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Abstract: Piezoelectric composites are a class of smart materials which can be manufactured in a 
scalable manner by additive processes, while catering to a wide range of applications. Recent 
efforts are directed towards composites of lead-free piezoelectric materials with a goal of achieving 
performances comparable to lead-based composites. While there has been extensive research in 
fabrication methodologies such as 3D printing, which can manufacture complex piezoelectric 
structures in a scalable manner, there are important remaining questions as to how the performance 
of lead-free piezoelectric composites can be further improved. Fundamental to this is the 
understanding of key factors underlying piezoelectric performance: the electro-elastic interactions 
between the piezoelectric material and the matrix, the effects of the polycrystalline microstructure 
of the piezoelectric inclusions, the effect of randomly shaped polycrystalline fillers, and the effect 
of the volume fraction of the piezoelectric material in the matrix. A strong motivation for using 
polycrystalline fillers is that they can exhibit enhanced piezoelectric and mechanical properties 
compared to single crystalline materials. Moreover, polycrystalline materials are amenable to 
scalable manufacturing. We computationally investigate these important aspects of piezoelectric 
composite design and performance by taking into account for the first time the polycrystalline 
nature of lead-free piezoelectric inclusions, in the context of a matrix-inclusion composite. We 
achieve this by dispersing randomly shaped polycrystalline inclusions at random positions in the 
matrix which allows us to better understand the behaviour of practical composite architectures. In 
such cases, our analysis reveals that although polycrystalline piezoelectric materials, in isolation, 
can outperform their single crystal counterparts, in a composite architecture these enhancements 
are not straightforward. We identify the sources of loss which prevent polycrystalline inclusions 
from enhancing the performance of the composites. By tuning the dielectric environment in the 
matrix through the inclusion of metallic nanoparticles, we demonstrate how the performance of 
the composites can be further significantly improved. Specifically, when the metal nanoparticles 
are near the percolation threshold, we show that polycrystalline piezoelectric inclusions perform 
better than single crystals, with an improvement of around 14.6% in the effective piezoelectric 
response. We conclude that such novel architectures, devised by a combination of polycrystalline 
piezoelectric inclusions in a high permittivity environment, can improve the performance of the 
composites beyond the single crystal design and thus offer a promising direction for 3D printable 
lead-free piezoelectric composites. 

Key words: lead-free piezoelectric, piezoelectric composite, polycrystal, orientation, 3D printing, 
multiscale design and homogenization, coupled problems, finite element analysis, smart materials, 
network of contacts 
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1. Introduction 

Sensing and harvesting energy available in the environment in the form of mechanical stimuli 
using piezoelectric materials and devices is an important aspect of many emerging engineering 
applications. These include integrated structural health monitoring [1], sensing, and wearable 
health care, to name just a few [2]. However, most of the currently deployed devices are based on 
lead-based materials which pose environmental concerns at the manufacturing stage, usage, as 
well as at the final stage of improper disposal [2]. Therefore, the focus of recent research has been 
to design and manufacture piezoelectric devices and composites based on lead-free materials. It is 
also important to note that even in the case of some classes of lead-free piezoelectric materials, 
such as KNN (Potassium Sodium Niobate), their mining and extraction may pose considerable 
detrimental impact on the environment [3]. Although the piezoelectric response of such materials 
can be significantly improved through atomic doping [4], the synthesis of the materials entails a 
heavy environmental cost. Hence, it is important to judiciously select piezoelectric materials which 
are both lead-free and environmentally friendly in their processing. In this paper, we focus on the 
composites of lead-free material Barium Titanate (BaTiO3), although our developed computational 
framework is applicable to other materials too. The timely relevance of BaTiO3 and related 
materials is apparent through recent development of accelerated material discovery using emerging 
machine learning algorithms [5], through recent efforts in development of BaTiO3-based 
piezoelectric composites [6-9], as well as through novel applications of these materials [10]. 
Importantly, these composites can be fabricated in a scalable manner using emerging 
manufacturing methods such as 3D printing [11-13] and BaTiO3 can be synthesized using facile 
eco-friendly methods [14].  

Piezoelectric composites are an interesting class of smart materials which incorporate a dispersion 
of nanoscale and/or microscale piezoelectric materials inside a matrix. These materials and devices 
based on them are particularly effective in sensing or harvesting energy from irregular mechanical 
stimuli such as random vibration, bending, twisting, folding, and pressing, and so on. Such devices 
can be easily integrated with structures ranging from civil infrastructure such as buildings, aircraft 
parts, to the human body in the form of soft implants which harvest biomechanical stimuli [2]. The 
practical interest in these materials and devices stems from the ease of design and scalable 
fabrication using additive manufacturing techniques [12, 13, 15-17]. The inclusion of nanoscale 
materials also offers the possibility to harvest energy with superior efficiencies due to the processes 
that are important at the nanoscale such as the flexoelectric effect, where large strain gradients 
arising due to small dimensions also lead to generation of electric flux [18-21].  

