prove that PUNN are

universal approximators (Martínez-Estudillo, Martínez-Estudillo, Hervás-Martínez, &

García-Pedrajas, 2006). Despite these advantages, product-unit based networks have a

major drawback. Networks based on product units (PUs) have both more local minima

and more probability of becoming trapped in them (Ismail & Engelbrecht, 2000). The

main reason for this difficulty is that small variations in the exponents can cause large

changes in the total error surface.

Several efforts have been made to carry out learning methods for PUs. Janson and

Frenzel (1993) developed a GA for evolving the weights of a network based on PUs

with a predefined architecture. The major problem with this kind of algorithm is how to

obtain the optimal architecture before-hand (Ismail & Engelbrecht, 2000).

Unfortunately, up to the present, the problem of designing a near optimal ANN

architecture for an application remains unsolved. Abraham (2004) presents MLEANN

(meta-learning EANN), an adaptative computational framework based on evolutionary

computation for automatic design of optimal ANNs. However, this paper defines two

types of experiments, and it is necessary to supply the number of hidden nodes as a

user-specified parameter. The first one is more flexible, in the sense that the topology is

indicated with a number of hidden nodes that ranges between 5 and 16. The

disadvantage of using an EA in the training of PUNN is that the processing time could

be too great with respect to the dimension of the features’ space and to the number of

classes in a concrete classification problem under consideration. Thus, our proposal tries

to ease and speed up the way of finding a good topology regarding previous works. So,

 7

it does not define a fixed architecture, but one that combines individuals that present

two different values of hidden nodes.

Fig. 1 shows the structure of a PUNN model for a bi-classification problem; this is

a three-layer architecture, that is, k nodes in the input layer, m ones and a bias one in the

hidden layer and one node in the output layer. The topologies will be indicated by

means of the numbers of nodes in each layer from input to output given as a sequence:

Number of inputs: number of nodes in the hidden layer: number of nodes in the output

layer. So, in Fig. 1 we have a k:m:1 architecture.

Fig. 1. Structure of a PUNN model for a bi-classification problem.

The transfer function of each node in the hidden and output layers is the identity

function. Thus, the functional model obtained by each of the nodes in the output layer is

given by:

1 2 0
1 1

(, ,...,) ji
km

wl l
k j i

j i

f x x x xβ β
= =

 
= + 

 
∑ ∏ (1)

2.2. Evolutionary algorithm

We use an EA to design the structure and learn the weights of PUNN. The search

begins with a random initial population and, for each iteration, the population is

modified using a population-update algorithm. The population is subjected to the

operations of replication and mutation. Crossover is not used due to its potential

disadvantages in evolving artificial networks (Angeline, Saunders, & Pollack, 1994;

Yao & Liu, 1997). With these features the algorithm falls into the class of evolutionary

programming. We have a classification problem and the general scheme of the EA is the

following:

Fig. 2. Pseudocode of the EA.

Next, we are going to explain the main aspects of the EA:

1) Notation, data, input and output parameters and variables

We have indicated the keywords in boldface and the functions in italics. Comments

are preceded by a double-slash (//). The necessary data is a training set with the

instances of a classification problem. The main parameters of the EA are the maximum

number of generations (gen) and the number of nodes in the hidden layer (neu). The

 8

remaining parameters will be described further on. At the end of the EA, it returns the

best PUNN model with neu nodes in the hidden layer. The variables used are the

number of the current generation (t), the last generation (last_generation) and two

arrays, one with the individuals of the evolving population and the other with the fitness

of each individual.

2) Representation of the individuals

Regarding the representation of individuals, the EA treats the population like a set

of PUNN models. An object-oriented approach has been adopted and the algorithm

deals directly with the ANN phenotype. Each connection is specified by a binary value

indicating if the connection exists, and a real value representing its weight. As the

crossover is not considered, this object-oriented representation does not assume a fixed

order between any hidden nodes. All the individuals in the population have the same

maximum number of neurons in the hidden layer. The concrete value must be indicated

as an EA input and this will clearly affect the performance and complexity of the neural

network. Obtaining the optimal value is a challenge.

3) Error and fitness functions

We have considered a standard softmax activation function, associated with the g

network model, given by:

1

exp ()
() 1, ...,

exp ()

j
j L

i
i

f
g j L

f
=

= =

∑

x
x

x
 (2)

where L is the number of classes in the problem, ()jf x is the output of node j for

pattern x and ()jg x is the probability that this pattern belongs to class j. Taking this

into account, a function of cross-entropy error is used to evaluate a network g with the

instances of a problem, which is reflected in the following expression:

1 1

1() (ln(()))
N L

j
i j i

i j
l g y g

N = =

= − ⋅∑∑ x (3)

and substituting gj defined in (2),

1 1 1

1() () ln(exp ())
N L L

j
i j i j i

i j j
l g y f f

N = = =

 
= ⋅ − + 

 
∑ ∑ ∑x x (4)

where j
iy is the target value for class j with pattern ix (j

iy = 1 if ix ∈ class j and j
iy =

0 otherwise), ()j if x is the output value of the neural network for the output neuron j

 9

with pattern ix , N the number of patterns and L the number of classes. Observe that

softmax transformation produces positive estimates that sum to one and therefore the

outputs can be interpreted as the conditional probability of class membership. On the

other hand, the probability for one of the classes does not need to be estimated because

of the normalization condition. Usually, one activation function is set to zero; in this

work () 0L if =x and we reduce the number of parameters to estimate. Thus, the number

of nodes in the output layer is equal to the number of classes minus one in the problem.

Since the EA objective is to minimise the chosen error function, a fitness function

is used in the form () 1() 1 ()A g l g −= + .

4) Initialisation of the population

At the beginning of the EA, 10*N individuals are generated randomly (step 2) by

means of a pseudo-random number generator, N being the population size; in the

current paper it is equal to 1000. Next, all individuals are evaluated, sorted by

decreasing fitness and the best N ones will compose the initial population (steps 3-5).

5) Stop condition

The main loop of the EA is repeated until the maximum number of generations

(gen) is reached or until the best individual or the population mean fitness do not

improve during gen-without-improving generations (20 in this paper).

6) Parametric mutation

Parametric mutation changes the value of the model coefficients (step 9) and

consists of a simulated annealing algorithm. The severity of a mutation of an individual

g in the population is dictated by the temperature ()T g , given by

() 1 (), 0 () 1T g A g T g= − ≤ < . Parametric mutation is accomplished for each exponent

jiw and coefficient l
jβ of the model with Gaussian noise, where the variance depends

on the temperature:

1(1) () () 1, ..., 1, ..., ji jiw t w t t j k i mξ+ = + = = (5)

2(1) () () 0, ..., 0, ..., 1l l
j jt t t j m l Lβ β ξ+ = + = = − (6)

where () (0, ())k kt N T gξ α∈ 1, 2k = , represents a one-dimensional normally distributed

random variable with mean 0 and variance ()· ()k t T gα , and t is the t-th generation. It

should be pointed out that the modification of the exponents jiw is different from the

change of the coefficients l
jβ , therefore 1 2α α<< . The effect of a mutation on the

 10

weight from an input-variable to a hidden node is greater than from a hidden node to an

output node, so the changes in exponents jiw should be smaller than in the coefficients

l
jβ . Since 2α acts on the coefficients of the output-layer, this parameter controls the

diversity of the individuals in the population. 2α is multiplied by the network

temperature, so at the beginning there is a high temperature to be able to move from one

solution to another with a very different fitness, but in the end the temperature is low, so

with 2α higher values, greater diversity can be achieved. With a 1α high-value, the

algorithm may be made to reach a premature convergence. In our case, since this is a

classification problem, the evolution process must be short. That is why an evolutionary

mechanism must be selected for parameters 1α and 2α that converge toward optimum

values more quickly. Rechenberg’s 1/5 success rule has been applied (Rechenberg,

1973).

