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A B S T R A C T

This paper introduces a novel approach for regulating the pose of a free-flying dual-arm anthropomorphic
space manipulator system (SMS) using a finite-time state-dependent Riccati equation (SDRE) controller. The
proposed system finds applications in on-orbit satellite inspection, servicing, space structure assembly, and
debris manipulation. The dual-arm SMS presented in this work consists of two 7 degrees of freedom (DoF)
robotic arms mounted on a free-flying spacecraft, resulting in a complex 20-DoF system. Due to the high
number of DoFs, advanced controller design and efficient computations are necessary. The finite-time SDRE
controller relies on the state-dependent coefficient (SDC) parameterization matrices, which are nonlinear
apparent linearizations of the dynamics. Conventionally, the computation of SDC matrices is offline and relies
on the a priori derivation of the analytical equations governing the dynamics of the system. However, this
strategy becomes computationally impractical for high DoF plants. To overcome this issue and deliver a more
viable solution, a numerical method to construct and update the SDC matrices at each time step is presented.
This approach relies on a screw-theory-based recursive Newton–Euler algorithm designed to reconstruct the
manipulator inertia and Coriolis matrices. These quantities are the building blocks of the SDC parameters used
in the synthesis of the SDRE controller. Simulation results demonstrate the performances of the finite-time
SDRE controller augmented with the online update of the state-dependent coefficients.
1. Introduction

On-orbit operations present multiple risks and difficulties due to the
inherent challenges of working in a harsh space environment. However,
a sustainable program of space exploration and exploitation relies on
the capability of performing complex tasks such as servicing [1,2],
assembling [3], debris removal [4], and repairing directly in orbit [5].
Nowadays, a large number of the most complex operations are con-
ducted by humans during spacewalks. These are hours-long, dangerous,
and physically demanding missions in which the astronaut and the
environment are separated only by a (relatively) thin space suite. In
fact, the absence of gravity, extreme temperature fluctuations, vacuum,
radiation, and micro-meteoroids pose significant risks for humans.
Because of the mentioned reasons, resorting to space robots to perform
Extra Vehicular Activities (EVA) is particularly appealing since they are
potentially capable of effectively operating in this hostile environment
without endangering human lives.

In order to replicate the dexterous manipulation capabilities of
human astronauts, it is considered the application of anthropomorphic
dual-arm space manipulator systems (SMS) for the realization of main-
tenance operations on tumbling or cooperative satellites, as illustrated
in Fig. 1.
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Motivated by the necessity of helping and gradually replacing hu-
mans in the most dangerous operations, the field of space robotics has
been evolving since the Shuttle Remote Manipulator System, known
as Canadarm I, was first introduced in 1981. Remarkable examples
of the advancements in this field include the first on-orbit operation
conducted by the ETS-VII [6], the Space Station Remote Manipulator
System, also known as Canadarm II, and the Special Purpose Dextrous
Manipulator. These last are extensively employed on the International
Space Station. An additional step forward consists of employing a
Space Manipulator System (SMS) capable of conducting On-Orbit Ser-
vicing (OOS) missions with limited (teleoperation) or without (fully
autonomous) human supervision [7]. As a matter of fact, SMS can
be remotely operated to perform challenging tasks such as replacing
faulty components/batteries and assisting the astronauts during space-
walks [8]. Direct telemanipulation, achieved utilizing virtual reality
and telepresence techniques (visual and haptic feedback) augments the
capability of teleoperation systems by providing a more immersive
feeling for the operator [9]. Additionally, advanced rendezvous [10]
and docking systems [11] allow the servicing spacecraft to approach
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Fig. 1. Render of the Dual arm Space Manipulator System performing a maintenance
task. Credits for background image: [16].

and birth to the target satellite, ensuring a secure connection for main-
tenance operations. With these current solutions, on-orbit servicing
is poised to revolutionize space operations by extending the lifes-
pan of satellites [12] and reducing space debris [13], thus improving
the sustainability of space missions cost-effectively. The most recent
technological advancements in this direction have been extensively
reviewed in [1,14,15]. A common trend that can be identified is the
necessity to develop a highly agile and dexterous space manipulator
system that is capable of performing a wide range of tasks in the differ-
ent phases of the OOS summarized in [1], namely: (i) rendezvous and
closing maneuver, (ii) target identification, (iii) attitude synchroniza-
tion, (iv) manipulator deployment, (v) capture and (iv) post-capture
maneuvers.

In this paper, specific attention will be devoted to the coordinated
base-arms motion taking place after the target identification. The base
and arms adopt a convenient configuration to grasp the target while
ensuring it remains within reach of the end effectors. Thus, in this
work, the system is required to change both the attitude and position
of the base while deploying the dual-arm manipulator in order to
reach an overall pose more suitable for capture. Common strategies
used for similar scenarios include the Generalized Jacobian [17] and
the Virtual Manipulator [18] to solve the inverse kinematics of the
SMS (out of the scope of this paper) in order to obtain a reference
for the control. Relatively recent techniques include Optimal control,
Robust control [19], and Sliding Mode control [20]. The former tends
to be excessively computationally demanding and the latter is likely to
produce chattering [1].

What is proposed in this paper is a finite-time SDRE augmented
with an online update of the state and input matrices. This differs from
the prevalent method reported in the literature. Conventional strategies
involve using symbolic computation tools for the offline derivation
of the dynamics parameters to a priori assemble the analytical state-
dependent coefficients. The SDC parameterization is then numerically
evaluated every time the gain matrix of the SDRE is computed. While
the standard approach is well-suited for systems with a limited number
of Degrees of Freedom (DoF) [21], it becomes exceedingly demanding
as the system’s DoFs increase (𝑛 ≥ 10). The limitation arises from the
length and complexity of the mass and Coriolis matrices entries, which
results from the inherently strong nonlinear dynamics exhibited by
space robots. This is summarized in Fig. 2. Another distinctive feature
of this work, setting it apart from similar studies, lies in the modeling
of the base as ‘‘free-flying’’ rather than ‘‘free-floating’’. Previous works
considered the model reference adaptive SDRE and output feedback
SDRE to address the control of space manipulators in point-to-point and
trajectory tracking scenarios [22–24]. However, the authors restricted
505
Fig. 2. When the system is characterized by a large number of DoF, the analytical
form of the dynamics equations results in considerably long and complex symbolic
expressions which can make it impractical to convert them in a useful form (as a
function handles). The solution adopted is to implement a Newton–Euler (NE) based
algorithm to reconstruct the mass and Coriolis matrices at each time instant. The
quantities have been transformed into numerical values, making them considerably
more manageable.

the spacecraft’s motion to free-floating conditions. Furthermore, the
model employed in the existing literature on SDRE and space robotics
often makes use of strong simplifications to reduce the DoFs. Typically,
the case study is limited to planar scenarios as in [23,24]. In this paper,
a more complex 20-degree-of-freedom system with a fully actuated free-
flying base is considered instead. This additional complexity is reflected
in the resulting equations of motion, which become considerably large
and difficult to manipulate. As a consequence, the derivation of state-
dependent coefficient matrices becomes quite challenging, highlighting
once more the contribution of this paper. Consequently, this work
demonstrates the potential of this nonlinear method for synthesizing
the control of complex nonlinear plants while maintaining asymptotic
stability. Even though the SDRE belongs to the Optimal control cate-
gory, it has the great advantage of leading to a closed-loop solution to
the optimal control [25–27]. The solution solves the differential Riccati
equation (DRE) which can be reliably evaluated (even online) and thus
the control policy can be readily retrieved without actually solving an
optimization problem. There are several advantages to using this con-
troller. Firstly, it has local asymptotic stability (global for some cases)
based on the Lyapunov theorem and it is optimal in nature [25,28].
Moreover, the numerical solution to the DRE can be reliably computed
while the solver might not be able to find a solution to Optimal and
Robust control problems, especially when the optimization is non-
convex. Another advantage of using this controller is the relative ease of
enforcing high-level constraints. This can be done by operating on the
weighting matrices of the controller to tune its performances [29]. In
conclusion, it is demonstrated the SDRE can be a valuable and versatile
tool for controlling complex and highly non-linear systems such as
SMSs.