Currently the computer-aided design of such composites uses single crystal electro-elastic 
coefficients [22-24]. These calculations typically use the homogenization approach which attempts 
to obtain effective macroscale properties taking into account the variations that occur at smaller 
length scales. The homogenization approach defines a macroscale Representative Volume Element 
(RVE) which is a volume of a composite containing sufficient information to model the statistical 
spread in the electro-elastic properties at the microscale [25].  The RVE is then used to obtain the 
effective electro-elastic properties of the heterogeneous composite. The importance of this 
approach is that the homogenized properties of the composite computed this way can further be 
used in the design of larger structures, by using the homogenized RVE as a repeated building 
block, and prediction of their electro-elastic behavior, thus allowing multiscale design [23]. 
However, currently the associated calculations overlook important effects which arise due to the 
microscale polycrystalline structure of the piezoelectric material that is embedded in the matrix. 
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In fact, experimental observations point out that the grain size effects in piezoelectric polycrystals 
play an important role in determining the efficiency of piezoelectric response [26], and that there 
exist ideal grain sizes, typically in the submicron scale, which maximize the piezoelectric response 
in bulk polycrystals. Besides, polycrystals offer additional degrees of freedom in the design, where 
we can tune the mechanical properties of the material. They are easier to synthesize, offering 
excellent quality control [27]. Therefore, it is important to include these additional effects, 
mentioned above, in the modeling of piezoelectric composites in order to generate refined models 
which take into account the polycrystalline structure of the piezoelectric material in a generic 
fashion. Theoretical studies on bulk materials have shown that there are significant variations in 
the electro-elastic coefficients that occur as a function of the orientation of grains within a 
polycrystal [27, 28]. These investigations also show that optimal polycrystallinity, in isolated 
piezoelectric polycrystals, can lead to piezoelectric performances that are superior to single crystal 
behavior [27, 28]. It is of interest to understand if polycrystallinity-induced enhancement can be 
harnessed in a piezoelectric composite. In this paper, we  develop such refined models for 
piezoelectric matrix-inclusion composites taking into account the polycrystalline microstructure 
through an orientation distribution parameter, which will determine the effective electro-elastic 
coefficients of  polycrystalline piezoelectric ceramics [27]. By applying our developed 
computational framework, we will also analyze the effect of the shape of the microscale 
polycrystalline inclusions, exploring consequences of randomly shaped inclusions and the volume 
fraction of such inclusions. Our analysis will be centered on two kinds of matrices – a soft matrix 
which is characteristic of flexible wearable devices, and a harder matrix which is characteristic of 
structure-integrated devices. The matrices we consider here fit within the context of 3D printable 
materials, because they are solution-processed materials which harden on curing [29, 30]. First, 
this allows us to explore the design of piezoelectric composites across a range of deployment 
scenarios. Secondly, at a more fundamental level of material design, this allows us to understand 
the role of the mechanical characteristics of the matrix in determining the piezoelectric response 
of the composite. Furthermore, this can help identify if there is a need to tune the mechanical and 
electrical properties of the matrix to maximize the response, by using nanoscale or microscale 
additives with appropriate electro-elastic characteristics. Using our observations from these 
studies, we demonstrate a proof-of-concept composite design where a combination of optimally 
polycrystalline piezoelectric inclusions in a matrix, providing an optimally tuned dielectric 
environment results in improved performance and surpassing the performance of single crystal 
composite designs. Given the ease of processing of the materials considered here, these novel 
designs can be effectively realized by using scalable techniques such as solution processing, 
mechanical mixing, and 3D printing, making important contributions towards environmentally-
friendly piezoelectric composite technology.  

The paper is organized as follows. In section 2, we provide details of the coupled electro-elastic 
model, the composite geometry and associated boundary conditions, as well as of the material 
property models which are used in our computational framework. In section 3, we present the 
results of our analysis of polycrystal-based piezoelectric composites including a novel design 
which demonstrates enhanced piezoelectric activity in polycrystal-based structures compared to 
their counterparts with single-crystal based composites. Section 4 summarizes our findings and 
concludes the paper. 
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2. Coupled electro-elastic model 

We consider a two-dimensional matrix-inclusion composite architecture at steady state. We model 
the composite using linear piezoelectric theory.  In what follows, we briefly explain the 
mathematical aspects of the model. 

2.1 Basic relationships 

The electrical and mechanical fields are linearly coupled as follows [22, 31] 

(ܠ)௜௝ߪ = ܿ௜௝௞௟
ா (ܠ)௞௟ߝ(ܠ) − ݁௜௝௞(ܠ)ܧ௞(ܠ),                                                                                                     (1)  

(ܠ)௝ܦ = ௝݁௞௟(ܠ)ߝ௞௟(ܠ) + ௝߳௞
ௌ  (2)                                                                                                        .(ܠ)௞ܧ(ܠ)

Here ߪ௜௝ and ߝ௜௝ are the elastic stresses and strains respectively, Dj are the components of the 
electric flux density vector, Ek are the components of the electric field vector, cijkl, eijk, and ϵij are 
the elastic coefficients, piezoelectric coefficients, and the dielectric permittivity coefficients and x 

is (x1, x3). The superscripts E and S signify that the coefficients are measured at constant electric 
field and constant strain, respectively. The strain field is related to the gradient of the displacement 
vector field u(x) by the Cauchy relationship: 

௜௝ߝ =
ଵ

ଶ
(ܠ)௜,௝ݑ) +  (3)                                                                                                                           .((ܠ)௝,௜ݑ

The electric field is related to the gradient of the electric potential as 

(ܠ)௜ܧ =  −߶,௜(ܠ).                                                                                                                                         (4) 

For the two-dimensional model considered here, the equations (1)-(2) are simplified into the 
following, by using the Voigt notation [22]: 

൥
ଵଵߪ
ଷଷߪ
ଵଷߪ

൩ = ൥
ܿଵଵ ܿଵଷ 0
ܿଵଷ ܿଷଷ 0
0 0 ܿସସ

൩ ൥
ଵଵߝ
ଷଷߝ
ଵଷߝ

൩ − ൥
0 ݁ଷଵ
0 ݁ଷଷ

݁ଵହ 0
൩ ൤

ଵܧ
ଷܧ

൨ ,                                                                               (5) 

൤
ଵܦ
ଷܦ

൨ = ൤
0 0 ݁ଵହ

݁ଷଵ ݁ଷଷ 0 ൨ ൥
ଵଵߝ
ଷଷߝ
ଵଷߝ

൩ + ൤
߳ଵଵ 0
0 ߳ଷଷ

൨ ൤
ଵܧ
ଷܧ

൨ .                                                                                (6) 

2.2 Equilibrium conditions and governing equations 

Equations (1)-(4) are further subject to conditions of equilibrium and Gauss’s law with the 
assumption of vanishing body forces and vanishing volume charge density. These are given by 

(ܠ)௜௝,௝ߪ =  0,                                                                                                                                                 (7) 

(ܠ)௜,௜ܦ = 0.                                                                                                                                                   (8) 

The phenomenological relationships in Equations (1)-(2), subject to the assumption-based 
relationships in Equation (3)-(4) and the governing equations (7)-(8), describe the steady state 
behavior of the electro-elastic system. The well-posedness of such models of coupled 
piezoelectricity, along with rigorous energy bounds, were derived by one of us in a series of earlier 
papers, e.g. [32]. This was done for the first time even in a more general, dynamic setting, through 
the application of the Faedo-Galerkin procedure and generalized solution technique. In our present 
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analysis, this model has been implemented and simulated with the Finite Element Method in the 
context of matrix-inclusion geometries specified next. 

2.3 Composite geometry and boundary conditions 

We consider a two dimensional model in the x1-x3 plane. We model an RVE shown schematically 
in Figure 1. We incorporate randomly shaped microscale piezoelectric inclusions at random 
positions within a matrix with sides am and bm. Table 1 summarizes the geometrical parameters of 
the matrix and the inclusions used in the simulations. Specifically, our results are exemplified for 
randomly shaped microscale inclusions at random positions inside of a square-shaped matrix with 
sides 50 μm long. These length scales are chosen in accordance with experimental observations of 
3D-printed piezoelectric composites [13] and optimal grain sizes for enhanced piezoelectricity in 
polycrystals [26]. Our focus is on the study of composites with micro-structured piezoelectric 
inclusions dispersed in a microscale matrix. The algorithm used for generating the randomly 
shaped inclusions is given in appendix A1.  