7) Structural mutation

This implies a modification in the structure of the model (step 10) and allows

different regions in the search space to be explored while helping to maintain the

diversity of the population. There are five different structural mutations, the first four

ones are similar to those in the GNARL model (Angeline, Saunders, & Pollack, 1994):

node addition, node deletion, connection addition, connection deletion and node fusion.

All the above mutations are made sequentially in the given order, with probability

()T g , in the same generation on the same network. If probability does not select a

mutation, one of the mutations is chosen at random and applied to the network.

8) Summary of the parameters of the EA

To complete the specification of the EA, we will now explain some EA parameters

or features. As stated above, the values of specific parameters like the maximum

number of generations (gen), the number of neurons in the hidden layer (neu) must be

indicated in the EA as input values. There are no typical values for them, so the

difficulty lies in determining good values. Also, the performance of the EA depends

above all on these values. Finally, to conclude this section Table 1 describes the values

of some general EA parameters.

Table 1

General EA parameters/features.

 11

3. Proposal description

In (Tallón-Ballesteros, Gutiérrez-Peña, & Hervás-Martínez, 2007), we proposed an

experimental design distribution (EDD) that will be our starting point here. This

consists of distributing some parameters, either of the network topology or of the EA, as

the number of nodes in the hidden layer, the number of generations and the output-

variance value (α2), over some computing nodes; each set of concrete values of previous

parameters is called a configuration. To do this, an initial configuration, called the base

configuration, is defined and it is modified with new values in one/two parameters in

each of the computing nodes. Thus, once the modifications have been made, each of the

processing nodes will run the EA with a different configuration. Proposals were

presented to distribute two/three parameters, although this paper continues in the line of

distributing three parameters. In our previous study, there were eight different

configurations of the EA working with the same data set, four of them undergoing long

training while the remaining ones were shorter.

At present, as our main goal is to improve efficiency without losing efficacy, our

attention is focused on the experiments with a long training time. It is equivalent to

saying that our interest now lies in distributing two parameters, neu and 2α . This

decision was adopted because these parameters have a great impact on the performance

of the classifier. Table 2 presents the description of the EDD configurations related to

this paper. In these configurations the gen parameter takes the value indicated as the

input to the EA. In this situation four different EA configurations are run, combining

two different values for each of the parameters.

Table 2

Description of the EDD configurations.

The current paper presents a procedure called the Two-Stage Evolutionary

Algorithm (TSEA). First of all, a number of neurons is fixed in the hidden layer, neu.

The first stage consists of generating two populations of size N, respectively with neu

and neu+1 nodes. These populations evolve for 0.1*gen generations. Afterwards, the

best N/2 individuals in each population are selected and merged into a new population

of size N. In the second stage, the main loop of the standard EA is applied to the new

population. The parameters are defined as N, the size of the population; gen, the

 12

maximum number of generations; and neu, the maximum number of nodes in the

hidden layer. The values of these parameters are explained further on. Fig. 3 and Fig. 4

present the TSEA scheme and pseudocode.

Fig. 3. Scheme of the TSEA.

Fig. 4. Pseudocode of the TSEA.

In the previous model, two full independent experiments (steps a) and b) of Fig. 5)

had to be run, one with each of the architectures, for gen generations. With the current

proposal, however, each of the architectures only has to be run for a few generations

(0.1*gen) followed by a full evolutionary cycle to a new population (step c)) that

combines individuals from both topologies. Concerning the number of generations,

previously 2*gen were needed with EDD, while now only 1.2*gen is needed with

TSEA.

The features of TSEA are the following:

– PUNN have been employed with: a number of neurons in the input layer equal to

the number of variables in the problem; a hidden layer with a number of nodes that

depends on the data set to be classified; and the number of nodes in the output layer

equal to the number of classes minus one because a softmax-type probabilistic

approach has been used.
– Two populations have been generated with 1000 individuals in each of the

experiments.
– Each of the populations is evolved for 0.1*gen generations, whose concrete value

depends on the data set. Once this short evolutionary process has been carried out,

the best 500 individuals in each population are selected and are merged to

constitute the new population numbering 1000. This new population will evolve for

gen generations.

– Two experiments have been performed for each problem, where two different

values have been used for 2α , associated with the residual of the updating

expression of the output-layer weights. Thus, two different configurations have

been considered. Table 3 describes them and the values employed for each of the

most relevant parameters.

Fig. 5. Structure of a PUNN model with TSEA.

 13

Table 3

Description of the TSEA configurations.

4. Experimentation

4.1. Data sets

 Table 4 summarizes the data sets employed. Most of them are publicly available at

the UCI repository (Asuncion & Newman, 2007) and the last two concern complex real-

world problems. The following fourteen have been used: Statlog (Australian credit

approval), Balance scale, breast Cancer Wisconsin, Heart disease (Cleveland),

Hepatitis, Horse colic, Thyroid disease (allhypo, Hypothyroid), Ionos (Ionosphere),

Liver disorders, Thyroid disease (Newthyroid), Pima Indians diabetes and Waveform

database generator (version 2) regarding the UCI data sets, and BTX and Listeria

monocytogenes as real-world problems.

Table 4

Summary of the data sets used.

BTX is a multi-class classification problem in the environment for different types

of drinking waters (Hervás, Silva, Gutiérrez, & Serrano, 2008). The data set was

obtained using a set of 63 drinking water samples spiked with individual standards of

Benzene, Toluene or Xylene as well as with binary or ternary mixtures of them at

concentrations between 5 and 30 µg/l, which constitutes an overall data set composed of

seven different classes of contaminated drinking water samples with the same number

of patterns.