The main contributions of this paper can be summarized as follows:

1. Application of the algorithm for reconstructing the dynamics of
free-flying systems, as presented in the Ref. [30], to a robot with
multiple connected open chains.
Implementation of a fully numerical method based on the
Newton–Euler algorithm for the online update of the state-
dependent coefficient matrices. The usual approach based on the
offline analytical derivation of the SDC would fail due to the
complexity of the system equations of motion. The considerable
amount of highly non-linear terms would greatly impair their
manipulation, thus making the assembly of the SDC matri-
ces inconvenient. By instead constructing them online in their
numerical form, the problem is avoided entirely.
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Table 1
Notation table.
GENERIC SYMBOLS

Symbol Domain Definition
̃(⋅) [–] Estimated quantity
̇(⋅) [–] First time derivative
̈(⋅) [–] Second time derivative
̂(⋅) [–] Lie wedge operator
(⋅)† [–] Right pseudoinverse
{⋅} [–] Reference frame
𝑖 N Index of 𝑖-DoF/link
𝑗 N Index 𝑗th sub-chain
𝑛 N Number of DoF
𝑡 R+ Time

ROBOT MECHANICS

Symbol Domain Definition

𝑞𝑗𝑖 R 𝑖th DoF ∈ 𝑗th sub-chain
𝐜(𝐪(𝑡), �̇�(𝑡)) R𝑛 Coriolis and centrifugal forces vector
𝐶(𝐪(𝑡), �̇�(𝑡)) R𝑛×𝑛 Coriolis and centrifugal forces matrix
𝑀(𝐪(𝑡)) R𝑛×𝑛 Manipulator inertia matrix (also ‘mass matrix’)
𝐪(𝑡) R𝑛 Vector of the generalized DoF (joint variables)
{𝐴}𝐫{𝐵} R3 Position of {𝐵} with respect to {𝐴}
{𝐴}𝐑{𝐵} R3×3 Orientation of {𝐵} with respect to {𝐴}
{𝐴}𝐓{𝐵} R4×4 Pose of {𝐵} with respect to {𝐴}
𝜉𝑖(𝑡) R6 Twist coordinates of 𝑖th joint/link
𝜏(𝑡) R𝑛 Vector of the generalized forces

CONTROL THEORY

Symbol Domain Definition

𝐴(𝐱(𝑡)) R2𝑛×2𝑛 State dependent coefficient (state-related)
𝐵(𝐱(𝑡)) R2𝑛×𝑛 State dependent coefficient (input-related)
𝐹 R2𝑛×2𝑛 Final state weight
𝑋(𝐱(𝑡)) R𝑚×2𝑛 SDRE gain matrix
𝑄(𝐱(𝑡)) R2𝑛×2𝑛 State trajectory weight
𝑅(𝐱(𝑡)) R𝑛×𝑛 Input trajectory weight
𝐮(𝑡) R𝑛 Control input vector
𝐱(𝑡) R2𝑛 State vector: 𝐱(𝑡) ∶=

[

𝐪⊤(𝑡), �̇�⊤(𝑡)
]⊤

2. Implementation of the finite-time SDRE to a 20 Degree of Free-
dom (DoF), anthropomorphic dual-arm SMS in free-flying mode
for coordinated base-arms motion control.

The rest of the paper is organized as follows. Section 2 presents
he system modeling and the algorithm to retrieve the dynamic model
nd Section 3 describes the design of the SDRE controller used in this
aper and its synthesis. Section 4 provides implementation details of
he simulated system and the controller, whereas Section 5 presents the
imulation results. Finally, the conclusions of this work are discussed
n Section 6.

. System modeling

In this section, the adopted notation and main assumptions of the
ual arm space manipulator model are presented. After an overview
f the system, screw theory is used to formulate the kinematics and
he dynamics of the robot since it scales well with the complexity
f the model, especially when compared to the Denavit–Hartemberg
tandard parameterization [31]. Then, the algorithm used to retrieve
he manipulator inertia and Coriolis matrices is reported and explained
or completeness.

.1. Notation

Table 1 provides a concise summary of the most commonly used
ymbols. Due to the formal notation, many of these symbols’ definitions
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ill be reiterated for clarity.
2.2. System overview

The first critical assumption pertains to the spacecraft operating in
a free-flying mode in the microgravity environment of space. Conse-
quently, in accordance to the classification proposed [32], the SMS is
capable of employing its actuators for the simultaneous coordinated
control of both attitude and position. Consider now the dual arm SMS
represented in Fig. 3. The space robot consists of two identical 7-DoF
arms with anthropomorphic kinematics and a free-flying 6-DoF base,
resulting in a total of 20-DoF system. In particular, the anthropomor-
phic kinematics of the lightweight dual arm developed in our previous
work for aerial manipulation [33] is implemented in this paper as well.

It consists of three joints at the shoulder, one at the elbow and three
at the wrist, obtaining the following overall configuration:

1. Shoulder flexion/extension.
2. Shoulder adduction/abduction.
3. Medial/lateral rotation.
4. Elbow flexion/extension.
5. Wrist adduction/abduction.
6. Wrist pronation/supination.
7. Wrist flexion/extension.

All the parts are assumed to be rigid bodies and all the DoFs can
be actuated independently. The mass of the joints is assigned to the
links and the latter are assumed to have uniform mass distribution
(uniform density). The SMS is displayed in two configurations: Fig. 3(a)
shows the home configuration in which all the joint variables are set to
zero. This configuration is chosen for convenience in the derivation, as
outlined in [31,34]. When the SMS adopts this pose, the center of mass
(CoM) of the base is coincident with the origin of the inertial frame {𝑁}
since the variables associated with the base DoFs (𝑞0𝑖 for 𝑖 = 1,… , 6)
re considered part of the overall kinematic chain. Thus, they are null
t home configuration. Fig. 3(b) shows instead a generic pose of the
ystem. Here, the most important frames can be observed: the inertial
rame {𝑁}, the SMS-base frame {0} and the arms-base frames {11}
nd {12}. The right superscript ‘𝑗’ indicates the sub-chain index. The
uantities related to the base are indicated with 𝑗 = 0, while those
elonging to the right and left arm are indicated with 𝑗 = 1 and
= 2, respectively. Consequently, with 𝑞𝑗𝑖 , is indicated the 𝑖th DoF of

he 𝑗th sub-chain, and with 𝑃 𝑗
𝑖 is indicated the point on the 𝑖th joint

axis of the 𝑗th sub-chain. Recall that the axes and the points lying on
them are the building blocks used to derive the kinematics using screw
theory [31,34]. Finally, Fig. 3(b) illustrates the position vectors of the
origins of specific frames (each attached to a distinct component of the
manipulator). These frames are configured with their origins coinciding
with the CoM of the respective link and are aligned with the principal
axes of the corresponding link. The vector pointing form the origin of
frame {𝐴} to the origin of frame {𝐵} expressed in {𝐴} is represented
with {𝐴}𝐫{𝐵} ∈ R3. Similarly, {𝐴}𝐑{𝐵} ∈ R3×3 indicates the rotation
matrix expressing the orientation of frame {𝐵} with respect to {𝐴}.
Recalling that base DoFs are considered part of the chain, as clarified by
Fig. 4, the common chain connecting {𝑁} to {0} can be interpreted as
composed of six links and six joints. The first five links of the chain
are virtual1 while the last is simply the SMS-base itself. From now
on, a system with ‘hybrid dynamics’ and ‘tree-like’ kinematics chain
will be referred to as an Equivalent Manipulator (EM) model. Note
that this interpretation is convenient in the development of ground
testing systems that employ robotic manipulators for simulating the 6-
DoF motion of a space platform [14,35]. In the EM, the 6-DoF joint
connecting the base with the inertial frame is imagined as a series of
three virtual prismatic (P) joints followed by three virtual revolute (R)
joints. Notice that using the 3R joints to describe the orientation is

1 By ‘virtual’ it is meant that the component is point-like and mass-less.
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Fig. 3. (a) Home Configuration. Notice in this configuration the base frame {0} and inertial frame {𝑁} coincide since all the joint variables are null. The 𝑖th DoF belonging to
sub-chain 𝑗 is indicated with 𝑞𝑗𝑖 . (b) Generic Configuration. With {𝐴}r𝑗{𝐵} is intended the distance of the origin of the link-frame {𝐵} from {𝐴} (expressed in {𝐴}). Furthermore,
both link-frames belong to the 𝑗th sub-chain. The arms are detached from the base only for clarity of visualization.
Fig. 4. Kinematic configuration of the anthropomorhpic dual arm space manipulator.
The Equivalent Manipulator model employ 6 virtual joints to represent the position
(𝑞01 , 𝑞02 , 𝑞03 ) and attitude (𝑞04 , 𝑞05 , 𝑞06 ) of the spacecraft with respect to the Inertial
Frame {𝑁}.

