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Abstract
Sepsis is a life-threatening condition whose early recognition is key to improving outcomes for patients in intensive care units
(ICUs). Artificial intelligence can play a crucial role in mining and exploiting health data for sepsis prediction. However,
progress in this field has been impeded by a lack of comparability across studies. Some studies do not provide code, and each
study independently processes a dataset with large numbers of missing values. Here, we present a comparative analysis of
early sepsis prediction in the ICU by usingmachine learning (ML) algorithms and provide open-source code to the community
to support future work. We reviewed the literature and conducted two phases of experiments. In the first phase, we analyzed
five imputation strategies for handling missing data in a clinical dataset (which is often sampled irregularly and requires
hand-crafted preprocessing steps). We used the MIMIC-III dataset, which includes more than 5,800 ICU hospital admissions
from 2001 to 2012. In the second phase, we conducted an extensive experimental study using five ML methods and five
popular deep learning models. We evaluated the performance of the methods by using the area under the precision-recall
curve, a standard metric for clinical contexts. The deep learning methods (TCN and LSTM) outperformed the other methods,
particularly in early detection tasks more than 4 hours before sepsis onset. The motivation for this work was to provide a
benchmark framework for future research, thus enabling advancements in this field.
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1 Introduction

Sepsis is caused by an immunological response to infec-
tion. Although bacterial infections are the primary cause of
the clinical signs of sepsis, viruses, fungi, or parasites can
also result in sepsis [1]. Regardless of the cause of infec-
tion, sepsis is a life-threatening condition that causes organ
dysfunction due to a dysregulated host response to infec-
tion and constitutes a major global health problem [2]. For
instance, in the U.S., sepsis affects more than 1.5 million
people each year and leads to the death of 250,000 people
[3]. Sepsis-related deaths account for an estimated 11 mil-
lion of all global deaths [2]. In addition to causing alarmingly
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high mortality and morbidity rates, sepsis poses a substan-
tial burden on the healthcare system’s finances [2]; sepsis
was responsible for 13% of total U.S. hospital costs but
only 3.6% of hospital stays in 2013 [7]. Therefore, a sys-
tems medicine approach is necessary for early recognition
of sepsis, to treat and predict the prognosis of the condition.
With the introduction of electronic health records, genomic
and molecular profiling technologies, novel machine learn-
ing (ML) algorithms, and modern drug discovery, a wide
range of powerful tools is newly unavailable for implement-
ing data-driven strategies [1].

Data-driven biomarker discovery has gained popularity
over the past few decades and has the potential to overcome
current obstacles. The goal of this approach is to mine and
exploit health data by using artificial intelligence, because
large amounts of clinical data (vital signs, medications, lab-
oratory measurements, etc.) and health history are available
in databases for patients with sepsis [8]. The variability in
the data enables data-driven strategies to be implemented in
searching for biomarkers in a holistic rather than a reduc-
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tionist manner, focusing on only individual markers, such
as hematological markers. ML algorithms can be leveraged
to extract patterns from this large volume of available data,
thereby addressing one of the primary challenges in sepsis
disease: early recognition of sepsis. Timely antibiotic inter-
vention is crucial, becausemortality rates increasewith every
hour of delay, as highlighted in previous studies [9–11].

In recent years, artificial intelligence-based approaches
have proven successful in predicting sepsis at the earliest
possible time point in intensive care units (ICUs). How-
ever, to achieve this prediction, researchers have relied on
either private databases provided by health institutions or
public databases, such as Multiparameter Intelligent Moni-
toring in Intensive Care (MIMIC)-III [8] or eICU [12]. These
public databases are freely accessible after their terms and
conditions are accepted. A major challenges in using ICU
health data is that sampling often is irregular, with differ-
ent variables extracted from patients at varying time points.
Therefore, researchers must preprocess the database, consid-
ering decisions such as how to label the data, patient inclusion
criteria, and case control-onset matching. Several definitions
of sepsis are used in the literature, and the selection of the
definition used for labeling the data is crucial and affects the
analysis in terms of the prevalence1 of patients with sepsis
and the level of difficulty of the prediction task, owing to
earlier or later timing of sepsis [13]. On the one hand, more
inclusive sepsis labeling indicates higher prevalence, e.g.,
in a class balance dataset, thus aiding in the training stabil-
ity of ML models. On the other hand, adding more patients
with sepsis could result in a cohort with less severe sepsis,
comprising patients difficult to distinguish from non-septic
ICU patients. In the literature, the label of severe sepsis or
septic shock has rarely been used since a 2016 consensus
statement. Instead, internationally acknowledged guidelines,
called Sepsis-II [14] and Sepsis-III [15] are used. However,
the lack of standardized reporting in the literature has led
to low comparability and reproducibility, partly because of
the lack of standardization in the use of metrics across stud-
ies. Recently published systematic reviews, such as [13] and
[1], have reported existing approaches but have not provided
experimental comparisons among them. In our work, we
address these challenges by using a well-known database,
MIMIC-III; the most recent definition of sepsis, Sepsis-III;
and the same patient inclusion criteria and case-control align-
ment as [16]. To ensure comparability and reproducibility,we
used several imputation strategies before training to enable a
fair comparison. A limitation of this work is that theMIMIC-
III databasewas recorded in one hospital in an 11 year period,
thereby introducing potential bias, given its predominantly