Listeria monocytogenes is a bi-class problem in predictive microbiology. It has

been a serious issue that has concerned food industries due to its ubiquity in the natural

environment (Beuchat, 1996; Fenlon, Wilson, & Donachie, 1996) and the specific

growth conditions of the pathogen that lead to its high prevalence in different kinds of

food products. One impetus for this research was the problem of listeriosis

(Tienungoon, Ratkowsky, McMeekin, & Ross, 2000), and different strategies were

proposed to limit levels of contamination at the time of consumption to less than 100

CFU/g (European Commission, (Commission, 1999)). A fractional factorial design was

 14

followed in order to find out the growth limits of Listeria monocytogenes. Data were

collected (Valero, Hervás, García-Gimeno, & Zurera, 2007) at citric and ascorbic acid

concentrations between 0 and 0.4% (w/v) at intervals of 0.05%, at 4º, 7º, 10º, 15º and

30º C and pH levels of 4.5, 5, 5.5 and 6. This data set was divided so that 305

conditions covering the extreme domain of the model were chosen for training, and 234

conditions were selected within the range of the model to test its generalization

capacity. Among the different conditions tested, there were 240 no-growth cases and

299 growth cases.

The size of the data sets ranges from almost one hundred to five thousand. The

number of features depends on the problem and varies between three and forty, while

the number of classes is between two and seven. The column labelled Inputs represents

the number of input nodes in the PUNN model. Since we are using neural networks, all

nominal variables have been converted to binary ones; due to this, sometimes the

number of inputs is greater than the number of features. Also, the missing values have

been replaced in the case of nominal variables by the mode or, when concerning

continuous variables, by the mean, considering the full data set.

4.2. Validation technique and parameters employed

The experimental design uses the cross validation technique called hold-out that

consists of splitting the data into two sets: a training and a test set. The former is

employed to train the neural network and the latter is used to test the training process

and to measure neural network generalization capability. In our case, the size of the

training set is 3n/4 and that of the test set is approximately n/4, where n is the number of

patterns in the problem; these percentages are similar to those used in (Prechelt, 1994).

We have employed a stratified holdout where the two sets are stratified (Kohavi, 1995)

so that the class distribution of the samples in each set is approximately the same as in

the original data set. The proportions do not match in Listeria because the data is

prearranged in two sets due to their specific features.

The concrete values of the neu and gen parameters depend on the data set and are

shown in Table 5. The decision about the number of neurons is a very difficult task in

the scope of neural networks. The performance of the classifier might be better with

other values, but determining the optimal values is a challenge. With respect to the

number of generations, we have defined three kinds of values: small (100-150), medium

(300) and large (500). Again, the optimal number is unknown; however the algorithm

 15

has a stop criterion to avoid evolving up to the maximum number of generations if there

is no improvement. We have given values of our choice to the two parameters

depending on the complexity of the data set (number of classes, inputs, instances,…).

Table 5

Values of the TSEA and/or EDD parameters depending on the data set.

5. Results

First of all, this section presents the results obtained with respect to the CCR in the

test set, CCRG, with EDD and TSEA. As mentioned previously, the topologies are

indicated as a sequence where the values will be separated by a colon. With TSEA, the

number of nodes in the hidden layer for each data set belongs to one interval, given that

the number of nodes will be different in each of the two populations that are combined.

Thus, the second value will be an interval.

After that, a statistical analysis compares TSEA versus EDD. Next, the results of a

second experiment are shown where other models of neural networks have been

considered in order to determine the general performance of the PUNN.

Finally, we report a summary of the results obtained with a variety of classifiers,

from the scope of neural networks or classical/modern machine learning. In most cases,

it has been possible to conduct the experiments, so the partitions of the data sets are the

same.

5.1. Results applying EDD and TSEA

The results obtained by applying the EDD (Tallón-Ballesteros, Gutiérrez-Peña, &

Hervás-Martínez, 2007) are presented, along with those obtained with TSEA. In the

case of EDD, the parameters that are distributed throughout the processing nodes are the

number of hidden-layer nodes, the maximum number of generations and the variance

value (α2). There were 8 configurations, denoted in the following way: 1, 2 … 8. As

already mentioned, this paper only deals with the four configurations with the longest

training process; the values of the parameters of each of them can be seen in Table 2,

Sect. 3. In TSEA, the two existing configurations are 1* and 2*. The configurations 1

and 2 of EDD are equivalent to 1*, and analogously 3 and 4 are equivalent to 2*.

 16

Table 6 shows the mean and standard deviation of the CCRG and the number of

connections for each data set for a total of 30 runs or iterations. The best results

regarding accuracy and complexity (measured in number of connections) appear in

boldface for each data set. Table 6 depicts the generalization results obtained with EDD

and TSEA methodologies. From the analysis of the data, it can be concluded, from a

purely descriptive point of view, that the TSEA method obtains the best result in mean

of the CCRG for all data sets. The differences have to be considered to be between the

mean value of CCRG obtained with TSEA and the mean values of the two equivalent

configurations in EDD. For instance, in Balance the results obtained with configuration

1* with 5-6 neurons surpass configurations 1 and 2 with populations of only 5 or 6

neurons. The mean number of connections often increases in TSEA configurations,

corresponding to those where improvements in CCRG results are produced with respect

to equivalent configurations.

Table 6

Results obtained in fourteen data sets applying EDD and TSEA.

Furthermore, another advantage is that approximately 40% fewer evaluations per

iteration are needed with TSEA to get results comparable to those previously obtained

with EDD. Now in this joint experiment, there are two types of individuals in the same

population, with neu and neu+1 nodes without duplicating the total size of the

population; in the past, these two experiments were carried out separately. The mean

number of evaluations per iteration with EDD is given by:

() _ *10 0.9* _ *evalutions EDD pop size pop size gen= + (7)

where pop_size is the population size and gen the maximum number of generations.

On the other hand, with TSEA the expression is the following:

() (_ *10 0.9* _ *0.1*)*2 0.9* _ *evalutions TSEA pop size pop size gen pop size gen= + + (8)

As stated before, only one experiment with TSEA is needed, while two are

necessary with EDD. Table 7 shows the mean numerical values of the number of

evaluations per iteration for all the data sets concerned in the single TSEA experiment

and the two EDD ones, which are equivalent, along with the reduction percentage in the

number of evaluations. This percentage ranges from 36% to 39%, depending on the

number of generations for each data set.

 17

Table 7

Mean number of evaluations per iteration with TSEA and EDD and percentage of reduction.

5.2. Statistical analysis

In this section we will perform an ANalysis Of VAriance (ANOVA) for the

CCRG, for each data set and determine if there are significant differences between

the numbers of nodes considered or the values of 2α for the underlying models.

These two factors are not independent so an analysis will be carried out using all

possible pairs (N, A) of the Cartesian product of the two sets. For each pair, or

cell, 30 runs of the EA have been performed with different random seeds. Table 6

shows the mean and standard deviation values obtained in these runs.