completely equivalent to the {𝑋, 𝑌 ,𝑍} Euler angles parameterization of
the rigid body attitude. Connecting the 3P joint in series with the 3R, as
depicted in Fig. 4, the free-flying joint (F) is obtained. The main benefit
of this interpretation is that it allows treating the base as six links
connected by six joints of a fixed-base open-chain manipulator whose
(virtual) base is attached to the inertial frame {𝑁}. Consequently, the
screw theory version of the Newton–Euler algorithm presented in [34]
(for fixed-based manipulator) and [30] (for a hybrid dynamics system
with single open chain) can be readily extended to our dual-arm free-
flying space manipulator (see Section 2.4). Finally, it is important to
highlight that all effects resulting from Orbital Mechanics are neglected
in this study. Consequently, the reference frame denoted as {𝑁} is
assumed to be inertial. However, it is important to acknowledge that,
given the intended operation in Low Earth Orbit (LEO) or Geostationary
Orbit (GEO), non-inertial effects are indeed of significance. In fact,
the origin of reference frame {𝑁} would actually coincide with the
one of Local Vertical Local Horizontal ({𝐿𝑉 𝐿𝐻}) frame of the target
satellite, which is intrinsically non-inertial [36]. The mentioned as-
sumption is however grounded in the particular phase of rendezvous
under consideration in this work. In fact, during the terminal phase of
rendezvous leading to inspection or docking, the spacecraft trajectory
is fully controlled, to the point of being completely arbitrary. In some
cases, the trajectory of the chaser (the SMS) can even appear linear
in the {𝐿𝑉 𝐿𝐻} of the target, e.g. 𝑉 -bar approach [36]. This motion
is achieved by momentarily counteracting the influences of orbital
mechanics through the active propulsion of thrusters2. In conclusion,

2 It is important to emphasize that this operational mode can only be
sustained for a very limited duration, owing to its substantial fuel consumption
507
a thorough treatment of the mentioned non-inertial effects is out of
the scope of this paper and they are thus neglected by assuming to be
able to effectively counteract them as proposed in the literature, see for
instance [36–38].

2.3. Kinematics and dynamics

To derive the pose of each relevant mass a screw theory-based
formulation of the kinematics is used. Despite the initial effort needed
to understand the mathematical formalism, it leads to a quite simple
and mechanical procedure [31].

Firstly, the system is placed in a convenient home configuration (see
Fig. 3(a)) where each variable associated with a DoF is set to zero. This
is a pose that facilitates the identification of the position of strategic
points, axes, and orientations of frames with respect to the inertial one
{𝑁}. Namely, the position of the CoM of each link, the direction of
joint axes, the coordinates of a point lying in them, and the orientation
of each link principal axes (PA) are computed with respect to {𝑁}.
Since the mentioned quantities are all expressed with respect to the
inertial frame {𝑁} only, a proper choice of home configuration greatly
simplifies their identification. Once these elements are available, the
homogeneous transformation matrix (HTM) {𝑁}𝐓{𝐾}(𝑡) ∈ R4×4, describ-
ing the pose of any frame of interest {𝐾} with respect to {𝑁} can be
systematically derived by applying the product of exponential formula:

{𝑁}𝐓{𝐾}(𝑡) =
𝑘
∏

𝑖=1

[

𝑒�̂�𝑖(𝑡)𝑞𝑖(𝑡)
]

{𝑁}𝐓{𝐾}(0). (1)

A remarkable result presented in [31] reveals that there is no need
to compute the Lagrange equations to derive the second-order Equation
of Motion (EoM) for any system displaying a Lagrangian with the
following structure: where 𝑒(⋅) is the exponential matrix, �̂�𝑖(𝑡) ∈ R4×4

is the twist associated to the 𝑖th joint and 𝑞𝑖(𝑡) is the corresponding
joint variable. The operator ̂(⋅) stands for the Lie-algebra ‘wedge’ [31]
that maps the twist coordinates, which are packed into a six-entries
vector 𝝃𝑖(𝑡) ∈ R6, to the twist element of the set 𝑠𝑒(3) itself [31]. The
pose of {𝐾} relative to {𝑁} when the system is at home configuration
is represented by the HTM {𝑁}𝐓{𝐾}(0) ∈ R4×4. The index 𝑘 represents
the last joint influencing the forward kinematics of frame {𝐾}, which
is a generic frame whose pose is of interest (usually the frame attached
to the end effector). Thus, index 𝑘 indicates the joint immediately
preceding frame {𝐾} in the kinematic tree. In order to increase read-
ability, the superscript 𝑗 is omitted in the above equation. However,

and it is reserved for final stages of the rendezvous process, a scenario that
precisely aligns with the focus of this paper.
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it is important to notice that the product of the exponential formula
must be applied for each sub-chain 𝑗 = 0, 1 and 2 independently. A
possible optimization could be storing the pose of base sub-chain 𝑗 = 0
({𝑁}𝐓{6}) since it is common to the following DoFs. Indeed the base
DoFs influence both arms (thus kinematic chains 𝑗 = 1 and 𝑗 = 2), but
he forward kinematics of one arm is independent of the joint variables
f the other. The kinematics of the EM is the starting point for deriving
he dynamics since, by applying Eq. (1) for each link and end-effector,
he time history of the pose of each relevant mass is obtained. This
s needed to compute the kinetic energy of the bodies and hence the
agrangian.

= 1
2
�̇�(𝑡)⊤𝐌(𝐪(𝑡))�̇�(𝑡) − 𝑉 (𝐪(𝑡)), (2)

where 𝐪(𝑡) ∈ R𝑛 is the generalized coordinate vector which collects
the 𝑛 joint variables, �̇�(𝑡) its first time derivative, 𝑉 (𝐪(𝑡)) ∈ R is the
potential energy. Since the operation is conducted in a micro-gravity
environment, it is possible to immediately set 𝑉 (𝐪(𝑡)) = 0. The quantity
𝐌(𝐪(𝑡)) ∈ R𝑛×𝑛 is the symmetric positive definite manipulator inertia
matrix defined as:

𝐌(𝐪(𝑡)) =
𝑛
∑

𝑖=1
𝐉𝑏𝑖 (𝐪(𝑡))

⊤𝑖 𝐉𝑏𝑖 (𝐪(𝑡)). (3)

The terms of Eq. (3) are the generalized inertia matrix 𝑖 ∈
R6×6 of the 𝑖th rigid body of the robot and 𝐉𝑏𝑖 (𝐪(𝑡)) ∈ R𝑛×6 is the
corresponding body manipulator Jacobian [31]. The role played by this
quantity is to ‘rotate’ the matrix 𝑖, which is conveniently expressed
in the PA frame of the 𝑖th rigid body, to the current configuration,
thus taking into account the information provided by the forward
kinematics. This operation can therefore be considered a generalization
of Steiner’s theorem [34]. For any mechanical system producing Eq. (2)
the second-order dynamics EoMs are readily retrieved:

𝐌(𝐪(𝑡))�̈�(𝑡) + 𝐂(𝐪(𝑡), �̇�(𝑡))�̇�(𝑡) = 𝝉(𝑡), (4)

where 𝝉(𝑡) is the vector of the generalized forces, 𝐌(𝐪(𝑡)) is known
from Eq. (3) while 𝐂(𝐪(𝑡), �̇�(𝑡)) ∈ R𝑛×𝑛 is the Coriolis and centrifugal
forces matrix. Interested readers can find a comprehensive treatment of
this approach in [31] and in [34]. Although the described Lagrangian
formulation is very elegant, it leads to computational problems when
used for systems with many DoFs, such as the one presented in this
work. In particular, the matrices 𝐌(𝐪(𝑡)) and 𝐂(𝐪(𝑡), �̇�(𝑡)) obtained with
the Lagrangian method have a large number of highly complex entries.
The complexity is due to the highly non-linear and strongly coupled
nature of the system. This leads to products of a very large number of
trigonometric functions in almost every term of the mentioned matri-
ces. This hinders both the computational efficiency and the precision
of the evaluation of these quantities. Moreover, when the number of
DoF becomes sufficiently high (𝑛 ≥ 10), the complexity can make
it impractical to perform the symbolic derivation, manipulation, and
conversion of these matrix functions into a practical and usable form
(such as a function handle). Nonetheless, retrieval of the dynamics is
imperative for the implementation of a model-based controller. The
solution proposed in this paper is to use an implementation of the
Newton–Euler (NE) algorithm efficient enough to be run online.

2.4. Algorithm

To obtain computational efficiency, the screw theory-based ap-
proaches presented in [34] and [30] are adapted to the dual-arm
free-flying space manipulator examined in this work. The adopted
procedure is composed of inner and outer parts. The inner solves the
inverse dynamics with a NE-based approach for a given set of 𝐪(𝑡), �̇�(𝑡)
and �̈�(𝑡). The outer part calls the inverse dynamics and sets the value of
the mentioned quantities to compute the mass matrix 𝐌(𝐪(𝑡)) and the
Coriolis vector 𝐜(𝐪(𝑡), �̇�(𝑡)) ∈ R𝑛. This last is defined as: 𝐜(𝐪(𝑡), �̇�(𝑡)) =
𝐂(𝐪(𝑡), �̇�(𝑡))�̇�(𝑡).