 

Figure 1 – Schematic of the piezoelectric composite RVE with randomly shaped polycrystalline 
piezoelectric inclusions randomly dispersed in a square matrix. The axis system used in the study 
is also illustrated. 

Table 1 – Geometrical parameters exemplified in the simulations. 
 
 

 

 

 

 

 

 

 

 

Geometrical 
parameter 

Value (μm) 

Matrix 

am 50 

bm 50 

Inclusions (Bound within two concentric 
circles of radii R1 and R2,  chosen randomly) 
R1 range 2.5-3.5 

R2 range 4.0-5.0 
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In evaluating the piezoelectric response of such composites, we calculate the effective e31 and e33 

of the composite for which we apply two sets of boundary conditions [22]. These are shown in 
Figure 2(a) and (b), respectively, and summarized in appendix A2. Using boundary conditions 
BC1, we calculate the effective properties,݁ଵଵ

௘௙௙, ܿ ଵଵ
௘௙௙, and ܿ ଵଷ

௘௙௙, of the composite. Using the second 

set of boundary conditions BC2, we calculate the effective properties ݁ଷଷ
௘௙௙, ܿଷଷ

௘௙௙, and ܿଵଷ
௘௙௙ of the 

composite. In the following calculation, the volume average of a quantity A is represented as 〈ܣ〉 
and is calculated as 

〈ܣ〉 =
ଵ

௔೘௕೘
׬ Ω݀ܣ

ஐ
,                                                                                                                         (9) 

where Ω is the volume over which the integration is carried out, which in this case is the total 
volume of the RVE.  

Under boundary conditions BC1, we obtain the following volume averages 

〈ଵଵߝ〉 = 〈ଷଷߝ〉  , ଵଵതതതതߝ = 〈ଵଷߝ〉 ,0  = 〈௜ܧ〉 ,0  = 0.                                                                                              (10) 

The following effective coefficients of the composite are subsequently obtained as [22]  

݁ଷଵ
௘௙௙ =

〈஽య〉

ఌభభതതതതത
  ,  ܿଵଵ

௘௙௙ =
〈ఙభభ〉

ఌభభതതതതത
 , ܿଵଷ

௘௙௙ =
〈ఙయయ〉

ఌభభതതതതത
,                                                                                       (11) 

where 〈ܦଷ〉 is the volume average of the D3 component of the electric flux density vector. Similarly, 
by using the second set of boundary conditions BC2, we obtain the following volume averages 

〈ଵଵߝ〉 = 〈ଷଷߝ〉 , 0 = 〈ଵଷߝ〉 ,ଷଷതതതതߝ  = 〈௜ܧ〉 , 0  = 0.                                                                                            (12) 

Subsequently, the following effective coefficients of the composite are calculated as 

݁ଷଷ
௘௙௙ =

〈஽య〉

ఌయయതതതതത
 , ܿଷଷ

௘௙௙ =
〈ఙయయ〉

ఌయయതതതതത
, ܿଵଷ

௘௙௙ =
〈ఙభభ〉

ఌయయതതതതത
.                                                                                         (13) 

In our calculations, we assume small strains and accordingly set ߝଵଵ and ߝଷଷ in BC1 and BC2, 
respectively, to 1 × 10ି଺. 

 

Figure 2 – Two sets of boundary conditions (a) BC1 and (b) BC2, used to calculate the effective 
electro-elastic coefficients of the composite.  
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2.4 Material Models 

Details of the material properties of the composites are given next. Firstly, we provide details on 
the mechanical and dielectric properties of the non-piezoelectric matrix materials. Next, we discuss 
our models for the effective electro-elastic coefficients of polycrystalline BaTiO3 as a function of 
the grain orientation distribution. 

2.4.1 Matrix models 

We consider soft and hard non-piezoelectric matrices to cover two different scenarios of 
deployment. Both these matrices are isotropic in their mechanical and dielectric behavior. Soft 
matrices such as PDMS, PEGDA and so on are required in the context of wearable devices [13, 
33]. Harder matrices are typically employed in piezoelectric sensors which are integrated with 
structures [22, 34]. These matrix materials are characterized by two parameters – the Young’s 
modulus Em and the Poisson’s ratio νm. Using these quantities, the elastic coefficients of the matrix 
materials are given by 

ܕ۱ =

ۏ
ێ
ێ
ێ
ێ
ۍ
௠ߣ + ௠ߤ2 ௠ߣ ௠ߣ 0 0 0

௠ߣ ௠ߣ + ௠ߤ2 ௠ߣ 0 0 0
௠ߣ ௠ߣ ௠ߣ + ௠ߤ2 0 0 0
0 0 0 ௠ߤ 0 0
0 0 0 0 ௠ߤ 0
0 0 0 0 0 ے௠ߤ

ۑ
ۑ
ۑ
ۑ
ې

 ,                                                             (14) 

where  

௠ߣ =  
ா೘ఔ೘

(ଵାఔ೘)(ଵିଶఔ೘)
௠ߤ ,  =

ா೘

ଶ(ଵାఔ೘)
 .                                                                                         (15) 

Table 2 summarizes the material constants of two matrices for which computations have been 
carried out – the soft matrix PDMS (hereafter referred to as Matrix M1), and the relatively harder 
matrix – araldite LY5052 (hereafter referred to as Matrix M2). Matrix material M2 is a chemically 
robust solution cast epoxy which is routinely used in structural parts. These matrices are 
representative of many similar materials which have similar properties. The additional rationale in 
considering these materials lies in the fact that they are both cast in the liquid state which allows 
for their easy processing by such techniques as solution processing, mixing, 3D printing and so 
on.  

Table 2- Mechanical and dielectric properties of the matrix materials used in this study. 