1 Prevalence is a measure of the frequency of a disease or health con-
dition in a population for a given point in time.

specific national and regional participant composition. How-
ever, the MIMIC database is the most frequently used data
source to develop computational models for early prediction
of sepsis in the ICU [13].

Importantly, the search for, and acquisition of, other sepsis
patient databases is a highly complex process. To enrich our
analysis, we used the freely accessible dataset published by
PhysioNet in the 2019 challenge [17]. The description of
the dataset and the results are reported in Appendix B. This
dataset was provided after preprocessing of the data from
40,336 patients in two hospitals.

In summary, the novelty of our work has emerged from
the need to establish a consistent experimental bench-
mark framework for early sepsis prediction to enable future
advancements. Challenges include the lack of reproducibil-
ity of the results, the comparability of the results (variability
in the metrics used), and the lack of transparency in the use
of the data sets. To address this issue, this work included the
following:

• An updated comparative analysis of the most relevant
techniques for sepsis recognition, according to recent
studies.

• Performance evaluation of severalML approaches, along
with multiple imputation strategies before training, for
early sepsis recognition byusing themost frequently used
data source in the sepsis literature, MIMIC-III. Further-
more, in Appendix B, we report the same analysis using
another dataset published by Physionet for a challenge in
2019

• Performance analysis primarily evaluating models by
using the area under the precision-recall curve (AUPRC),
the best standard metric for clinical contexts.

• Open-source code available to support reproducibility
of experiments at the following GitHub links: https://
github.com/javiersgjavi/sepsis-review for experiments,
and https://github.com/javiersgjavi/tabular-mimic-iii for
database cleaning, mapping, and preprocessing. Our
motivation was to provide a benchmark framework to
assist researchers in developing new approaches for early
sepsis prediction in the ICU.

The rest of the article is structured as follows:
Section 2 describes the state of the art of ML applications for
the early prediction of sepsis in the ICU; Section 3 describes
the materials used and the methods proposed for the exper-
imental study; Section 4 reports and discusses the results
obtained; and Section 5 presents the conclusions and poten-
tial future work.
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2 Related work

Artificial intelligence has been widely used to develop pre-
dictive models for the early detection of sepsis. Several
studies have used ML-based algorithms as boosted tree
models, including random forest (RF) or extreme gradient
boosting (XGBoost). On the one hand, RF is ameta-classifier
that fits several decision tree classifiers on different sub-
samples of the dataset, and averages the result to improve
predictive performance and control overfitting [18]. RF has
been used to predict sepsis in the ICU in [19] and [20]. In
these studies, Sepsis-II was used to label the dataset obtained
from the ML Healthcare System. However, to increase the
training stability of the models, both studies balanced the
dataset. In [21], the class imbalance problem was addressed
via cost-sensitive learning, which assigned greater weight
to the minority class data points according to their propor-
tion. On the other hand, the XGBoost algorithm builds an
additive model in a forward stage-wise fashion. This algo-
rithm fits several regression trees to the negative gradient of
the loss function and generates only one regression tree in
a binary classification scenario [22]. Barton et al. [23] have
usedXGBoost to predict Sepsis-III asmanyas 48hours ahead
by using six vital signs, on the basis of data from both a pri-
vate database, such as theUCSFMedical Center, and a public
database, such as MIMIC-III.

In [24], ML algorithms were trained and tested to pre-
dict whether a patient would develop sepsis within the next 4
hours, on the basis of recordings from the prior 8 hours. The
authors used the Sepsis-II definition and a private database
from the Rabin Medical Center. Furthermore, they used
support vector machines (SVMs) with linear, radial, and
polynomial kernels, neural networks, and logistic regression.
Logistic regression, a well-known technique in medical data
analysis, has been used for predicting mortality or morbidity.
SVM, which offers flexibility in the choice of penalties and
loss functions, and can be scaled to large numbers of samples
[25], has also been used in [26], with a fixed 4 hour horizon.
In that study, the authors used SVMwith a linear kernel and a
private database from the Emory Healthcare System, and the
Sepsis-II definition. In the clinical field, another fundamental
aspect that must be considered is the interpretability of the
obtained results. In that context, in [27], 24 MLmodels were
used for early detection of sepsis. In addition, a final phase
was incorporated to facilitate the interpretation of the results.
Finally, a well-known algorithm called AdaBoost has been
used in [28], with a private database from Emory University
Hospital and a public database such as MIMIC-III.