Consequently, the inverse dynamics algorithm is run several times
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with: 𝐌
• 𝐪(𝑡) = 𝐪meas(𝑡), �̇�(𝑡) = �̇�meas(𝑡) and �̈�(𝑡) = 𝟎𝑛×1 to compute the
Coriolis vector.

• 𝐪(𝑡) = 𝐪meas(𝑡), �̇�(𝑡) = 𝟎𝑛×1 and 𝑞𝑖(𝑡) = 1 for 𝑖 = 1,… , 𝑛 to iteratively
compute the columns of the mass matrix.

The subscript ‘meas’ indicates the output of the physical model. In
the case of a hardware-in-the-loop simulation, these quantities are re-
placed by the actual sensor measurements. Additionally, in both cases,
the wrench applied at the end effector is set to zero. In Algorithms 1
and 2 a simplified pseudo-code is reported to show the strategy without
the excessive complexity introduced by a formal notation. Notice that
the measurement of the acceleration, which is normally quite noisy,
is not needed in this algorithm. In fact, the vector �̈�(𝑡) has either all
components equal to zero or only one unitary (the remaining are still
zeros).
Algorithm 1 OUTER LOOP- Set quantities
1: Given qmeas(𝑡) and q̇meas(𝑡)
2: procedure SetValues(qmeas(𝑡), q̇meas(𝑡))
3: if M(q(𝑡)) then
4: q(𝑡) ← qmeas(𝑡),
5: q̇(𝑡) ← 𝟎𝑛×1
6: q̈(𝑡) ← 𝟎𝑛×1
7: for 𝑖 = 1,… , 𝑛 do
8: 𝑞𝑖(𝑡) ← 1
9: 𝑀(∶, 𝑖) ← 𝐼𝑛𝑣𝐷𝑦𝑛(q(𝑡), q̇(𝑡), q̈(𝑡)) ⊳ 𝑖-th column
0: return M(q(𝑡))
1: end for
2: else if c(q(𝑡), q̇(𝑡)) then
3: q(𝑡) ← qmeas(𝑡),
4: q̇(𝑡) ← q̇meas(𝑡)
5: q̈(𝑡) ← 𝟎𝑛×1
6: c(q(𝑡), q̇(𝑡)) ← 𝐼𝑛𝑣𝐷𝑦𝑛(q(𝑡), q̇(𝑡), q̈(𝑡))
7: return c(q(𝑡), q̇(𝑡))
8: end if
9: end procedure

Algorithm 2 INNER LOOP - Newton Euler Inverse Dynamics
1: Given q(𝑡), q̇(𝑡) and q̈(𝑡)
2: procedure ForwardIterations(q(𝑡), q̇(𝑡), q̈(𝑡))
3: for 𝑖 = 1,… , 𝑛 do
4: Compute {𝑖}T{𝑖−1}(𝑡) ⊳ Pose link 𝑖 wrt 𝑖 − 1
5: Compute 𝝃𝑖(𝑡) ⊳ Twist link 𝑖
6: Compute �̇�𝑖(𝑡) ⊳ Twist Rate link 𝑖
7: end for
8: end procedure
9: return all {𝑖}T{𝑖−1}(𝑡), 𝝃𝑖(𝑡), �̇�𝑖(𝑡)
0: procedure BackwardIterations({𝑖}T{𝑖−1}(𝑡), 𝝃𝑖(𝑡), �̇�𝑖(𝑡))
1: for 𝑖 = 1,… , 𝑛 do
2: Compute  𝑖(𝑡) ⊳ Wrench link 𝑖
3: Compute 𝜏𝑖(𝑡) ⊳ Force/Torque Joint 𝑖
4: end for
5: end procedure
6: return 𝝉(𝑡)

It is important to notice that the computation of 𝐌(𝐪(𝑡)) is indepen-
ent of 𝐜(𝐪(𝑡), �̇�(𝑡)) since they are the two separate case of 1. To prove
his consider Eq. (4). When the mass matrix is being computed with the
nderlined procedure, the joint rates must be set to zero. Thus, the NE
nverse Dynamics is called with �̇�(𝑡) = 𝟎𝑛×1. This leads to the Coriolis
erm becoming null:

(𝐪(𝑡), �̇�(𝑡)) = 𝐂(𝐪(𝑡), �̇�(𝑡))�̇�(𝑡) = 𝟎𝑛×1.

Consequently, the left-hand-side of Eq. (4) reduces to the inertial
erm only:

(𝐪(𝑡))�̈�(𝑡) = 𝝉(𝑡). (5)
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Similarly, when the Coriolis vector is derived the joint accelerations
vector that is nullified. Thus the dynamics equation simplifies to:

𝐜(𝐪(𝑡), �̇�(𝑡)) = 𝝉(𝑡). (6)

urthermore, even the iterations to obtain the columns of the mass
atrix are all independent from each other.

Recall again that for a given measured configuration 𝐪meas(𝑡), the
terations to compute M(q(t)) require to call the inverse dynamics
Algorithm 2) setting 𝐪(𝑡) = 𝐪meas(𝑡) and �̈�(𝑡) = 𝟎𝑛×1 except for one single
nitary component 𝑞𝑖(𝑡) = 1. Substituting into Eq. (5):

(𝑡) = 𝐌(𝐪meas(𝑡))
[

0,… , 1, 0,… , 0
]⊤ = 𝐌(∶, 𝑖),

here the dependence from 𝐪meas(𝑡) is omitted for clarity. Thus, at
ach iteration, the generalized torque output of the Inverse Dynamics
Algorithm 2) is actually the 𝑖th column of the mass matrix. An almost
dentical reasoning is applied to compute 𝐜(𝐪(𝑡), �̇�(𝑡)). In conclusion, all

these operations can be run in parallel, thus producing a very efficient
procedure. In particular, the Inverse Dynamics can be called in parallel
𝑛+ 1 times. The first 𝑛 are due to the mass matrix, while the last is for
the Coriolis vector. The final step is obtaining the Coriolis matrix from
vector 𝐜(𝐪(𝑡), �̇�(𝑡)) utilizing the right pseudoinverse of the joint rates
vector:

𝐂(𝐪(𝑡), �̇�(𝑡)) = 𝐜(𝐪(𝑡), �̇�(𝑡))�̇�†(𝑡). (7)

Once these matrices are available, it is possible to build the SDC
matrices 𝐀(𝐱(𝑡)) and 𝐁(𝐱(𝑡)) needed for the synthesis of the SDRE, as
described in Sections 2.5 and 3, respectively.

2.5. SDC parameterization

At this point, there is still a missing link between the dynamics
and control. Namely, the dynamics equation must be expressed in a
suitable form for the SDRE. This is done by constructing a state-space-
like formulation known as SDC parameterization. With this aim, Eq. (4)
is first solved for the second derivative of the joint position:

�̈�(𝑡) = −𝐌−1(𝐪(𝑡))𝐂(𝐪(𝑡), �̇�(𝑡))�̇�(𝑡) +𝐌−1(𝐪(𝑡))𝝉(𝑡). (8)

By now defining the state vector 𝐱(𝑡) ∶=
[

𝐪⊤(𝑡), �̇�⊤(𝑡)
]⊤ ∈ R2𝑛, the

previous can be written in a quasi-state-space form:

�̇�(𝑡) =
[

𝟎𝑛×𝑛 𝐈𝑛×𝑛
𝟎𝑛×𝑛 −𝐌−1(𝐪(𝑡))𝐂(𝐪(𝑡), �̇�(𝑡))

]

𝐱(𝑡) +
[

𝟎𝑛×𝑛
−𝐌−1(𝐪(𝑡))

]

𝝉(𝑡). (9)

Recalling now the definition of a time-invariant non-linear control-
affine system:

�̇�(𝑡) = 𝐟 (𝐱(𝑡)) + 𝐠(𝐱(𝑡),𝐮(𝑡)), (10)

where state vector is denoted by 𝐱(𝑡) ∈ R2𝑛 and the input one by
𝐮(𝑡) ∈ R𝑛. The equilibrium point of the system is zero 𝐟 (𝟎) = 𝟎. 𝐟 (𝐱(𝑡)) ∶
R2𝑛 → R2𝑛 and 𝐠(𝐱(𝑡),𝐮(𝑡)) ∶ R2𝑛 × R𝑛 → R2𝑛 are vector-valued smooth
piecewise-continuous functions satisfying the local Lipschitz condition.
The SDC parameterization of system (10) is:

𝐟 (𝐱(𝑡)) =𝐀(𝐱(𝑡))𝐱(𝑡),
𝐠(𝐱(𝑡),𝐮(𝑡)) =𝐁(𝐱(𝑡))𝐮(𝑡),

(11)

where 𝐀(𝐱(𝑡)) ∶ R2𝑛 → R2𝑛×2𝑛 and 𝐁(𝐱(𝑡)) ∶ R2𝑛 → R2𝑛×𝑛.
By inspecting Eqs. (9) and (11) it is possible to recognize:

𝐀(𝐱(𝑡)) =
[

𝟎𝑛×𝑛 𝐈𝑛×𝑛
𝟎𝑛×𝑛 −𝐌−1(𝐪(𝑡))𝐂(𝐪(𝑡), �̇�(𝑡))

]

,

𝐁(𝐱(𝑡)) =
[

𝟎𝑛×𝑛
𝐌−1(𝐪(𝑡))

]

.