Material constant M1: PDMS (soft matrix)  
[29] 

M2: Araldite LY5052 (hard 
matrix) (Ref [35] and 
datasheets) 

Tensile modulus, Em (Pa) 2 × 10଺  3.5 × 10ଽ (from datasheet) 
Poisson’s ratio, νm 0.499  0.35  (from datasheet) 
Relative permittivity  
߳ଵଵ/߳଴  2.72  3.5 [35] 
߳ଷଷ/߳଴  2.72  3.5  
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2.4.2 Inclusion models 

The piezoelectric inclusions have electro-elastic coefficients which are functions of the 
polycrystalline microstructure. In what follows, we highlight the key features of the model that 
derives the polycrystalline electro-elastic coefficients starting from single-crystal data, assuming 
that each grain has the properties of the single crystal with respect to its local basis. In the 
derivation of the effective homogenized properties of the polycrystals, we assume that the 
composite is poled along the x3 direction, across the cross section of the composite architecture, as 
typically observed in experiments [11]. The model will thus take into account the random 
orientation distribution within the polycrystals, after poling, with respect to the reference x3 axis, 
along which ideally all the c-axes of the BaTiO3 unit cells are expected to align. Such 
polycrystalline models are important in the light of experimental observations which show 
considerable deviations in the electro-elastic coefficients as a function of the poling conditions 
[36].  Table 3 summarizes the material constants of the single crystal BaTiO3 piezoelectric 
inclusion used here  [27, 37]. These measurements show good agreement with other reported 
measurements in the literature [38]. The polycrystal material properties are derived from these 
values. As seen from Table 3, the elastic coefficients are measured at constant electric field 
(marked by superscript E) and the permittivity coefficients at constant strain (marked by 
superscript S). Therefore, the derived coefficients of polycrystalline BaTiO3 inclusions also 
correspond to similar conditions of measurement. 

Table 3 – Mechanical, piezoelectric, and dielectric properties of single crystal BaTiO3 used in this 
study. 

Material constants Values 

Elastic coefficients (Pa) 
ܿଵଵ

ா   275.1 × 10ଽ  
ܿଵଷ

ா
  151.55 × 10ଽ  

ܿଷଷ
ா

  164.8 × 10ଽ  
ܿସସ

ா
  54.3 × 10ଽ  

Relative permittivity  
߳ଵଵ

ௌ /߳଴  1970  
߳ଷଷ

ௌ /߳଴  109  
Piezoelectric coefficients (Cm-2) 
e15 21.3  
e31 −2.69  
e33 3.65  

 

We assume a transversely isotropic distribution of grains with the isotropy axis coincident with 
the x3 axis. This distribution is given by a Gaussian dependence on the Euler angle θ of the c axis 
of a grain about the x3-axis. It is important to note that the orientation distribution is also a function 
of a parameter α, which quantifies the degree of orientation in a poled piezoelectric polycrystal 
[27].  As α tends to zero, the Gaussian distribution narrows down and the electro-elastic 
coefficients tend to the single crystal values. At the other extreme, when α tends to infinity, the 
grains are randomly oriented. In particular, the piezoelectric activity of a polycrystal ceases, 
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because of randomly oriented domains canceling out the electric fluxes within the polycrystal. The 
orientation distribution function (ODF) is given by [27] 

,ߠ)ܹ ߮, ߶) =
ଵ

ఈ√ଶగ
݁ି

ഇమ

 మഀమ.                                                                                                                           (16) 

The ODF is generally a function of the three Euler angles ߠ, ߮, and ߶. However, owing to the 
traverse isotropy of the polycrystals, the dependence is only on ߠ. Using this ODF, the effective 
properties of the polycrystal are obtained from  

〈ܪ〉 = ׬ ׬ ׬ ,ߦ)ܪ ߮, ,ߦ)ܹ(߶ ߮, ߶݀߮݀ߦ݀(߶
ଵ

ିଵ
ଶగ

଴
ଶగ

଴
,                                                                                      (17) 

where ߦ = cos(ߠ) and H represents a generic crystal tensorial property. It is noteworthy, that it is 
a challenge to experimentally determine the orientation distribution function, evidenced by the 
availability of only a few recent efforts attempting to reconstruct the ODF [39] using specialized 
experiments. However, the texture coefficients, that consequently result due to the ODF, can 
usually be determined experimentally, subject to the limitations of the experimental technique 
[27]. It is also important to note that the ODF takes into account the orientation of the grains with 
respect to a reference direction (resulting from the poling field applied after the fabrication of the 
composite) and is thus polar in nature. We refer to [27] for the details of the development of a 
model to determine electro-elastic coefficients of the polycrystalline inclusion as a function of the 
distribution of grain orientations. The inclusions are assumed to be transversely isotropic along the 
x1-x3 plane. The texture coefficients obtained from literature (in our case [27]) are interpolated (see 
appendix A3 for the plots) and the resulting electro-elastic coefficients are shown in Figure 3(a)-
(c), as a function of the orientation parameter α. The orientation parameter α gives the effective 
properties of the polycrystal, thus taking into account microscale variations in the grain orientation, 
and consequently refining the electro-elastic model with a more accurate prediction of microscale 
properties of the composite. This self-consistent model assumes that each grain behaves as a single 
crystal with respect to its local coordinate system, implicating that all the domains inside a grain 
have similar orientations. Thus, the parameter α in the ODF holds the information on the polarity 
of the polycrystalline inclusions after the composite is poled. In the context of the composite 
architecture, the value of α importantly depends on two factors – the processing conditions under 
which the piezoelectric polycrystals are synthesized prior to their inclusion in the matrix, and the 
electric field applied during the poling after the preparation of the composite. Good processing 
conditions can yield highly textured polycrystals or also single crystals which are highly oriented 
in a preferred direction [40]. The electric field applied during the poling of the composite can 
further cause net alignment of domains within a grain in a preferred direction [27]. Together these 
factors result in a net value of α which describes the deviation from the ideally oriented and poled 
ceramic inclusions. Detailed data which establish the dependence of α on experimental conditions 
are, unfortunately, absent. However, the predicted isotropic elastic moduli of randomly oriented 
BaTiO3 (i.e. for ߙ → ∞ in Figure 3(a)) agree reasonable well with the measured isotropic elastic 
moduli (ܿଵଵ

ா =204 GPa and ܿଵଷ
ா =110 GPa) of unpoled BaTiO3  [36]. Additionally, α can also depend 

on the quality of the interface formed between the matrix and the inclusion, which is evident from 
the observed improvement in the piezoelectric response on establishing a covalent linkage at the 
matrix-inclusion interface [13]. In this paper, we assume that the composite is poled along the x3 
direction. Seen in this light, the limiting case of ߙ → ∞ corresponds to an unpoled inclusion with 
a high degree of randomness in its grain orientations. The inclusion is, therefore, isotropic in its 
properties for this limiting case and thus exhibits no piezoelectric activity. 
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3. Results and discussion 

We consider six composites with increasing volume fraction Vp occupied by the piezoelectric 
inclusions. These are illustrated in Figure 4(a)-(f) with the corresponding volume fractions. 
Statistical tests to ensure convergence were carried out for a range of volume fractions Vp and the 
number of inclusions N, by considering 5 different RVEs for each (N,Vp). In all the cases, the 
means, standard deviations, and covariances were calculated. The covariances were of the order 
of 10-2 for both the effective elastic and the piezoelectric coefficients, thus implying a small 
statistical spread, which is also not very sensitive to the random shapes and positions of the 
inclusions.  