Recently, deep learning techniques have been found to
outperform traditional ML models in many fields, includ-
ing early recognition of sepsis. However, few articles have
provided a rigorous comparison between deep learning and
other ML techniques in the literature. One exception is [29],

in which feedforward neural networks using long short-term
memory (LSTM) has been found to have better performance
than a regressionmodelwith hand-crafted features [30]. Both
studies used the Sepsis-II definition and the public MIMIC-
III andMIMIC-II databases, respectively. In [31], the authors
also used an LSTM with a recurrent neural network, and
the public MIMIC-III database and Sepsis-II definition; this
study is one of the few that have made code available.

As mentioned above, comparing approaches is challeng-
ing, because scenarios vary among articles, thus preventing
meaningful conclusions from being drawn. For instance, in
[32] and [33], a classical multilayer perceptron (MLP) and a
convolutional neural network (CNN) are used, respectively,
but the numbers of variables included in the models is not
reported. Another issue is the lack of code availability to
reproduce the results, although this aspect is essential for
research transparency and reproducibility. In deep learning
approaches, only a few studies, such as [16] and [31], have
provided the code for data cleaning and analysis, according
to our review of the literature [13]. Furthermore, these stud-
ies have used different sepsis definitions and databases, thus
making comparison of their results challenging.

Finally, forecasting can be performed through either an
online or offline training scenario. In the former, the model
performs predictions at regular intervals during an ICU stay,
by using all the data gathered until the timepoint of prediction
(i.e., predictions in n-hour intervals). To stimulate early pre-
diction, the onset of sepsis can be shifted to the past, as in the
PhysioNet challenge. This challenge considers sepsis onset
(timepoint labels) to occur 6 hours before the real onset [34].
In contrast, the latter training scenario enables the model to
access the entire feature window of patient data. In the lit-
erature, most articles have used offline training. However,
some exceptions exist, such as [28] and [35], in which online
training was used. Furthermore, we found that most articles
investigating sepsis onset prediction in the ICU have been
based on data from the same center. However, several stud-
ies have used multi-center and multi-national data sources,
such as [36], although the data sources are not available.
An exception is the dataset published by PhysioNet for the
2019 challenge [17], wherein data from two hospitals were
made public, along with additional data from another hos-
pital used for validation of the proposed results, which have
already been used in scientific publications such as [27].

3 Materials andmethods

In this section, we describe how the dataset was created
for our experimental study by using the public MIMIC-
III database. We begin by explaining the labeling process,
which includes defining the labels, and determining the
patient inclusion criteria and the case-control onset match-
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ing.We also discuss our imputation strategies, and provide an
overview of the supervised learning algorithms used in our
analysis. A description of the prediction task is provided,
including the hyperparameter configurations for training
models, how the horizon analysis was conducted, and the
performance measures used.

3.1 Data

3.1.1 Data description

In this study, we used version 1.4 of the MIMIC-III database
[8], which contains more than 58,000 ICU hospital admis-
sions involving more than 45,000 patients between June
2001 and October 2012. Access to this public database is
granted after acceptance of the terms and conditions, which
include completion of a recognized course in protecting
human research participants and signing a data use agree-
ment.

From the database, we selected 44 laboratory and vital
parameters that are irregularly sampled, following the app-
roach in [16]. The list of variables is reported in Section
Supplementary Material Table A1.

3.1.2 Data preprocessing

The first step is deciding how to label the patients, to
determine the patient inclusion criteria in the dataset, and
to perform case-control onset matching. These aspects are
explained in the following subsections. The irregularity of the
time series and missing values were addressed by implemen-
tation of several imputation strategies. Finally, the dataset
was normalized with minmax normalization. The data pre-
processing steps are summarized in Fig. 1.

Sepsis-III definition We chose the most recent definition
of sepsis, Sepsis-III [15], which requires the simultaneous
presence of suspected infection and organ dysfunction. The
suspected infection cohort was constructed according to the
guidelines in [37]. We also followed the organ dysfunction

definition given by [15], wherein an increase of at least 2
points in the SOFA score [38] indicates organ dysfunction.
To determine the SOFA, we used a time window of 48 to
24 hours around a suspected infection. We selected the most
recent definition of sepsis, becausemost studies have not pro-
vided their code.We used the code available in [16], in which
the queries provided by [39] were considerably refined and
extended to determine the Sepsis-III label hourly.