(12)

The parameters 𝐀(𝐱(𝑡)) and 𝐁(𝐱(𝑡)) are recomputed at each time step
of the simulation by numerically updating the matrices 𝐌(𝐪(𝑡)) and
𝐂(𝐪(𝑡), �̇�(𝑡)) with the NE-based algorithm described in Section 2.4. The
SDC is then used to compute the gain 𝐗(𝐱(𝑡)) as described in the next
section.
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3. Controller design

Once the SDC parameterization of the dynamics (Eq. (4)) is avail-
able, it is possible to formulate the control problem. The objective of
the SDRE control design is to minimize the cost function

𝐽 = 1
2
𝐱⊤(𝑇f )𝐅 𝐱(𝑇f )+

1
2 ∫

𝑇f

0
{𝐱⊤(𝑡)𝐐(𝐱(𝑡))𝐱(𝑡) + 𝐮⊤(𝑡)𝐑(𝐱(𝑡))𝐮(𝑡)} d𝑡,

(13)

o obtain a trade-off between the error of the system and the input effort
f the control law. In the cost function integral (13), 𝐐(𝐱(𝑡)) ∶ R2𝑛 →
2𝑛×2𝑛 represents the weighting matrix of states and 𝐑(𝐱(𝑡)) ∶ R2𝑛 →
𝑛×𝑛 denotes the weighting matrix for the inputs, symmetric positive

emi-definite and definite, respectively. 𝐅 ∈ R2𝑛×2𝑛 sets the penalty
f states at final time 𝑇f [s]. Two conditions must be met to find the
olution to the SDRE: controllability and observability conditions.

ondition 1. The SDC set of {𝐀(𝐱(𝑡)),𝐁(𝐱(𝑡))} is a controllable pair of
atrices of system (10) for all 𝐱(𝑡) ∈ R2𝑛 in 𝑡 ∈ R+ [23].

ondition 2. The SDC set of {𝐀(𝐱(𝑡)),𝐐1∕2(𝐱(𝑡))} is an observable pair
f matrices of system (10) for all 𝐱(𝑡) ∈ R2𝑛 in 𝑡 ∈ R+ in which 𝐐1∕2(𝐱(𝑡))
s the Cholesky decomposition of 𝐐(𝐱(𝑡)) [23].

Constructing the Hamiltonian function and applying the stationary
ondition on that results in the control law:

(𝑡) = −𝐗(𝐱(𝑡))𝐱(𝑡), (14)

The control gain is 𝐗(𝐱(𝑡)) = 𝐑−1(𝐱(𝑡))𝐁⊤(𝐱(𝑡))𝐊(𝐱(𝑡)) in which
(𝐱(𝑡)) ∶ R2𝑛 → R2𝑛×2𝑛 is symmetric positive-definite solution to the

tate-dependent differential Riccati equation (SDDRE):
⊤(𝐱(𝑡))𝐊(𝐱(𝑡)) +𝐊(𝐱(𝑡))𝐀(𝐱(𝑡))
−𝐊(𝐱(𝑡))𝐁(𝐱(𝑡))𝐑−1(𝐱(𝑡))𝐁⊤(𝐱(𝑡))𝐊(𝐱(𝑡)) +𝐐(𝐱(𝑡)) = −�̇�(𝐱(𝑡)), (15)

ith final boundary condition 𝐊(𝐱(𝑇f )) = 𝐅. The derivation of the SDRE
ontroller is based on the regulation of the system to zero equilibrium
oint. However, it is possible to regulate any workspace point by
efining the deviation from a constant reference state:

𝐱(𝑡) = 𝐱ref − 𝐱(𝑡), (16)

where 𝐱ref is the constant reference state. Consequently, it is possible to
redefine the control input vector for the regulation of a state different
from zero:

𝐮(𝑡) = 𝐗(𝑡)𝛿𝐱(𝑡). (17)

Notice that the minus sign originally present in Eq. (14) is already
included in the definition of 𝛿𝐱(𝑡). A block-diagram representation of
the computation of the 𝐮(𝑡) is included in Fig. 5. The solution to (15) in
this work is chosen the ‘‘Lyapunov-based method’’ with a corresponding
negative definite solution to Riccati equation [39]. By considering 𝑡 →
∞ [39], the solution to an infinite-horizon version of (15) is:

𝐀⊤(𝐱(𝑡))𝐊−
ss(𝐱(𝑡)) +𝐊−

ss(𝐱(𝑡))𝐀(𝐱(𝑡))

−𝐊−
ss(𝐱(𝑡))𝐁(𝐱(𝑡))𝐑

−1(𝐱(𝑡))𝐁⊤(𝐱(𝑡))𝐊−
ss(𝐱(𝑡) +𝐐(𝐱(𝑡)) = 𝟎, (18)

in which 𝐊−
ss(𝐱(𝑡)) is the steady-state symmetric negative-definite solu-

tion to (18). Subtracting (15) from (18) and using new variable:

𝜅−1(𝐱(𝑡)) = 𝐊(𝐱(𝑡)) −𝐊−
ss(𝐱(𝑡)),

result in state-dependent differential Lyapunov equation:

�̇�(𝐱(𝑡)) = 𝐀cl(𝐱(𝑡))𝜅(𝐱(𝑡)) + 𝜅(𝐱(𝑡))𝐀⊤
cl(𝐱(𝑡)) − 𝐁(𝐱(𝑡))𝐑−1(𝐱(𝑡))𝐁⊤(𝐱(𝑡)), (19)

where

𝐀 (𝐱(𝑡)) = 𝐀(𝐱(𝑡)) − 𝐁(𝐱(𝑡))𝐑−1(𝐱(𝑡))𝐁⊤(𝐱(𝑡))𝐊− (𝐱(𝑡)),
cl ss
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Fig. 5. Simplified block diagram of simulation model.

ith final boundary condition 𝜅(𝐱(𝑇f )) = {𝐅 −𝐊−
ss(𝐱(𝑡))}

−1.
The closed-form solution to (19) is found by

𝜅(𝐱(𝑡)) = 𝐄(𝐱(𝑡)) + exp{𝐀cl(𝐱(𝑡))(𝑡 − 𝑇f )}[𝐏(𝜅(𝑇f )) −
𝐄(𝐱(𝑡))]exp{𝐀⊤

cl(𝐱(𝑡))(𝑡 − 𝑇f )},

where 𝐄(𝐱(𝑡)) is the solution to algebraic Lyapunov equation:

𝐀cl(𝐱(𝑡))𝐄(𝐱(𝑡)) + 𝐄(𝐱(𝑡))𝐀⊤
cl(𝐱(𝑡)) = 𝐁(𝐱(𝑡))𝐑−1(𝐱(𝑡))𝐁⊤(𝐱(𝑡)).

Finally, the solution to (15) is defined by

𝐊(𝐱(𝑡)) = 𝐊−
ss(𝐱(𝑡)) + 𝜅−1(𝐱(𝑡)).

The application of this controller is described in Section 4.

4. Implementation

In this section, the SDC parameterization of the dynamics is derived
and analyzed in terms of observability and controllability. Moreover,
the SIMULINK-Simscape implementation used in this work is described
using the simplified block diagram scheme represented in Fig. 5.

4.1. Observability and controllability

To guarantee the existence of a solution to the state-dependent
differential Riccati equation (Eq. (15)), it is necessary and sufficient to
demonstrate that the system is observable and controllable, as stated by
Conditions 1 and 2 presented in Section 3. These conditions are satisfied
if and only if the Kalman observability and controllability matrices are
full rank.