 

Figure 3 – The electro-elastic coefficients of polycrystalline BaTiO3 as a function of the orientation 
parameter α obtained using a Gaussian grain orientation distribution function of Equation 16. 

A limiting case of 400 inclusions in an RVE of sides 200 μm was considered for the volume 
fraction, Vp, of 35.55% (corresponding to the smaller RVE with the same volume fraction, seen in 
Figure 4(e)) to mimic a large RVE (ܰ → ∞). On comparing the results of the RVE in Figure 4(e) 
with this limiting case, the relative errors in calculating the piezoelectric coefficients and the elastic 
coefficients were of the order of 10-2 and 10-3, respectively. This analysis clearly shows that the 
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RVEs considered for our study exhibit convergent results over the range of N and Vp considered 
here. It is to be noted that the RVEs considered here assume that the piezoelectric inclusions are 
not in contact. While physical contacts between the inclusions can indeed improve the 
piezoelectric response via better coupling of applied strain through the inclusions, the goal of the 
design strategies developed in the present work is to improve the piezoelectric response under 
conditions where the inclusion concentration is not high enough to cause a physical contact.  

 

Figure 4 – The six RVEs used in our computations in the increasing order of the inclusion volume 
fraction Vp from (a) to (f). The number of random polycrystalline inclusions, N, in (a)-(f) are 
1,4,9,16,25, and 38, respectively.  

We first look at the piezoelectric coefficients of the composites with polycrystalline piezoelectric 
inclusions. We plot the effective piezoelectric coefficients as a function of the polycrystal 
orientation distribution parameter, α, and the volume fraction, Vp, occupied by the inclusions in 
the RVE. Figure 5(a) and (d) show the effective coefficient e31 of the matrices M1 and M2. We 
observe that the absolute values of the effective e31 are higher in matrix M2 which has a higher 
modulus of elasticity compared to M1. It is thus concluded that a harder matrix, which allows for 
a better channeling of strain into the piezoelectric inclusion, results in better piezoelectric 
performance. The magnitude of the effective coefficient e31, in both matrices, increases with 
increasing the inclusion volume fraction Vp and decreasing polycrystallinity α. Therefore, in 
designing composite architectures with either of these matrices, it would be beneficial to have 
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inclusions which are highly crystalline. This is made even more clear from the analysis of the plots 
presented for fixed inclusion volume fraction Vp=35.6% in Figures 5(b) and (e) in the cases of 
matrices M1 and M2, respectively. It is noteworthy that the two matrices exhibit opposite trends, 
with matrix M1 having a positive and M2 having negative effective coefficient e31. This occurs due 
to the opposite nature of the average strain 〈ߝଷଷ〉 that develops within the inclusions in the two 
matrices. In matrix M1, the average ߝଷଷ in the inclusions is positive and in matrix M2 it is negative 
for all α. This is seen even better in the Figure 5(g) which shows 〈ߝଷଷ〉 in the composites with 38 
inclusions when the boundary conditions BC1 are applied. This is expected due to the largely 
different Poisson’s ratios of the two matrices. Indeed, matrix M1, which has a large Poisson’s ratio, 
causes larger tensile stress ߪଷଷ in the inclusions, thus reversing the direction of the effective 
polarization compared to the matrix M2. It is seen that by tuning the elastic properties of the matrix, 
the direction of the effective piezoelectric parameters can be switched. For a given α, it is also 
observed from the analysis of Figures 5(c) and (f) that higher inclusion volume fractions lead to 
better performing effective coefficients e31. 

 

Figure 5 – The effective coefficient e31 as a function of inclusion volume fraction Vp and the 
polycrystallinity factor α, plotted for composites with (a)-(c) Matrix M1, (d)-(f) Matrix M2. 
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Subplots (b)-(c) and (e)-(f), respectively, show the effective coefficient e31 for Vp=35.6% (and 
various α) and α=0 (and various Vp). Subplot (g) presents the volume averaged strain ε33 in the 
inclusions for the composite architecture with 38 inclusions (see Figure 4(f)). 

Next, we look at the effective coefficient e33 of the composites. Figure 6(a) and (d) show the 
behaviour of ݁ଷଷ

௘௙௙for the two matrices as a function of α and Vp. From the effective properties of a 
single polycrystalline piezoelectric structure, as shown by the data in Figure 3(c), it is intuitive to 
expect that polycrystalline inclusions with α just below 1, should exhibit enhanced ݁ଷଷ

௘௙௙ compared 
to single crystal inclusions. However, the composite behavior does not fit this intuitive pattern and 
݁ଷଷ

௘௙௙ drops with increasing α (Figures 6(b) and (e)), indicating again that single crystalline 
inclusions could be better performing in such composite architecture designs. This is because as α 
increases, the effective coefficient c33 of the polycrystalline inclusion also increases (Figure 3(a)). 
This reduces the average strain 〈ߝଷଷ〉 in the inclusions as seen from Figure 6(g). Since the strain 
drops off with increasing polycrystallinity, the effective piezoelectric coefficient e33 also drops. 
However, this situation could be improved by designing matrices with enhanced electro-
mechanical properties, which, in turn, could lead to the design of composites where the 
polycrystallinity may further contribute to improved piezoelectric responses. As seen from Figures 
6(c) and (f), the effective coefficient e33 of the composite improves as the volume fraction Vp of 
the inclusions increases, for a given value of α. 

The effective elastic coefficients of the composites with matrices M1 and M2 are shown in Figures 
7(a)-(c) and 7(d)-(f), respectively. It is seen that the elastic properties of the composites are not as 
significantly affected by the polycrystallinity parameter α as for a stand-alone polycrystalline 
inclusion of BaTiO3. The variation in the elastic properties is sensitive to only the volume fraction 
Vp of the inclusions. This is because the matrix materials, which have elastic coefficients on the 
orders of magnitude smaller than those of the inclusions, outweigh the variations in the coefficients 
occurring due to polycrystalline effects. As seen in these figures, the effective parameters of the 
matrix M2 with higher Young’s modulus are higher than those of matrix M1. The effective elastic 
coefficients increase, as intuitively expected, as the volume fractions Vp of the inclusions increases.  