Patient inclusion criteria Following the recommendations
of [40] and [41], we excluded negative laboratory measure-
ments provided by the CareVue system and patients under
the age of 15 years, i.e., pediatric cases. Sepsis cases were
defined as those in patients with sepsis onset during the ICU
stay, whereas case-controls included patients without sep-
sis onset, but with suspected infection or organ dysfunction.
To ensure the validity of case-controls, we included only
patients not labeled with any sepsis-related code from the
ICD-9 diagnosis code of sepsis as controls.

After applying the above inclusion criteria, we identified
1,797 sepsis cases and 17,276 controls as an initial dataset.
Patients who developed sepsis within the first 7 hours of
the ICU stay were excluded. After case-control matching,
we applied data filtering (described in the next subsection).
Finally, we identified 570 sepsis cases and 5,618 controls
with a mean time to sepsis onset in the ICU of 16.7 hours.
Furthermore, seven patients with fewer than 10 observed
measurements were removed.

Case-control onset matching Case-control alignment in a
matching procedure is necessary to circumvent a trivial clas-
sification task. In [42], the performance of the method has
been found to vary depending on the comparison between
the window before sepsis onset and either the last window
before discharge. A poorly aligned case-control pairing can
result in a trivial classification problem.

To ensure a realistic class balance of no more than
10% [43], we assigned 10 unassigned random controls for
each case. The simulated onset of control was defined as the
hour after admission when the matched case met the sep-

Fig. 1 Flowchart of the data
prepocessing
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sis requirements. Finally, 48 h of input data were extracted
for each case and its corresponding matched controls before
sepsis onset [16]. Further details regarding the constructed
dataset are shown in Table 1.

3.2 Imputation strategies

To achieve optimal training of classification algorithms, con-
verting real-world temporal data into temporal data with a
uniform structure is crucial. This process is referred to as an
imputation problem. We used various imputation techniques
when applying signatures to irregular time series data.

According to [44], the following imputation techniques
are available:

• Linear interpolation Imputation of a specific value is
performed through linear interpolation. This interpola-
tion is performed by using the value before and after the
point of interest.

• Forward filling The value of the point of interest is
imputed by forward propagating the value of the last
observed point. If a missing value is present before any
real value is sampled, the imputed value is 0.

• Carry forward This method is similar to forward filling;
the main difference is that if a missing value appears
before any actual value, it is set as the mean value of the
measure for the patient.

• Indicator imputation Missing values in measurements
are set to 0 in the time series and 1 in a binary indicator
to mark the presence of a missing value. If the value is
not missing, the value is 0 in the binary indicator.

• Zero imputation Missing values in measurements are
set to 0.

• Gaussian process adapter This imputation method can
connect irregularly sampled time series data to any black-
box classifier that can be learned by using gradient
descent.

We utilized all the above imputation techniques except the
Gaussian process adapter. In a prior study [45], the Gaus-

Table 1 Characteristics of the dataset

Parameters Values

Source MIMIC-III database

Number of patients 6181

Clinical variables 44

Negative cases 5618

Positive cases 570

Prevalence 9.22%

sian process adapter has been found to perform better when
optimized jointly with the classifier rather than separately. Of
note, the aim of our work was to provide a fair comparison
among several models. Therefore, we selected imputation
strategies ensuring that all models were evaluated by using
the same four datasets (one for each imputation method).

3.3 Overview of supervised learningmodels

To experimentally compare the most commonly used meth-
ods for early recognition of sepsis during ICU stays, we
divided the methods from Section 2 into ML models and
deep learning models (neural network-based methods).

3.3.1 Machine learningmodels

• AdaBoost classifier This model belongs to the family of
boosting algorithms framed within the ensemble models.
As in any ensemble model, the objective is to obtain a
higher accuracy rate through the combination of several
classifiers [46].

• Linear SVC This model is a faster implementation of
support vector classification for the case of a linear kernel.
SVM models are learning tools that recognize patterns
and decision boundaries within a dataset [47] and have
been widely used in healthcare fields [48]. The main
objective of this type of model is to build hyper-planes
in a multidimensional space that are able to separate dif-
ferent classes of the dataset.

• Logistic regression Logistic regression is a statisti-
cal regression model used to determine the relationship
between one or more independent variables and a binary
outcome feature [49]. This method has many similari-
ties with linear regression, but logistic regression uses
an iterative maximum likelihood method to fit the final
model.

• Random forest classifier this model belongs to the fam-
ily of bagging algorithms framed within the ensemble
models. One of the main advantages of using trees in
classification tasks is that they are models that are easily
understood by humans; however, the hit rates are lower
than those of other models. To overcome this disadvan-
tage, several trees are usually aggregated to achieve a
higher hit ratio.