For the sake of completeness, recall that the observability (𝐱(𝑡)) ∶
R2𝑛 → R2𝑛2×2𝑛 and controllability (𝐱(𝑡)) ∶ R2𝑛 → R2𝑛×2𝑛2 matrices are
defined as:

(𝐱(𝑡)) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐐1∕2

𝐐1∕2𝐀
𝐐1∕2𝐀2

⋮

𝐐1∕2𝐀𝑛−1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(𝐱(𝑡)) =
[

𝐁 𝐀𝐁 𝐀2𝐁 … 𝐀𝑛−1𝐁
]

.

(20)

In the observability matrix, 𝐐 = 𝐐(𝐱(𝑡)) is used in place of the output
matrix since a full-state feedback regulation case is considered [23]. If
these matrices are always full rank it implies the linear independence of
their columns, thus guaranteeing that they will never be singular. These
conditions can be checked throughout the real-world operation by
making sure that they are not singular at time 𝑡 = 0 and that their ranks
510

never change. Even though these requirements could be computed
online during the mission, they would not be of actual help if a singular
(unobservable/uncontrollable) configuration is reached while the SMS
is operating. This would prevent the computation of the gain matrix
𝐗(𝐱(𝑡)), thus leaving the system uncontrolled and potentially causing a
failure of the mission. The mere knowledge of having lost one of these
conditions is likely not enough to avoid instability. Consequently, it is
of paramount importance to have some guarantees of not being affected
by this scenario. In this work, it is decided instead to exploit the
SIMULINK-Simscape model for validation through simulation. Indeed,
the rank of the matrices (𝐱(𝑡)) and (𝐱(𝑡)) is checked at each time step
of the simulation when the SDDRE is solved. A hint on the reason why
observability and controllability should be constant properties of the
system can be found in the block-structure of the SDC matrices 𝐀(𝐱(𝑡))
and 𝐁(𝐱(𝑡)), defined in Eq. (12). By recalling that the generalized inertia
matrix 𝐌(𝐪(𝑡)) is symmetric and positive definite, thus its diagonal
component will always be greater than zero. By looking at the lower
block 𝐁(𝐱(𝑡)) can be immediately implied that control authority over the
system (�̈�(𝑡) more specifically) will never be lost. The only remaining
issue to be checked is the possibility of −𝐌−1(𝐪(𝑡))𝐂(𝐪(𝑡), �̇�(𝑡)) to be
singular. Given the observations made about 𝐌(𝐪(𝑡)), if a problem is to
exist it must lie in the matrix 𝐂(𝐪(𝑡), �̇�(𝑡)). During the time frame of the
simulation, this is never encountered. Even though the discussion above
is limited to controllability, the same observation could be extended
to observability as well. In conclusion, even though the intuition here
described is not as strong as an ‘if and only if’ condition, it can be
considered acceptable when united with successful simulation results.

4.2. SIMULINK implementation

The SMS dynamics and control are implemented and simulated
within SIMULINK environment. In particular, the Simscape built-in
application is leveraged to model and simulate multi-body and multi-
domain physical systems. In this work, Simscape is used to easily
assemble and simulate the physical model of the space robot, depicted
in Fig. 3. A simplified block diagram describing the overall signal
flow as implemented is shown in Fig. 5. The simulation starts at
the initial state 𝐱0, which coincides with the Home Configuration of
Fig. 3(a). Using the algorithm explained in Section 2.4, the generalized
inertia and Coriolis matrices of the SMS are retrieved for the initial
conditions and the SDC are assembled as described in Section 2.5.
These matrices are then used for the synthesis of the SDRE gain matrix
outlined in Section 3. The output of the Finite Time SDRE block is thus
the matrix 𝐗(𝐱) described in Eq. (14). More specifically, the MATLAB
built-in commands care and lyap are used to numerically solve
the Riccati and Lyapunov equations, respectively. Notice that this is
the only computationally inefficient step of the proposed controller,
not the online computation of 𝐌(𝐪(𝑡)) and 𝐂(𝐪(𝑡), �̇�(𝑡)). The reason
for this bottleneck is that the mentioned functions are not ‘naturally’
implemented in SIMULINK but run on MATLAB engine instead, thus
reducing substantially the performances. However, this can be readily
fixed by writing the same algorithm in a more efficient language
when implemented in real hardware. After the gain matrix 𝐗(𝐱(𝑡))
is available, it is right-multiplied by the current state error 𝛿(𝐱(𝑡))
and the resulting control input 𝐮(𝐱(𝑡)) is given to the physical model.
SIMULINK/Simscape assembles and integrates the equations of motions
of the actuated system and thus the new current state 𝐱(𝑡) is extracted
and fed back to the NE-based algorithm for parameter retrieval. The
cycle is then repeated until the final time instant.

5. Simulation results

In this section, the results of the simulations are reported and
analyzed. Firstly the numerical stability of the algorithm presented
in Section 2.4 is evaluated by introducing an open loop case as a
benchmark. Then, the system is simulated in a representative case while
controlled using the finite time SDRE presented in Section 3 to evaluate
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Fig. 6. Open loop joints accelerations. The solid lines represent the time evolution of
𝑞𝑗𝑖 , while the dotted lines stand for the desired accelerations. The reference acceleration
s given for the first 5(𝑠) of the simulation which is kept running until 10(𝑠) to show
hat no significant errors occur afterwards.

ts performance. Finally, the proposed method is compared against the
QR controller to demonstrate its potentiality and it is tested (without
e-tuning) in a scenario with increased dynamic coupling to prove its
daptability.

.1. Testing the algorithm: Open loop feedback linearization

To evaluate the numerical stability of the algorithm employed to
etrieve 𝐌(𝐪(𝑡)) and 𝐂(𝐪(𝑡), �̇�(𝑡)), it is decided to implement an open

loop version of the feedback linearization (FL) controller. Consider the
following control law:

𝝉FL(�̈�des(𝑡), 𝑡) = �̃�(𝐪(𝑡))�̈�des(𝑡) + �̃�(𝐪(𝑡), �̇�(𝑡))�̇�(𝑡), (21)

where �̈�des(𝑡) collects the desired time histories of the joints’ accelera-
tions and the symbol (̃⋅) indicates that the quantity is an estimation of
the real one. Substituting (21) in Eq. (4) results in:

𝐌(𝐪(𝑡))�̈�(𝑡) + 𝐂(𝐪(𝑡), �̇�(𝑡))�̇�(𝑡) =

�̃�(𝐪(𝑡))�̈�des(𝑡) + �̃�(𝐪(𝑡), �̇�(𝑡))�̇�(𝑡).
(22)

If the dynamics is correctly retrieved by the algorithm a full can-
cellation of the Coriolis and inertial terms should be achieved, thus
obtaining the simple double integrator equation:

�̈�(𝑡) = �̈�des(𝑡). (23)

This is a simple and reliable performance metric: the system can be
simulated applying at each time instant the control input 𝝉FL(�̈�des(𝑡), 𝑡)
for a desired acceleration vector and check afterward the extent to
which the one obtained from the physical model matches the reference.
An implicit assumption of this strategy is assuming the Simscape phys-
ical model as the ground truth that the algorithm under analysis aims
to reconstruct. This allows us to test if this method can successfully
estimate the dynamic properties from a partially known model and the
measurements of 𝐪(𝑡) and �̇�(𝑡). In this work, it is decided to construct
�̈�des(𝑡) such that the corresponding joint rates profiles are parabolic in
time, which implies that the joints’ accelerations will be linear in 𝑡.
511
Fig. 7. Open loop joints accelerations error. The solid lines represent the time evolution
of the error on the joint acceleration 𝛿𝑞𝑗𝑖 . The reference acceleration is given for the
first 5(𝑠) of the simulation which is kept running until 10(𝑠) to show that no unexpected
errors occur afterwards.

Thus, the 𝑖th desired joint rate of the 𝑗th sub-chain takes the following
simple polynomial form:

̇ 𝑗𝑖, des(𝑡) = 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2. (24)

Among all the possible desired trajectories, the one beginning and
ending at rest is selected.