These findings indicate that although a polycrystalline piezoelectric material exhibits better 
piezoelectric performance, specifically as seen through improved e33 in pristine polycrystals 
without matrices, the composite architecture does not allow a similar straightforward 
improvement. This represents a challenge in the design of such composite architectures using lead-
free piezoelectric polycrystals. Given that polycrystalline piezoelectric composites are well-suited 
materials for large scale piezoelectric devices, we address this challenge next. One of the important 
ways to do that would be to synthesize and incorporate highly oriented piezoelectric polycrystals 
as seen in [40] and mimic single crystal piezoelectric domain behavior, while retaining the 
improved mechanical strength of the polycrystal . Clearly, in parallel to that, exploring new ways 
to improve the performance of composites with polycrystalline inclusions beyond that of 
composites based on single crystals represents both practical and fundamental interests. Further, 
such design approaches are important to obtain higher piezoelectric responses while still retaining 
low to moderate inclusion concentrations, which would be crucial for applications requiring soft 
composites. For example, as seen from literature [4], it is possible to obtain higher piezoelectric 
responses with high inclusion concentrations (Vp>80%). The calculations carried out here are for 
much lower inclusion concentrations, and thus we see at least an order of magnitude smaller 
effective coefficients compared to the composites with higher inclusion concentrations [4]. 
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Figure 6 – The effective coefficient e33 as a function of inclusion volume fraction Vp and the 
polycrystallinity factor α, plotted for composites with (a)-(c) Matrix M1, (d)-(f) Matrix M2. 
Subplots (b)-(c) and (e)-(f), respectively, show the effective e33 for Vp=35.6% (and various α) and 
α=0 (and various Vp). Subplot (g) presents the volume averaged strain ε33 in the inclusions in the 
architecture with 38 inclusions (see Figure 4(f)). 

Therefore, in the remainder of the paper, we now use our findings to demonstrate a proof-of-
concept design in which polycrystalline inclusions can outperform single-crystal-based designs in 
a composite architecture. Further, the design strategies developed here will aim to obtain 
piezoelectric responses comparable to composites with higher inclusion concentrations, while still 
retaining lower Vp. Polycrystals, which are better than single crystals in isolation (especially in 
their e33 response near α=1), do not perform better than single crystals in a composite. There are 
two main obstacles here. The first is “mechanical” in nature as it arises due to the relative hardening 
of the inclusion with higher polycrystallinity. This prevents it from taking larger strains, by 
offloading the strain to the matrix, and thus reduces the effective piezoelectric property. 
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Figure 7 – The effective elastic coefficients of composites with matrix M1: (a)-(c) and matrix M2: 
(d)-(f). 

We have demonstrated this in the previous section (see Figure 6(g)). The second obstacle lies with 
the fact that the weak dielectric environment provided by the matrix poses an electrical 
“bottleneck” that does not allow the electric flux, generated within the inclusions, to propagate 
freely outward through the composite. Therefore, the question we embark on is whether it is 
possible to widen the electrical “bottleneck” by tuning the dielectric properties of the matrix 
without affecting the mechanical properties of the matrix. We consider the softer matrix M1 which 
has weak piezoelectric behavior. By including silver nanoparticles in the matrix, the permittivity 
of the matrix can be increased by over two orders of magnitude [41]. When metallic nanoparticles 
are uniformly dispersed in a matrix of permittivity ߳௠, the effective permittivity of the modified 
matrix increases. 

Quantitatively, the effective permittivity, ߳௠
௘௙௙, of the modified matrix with metal nanoparticles 

dispersed below their percolation threshold (Figure 8), is given by a homogenized model [42], as 

߳௠
௘௙௙(݂) = ߳௠ ቀ

௙೎

௙೎ି௙ಿು
ቁ

௣
,                                                                                                                                     (18)  

where fNP is the fill fraction (synonymously, volume fraction) of the filler metal nanoparticles in 
the matrix, fc is the critical fill fraction, known as the percolation threshold, and p is a material 
dependent fitting parameter. If fNP exceeds fc the originally non-conducting matrix becomes 
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metallic due to the percolated network of contacts that gets established between the metal 
nanoparticles. We restrict our analysis to values of fNP  below and near fc. Following [41], we obtain 
fc=14.3% and p=0.8 for the matrix M1 loaded with silver nanoparticles of sub-100 nm size with an 
average particle size of around 35 nm. Since, the size scales of these particles are much smaller 
compared to the size of the piezoelectric inclusions (roughly 10 μm as seen in Table 1), the 
dielectric properties of the matrix are assumed to have a homogeneous effect on the inclusions. 
The effective relative permittivity of the matrix as a function of the fill fraction fNP of silver 
nanoparticles is shown in Figure 8, with the inset schematically illustrating the random distribution 
of silver nanoparticles, of random size, within the matrix. It is emphasized here that adding 
conductive nanofillers to insulating matrices should be carried out carefully to avoid dielectric 
breakdown in the matrix. Depending on the matrix used, the dielectric breakdown strength of the 
matrix might limit the maximum fNP, to maintain the interparticle distances larger than the critical 
spacings that might lead to breakdown [43].  

We now calculate the effective coefficients e31 and e33 of the composite with polycrystalline 
piezoelectric inclusions, taking the composite architecture of Figure 4(f), with Vp = 54.33%, as a 
representative example. The effective coefficients e31 and e33 of the composites are plotted in 
Figures 9(a) and (d), respectively, as a function of the nanoparticle fill-fraction fNP and the 
polycrytallinity factor, α. Firstly, these plots clearly show that irrespective of α, the modification 
of the matrix with metal nanoparticles results in dramatic improvements in the effective 
piezoelectric response. This is made clear by a slice of the effective coefficients e31 and e33, shown 
in Figure 9(b) and (e), respectively, for fNP=10%. We can clearly see that improvements in excess 
of 100%, in both the effective coefficients e31 and e33, are possible in this particular exemplary 
case of fNP=10%. These improvements are higher for higher nanoparticle fill fractions, as seen 
from Figures 9(a) and (d). Furthermore, when fNP approaches fc, i.e. when the matrix is loaded with 
metallic nano-particles near percolation, we made the following observation. Figures 9(c) and (f) 
show two slices of effective coefficients e31 (Figure 9(c)) and e33 (Figure 9(f)), relative with respect 
to their respective values at α=0, for fNP = 0% (pristine matrix) and fNP = 14.25% (near percolation), 
as a function of α. The analysis of these results allows us to conclude that near the percolation 
threshold of metallic nanoparticles, the electrical “bottleneck” mentioned above has been widened. 
Polycrystals with α roughly around 0.1 show enhancements in both the effective coefficients e31 
and e33 compared to the composites with single crystals, with approximately 14% and 14.6% 
improvements, respectively, in this proof-of-concept demonstration. Furthermore, we note that 
bare polycrystals show a maximum in e33 for α of around 1, and in the composite this value of α 
has shifted to 0.1. Evidently, this maximum shifts to other values of α in other composite depending 
on the electrical and mechanical environment. From the perspective of composite design, this 
reveals that we can tune the matrix environment in terms of its mechanical moduli and permittivity 
to suit a particular polycrystalline inclusion. This is a considerable design advantage that relaxes 
the requirements on the piezoelectric crystal quality, processing conditions of the polycrystals, and 
the poling conditions of the composite, and thus warrants further investigations, both theoretical 
and experimental. Further, the improved piezoelectric responses (Figures 9(a) and (d)) are almost 
comparable to the response of elastomer-matrix-based composites with very high inclusion loading 
(Vp > 80%) [4], thus demonstrating that considerable performance improvements are possible with 
lower inclusion concentrations. This allows the design of composites with tailored mechanical 
properties and enhanced piezoelectric responses to suit the requirements of niche applications such 
as wearable electronics, flexible integrated piezoelectric devices and so on. This is because of the 
significantly reduced hardening of the composite, which might be a problem at higher Vp, 
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specifically in the context of applications such as in flexible or wearable electronics. This proof-
of-concept demonstration of enhanced piezoelectric composite design shows that even in very soft 
matrices, which hinder the piezoelectric effect by shielding the inclusions from applied strain, 
tuning the dielectric permittivity of the matrix can help enhance the piezoelectric response. These 
findings further emphasize that there could be conditions under which a controlled randomness in 
the orientation of grains can lead to a better piezoelectric response compared to a fully oriented 
configuration. An extension of this design through the introduction of other nanomaterial 
inclusions, such as carbon nanotubes, which can simultaneously stiffen the matrix and improve its 
effective permittivity, can lead to even larger enhancements.  