• XGBoost XGBoost is an updated version of the gradi-
ent boosting decision tree (GBDT) algorithm [50]. This
algorithm consists of a sequential assembly of decision
trees. These trees are added sequentially to learn from the
results of previous trees and correct the errors produced,
until the errors can no longer be corrected (gradient
descent).
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3.3.2 Deep learningmodels

• MLPMultilayer perceptron is a fully connected feedfor-
ward type of neural network; i.e., the backpropagation
technique is used for its training process. This type of
network consists of three main layers: an input layer that
acts as the initial data entry point, several intermediate
layers that are responsible for training the network, and
finally an output layer with a single neuron that is respon-
sible for providing the final prediction [51].

• CNN CNNs were first introduced in [52], in which
Fukushima described the concept of convolutional lay-
ers. This type of layer applies a convolution operation to
merge two sets of information and mimics the behavior
of the human eye toward any stimulus [53].

• LSTM Long short-term memory (LSTM) networks are
a special type of recurrent neural network that can
model long-term temporal dependencieswithout neglect-
ing temporal dependencies that may exist in the short
term [54]. LSTM was introduced in [55] and is able to
model temporal dependencies on large horizons.

• TCN Temporal CNNs are a special type of CNN adapted
to work with temporal data. TCN was introduced in [56]
as a CNN with special characteristics: convolutions are
causal to prevent information loss, and the architecture
can process a sequence of any length and map it to an
output of the same length [57].

• GRU Gated recurrent units are a type of deep neural
network for solving the problems of long-term memory
and gradient in backpropagation by following the princi-
ple of nonlinear function approximation [58]. This type
of network emerged as a simplification of the already
implemented LSTM networks to avoid overfitting. The
novelty of these networks is in the neurons of the hidden
layers, in this case combining the forget gate and input
gate into a single update gate.

3.4 Prediction task

3.4.1 Model validation and parameterization

According to Moor et al. in [16], we performed random
splitting, using 80% of the samples for training, 10% for
testing, and 10% for validation, as shown at the top of Fig. 2.
For hyperparameter tuning, we used the parameter sampler
provided by the Scikit-learn model selection library, which
generated parameters sampled from specified distributions
[59].

To define the search space for themodel parameters in this
study, we relied on the parameterization presented in a well-
known review [60], in which various deep learning models
applied to time series data were explored. To fine-tune the
parameters, a grid search approach was used on the hyperpa-

rameters of each model. Subsequently, the configuration that
yielded the best results was selected. The values tested for
each hyperparameter in each model, along with the optimal
values discovered, are shown in Table 2 for ML models and
in Table 3 for deep learning models.

To ensure a fair comparison, we aimed to explore as many
parameter combinations as possible for each model while
still maintaining a reasonable total training time. To achieve
this, we used a random search approach to sample from the
parameter space, conducting a total of 25 iterations per clas-
sification and imputation model.

3.4.2 Settings of prediction task

We used offline training combined with a horizon evaluation,
because this is themost frequently used setting [13], and early
detection of sepsis is crucial.

In the offline scenario, the feature window has two cases.
In the case of patientswith sepsis, the featurewindowextends
from hospital admission to the onset of sepsis. In the case
of controls, the window endpoint corresponds to a matched
onset, achieved through the case-control matching process
described in Section 3.1.2.

In a horizon analysis, all input data gathered until n hours
before onset are provided to the model to evaluate its predic-
tive performance at then hours horizon. Instead of optimizing
separate models for each individual horizon, which would
result in n different models, we optimized a single model
using all available training data. We then challenged this
model by gradually restricting access to the data closer to the
sepsis onset, as illustrated at the bottom of Fig. 2. Ultimately,
we used a horizon of 7 hours before sepsis onset, following
the approach outlined in [41], to assess the model’s ability to
recognize sepsis at an early stage.

3.4.3 Performance measures

The early prediction of sepsis presents a challenge, because
it is an imbalanced classification problem, in which the dis-
tribution of samples across the known classes is biased or
skewed. Simple metrics such as accuracy do not effectively
capture the performance of such problems [61]. Previous
studies on sepsis prediction have often reported the area
under the receiver operating characteristic curve (AUROC
or AUC). However, this metric may be influenced by the
prevalence of the disease and is less informative in highly
imbalanced datasets [62]. In line with [63], we opted to
use the precision-recall curve (AUPRC), because it provides
more informative results for binary classifiers in unbalanced
datasets. Moreover, AUPRC is recommended for conditions
with low prevalence [64] and is considered the preferredmet-
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Fig. 2 Search for best hyperparameters and model imputation method