Thus, by setting null rate at initial (𝑡 = 0) and final time (𝑡 = 𝑇f ),
he following conditions apply:

�̇�𝑗𝑖, des(0) = 0 ⟹ 𝑎0 = 0,

̇ 𝑗𝑖, des(𝑇f ) = 0 ⟹ 𝑎2 = −𝑎1𝑇f .
(25)

Integrating the Eq. (24) it possible to impose the final amount of
isplacement of the 𝑖th joint of 𝑗th sub-chain 𝜃𝑗𝑖 , thus finding the last
ree parameter 𝑎1:

𝑗
𝑖, des(𝑇f ) = 𝜃𝑗𝑖 ⟹ 𝑎1 = −6

𝜃𝑗𝑖
𝑇 3
f

. (26)

Consequently, substituting the coefficients in Eq. (24) and taking the
time derivative, the (linear) acceleration profile of the 𝑖th joint variable
is obtained:

̈𝑗des,𝑖(𝑡) = −6
𝜃𝑗𝑖
𝑇 3
f

(1 − 2𝑡) . (27)

In Fig. 6 the results of this test are displayed. The reference is
tracked quite accurately since the curves almost overlap and only a
small deviation is produced. The results are confirmed by analyzing the
evolution of the error of the acceleration displayed in Fig. 7. The first
two plots show that the base linear and angular errors remain negligible
throughout the simulation. The acceleration error experienced by the
arms joints is greater but remains low and almost constant until about
3(𝑠). Afterwards, some components start growing linearly. Under the
normal assumption of never operating in an open loop for several sec-
onds, this outcome ensures that the controller’s feedback will prevent

the propagation of errors over time.
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Table 2
Final pose joint positions. The parameter 𝜃𝑗𝑖 indicates final amount of displacement of
he 𝑖th joint of 𝑗th sub-chain.

Final pose joint values

Base Arm - R Arm - L

Joint Value Joint Value Joint Value

𝜃01 1 [m] 𝜃11 −60 [deg] 𝜃21 −60 [deg]

𝜃02 0 [m] 𝜃12 −25 [deg] 𝜃22 25 [deg]

𝜃03 1 [m] 𝜃13 10 [deg] 𝜃23 −10 [deg]

𝜃04 40 [deg] 𝜃14 −45 [deg] 𝜃24 −45 [deg]

𝜃05 0 [deg] 𝜃15 −15 [deg] 𝜃25 15 [deg]

𝜃06 −25 [deg] 𝜃16 25 [deg] 𝜃26 −25 [deg]

NA NA 𝜃17 0 [deg] 𝜃27 0 [deg]

Table 3
Weight matrices of the finite time SDRE cost functional.
Weighting Symbol Value

State 𝐐 diag{𝟏𝟎6×1 , 𝟖14×1 , 𝟏20×1}

Final State 𝐅 20𝐐

Control Effort 𝐑 diag{𝟏6×1 × 10−3 , 𝟏𝟎14×1}

5.2. Regulation case

Once the reliability of the algorithm presented in Section 2.4 is
proven, the loop is closed to validate the capability of the finite time
SDRE described in Section 3 to regulate the SMS pose. The space robot
is required to move from the home configuration discussed in Section 2
and depicted in Fig. 3(a) to a final pose whose values are reported in
Table 2.

Since a regulation scenario is under analysis, the desired final rates
are simply equal to zero:

̇ 𝑗𝑖 (𝑇f ) = �̇�𝑗𝑖 = 0 ∀ 𝑖, 𝑗. (28)

n this paper, the simulation time interval is set to 𝑡 = [0, 10](s) and is
arried out using the weighting matrices (Eq. (13)) reported in Table 3.

The tuning process of the Finite Time SDRE controller involves
djusting these three key coefficient matrices: 𝐐, 𝐅, and 𝐑. Itera-
ive refinement is often necessary to enhance the controller’s perfor-
ance [40].

Usually, these matrices are selected as diagonal, in order to be able
o gain some a priori intuition of their influence on the SDRE. In this
ase, the 𝐐 matrix is linked to the state and demands an increase in
ts elements to minimize errors in regulation or tracking. Conversely,
educing the elements of the 𝐑 matrix enhances the precision of the
ontroller. The first half of the diagonal elements of 𝐐 pertain to the
oints’ positions, while the second half relates to their rates. Thus, an
nalogy can be drawn with the influence of proportional and derivative
ains in a PD controller. Finally, the 𝐅 matrix, weighting on the final
tate, is typically chosen to be proportional to 𝐐, with the coefficient
xpressing the relative importance of 𝐅 compared to 𝐐 in shaping the
ontroller’s behavior. Careful adjustment of these matrices is crucial
or achieving adequate system performance. In this work, the standard
pproach described before is used to realize the controller, but newer
trategies are under development. For instance, in [41] the implemen-
ation of (SDRE) control algorithms through the use of artificial neural
etworks is presented with the aim of reducing the computational
ost of this controller. Also in [42] it is proposed a combination of
uzzy logic and neural networks is leveraged to approximate the SDRE
ontrol. The evolution of the DoFs belonging to the base (𝑗 = 0) during
egulation is shown in Fig. 8. In the left plots, it is possible to notice that
ach joint variable approaches and meets the reference at 𝑡 = 𝑇f . The
512

ack of overshooting and the negligible steady state error indicate that
Fig. 8. Closed loop base joints positions and rates. The solid lines represent the time
evolution of 𝑞0𝑖 and �̇�0𝑖 , while the dotted lines stand for the reference values.

Fig. 9. Closed loop arms joints positions and rates. The solid lines represent the time
evolution of 𝑞𝑗𝑖 and �̇�𝑗𝑖 , while the dotted lines stand for the reference values.

the controller is capable of producing precise and well-damped closed-
loop dynamics. In the plots on the right, the trajectories of the joint
rates can instead be appreciated. As it is possible to see, they start and
end at zero following a bell-shaped trajectory. This shows that the SMS
base has reached a stable final pose.

Similar observations can be made when the arm joints are studied.
In Fig. 9 the closed loop evolution in time of the arms’ joint angles and



Acta Astronautica 216 (2024) 504–517A. Scalvini et al.
Fig. 10. Closed loop joints forces and torques. All control inputs are computed using
the finite time SDRE.

Fig. 11. Snapshots of the simulated operation at four different time instants.

rates are displayed. The reference position is reached very quickly and
it is maintained in steady state condition for the rest of the simulation.
This is confirmed through an analysis of the arm joint rates, which upon
reaching zero (the reference point), remain at rest. Once again, the
capabilities of finite-time SDRE in generating precise and well-damped
closed-loop dynamics are validated.

Finally, the closed-loop control forces and torques are shown in
Fig. 10. Notice that the response generated by the SDRE is quite typical
for an optimal controller. Indeed, it tends to generate a relatively large
control (and acceleration) at the beginning of the operation (when the
error is larger). As long as the actuators do not reach saturation, this
should not be perceived as a limitation, but rather as an added reason
to realize a realistic simulation before conducting any hardware-in-the-
loop testing. In addition, an ideal actuation is assumed, thus neglecting
the actuator dynamics. Nevertheless, to maintain generality, the goal is
to design a controller that requires reasonable forces and torques. Given
513
Fig. 12. Comparison between SDRE controller and LQR. The colored solid lines
represent the time evolution of 𝑞0𝑖 when the SDRE is employed and while the black lines
display the response generated by the LQR. The dotted lines stand for the reference
values. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 13. Depleted-fuel closed loop base joints positions and rates. The solid lines
represent the time evolution of 𝑞0𝑖 and �̇�0𝑖 , while the dotted lines stand for the reference
values.

the results displayed in Fig. 10, it appears clear that the magnitude of
the control action is well within the capability of the actuators available
on the market for a medium-sized spacecraft, such as the SMS presented
in this work (see Appendix B).
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Fig. 14. Depleted-fuel closed loop arms joints positions and rates. The solid lines
represent the time evolution of 𝑞𝑗𝑖 and �̇�𝑗𝑖 , while the dotted lines stand for the reference
values.

The reader can develop a comprehensive understanding of the
overall motion, encompassing both the base and arms, by referring to
Fig. 11.

5.3. Performance comparison

The State-Dependent Riccati Equation controller is tested against a
simpler Linear Quadratic Regulator (LQR) to demonstrate the benefits
of using the method proposed in this work.

In order to obtain the LQR, the state-dependent coefficients 𝐀(𝐱(𝑡))
nd 𝐁(𝐱(𝑡)) are evaluated at the initial state 𝑡 = 0 to obtain the state
nd input matrices. The authors acknowledge that this is not the most
igorous approach for the LQR synthesis, since it would require the
inearization of the system about the trim point. However, when the
ystem is characterized by many strongly coupled equations of motion,
t becomes impractical to manipulate them, as clarified by Fig. 2.
onsequently, it is decided to use the evaluation at time 𝑡 = 0 of the
DC parameters as the state and input matrices of the LQR. Moreover,
he LQR is synthesized using the same 𝐐 and 𝐑 matrices reported in
able 3 to produce a fair test. As it is possible to notice in Fig. 12,
he SDRE outperforms the LQR since it is able to regulate the desired
ose with higher accuracy. The results provided in Tables B.4 and B.6
vidence that the position errors at the end of the simulation are higher
or the LQR compared to the SDRE in almost all the variables. The
ey advantage of the SDRE lies in its adaptive nature, which allows
t to dynamically adjust its control parameters based on the system’s
tate. On the contrary, the LQR relies on fixed gains and assumes
inearity, which leads to sensibly greater final time errors. In summary,
he State-Dependent Riccati Equation controller outperforms the LQR
y offering a more flexible approach to control in nonlinear systems,
eading to significantly reduced positioning errors and improved overall
erformance.