 

Figure 8 – The relative permittivity of matrix M1 as a function of the volume fraction of Ag 
nanoparticles (AgNP) in the matrix (the vertical line marks the percolation threshold). The inset 
schematically shows Ag nanoparticles of random sizes distributed within the matrix M1 

In summary, we have identified some of the key design rules that dictate the performance of lead-
free matrix-inclusion piezoelectric composites. In particular, we demonstrated that in order to 
harness the superior behavior of polycrystalline piezoelectric inclusions, it is necessary to 
simultaneously tune the dielectric environment provided by the matrix. Conversely, the dielectric 
environment of the matrix could be possibly tuned to suit the requirements of a particular 
polycrystalline microstructure. This opens novel avenues for the design of superior piezoelectric 
composites which are based on polycrystalline inclusions that can be synthesized relatively easily. 
Additionally, the methods of performance enhancement considered here are readily scalable, 
providing important inputs to the design of practical high-performance composites which can be 
manufactured by emerging technologies such as 3D printing. Finally, we expect that the key 
findings reported here are also relevant to the design of high-performance composites with 
piezoelectric matrices, such as PVDF, as well as with auxetic matrices.  
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Figure 9 – Piezoelectric enhancement in polycrystal-based composites using a metal nanoparticle-
modified matrix with higher permittivity. These calculations are for Vp =54.33% (corresponding 
to the RVE in Figure 4(f)): Subplots (a) and (d) show the effective coefficients e31 and e33, 
respectively, of the composite as a function of the polycrystal parameter α and the AgNP fill 
fraction fNP. Subplots (b) and (e) show the effective coefficients e31 and e33, respectively, of the 
composite for fNP=0% and 10%. Subplots (c) and (f) show the effective coefficients e31 and e33, 
respectively, of the composites with pristine and modified matrices (by AgNP), relative to their 
respective values at α=0. 

4. Conclusions 

We have developed a computational framework for the design of lead-free piezoelectric matrix-
inclusion composites by accounting for the first time the polycrystalline nature of the BaTiO3 
piezoelectric inclusions with random shapes. We have demonstrated that while a polycrystal by 
itself could have better piezoelectric coefficients compared to a single crystal, this property is not 
directly transferrable to a composite architecture. Using our findings, we have highlighted a proof-
of-concept design, wherein by optimally tuning the dielectric environment in the matrix with 
inclusion of metallic nanoparticles, composites based on polycrystalline inclusions outperform 
composites based on single crystal inclusions. These findings provide important insights into the 
role of randomness in the grain-orientation for the performance of piezoelectric composites, and 
in particular, how a controlled randomness in the orientation of polycrystalline inclusions can, 
under certain conditions, exhibit better performances compared to composites with highly oriented 
or single crystal inclusions. Consequently, these new design insights provide important inputs to 
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additive manufacturing methods which can fabricate piezoelectric composites with optimal 
performance in a scalable manner. 
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Appendices 

A1: Generation of random shapes for polycrystalline inclusions 

The random shapes were generated using a MATLAB code. The algorithm for the generation of 
the random shapes is given below 

Step 1 – Select a random number of sides n for the polygon to be generated in the range [n1, n2]. 

Step 2 – Select random angle ߠ଴ between 0° and 90°. Select the range of random radii R1 and R2 
defining the concentric circles within which the random shape will be spatially bounded. The 
center of these circles is the origin of the local coordinate system. 

Step 3 - Select an initial R0 in the range [Rmin,Rmax]. The first vertex of the random object is defined 
in the local coordinates as (R1, ߠଵ), where the reference origin is at the center of the random 
concentric circles. 

Step 4 – The next vertex of the polygon is at (R2, ߠଶ) (in general (Ri, ߠ௜)) in the local coordinate 
system, which is obtained by a random incremental rotation by an angle ߠ, about the local origin, 
which is in the range [10°, ߠ௠௔௫ = 360/݊], and a random selection of the radius R in the range 
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[R1, R2]. Joining the points (Ri-1 , ߠ௜ିଵ) and (Ri , ߠ௜) by a straight line, to form the ith edge of the 
polygon 

Step 5 – Repeat Step 4 till the total rotation adds up to 360°. Now there are “n+1” sets of 
coordinates. It is to be ensured that (R0, ߠ଴) = (Rn, ߠ௡). Join these points by a straight line to get 
the nth edge of the polygon 

Parameters used in the study: 

For each inclusion, the number of sides, n, of the polygonal inclusion, is chosen in step one, 
randomly in the range [n1, n2], where  

n1: 10 

n2: 20  

Also the two bounding concentric circles within which the inclusion is spatially bounded, have 
radii R1 and R2 which are randomly selected as follows: 

R1: Randomly chosen between 2.5 μm and 3.5 μm. 

R2: Randomly chosen between 4 μm and 5 μm. 