Table 2 Parameter grid used for
ML models

Model Parameters Values Best value

LinearSVC n max iter 500, 1000, 2000 2000

loss hinge, squared_hinge squared_hinge

penalty l2 12

XGBClassifier eta 0.1, 0.3, 0.6 0.3

max depth 2, 4, 6, 8, 10 10

grow policy depthwise, lossguide depthwise

sampling method uniform, gradient-based gradient based

LogisticRegression penalty l2, none l2

solver lbfgs, sag, saga sag

AdaBoostClassifier n estimators 25, 50, 100 100

learning rate 0.8, 0.9, 1.0 0.9

RandomForestClassifier n estimators 100, 300, 600 100

max depth 2, 4, 6, 8, 10 8

min samples split 2, 4, 6, 8 6

min samples leaf 1, 3, 5, 7 7

The last column specifies the values for the optimal model. For each model, parameters were randomly
selected with 25 iterations
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Table 3 Parameter grid used for
deep learning models

Model Parameters Values Best value

MLP 10−3, 10−2

32, 64

learning rate (8), (8, 16), (16, 8), (8, 16, 32), 10−3

batch size (32, 16, 8), (8, 16, 32, 16, 8), 64

hidden layers (32, 64), (64, 32), (32, 64, 128), (32, 64, 128, 64, 32)

(128, 64, 32), (32, 64, 128, 64, 32)

TCN learning rate 10−3, 10−2 10−3

batch size 32, 64 64

nb stacks 1, 3 1

nb filters 32, 64 64

dilations (1, 2, 4, 8), (1, 2, 4, 8, 16) (1, 2, 4, 8)

kernel size 3, 6 6s

return sequences True, False True

tcn dropout 0, 0.2 0

dense dropout 0, 0.2 0

dense layers MLP hidden layers values (128, 64, 32)

CNN learning rate 10−3, 10−2 10−3

batch size 32, 64 32

layers 1, 2, 3 3

units 16, 32, 64 16

pool size 0, 2 0

dense dropout 0, 0.2, 0.4 0

dense layers MLP hidden layers values (128, 64, 32)

GRU learning rate 10−3, 10−2 10−3

batch size 32, 64 64

layers 1, 2, 4 2

units 32, 64, 128 32

return sequence True, False True

recurrent dropout 0, 0.2, 0.4 0.2

dense dropout 0, 0.2, 0.4 0.2

dense layers MLP hidden layers values 32, 64, 128

LSTM learning rate 10−3, 10−2 10−3

batch size 32, 64 64

layers 1, 2, 4 1

units 32, 64, 128 128

return sequence True, False True

recurrent dropout 0, 0.2 0

dense dropout 0, 0.2 0

dense layers MLP hidden layers values (32, 16, 8)

The last column specifies the values for the optimal model. For each model, parameters were randomly
selected with 25 iterations
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Table 4 Best results by
imputation method

Imputation Model Time AUPRC AUROC Accuracy

Carry forward TCN 0.4597 0.7553 0.9333 0.9315

Forward filling LSTM 1.0676 0.7336 0.9491 0.925

Indicator imputation GRU 1.276 0.7089 0.9097 0.9347

Linear interpolation TCN 0.3646 0.7298 0.9472 0.9266

Zero imputation GRU 1.5048 0.7134 0.9272 0.9396

The best results were obtained with the methods for each imputation strategy. For each metric, the best result
is in bold, and the worst is in italics

ric in clinical contexts [65].

p = True Positive

True Positive+ False Positive
(1)

r = True Positive

True Positive+ False Negative
(2)

AP =
∫ 1

0
p(r)dr (3)

Specifically, AUPRCmeasures the maximum value when
the model successfully identifies all positive examples with-
out any false positive detection. Because precision and recall
do not consider true negatives in their calculations, thismetric
focuses solely on predicting positive samples. Consequently,
it is well-suited for unbalanced datasets and clinical contexts
when the aim is correctly identifying positive cases [66]. In
summary, theAUPRC is definedbyusing theprecisionmetric
(1) and the recall (2). However, in evaluation of models with
this metric, not working with the graphical representations
of the curves but instead translating them into a numerical
value is recommended. This process is achieved by approx-
imating the AUPRC with the average precision (AP) value,
as defined in (3).

Although a baseline AUROC value is typically set to 0.5,
interpreting the baseline AUPRC can be misleading, because
it is influenced by the ratio of positive examples to the dataset

size. In our case, the baseline AUPRC is determined by the
prevalence of sepsis cases in our preprocessed MIMIC-III
database, corresponding to a value of 0.0922. Any higher
value achievedbyourmodelswould indicate an improvement
over baseline.