.4. Further analysis

During the mission the fuel reserves available on board the SMS
ill progressively be depleted. This, in turn, will change the inertial
514
roperties of the system. More specifically, the base of the space robot
ill experience a relevant loss of mass which could easily amount

o a third of the total mass of the base. The natural consequence of
less massive base is an increase in the dynamic coupling. In fact,

ny reaction force/torque exerted by the arms on the base will now
ave a more pronounced effect on its position and attitude. The main
esults of simulating the system with a 30% lighter base are reported
n Figs. 13 and 14. The performance of the Finite Time SDRE is slightly
egraded by the increased dynamic coupling. In particular, it is possible
o see that closed loop system exhibits slower dynamics. The results
re further confirmed in Table B.5, which recounts the positioning
rrors of each joint. The results are less precise than those obtained for
he nominal case (see Table B.4) but remain acceptable nonetheless.
he necessity to move at slower rates is likely not an issue in space
pplications, where safety constraints impose strict upper-bound speeds
o minimize the damage of possible unscheduled impacts [36].

Furthermore, is important to stress that the same weighting matrices
eported in Table 3 are used in this simulation as well. This demon-
trates a certain degree of robustness of the proposed method even
hough practical applications would likely opt for additional tuning.

. Conclusion

This paper presented a numerical method for online computation
f the state-dependent coefficient (SDC) matrices in the context of
he finite-time state-dependent Riccati equation (SDRE) controller. The
onventional offline approach for generating the SDC matrices becomes
mpractical for high DoF complex systems where deriving the analytical
ynamics equations is not a viable option. To overcome this issue, the
roposed numerical method updates the SDC matrices at each time
tep, providing a novel solution compared to the offline approach. The
tudy focused on a fully coupled dynamic model of a dual-arm space
obot, which involves two robotic arms mounted on a six-degree-of-
reedom free-flying spacecraft. By modeling the dual-arm space robot as
n equivalent manipulator model, the generalized inertia and Coriolis
atrices are obtained numerically leveraging an NE-based algorithm.
his approach allows for online computation of these matrices, despite
he high number of degrees of freedom (DoFs), which is crucial for the
ynthesis of the SDRE controller. To demonstrate the effectiveness of
he finite-time SDRE controller augmented with the online numerical
erivation of the SDC, various illustrative tasks are analyzed. In partic-
lar, the system is tasked to reach a stable configuration within a time
nterval of 10(𝑠). The performances of the finite-time SDRE during this
peration are compared to those of a simpler LQR and the SDRE clearly
utperforms the latter in terms of better positioning errors. Finally,
he SDRE undergoes a robustness test in which it has to regulate a
ystem characterized by a stronger dynamic coupling (due to a 30%
ighter base) without re-tuning the weighting matrices. The simulation
esults validate the efficacy of the proposed method in handling space
anipulation tasks. Furthermore, the SDRE controller emerges as a
romising solution for real-world applications.
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Appendix A. Tables of final positioning errors

The final positioning error for the Finite Time SDRE both in nominal and depleted-fuel scenarios are reported in Tables B.4 and B.5, respectively.
Finally, Table B.6 display the same data for the LQR.

Appendix B. Inertial and geometric parameters

SMS parameters are reported in Table B.7.

Table B.4
Finite-Time SDRE positioning errors at final time 𝑡 = 10(s). The parameter 𝛿𝑞𝑗𝑖 indicates the positioning error the 𝑖th joint of
𝑗th sub-chain at the end of the simulation.

Finite Time SDRE positioning error at final time 𝑡 = 10(s)

Base Arm - R Arm - L

Joint Value Joint Value Joint Value

𝛿𝑞01 −0.003 [m] 𝛿𝑞11 −0.012 [deg] 𝛿𝑞21 −0.011 [deg]

𝛿𝑞02 0.001 [m] 𝛿𝑞12 −0.029 [deg] 𝛿𝑞22 0.024 [deg]

𝛿𝑞03 0.005 [m] 𝛿𝑞13 −0.009 [deg] 𝛿𝑞23 0.011 [deg]

𝛿𝑞04 −0.036 [deg] 𝛿𝑞14 −0.002 [deg] 𝛿𝑞24 0.001 [deg]

𝛿𝑞05 −0.046 [deg] 𝛿𝑞15 −0.001 [deg] 𝛿𝑞25 −0.001 [deg]

𝛿𝑞06 0.093 [deg] 𝛿𝑞16 −0.002 [deg] 𝛿𝑞26 0.003 [deg]

NA NA 𝛿𝑞17 −0.002 [deg] 𝛿𝑞27 0.001 [deg]

Table B.5
Finite-Time SDRE (Depleted-fuel) positioning errors at final time 𝑡 = 10(s). The parameter 𝛿𝑞𝑗𝑖 indicates the positioning error
the 𝑖th joint of 𝑗th sub-chain at the end of the simulation.

Finite Time SDRE (Depleted Fuel) positioning error at final time 𝑡 = 10(s)

Base Arm - R Arm - L

Joint Value Joint Value Joint Value

𝛿𝑞01 −0.002 [m] 𝛿𝑞11 −0.023 [deg] 𝛿𝑞21 −0.019 [deg]

𝛿𝑞02 −0.004 [m] 𝛿𝑞12 −0.044 [deg] 𝛿𝑞22 0.021 [deg]

𝛿𝑞03 0.004 [m] 𝛿𝑞13 −0.015 [deg] 𝛿𝑞23 0.012 [deg]

𝛿𝑞04 −0.063 [deg] 𝛿𝑞14 −0.006 [deg] 𝛿𝑞24 0.004 [deg]

𝛿𝑞05 −0.085 [deg] 𝛿𝑞15 −0.001 [deg] 𝛿𝑞25 −0.001 [deg]

𝛿𝑞06 0.071 [deg] 𝛿𝑞16 −0.002 [deg] 𝛿𝑞26 0.003 [deg]

NA NA 𝛿𝑞17 −0.005 [deg] 𝛿𝑞27 0.001 [deg]

Table B.6
LQR positioning errors at final time 𝑡 = 10(s). The parameter 𝛿𝑞𝑗𝑖 indicates the positioning error the 𝑖th joint of 𝑗th sub-chain
at the end of the simulation.

LQR positioning error at final time 𝑡 = 10(s)

Base Arm - R Arm - L

Joint Value Joint Value Joint Value

𝛿𝑞01 0.034 [m] 𝛿𝑞11 −3.510 [deg] 𝛿𝑞21 −3.480 [deg]

𝛿𝑞02 0.007 [m] 𝛿𝑞12 −1.758 [deg] 𝛿𝑞22 1.822 [deg]

𝛿𝑞03 0.0405 [m] 𝛿𝑞13 −0.694 [deg] 𝛿𝑞23 0.456 [deg]

𝛿𝑞04 0.037 [deg] 𝛿𝑞14 −1.765 [deg] 𝛿𝑞24 −1.908 [deg]

𝛿𝑞05 −2.683 [deg] 𝛿𝑞15 −0.083 [deg] 𝛿𝑞25 0.096 [deg]

𝛿𝑞06 0.295 [deg] 𝛿𝑞16 −0.074 [deg] 𝛿𝑞26 0.088 [deg]

NA NA 𝛿𝑞17 −0.075 [deg] 𝛿𝑞27 −0.075 [deg]
515
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Table B.7
Inertial and geometric parameters of SMS. The characteristic length of each component is found using 𝐿∗ = 𝑉 𝑜𝑙𝑚𝑒

𝐴𝑟𝑒𝑎
.

Drawing Link index Mass [kg] {PA}-Inertia [Kg m2] Characteristic length [m]

0 − 6 890 diag{[98, 130, 179]} 0.12

11 and 12 1.04 10−3 × diag{[0.85, 0.82, 0.92]} 0.01

21 and 22 1.43 10−3 × diag{[3.60, 4.25, 1.61]} 0.01

31 and 32 1.03 10−3 × diag{[1.01, 0.95, 0.83]} 0.01

41 and 42 1.48 10−3 × diag{[5.13, 4.43, 1.72]} 0.01

51 and 52 0.95 10−3 × diag{[0.77, 0.84, 0.81]} 0.01

61 and 62 1.32 10−3 × diag{[2.16, 2.70, 1.61]} 0.01

71 and 72 0.71 10−3 × diag{[3.40, 2.20, 2.02]} 0.01
516
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