This gives polycrystals of rough sizes not exceeding 10 μm. i.e. the inclusions are spatially 
bounded within concentric circles of average radii 3 μm and 4.5 μm. This microscale dimension 
allows the accommodation of multiple grains, of sub-micron dimensions, within the inclusion. 
Therefore, the selection of the inclusion dimensions takes into account polycrystalline structures 
with submicron grain sizes which are experimentally observed to result in best piezoelectric 
responses [26]. 

A2: Boundary conditions, effective coefficients, and computational details 

There are two boundary conditions used in the calculations – BC1 and BC2 as highlighted 
schematically in Figure 2. The following table summarizes the boundary condition and the 
corresponding effective parameters of the composite which are calculated through its application. 

Boundary condition Effective parameter 
calculated 

BC1 ܿଵଵ
௘௙௙, ܿଵଷ

௘௙௙ , ݁ଷଵ
௘௙௙  

BC2 ܿଷଷ
௘௙௙, ܿଵଷ

௘௙௙ , ݁ଷଷ
௘௙௙  

 

The computations were carried out with a maximum element size of 1 μm. Regions at the random 
boundaries between the inclusion and the matrix were well resolved with smaller elements to 
reproduce the sharp transitions and curvature effects induced by the random geometry of the 
inclusion. The results were convergent even for much smaller meshes, compared to the microscale 
dimensions of the inclusions, with maximum element sizes of 250 nm. Mesh refinements were 
carried out to specifically improve the resolution of the meshing at the sharp vertices of the 
polygons. The final minimum and maximum element sizes of 10 nm and 1 μm respectively, 
allowed for a mesh which optimally resolved sharp interfacial features between the inclusion and 
the matrix.  
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A3: The texture coefficients of polycrystalline BaTiO3 

We used interpolation with splines to obtain the texture coefficients of polycrystalline BaTiO3, 
from [27]. The interpolated coefficients are shown in Figure AF1. The effective electro-elastic 
coefficients of polycrystalline BaTiO3 are obtained from the expressions given in [27] which 
incorporate these texture coefficients. These coefficients are highly sensitive to the orientation 
parameter α. When α tends to zero, the polycrystal resembles a highly oriented single crystal, and 
when α tends to infinity, the polycrystal is randomly oriented.  

 

Figure AF1 – The orientation coefficients Wlmn obtained from [27] by interpolation with splines as 
a function of the polycrystalline orientation parameter α. 

For completeness, we have also also derived analytical expressions for the texture coefficients 
Wlmn using the following expression, given in [27] 

௟ܹ௠௡ = න න න ,ߦ)ܹ ߮, ߶)ܼ௟௠௡(ߦ)݁௜௠ఝ݁௜௡థ݀݀߮݀ߦ߶
ାଵ

ିଵ

ଶగ

଴

ଶగ

଴
 

where ܼ௟௠௡(ߦ) is the generalized Legendre function [27] and ݅ = √−1. We have obtained the 
analytical expressions for the normalized texture coefficients when the ODF is given by the 
Gaussian distribution function (16):  

ଵܹ଴଴ =
ටయ

మ
௘ష

యഀమ

మ  ቆୣ୰୤൬ഏషమ೔ഀమ

√మഀ
൰ିୣ୰୤൬ഏశమ೔ഀమ

√మഀ
൰ାଶ௜ୣ୰୤୧൫√ଶఈ൯ቇ  

଼గమቆୣ୰୤൬ഏష೔ഀమ

√మഀ
൰ିୣ୰୤൬ഏశ೔ഀమ

√మഀ
൰ାଶ௜ୣ୰ ቀ

ഀ

√మ
ቁቇ

,                                                                  (AE1) 
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ଶܹ଴଴ =  −
ටఱ

మ
௘షరഀమ

ଷଶగమ൬ୣ୰୤୧൬
ഀమష೔ഏ

√మഀ
൰ାୣ୰୤୧൬

ഀమశ೔ഏ

√మഀ
൰ିଶୣ୰୤୧ቀ

ഀ
 √మ

ቁ൰
× ቆ−3݅ erf ቀ

గିଷ௜ఈమ

√ଶఈ
ቁ + 3݅ erf ቀ

గାଷ௜ఈమ

√ଶఈ
ቁ +

݅݁ସఈమ
ቆerf ቀ

గି௜ఈమ

√ଶఈ
ቁ − erf ቀ

గା௜ఈమ

√ଶఈ
ቁ + 2݅erfi ቀ

ఈ

√ଶ
ቁቇ + 6erfi ቀ

ଷఈ

√ଶ
ቁ ቇ,                                                (AE2) 

ଷܹ଴଴ =  −
ටళ

మ
௘ష

భఱഀమ

మ  

଺ସగమቆୣ୰୤୧൬
ഀమష೔

√మഀ
൰ାୣ୰୤୧൬

ഀమశ೔ഏ

√మഀ
൰ିଶୣ୰୤୧ቀ

ഀ

√మ
ቁቇ

× ൭2݅݁଺ఈమ
ቆerf ቀ

గିଶ௜ఈమ

√ଶఈ
ቁ  − erf ቀ

గାଶ௜ఈమ

√ଶఈ
ቁ +

2݅erfi൫√2ߙ൯ቇ − 5݅ ቆerf ቀ
గିସ௜ఈమ

√ଶఈ
ቁ − erf ቀ

గାସ௜ఈమ

√ଶఈ
ቁ + 2݅erfi൫2√2ߙ൯ቇ൱,  (AE3) 

 

and 

ସܹ଴଴ =
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√ଶ
ቁቇ൱   (AE4) 

 

with erf(∙) and erfi(∙) denoting the Gauss error function and the imaginary Gauss error function 
respectively.  

These texture coefficients are highly sensitive to the orientation parameter α as shown in Figure 
AF1. When α tends to zero, the polycrystal resembles a highly oriented single crystal, and the 
texture coefficients become  

ଵܹ଴଴ =
ටయ

మ
 

ସగమ,                                                                                                                                 (AE5) 

ଶܹ଴଴ =
ටఱ

మ

ସగమ,                                                                                                                                 (AE6) 

ଷܹ଴଴ =
ටళ

మ

ସగమ,                                                                                                                                  (AE7) 

ସܹ଴଴ =
ଷ

ସ√ଶగమ .                                                                                                                            (AE8) 

The plots of Wlmn obtained through the analytical expressions (AE1-AE4) are shown in Figure 
AF2. For the limiting case of ߙ → 0, a Dirac delta function has been used as the ODF and single 
crystal electro-elastic parameters were successfully recovered. The analytical results in Figure AF2 
are in good agreement with data from Figure AF1 which is taken from [25] 
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Figure AF2 – Plots of the texture coefficients obtained from analytical expressions AE1-AE4 
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