5.2.1. Accuracy and complexity analysis

First of all, hypothesis tests are performed to try to determine the mean effect of

each term on the CCRG of the best individuals in the last generation for each run. Tests

have been carried out for every factor and for the interaction among factors. A normal

distribution can be assumed for all the variables contrasted, because the p-values of the

Kolmogorov-Smirnov (K-S) test are over a significance coefficient of 0.05. Thus, the

results have been studied by means of an analysis of variance ANOVA II (Dunn &

Clark, 1974; Miller, 1981; Snedecor & Cochran, 1980) with the CCRG of the best

individuals for each run, and CCR as the test variable. This CCR is obtained

independently in 30 runs and depends on two fixed factors and their interaction. The

linear model has the form:

 1, 2,3; 1, 2 1,...,30ijk i j ij ijkCCR N A NA for i j and kµ ε= + + + + = = = (9)

where the parameter µ is the global mean of the model. Ni is the effect on CCR of the

i-th level of factor N, the number of nodes in the hidden layer, where N1 = neu, N2 =

neu+1 and N3 = (neu, neu+1); Aj is the effect on CCR of the j-th level of factor 2α ,

where A1 = 1 and A2 = 1.5; NAij represents the effect of the interaction between

different values of the number of nodes and the 2α . Finally, εijk are error variables

associated with effects on the CCR, other factors not observed in the experiment

and, for those not present in the linear model and/or observation error, measure

 18

error, etc. The variation in experimental results from CCR is explained by the effects of

different levels in the factors of the model and their interaction.

In a second step, if there are significant differences in mean CCRG, a

comparison test of CCRG means will be performed for each data set in order to see

if the TSEA methodology supplies significantly better values in accuracy

(measured in CCR) than EDD.

For the A factor, associated with the 2α value, a student’s t-test was performed in

order to ascertain whether the differences in CCR mean between the two different

values of 2α considered were significant. For factor N, there is a multiple comparison

test of the average CCR obtained with the three different levels to determine whether

there are significant differences. Thus, 90 simulations were done, corresponding to the

30 runs of each level.

The p-values, p*, in Table 8 of each term of the linear model show that the number

of nodes in the hidden layer significantly affects the CCRG mean in seven data sets at a

significance level of 5%, for instance, in the Heart data set p-value=0.008 (see the

second column in Table 8). If now the effect of the A factor is taken into consideration,

it can be inferred that for the Liver and Pima data sets, there exists a significant effect in

the mean of CCR based on 2α values (p-values 0.035 and 0.001 are lower than 0.050).

With respect to interactions among the factors, the fourth column in Table 8, NA, shows

that only for the Liver, Waveform and Listeria data sets does a significant effect exist in

the mean of the CCR based on that interaction (p-values 0.028, 0.001 and 0.016 are

lower than 0.050). In the remaining data sets, the effect of this interaction has been

added to the error term and the Snedecor’s F tests have been redone (this situation is

indicated in Table 8 with a – sign).

Table 8

p-values of the F test of the ANOVA II methodology for the means of the CCRG and the number of

connections.

Regarding the complexity, a similar analysis of variance ANOVA II with the

number of connections has been done. The p-values, p* < 0.050, of factor N in the

linear model (see Table 8) indicate that there are significant differences between the

mean values of the number of connections for each architecture used for each data set,

whereas there are not significant differences in the average of connections depending on

 19

the parameter 2α except for the Balance, Newthyroid and Listeria data sets (p-values

are 0.018, 0.003 and 0.001). As for the interaction between the two factors, it is

significant for the Heart, Horse, Newthyroid, Pima and Listeria data sets, which indicate

that N and α2 values are affected when these act jointly on the mean of the number of

connections of network models.

Generally speaking, we can conclude that the TSEA methodology improves the

CCR values throughout the test set in the majority of the data sets and, for a great deal

of them, quite significantly. The number of connections increases in a significant way.

5.3. Product versus sigmoidal units and radial basis function neural
networks

This section involves a comparison in performance (measured in CCRG) between

neural networks based on product units, sigmoidal units and radial basis functions. For

this comparison four methodologies have been used: the traditional MLP model

(Bishop, 1995) with a learning Back-Propagation method (BP); the RBF model

(Howlett & Jain, 2001); the PUs with EDD methodology (EDD); and the PUs with

TSEA methodology (TSEA). These methods were run with all the data sets in question.

We have used the Weka tool (Witten & Frank, 2005) to run algorithms BP and RBF.

The parameters for BP were the following: learning rate 0.3η = and momentum

0.2α = . The number of epochs was adjusted in each data set. Regarding the topology

of the models (number of hidden nodes), in the case of MLP and RBF we have

considered default topology. In EDD and TSEA we deal with the best topology that we

have reported in this paper. The number of runs for MLP and RBF was 30.

Table 9 includes the results of TSEA, EDD, MLP and RBF methodologies for all

data sets. The best results in CCRG for each data set are shown in boldface.

Table 9

Results of the comparison with other techniques.

From a purely descriptive analysis of the results, it can be concluded that the

TSEA method obtains the best result for nine data sets, the RBF methodology yields the

highest performance for four data sets, whereas MLP only does so for one data set.

Furthermore, the TSEA method obtains the best mean ranking (1.57R =), followed by

 20

the EDD method (2.64R =), and reports the highest mean accuracy (87.85%GCCR =)

followed by the EDD method (87.38%GCCR =). The mean accuracy and ranking

obtained by the TSEA and EDD are higher than those obtained by MLP and RBF,

which confirms the best accuracy of the product units.

To determine the statistical significance of the differences in rank observed for

each method in the different data sets, a non-parametric Friedman test (Friedman, 1937)

has been carried out with the CCRG ranking of the best models as the test variable (since

a previous evaluation of the CCRG values results in rejecting the normality and the

equality of the variances hypothesis). The null-hypothesis states that all algorithms are

equivalent and so their ranks (iR) should be equal. The test shows that the effect of the

method used for classification is statistically significant at a significance level of 5%, as

the confidence interval is 0 0.05(0, 2.84)C F= = with a F-distribution with 3 and 39

degrees of freedom, and the F-distribution statistical value (Iman & Davenport, 1980) is

0* 4.08F C= ∉ . Consequently, we reject the null-hypothesis; thus it implies the

existence of significant differences in the performances of all the methods considered.

On the basis of this rejection, a post-hoc non-parametric Bonferroni-Dunn test

(Hochberg & Tamhane, 1987) was applied with the best performing algorithm TSEA as

the control method. The results of the Bonferroni-Dunn test for 0.1α = and 0.05α =

can be seen in Table 10 using the corresponding critical values for the two-tailed

Bonferroni-Dunn test.

Table 10

Critical difference values, mean ranking and differences of rankings of the Bonferroni-Dunn test, using

TSEA as the control method.

The TSEA method obtains a significantly higher ranking of CCRG when

compared to all the methods and none of the remaining methods obtain significantly

higher rankings when compared to each other. Consequently, the TSEA method obtains

a significantly higher performance than the three methods, EDD, MLP and RBF, which

justifies the proposal.

Therefore, we can conclude that the results obtained by TSEA make it a very

competitive method when compared to the other neural network learning schemes

previously mentioned.