4 Results and discussion

This section reports and discusses the performance obtained
from the conducted experiments, which involved variousML
and deep learning methods, along with the imputation strate-
gies discussed in Section 3. The results are presented in terms
of AUPRC together with other metrics used in the sepsis lit-
erature, such as AUROC and accuracy, although the other
metrics are less informative in the case of unbalanced data.

Importantly, the experiments were performed on a com-
puter system with the following specifications: Intel(R)
Core(TM) i7-8700 3.20GH as CPU, NVIDIA GeForce 2080
as GPU 1 and Titan Xp as GPU 2 and 4X16 GB (64 GB) -
DDR4 as memory RAM.

4.1 Classification task

Tables 4 and 5 present a comprehensive comparison of the
best result achieved for each imputation method and ML

Table 5 Best results obtained
by model

Model Imputation Time AUPRC AUROC Accuracy

TCN Carry forward 0.4597 0.7553 0.9333 0.9315

CNN Linear interpolation 0.0849 0.7208 0.9279 0.9331

MLP Linear interpolation 0.0896 0.636 0.89 0.9184

GRU Carry forward 0.2971 0.7235 0.9147 0.9413

LSTM Forward filling 1.0676 0.7336 0.9491 0.925

LinearSVC Linear interpolation 0.383 0.4707 0.7623 0.9396

XGBClassifier Linear interpolation 0.2019 0.6067 0.8297 0.956

LogisticRegression Linear interpolation 0.212 0.4953 0.7714 0.9429

AdaBoostClassifier Linear interpolation 0.7513 0.511 0.8006 0.9429

RandomForestClassifier Linear interpolation 0.011 0.3942 0.6785 0.9331

For each metric, the best result is in bold, and the worst is in italics
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method, respectively. The tables report various metrics, with
the best result in bold and the worst result in italics.

Table 4 shows the best performance obtained for each
imputation strategy. The deep learning methods, particularly
the TCNmodel, consistently yielded the best results for each
imputation method. Interestingly, none of the classical ML
algorithms achieved the top performance in this comparison.
Notably, the carry-forward imputation method produced the
highest AUPRC score. A more detailed analysis of the dis-
tribution of results obtained by each imputation method can
be found in a supplementary figure (Fig. A6). This figure
presents violin plots of each imputation method by model,
considering the AUPRC. The deep learning models exhibit
superior performance, whereas the other algorithms show a
lower standard deviation. This disparity is attributable pri-
marily to the sensitivity of deep learning models to training
parameters.

Focusing on themethods rather than the imputation strate-
gies, Table 5 reports the best result per method independently
of the imputation strategy, i.e., it shows the top-performing
result achieved among all experiments conducted for each
specific method. In terms of AUPRC, the best result was
obtained with TCN, whereas the worst result was obtained
with RF, in terms of both AUROC and AUPRC. Thus, RF
may not be suitable for addressing this particular problem.
Notably, linear interpolation emerged as the preferred impu-
tation method in 7 of the 10 models used, thus indicating
its effectiveness. However, Tables 4 and 5 demonstrate the
interdependency between imputation strategies and classifier
algorithms. For instance, when LI is the chosen imputation
strategy, Table 4 suggests that the optimal model is TCN.
Conversely, the TCN model is prioritized, Table 5 indicates
that the preferred imputation strategy is CF. These results
highlight the interconnected nature of imputation strategies
and classifier algorithms in achieving optimal performance.

Because the AUPRC metric is widely recommended in
clinical settings, a detailed analysis of this metric was con-
ducted in Section Supplementary Material Figs. A1 and A2.
These figures illustrate the distribution of AUPRC scores
in box plots, differentiating between the imputation method
and the model. First, Fig. A1 demonstrates that although the
carry forward imputation method yielded the best individual
result, on average, linear interpolation had the highest per-
formance. This finding is consistent with the observations in
Table 5. Second, as shown in Fig. A2, deep learning models
outperformed the others in terms of AUPRC. One general
advantage of deep learning methods, in the context of biased
databases such as data from real-world healthcare systems,
is the possibility of fine-tuning them to slightly different data
associated with the same problem [67]. However, the sub-
stantial effects of parameter optimization on these models
must be noted, as indicated by the wide dispersion of results
for each model.

Fig. 3 Dot plot representing the average computation time in minutes
per model on the x-axis and the average AUPRC on the y-axis. Each
point represents a different classification model. Models located in the
upper left corner are best, whereas those located in the lower left corner
are worst in terms of computation time and AUPRC

Finally, in the Supplementary Material Tables A2 and A3,
the mean, standard deviation, maximum, and minimum val-
ues of all conducted experiments provide a comprehensive
overview of the results.