 21

5.4. Results obtained with a variety of classifiers

Now, a general review can be made of the results obtained with another kind of

neural networks and other machine learning algorithms. In the literature a huge amount

of tests have been carried out with some of the data sets here considered. However, in

some cases the classifier attribute is different, the number of instances is not the same,

since some have been removed, or even the number of features does not match; the

result is not included for those situations. The method of cross-validation is different in

many papers, so the comparison is not as fair as we would like. Our purpose is to view

some of the methods that have been tested with some of the data sets dealt with in the

current paper. Regarding neural networks, only those methods using the same number

of inputs as ours are considered. These methods are TSEA, EDD, HMOEN_HN (Goh,

Teoh, & Tan, 2008), HMOEN_L2 (Goh, Teoh, & Tan, 2008), MLP, RBF and SONG

(Inoue & Narishina, 2005). Other classical or modern machine learning algorithms have

been included: C4.5 (Quinlan, 1993), k-nearest neighbours (k-NN) (Cover & Hart,

1967; Aha, Kibler, & Albert, 1991), PART (Frank & Witten, 1998) and SVM (Vapnik,

1995). Since, MLP, RBF, C4.5, k-NN, PART and SVM are implemented in Weka tool

(Witten & Frank, 2005), the same cross-validation is used as in the current proposal and

in our previous work, thus the same instances in each of the partitions; regarding the

parameters, the algorithms have been run with the default values. We have reported the

best accuracy in k-NN where k is 1, 3, 5, 7 or 9. For the remaining methods cited above,

it is not possible to conduct the experiments, because the implementations are not

publicly available. There does not exist one method that performs really well with all

data sets; depending on the data set, the best classifier belongs to either the neural

networks approach or to the classical/modern machine learning. In Table 11 the results

are summarized; the best ones in boldface and in italics, the second best ones, as well as

the averages of the methods run by us with all data sets.

Table 11

Summary of the results in fourteen data sets comparing TSEA to existing works related to neural

networks or classical/modern machine learning approaches.

 22

6. Conclusions

The aim of this paper is to tackle multi-classification problems using neural

networks based on product units, but at a lower computational cost than that used in

algorithms proposed in previous works. Our basic assumption is that it is good to

employ a methodology based on a population with more diverse models regarding

network architectures and this produces an improvement in efficiency, mantaining good

results.

The TSEA is applied to solve fourteen classification problems, twelve from the

UCI repository and two real-world problems, with a great deal of variety in the number

of instances, features and classes. The results confirm that our approach obtains

promising results, achieving a high classification rate level in the data sets at a lower

computational cost.

Experimental studies have been performed to determine if different values in the

number of nodes in the hidden layer and 2α significantly affect performance.

The EA has been run with PUs using, on one hand, the standard EA applying EDD,

and on the other hand, TSEA, a method that significantly reduces the computational

cost measured by means of the number of EA evaluations. Once we have performed the

statistical analysis (see Table 8), we conclude that TSEA maintains enough robust

CCRG values and, in a considerable number of data sets, significantly higher ones.

In order to analyze performance with respect to efficacy, these two methodologies

for the generation of PUNN models have been compared to other network models. The

former have sigmoidal basis units and it is a model trained with a BP algorithm (MLP)

whereas the latter is model trained with RBF networks.

According to the above results, our learning methodology of neural networks,

TSEA, is seen to considerably improve efficiency and significantly efficacy in most of

the data sets with respect to the EDD methodology. TSEA obtains a significantly better

ranking compared to EDD, MLP and RBF. We have also summarized the results

obtained with other kinds of neural networks and classical/modern machine learning

algorithms.

 23

Acknowledgments

 This work has been partially subsidized by TIN2007-68084-C02-02 and TIN2008-06681-C06-03

projects of the Spanish Inter-Ministerial Commission of Science and Technology (MICYT), FEDER

funds and the P08-TIC-3745 project of the "Junta de Andalucía" (Spain).

References

Abraham, A. (2004). Metalearning evolutionary artificial neural networks. Neurocomputing, 56, 1-38.

Aha, D., Kibler, D., & Albert M. K. (1991). Instance-based learning algorithms. Machine Learning, 6, 37-

66.

Amor, H. B., & Rettinger, A. (2005). Intelligent exploration for genetic algorithms: using self-organizing

maps in evolutionary computation. In Proceedings of the 2005 conference on genetic and

evolutionary computation (GECCO 2005) (pp. 1531-1538). Washington DC, USA: ACM.

Angeline, P. J., Saunders, G. M., & Pollack, J. B. (1994). An evolutionary algorithm that construct

recurrent neural networks. IEEE Transactions on Neural Networks, 5(1), 54-65.

Asuncion A., & Newman, D. J. (2007). UCI Machine Learning Repository. Irvine, CA: University of

California, School of Information and Computer Science.

<http://www.ics.uci.edu/~mlearn/MLRepository.html>.

Beuchat, L. R. (1996). Listeria monocytogenes: incidence on vegetables. Food Control, 7(4-5), 223-228.

Bishop, C. M. (1995). Neural networks for pattern recognition. New York: Oxford University Press.

Chop, N. E., & Calvert, D. (2005). The chopper genetic algorithm: a variable population genetic

algorithm. In Proceedings of the artificial neural networks in engineering conference (ANNIE

2005). St. Louis, MO, USA: Asme Press.

Commission, E. (1999). Opinion of the scientific committee on veterinary measures relating to public

health on Listeria monocytogenes. <http://www.europa.eu.int/comm/food/fs/sc/scv/out25>.

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information

Theory, 13(1), 21-27.

Curran, D., & O’Riordan, C. (2006). Increasing population diversity through cultural learning. Adaptive

Behavior, 14(4), 315-338.

De Garis, H. (1990). Genetic programming: building artificial nervous systems using genetically

programmed neural network modules. In Proceedings of the seventh international conference on

machine learning (ML 1990) (pp. 132-139). Austin, Texas, USA: Morgan Kaufmann.

Dunn, O. J., & Clark, V. (1974). Applied statistics: Analysis of variance and regression. New York:

Wiley.

Durbin, R., & Rumelhart, D. (1989). Products units: a computationally powerful and biologically

plausible extension to back-propagation networks. Neural Computation, 1(1), 133-142.

Fenlon, D. R., Wilson J., & Donachie, W. (1996). The incidence and level of Listeria monocytogenes

contamination of food sources at primary production and initial processing. Journal of Applied

Microbiology, 81(6), 641-650.

 24

Frank, E., & Witten, I. H. (1998). Generating accurate rule sets without global optimization. In

Proceedings of the fifteenth international conference on machine learning (ICML 1998) (pp. 144-

151). Madison, Wisconson, USA: Morgan Kaufmann.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of

variance. Journal of the American Statistical Association, 32(200), 675-701.

Goldberg, D. A. (1989). Genetic algorithms in search, optimization, and machine learning. Reading,

MA: Addison-Wesley.

Goh, C. K., Teoh, E. J., & Tan, K. C. (2008). Hybrid multiobjective evolutionary design for artificial

neural networks. IEEE Transactions on Neural Networks, 19(9), 1531-1548.

Heitkoetter, J., & Beasley, D. (2001). The Hitch-Hiker's guide to evolutionary computation. FAQ in

comp.ai.genetic, issue 9.1, 4. <http://www.aip.de/~ast/EvolCompFAQ/>.

Hervás, C., Silva, M., Gutiérrez P. A., & Serrano, A. (2008). Multilogistic regression by evolutionary

neural network as a classification tool to discriminate highly overlapping signals: Qualitative

investigation of volatile organic compounds in polluted waters by using headspace-mass

spectrometric analysis. Chemometrics and Intelligent Laboratory Systems, 92, 179–185.

Hochberg, Y., & Tamhane, A. (1987). Multiple comparisons among means. New York: John Wiley &

Sons.

Howlett, R. J., & Jain, L. C. (2001). Radial Basis Function Networks 1: Recent Developments in Theory

and Applications. Heidelberg, Germany: Springer.

Iman, R. L., & Davenport, J. M. (1980). Approximations of the critical region of the Friedman statistic.

Communications in Statistics, A9(6), 571-595.

Inoue, H., & Narihisa, H. (2005). Self-organizing neural grove and its applications. In Proceedings of the

international joint conference on neural networks (IJCNN 2005) (Vol. 2, pp. 1205-1210). Montreal,

Quebec, Canada: IEEE.

Ismail, A., & Engelbrecht, A. P. (2000). Global optimization algorithms for training product unit neural

networks. In Proceedings of the IEEE-INNS-ENNS international joint conference on neural

networks (IJCNN 2000), neural computing: new challenges and perspectives for the new

millennium (Vol. 1, pp. 132-137). Como, Italy: IEEE.

Janson, D.J., & Frenzel, J. F. (1993). Training product unit neural networks with genetic algorithms.

IEEE Expert: Intelligent Systems and their Applications, 8(5), 26-33.

Kohavi, R. (1995). A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model

Selection. In Proceedings of the fourteenth international joint conference on artificial intelligence

(IJCAI 1995) (Vol. 2, pp. 1137-1145). Montreal, Quebec, Canada: Morgan Kaufmann.

Lozano, M., Herrera, F., & Cano, J. R. (2008). Replacement strategies to preserve useful diversity in

steady-state genetic algorithms. Information Sciences, 178(23), 4421-4433.

Maaranen, H., Miettinen, K., & Mäkelä, M. M. (2004). Quasi-random initial population for genetic

algorithms. Computers & Mathematics with Applications, 47, 1885-1895.

Maaranen, H., Miettinen, K., & Penttinen, A. (2007). On initial populations of a genetic algorithm for

continuous optimization problems. Journal of Global Optimization, 37(3), 405-436.

 25

Mahfoud, S. W. (1995). Niching methods for genetic algorithms. PhD thesis, University of Illinois at

Urbana-Champaign, Urbana, IL, USA.

Martínez-Estudillo, A. C., Martínez-Estudillo, F. J., Hervás-Martínez, C., & García-Pedrajas, N. (2006).

Evolutionary product unit based neural networks for regression. Neural Networks, 19, 477-486.

Martínez-Estudillo, F. J., Hervás-Martínez, C., Gutiérrez-Peña, P. A., Martínez-Estudillo, A. C., &

Ventura-Soto, S (2006). Evolutionary product-unit neural networks for classification. In

Proceedings of the 7th international conference on intelligent data engineering and automated

Learning (IDEAL 2006). Lecture notes in computer science (Vol. 4224, pp. 1320-1328). Burgos,

Spain: Springer.

Miller, G. F., Toddm, P. M., & Hegde, S. U. (1989). Designing neural networks using genetic algorithms.

In Proceedings of the 3rd international conference on genetic algorithms (ICGA 1989) (pp. 379-

384). George Mason University, Fairfax, Virginia, USA: Morgan Kaufmann.

Miller, R. G. (1981). Simultaneous Statistical Inference. New York: Wiley.

Prechelt, L. (1994). Proben1—A set of neural network benchmark problems and benchmarking rules.

Technical Report 21/94. Fakultat für Informatik, Univ. Karlsruhe, Karlsruhe, Germany.

Quinlan, J. (1993). C4.5: Programs for Machine Learning. San Francisco, CA: Morgan Kaufmann.

Rechenberg, I. (1973). Evolutionsstrategie: optimierung technischer systeme nach prinzipien der

biologischen evolution. Stuttgart-Bad Canstatt, Germany: Frommann-Holzboog.

Schmitt, M. (2001). On the complexity of computing and learning with multiplicative neural networks.

Neural Computation, 14, 241-301.

Snedecor, G. W., & Cochran, W. G. (1980). Statistical methods. Ames, Iowa: Iowa State University

Press.

Tallón-Ballesteros, A. J., Gutiérrez-Peña, P. A., & Hervás-Martínez, C. (2007). Distribution of the search

of evolutionary product unit neural networks for classification. In Proceedings of the IADIS

internacional conference on applied computing (AC 2007) (pp. 266-273). Salamanca, Spain: IADIS.

Tienungoon, S., Ratkowsky, D. A., McMeekin, T. A., & Ross, T. (2000). Growth limits of Listeria

monocytogenes as a function of temperature, pH, NaCl, and lactic acid. Applied and Environmental

Microbiology, 66(11), 4979-4987.

Ursem, R. K. (2002). Diversity-guided evolutionary algorithms. In Proceedings of the 7th international

conference on parallel problem solving from nature (PPSN VII). Lecture notes in computer science

(Vol. 2439, pp. 462-471). Granada, Spain: Springer.

Valero, A., Hervás, C., García-Gimeno, R. M., & Zurera, G. (2007). Product unit neural network models

for predicting the growth limits of Listeria monocytogenes. Food Microbiology, 24(5), 452-464.

Vapnik, V (1995). The Nature of Statistical Learning Theory. New York: Springer.

Wang, L., Zheng, D. Z., & Tang, F. (2002). An improved evolutionary programming for optimization. In

Proceedings of the 4th world congress on intelligent control and automation (Vol. 3, pp. 1769-

1773). Shanghai, China: IEEE.

Witten, I. H., & Frank, E. (2005). Data Mining: Practical machine learning tools and techniques with

Java implementations. San Francisco, CA: Morgan Kaufmann.

 26

Yao, X., & Liu, Y. (1997). A new evolutionary system for evolving artificial neural networks. IEEE

Transactions on Neural Networks, 8(3), 694-713.

Yao, X. (1999). Evolving artificial neural networks. In Procedings of the IEEE, 87(9), 1423-1447.

 27

Tables

Table 1

General EA parameters/features.

Parameter/Feature Value
Population size (N) 1000
gen-without-improving 20

Interval for the exponents jiw / coefficients l
jβ [-5, 5]

Initial values of 1α and 2α 0.5 and 1 respectively

Normalization of the input data [1, 2]
Number of nodes in node addition and node deletion operators [1, 2]

Table 2

Description of the EDD configurations.

Configuration Num. of
Neurons (neu)

Max. Num. of
Generations

α2

1 neu gen 1
2 neu + 1 gen 1
3 neu gen 1.5
4 neu +1 gen 1.5

Table 3

Description of the TSEA configurations.