4.2 Computation time

Given the critical nature of the study data, the computation
time is a fundamental aspect to be considered. Figure 3 shows
a dot plot in which the x-axis represents the average training
timeof each classificationmodel, and they-axis is the average
AUPRC.Models located higher on the left would be optimal,
because of their very short time and very lowprediction error;
however, models located at the lower right corner would be
themost disadvantageous.Thus, thefigure shows that the best
model, on the basis of AUPRC and time, is MLP, whereas
the worst model, considering these two variables, is LSTM.
Of note, the position of RF in the lower left corner indicates
that its training time is very short, and the results in terms
of prediction error are very high. The results for this model
suggest that the problem is that the classifier cannot converge
in the training process, and the training process consequently
stops before finding an optimal solution.

Finally, the total time spent on the parameter optimization
process, i.e., the number of parameter combinations tested,
with each model limited to 150 combinations, is illustrated
in Fig. A5.

4.3 Classification task before sepsis onset

Figure 4 depicts the predictive performance for different
time horizons. The x-axis represents the prediction horizon
in hours before sepsis onset, whereas the y-axis indicates
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Fig. 4 Predictive performance
for the different time horizons.
The x-axis indicates the
prediction horizon hours before
sepsis onset. The y-axis
indicates AUPRC

the AUPRC. The CNN model consistently outperformed the
other methods, including classical ML approaches, for early
sepsis detection. Both TCN and LSTM also exhibited supe-
rior performance to the other methods, particularly for tasks
involving early detection more than 4 hours before sepsis
onset. In contrast, RF had the lowest performance.Additional
measures, which provide less informative insights for class
imbalance problems, are shown in Supplementary Material
Figs. A3 and A4.

5 Conclusions

In this study, we performed a comparative analysis of ML
algorithms for the early prediction of sepsis in the ICU
because the early diagnosis of sepsis has been shown to
decrease treatment delays, increase appropriate care, and
decrease mortality. However, in this study, the economic
consequences of forecasting the onset of sepsis were not
analyzed. Several studies have provided some analysis in
this regard, such as [68]. Briefly, we reviewed the litera-
ture and selected the MIMIC-III database [8] because of
its widespread use. Although the MIMIC-III data agreement
guidelines state that code using MIMIC-III must be pub-
lished, few studies have made their code available. However,
making the code publicly accessible does not necessarily
make it easily reproducible. In our experience, we had diffi-
culty in reproducing findings from other studies. Therefore,
a good experimental comparison of ML algorithms for the
early detection of sepsis is mandatory. We implemented our
own code, and we encourage others to use container tech-
nologies such as Docker to facilitate reproducibility.

To perform the experimental comparison, we made sev-
eral decisions, including the sepsis definition, data filtering,
and imputation strategies for building the dataset. We used
offline training combined with a horizon evaluation, which
determines how early themodel can recognize sepsis, andwe

used a horizon of 7 hours before sepsis onset. Case-control
alignment was used in a matching procedure to avoid a triv-
ial classification task, with 10 random unassigned controls
assigned for each case. We also applied random training-test
splitting for model validation and used the AUPRC as well as
ROC curves and accuracy for evaluation. We conducted an
extensive experimental study using fiveMLmethods and five
neural network-based models or deep learning architectures.
Neural network-based models were found to outperform tra-
ditional ML methods for the early prediction of sepsis.

In summary, this study provides valuable insights into the
use ofML algorithms for the early prediction of sepsis in ICU
patients and highlights the importance of reproducibility in
research. The main conclusions of this experimental study
can be summarized as follows:

1. To ensure a fair comparison, we used as many param-
eter combinations as possible for each model without
compromising the total training time. We used a random
search of parameters with a total of 25 iterations per clas-
sification and imputation model.

2. Linear interpolation was found to be the best imputation
method in 7 of the 10 models used, thus highlighting its
efficiency.

3. The best results were obtained by using TCN followed
by LSTM, GRU, and CNN, thus demonstrating that deep
learning models outperform other MLmodels. However,
the importance of parameter optimization in thesemodels
is crucial, as shown by the wide dispersion of results for
each model.

4. The computational time of most traditional classifica-
tion models showed a clear downward trend, and their
dispersion was usually lower than DL methods, thereby
indicating that almost all experiments using these types
of models had a running time very close to the average.

5. In the horizon prediction, both the TCN and LSTM
models significantly outperformed the other methods,
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particularly for early detection tasks more than 4 hours
before the onset of sepsis. In contrast, the RF model had
the worst performance.

In this study, we performed a fair comparison among sev-
eral models, and used several imputation strategies before
training. In future work, a combination of multitask Gaus-
sian processes imputation together with a neural network in
one end-to-end trainable framework may be analyzed. This
scheme optimizes the imputation and classifier optimization
process together. Finally, we suggest applying generative
models in imputation schemes, a new trend in this field.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10489-023-05124-
z.
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