Configuration Num. of Neurons
in each population

Size of each
population

Num. of Generations
in each population α2

1* neu and neu+1 1000 0.1*gen 1
2* neu and neu+1 1000 0.1*gen 1.5

Table 4

Summary of the data sets used.
Data set Total Patterns Training Patterns Test Patterns Features Inputs Classes

Australian 690 517 173 14 51 2
Balance 625 469 156 4 4 3
Cancer 699 525 174 10 9 2
Heart 303 227 76 13 26 2
Hepatitis 155 117 38 19 19 2
Horse 368 276 92 27 83 2
Hypothyroid 3772 2829 943 29 29 4
Ionos 351 263 88 34 34 2
Liver 345 259 86 6 6 2
Newthyroid 215 161 54 5 5 3
Pima 768 576 192 8 8 2
Waveform 5000 3750 1250 40 40 3
BTX 63 42 21 3 3 7
Listeria 539 305 234 4 4 2

 28

Table 5

Values of the TSEA and/or EDD parameters depending on the data set.

Data set Num. of
Neurons (neu)

Num. of Neurons in each
Population (neu and neu+1)

Max. Num. of
Generations (gen)

Num. of Generations
in each population

Australian 4 4 and 5 100 10
Balance 5 5 and 6 150 15
Cancer 2 2 and 3 100 10
Heart 3 3 and 4 300 30
Hepatitis 3 3 and 4 100 10
Horse 4 4 and 5 300 30
Hypothyroid 3 3 and 4 500 50
Ionos 4 4 and 5 500 50
Liver 4 4 and 5 300 30
Newthyroid 3 3 and 4 300 30
Pima 3 3 and 4 120 12
Waveform 3 3 and 4 500 50
BTX 5 5 and 6 500 50
Listeria 4 4 and 5 300 30

 29

Table 6

Results obtained in fourteen data sets applying EDD and TSEA.

Data set Configuration
(Topology)

CCRG
Mean±SD

Mean Num.
of

Conn.±SD
Data set Configuration

(Topology)
CCRG
Mean±SD

Mean Num.
of
Conn.±SD

Australian

1 (51:4:1) 87.63±1.49 49.93±13.97

Ionos

1 (34:4:1) 92.31±2.23 39.63±7.53
2 (51:5:1) 87.32±1.66 52.47±13.36 2 (34:5:1) 92.50±2.28 49.37±8.97
1* (51:[4,5]:1) 88.11±1.56 43.50±15.34 1* (34:[4,5]:1) 91.51±1.88 33.67±6.45
3 (51:4:1) 87.70±1.45 49.83±13.27 3 (34:4:1) 91.85±2.48 37.53±7.21
4 (51:5:1) 87.63±1.54 53.90±16.59 4 (34:5:1) 93.06±1.87 48.90±9.74
2* (51:[4,5]:1) 88.68±1.10 38.00±11.52 2* (34:[4,5]:1) 93.22±1.92 38.80±7.23

Balance

1 (4:5:2) 95.30±1.47 22.87±2.52

Liver

1 (6:4:1) 73.87±2.21 18.43±1.94
2 (4:6:2) 95.15±0.98 25.23±2.22 2 (6:5:1) 73.56±1.97 21.47±2.85
1* (4:[5,6]:2) 96.20±1.06 24.83±2.36 1* (6:[4,5]:1) 74.61±2.00 19.83±2.15
3 (4:5:2) 95.04±1.41 23.37±3.06 3 (6:4:1) 72.20±3.22 17.37±2.47
4 (4:6:2) 95.62±1.16 26.67±3.29 4 (6:5:1) 73.64±3.23 22.17±2.59
2* (4:[5,6]:2) 95.62±1.12 25.87±3.04 2* (6:[4,5]:1) 72.36±1.51 20.23±1.38

Cancer

1 (9:2:1) 98.49±0.61 12.23±1.50

Newthyroid

1 (5:3:2) 94.44±0.68 16.97±2,58
2 (9:3:1) 98.97±0.38 15.80±1.73 2 (5:4:2) 94.75±0.98 21.80±2.92
1* (9:[2,3]:1) 98.74±0.61 16.40±2.44 1* (5:[3,4]:2) 94.88±0.93 20.10±2.28
3 (9:2:1) 98.51±0.49 11.97±1.79 3 (5:3:2) 94.81±0.89 17.30±2.56
4 (9:3:1) 98.72±0.60 16.23±2.49 4 (5:4:2) 94.75±1.38 22.77±3.00
2* (9:[2,3]:1) 98.98±0.54 15.90±2.01 2* (5:[3,4]:2) 94.19±1.92 15.37±1.97

Heart

1 (26:3:1) 82.18±2.36 33.47±6.97

Pima

1 (8:3:1) 77.33±2.36 13.53±2.39
2 (26:4:1) 82.36±2.98 40.13±7.99 2 (8:4:1) 78.61±1.88 18.60±3.04
1* (26:[3,4]:1) 83.68±2.57 41.77±8.73 1* (8:[3,4]:1) 78.63±1.33 13.73±2.77
3 (26:3:1) 82.32±3.08 30.67±8.73 3 (8:3 :1) 76.96±1.67 13.73±1.91
4 (26:4:1) 81.97±3.05 44.33±10.05 4 (8:4:1) 77.69±1.79 17.37±2.20
2* (26:[3,4]:1) 83.64±2.33 45.67± 6.15 2* (8:[3,4]:1) 77.69±1.33 15.83±2.59

Hepatitis

1 (19:3:1) 84.47±4.49 27.23±4.53

Waveform

1 (40:3:2) 81.43±2.10 30.75±6.73
2 (19:4:1) 85.52±4.67 35.90±5.21 2 (40:4:2) 82.78±0.64 48.63±9.36
1* (19:[3,4]:1) 85.79±4.51 31.67±5.63 1* (40:[3,4]:2) 84.46±0.92 43.13±5.72
3 (19:3:1) 84.47±4.55 26.80±4.01 3 (40:3:2) 82.05±1.64 36.25±7.78
4 (19:4:1) 84.29±5.33 36.53±6.65 4 (40:4:2) 84.32±1.73 43.25±5.73
2* (19:[3,4]:1) 83.68±3.87 33.63±3.93 2* (40:[3,4]:2) 82.01±1.48 40.88±12.86

Horse

1 (83:4:1) 86.41±2.38 82.60±15.38

BTX

1 (3:5:6) 79.04±6.32 39.53±3.41
2 (83:5:1) 85.18±2.57 108.10±24.13 2 (3:6:6) 77.61±7.09 43.57±3.77
1* (83:[4,5]:1) 85.50±2.97 89.70±27.35 1* (3:[5,6]:6) 79.68±7.39 38.27±5.17
3 (83:4:1) 85.72±2.43 84.67±22.05 3 (3:5:6) 78.73±5.26 39.47±3.57
4 (83:5:1) 85.57±3.60 107.97±20.32 4 (3:6:6) 77.14±4.90 44.90±3.66
2* (83:[4,5]:1) 86.59±2.38 99.17±25.15 2* (3:[5,6]:6) 81.11±6.55 38.93±3.79

Hypothyroid

1 (29:3:3) 95.27±0.77 31.13±6.38

Listeria

1 (4:4:1) 87.20±1.71 14.93±1.48
2 (29:4:3) 95.32±0.58 39.63±8.78 2 (4:5:1) 87.45±1.14 18.63±1.73
1* (29:[3,4]:3) 95.37±0.40 42.00±7.41 1* (4:[4,5]:1) 86.54±1.67 14.63±1.73
3 (29:3:3) 94.96±0.62 34.38±2.92 3 (4:4:1) 86.66±1.82 15.03±1.59
4 (29:4:3) 95.16±0.32 33.50±7.65 4 (4:5:1) 86.98±1.72 18.33±1.92
2* (29:[3,4]:3) 94.94±0.25 43.00±8.45 2* (4:[4,5]:1) 87.68±1.06 17.43±1.52

 30

Table 7

Mean number of evaluations per iteration with TSEA and EDD and percentage of reduction.

Data set TSEA EDD Reduction Data set TSEA EDD Reduction
Australian 128000 200000 36% Ionos 560000 920000 39%
Balance 182000 290000 37% Liver 344000 560000 39%
Cancer 128000 200000 36% Newthyroid 344000 560000 39%
Heart 344000 560000 39% Pima 149600 236000 37%
Hepatitis 128000 200000 36% Waveform 560000 920000 39%
Horse 344000 560000 39% BTX 560000 920000 39%
Hypothyroid 560000 920000 39% Listeria 344000 560000 39%

Table 8

p-values of the F test of the ANOVA II methodology for the means of the CCRG and the number of

connections.

Data set CCRG Num. of Connections Data set CCRG Num. of Connections
 F test F test F test F test
 N A NA N A NA N A NA N A NA
Australian 0.002 0.147 _ 0.000 0.510 _ Ionos 0.098 0.257 _ 0.000 0.468 _
Balance 0.004 0.508 _ 0.000 0.018 _ Liver 0.417 0.001 0.028 0.000 0.974 _
Cancer 0.001 0.694 _ 0.000 0.713 _ Newthyroid 0.536 0.648 _ 0.000 0.003 0.000
Heart 0.008 0.569 _ 0.000 0.150 0.033 Pima 0.006 0.035 _ 0.000 0.343 0.002
Hepatitis 0.831 0.171 _ 0.000 0.342 _ Waveform 0.003 0.825 0.001 0.001 0.776 _
Horse 0.394 0.954 _ 0.000 0.264 0.033 BTX 0.035 0.823 _ 0.000 0.182 _
Hypothyroid 0.662 0.085 _ 0.002 0.769 _ Listeria 0.591 0.916 0.016 0.000 0.001 0.000

Table 9

Results of the comparison with other techniques.

Method Data set
 Australian Balance Cancer Heart Hepatitis Horse Hypothyroid
TSEA 88.68±1.10 96.20±1.06 98.98±0.54 83.68±2.57 85.79±4.51 86.59±2.22 95.37±0.40
EDD 87.70±1.45 95.62±1.16 98.97±0.38 82.36±2.98 85.52±4.67 86.41±2.38 95.32±0.58
MLP 84.10±1.48 93.78±1.81 97.81±0.47 84.82±2.55 84.73±2.08 88.51±1.57 94.39±0.32
RBF 75.84±2.04 88.27±1.83 97.20±0.25 86.75±2.39 89.30±2.29 80.47±1.38 92.83±0.56
Method Data set
 Ionos Liver Newthyroid Pima Waveform BTX Listeria
TSEA 93.22±1.92 74.61±2.00 94.88±0.93 78.63±1.33 84.46±0.92 81.11±6.55 87.68±1.06
EDD 93.06±1.87 73.87±2.21 94.81±0.90 78.61±1.88 84.32±1.73 79.04±6.32 87.45±1.14
MLP 89.12±1.54 65.65±3.35 97.08±1.40 75.94±2.13 84.85±0.96 54.12± 8.10 84.49±1.70
RBF 92.46±0.70 57.17±3.43 98.27±0.47 77.34±2.17 87.29±0.07 80.95±0.00 83.70±0.00
 () 87.85GCCR TSEA = ; () 87.38GCCR EDD = ; () 84.24GCCR MLP = ; () 84.85GCCR RBF =

 31

Table 10

Critical difference values, mean ranking and differences of rankings of the Bonferroni-Dunn test, using

TSEA as the control method.

Method R Difference with TSEA

TSEA (1) 1.57R = _

EDD (2) 2.64R =
(2) (1) 1.07R R− = °

MLP (3) 2.86R =
(3) (1) 1.29*R R− =

RBF (4) 2.93R = (4) (1) 1.36*R R− =

 (0.1) (0.05)1.04; 1.17CD CDα α= == =

*: Statistically significant difference with 0.05α =
° : Statistically significant difference with 0.1α =

(1): TSEA; (2): EDD; (3): RBF; (4): MLP

CD: Critical Difference

Table 11

Summary of the results in fourteen data sets comparing TSEA to existing works related to neural

networks or classical/modern machine learning approaches.

Method Australian Balance Cancer Heart Hepatitis Horse Hypothyroid
TSEA 88.68 96.20 98.98 83.68 85.79 86.59 95.37
EDD 87.70 95.62 98.97 82.36 85.52 86.41 95.32
HMOEN_HN - - 96.82 - 75.51 - -
HMOEN_L2 - - 96.30 - 80.30 - -
MLP 84.10 93.78 97.81 84.82 84.73 88.51 94.39
RBF 75.84 88.27 97.20 86.75 89.30 80.47 92.83
SONG - 87.80 97.40 - - - -
C4.5 86.71 83.33 97.13 75.00 84.21 88.04 99.15
k-NN 85.55 91.67 98.85 82.89 86.84 88.04 94.06
PART 84.97 85.26 97.13 80.26 81.58 85.87 98.83
SVM 88.44 88.46 98.28 82.89 89.47 88.04 93.85
Method Ionos Liver Newthyroid Pima Waveform BTX Listeria
TSEA 93.22 74.61 94.88 78.63 84.46 81.11 87.68
EDD 93.06 73.87 94.81 78.61 84.32 79.04 87.45
HMOEN_HN - 68.94 - 75.36 - - -
HMOEN_L2 - 68.00 - 78.50 - - -
MLP 89.12 65.65 97.08 75.94 84.85 54.12 84.49
RBF 92.46 57.17 98.27 77.34 87.29 80.95 83.70
SONG 91.20 68.50 97.20 76.40 - - -
C4.5 92.05 68.60 96.30 74.48 76.40 80.95 85.93
k-NN 90.91 63.95 94.44 75.00 81.12 76.19 85.93
PART 95.45 61.63 92.59 74.48 78.16 80.95 86.67
SVM 88.64 58.14 88.89 78.13 88.80 61.90 80.74

 () 87.85GCCR TSEA = ; () 87.38GCCR EDD = ; () 84.24GCCR MLP = ; () 84.85GCCR RBF =

 (4.5) 84.88GCCR C = ; () 85.39GCCR k NN− = ; () 84.56GCCR PART = ; () 83.91GCCR SVM =

