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Abstract: Piezoelectric matrix-inclusion composites based on lead-free ceramics have attracted attention 
due to the possibility of manufacturing environmentally friendly devices using scalable emerging 
technologies such as 3D printing. However, lead-free materials lag lead-based piezo-composites in terms 
of performance, thus necessitating new design strategies to escalate piezoelectric response. Here, we build 
a modeling paradigm for improving the piezoelectric performance through improved matrices and optimal 
polycrystallinity in the piezoelectric inclusions. By incorporating carbon nanotubes in the matrix, we 
demonstrate 2-3 orders of improvement in the piezoelectric response, through simultaneous hardening of 
the matrix and improvement in its permittivity. By tuning the polycrystallinity of the piezoelectric 
inclusions, we show considerable improvements exceeding 50% in the piezo-response, compared to 
single crystal inclusions. We further analyze the influence of carbon nanotube agglomerations at 
supramolecular length scales, as well as vacancy defects in the nanotubes at the atomic level, on 
composite performance. Although nanomaterial agglomeration is conventionally considered undesirable, 
we show that, near nanotube percolation, clustering of nanotubes can lead to better matrix hardening and 
higher permittivities, leading to improvements exceeding 30% in the piezoelectric response compared to 
non-agglomerated architectures. We further demonstrate that although atomic vacancy defects in 
nanotubes effectively soften the matrix, this can be compensated by agglomeration of nanotubes at larger 
length-scales.

Keywords: lead-free piezoelectric; composite; polycrystal; 3D printing; carbon nanotube; agglomeration; 
atomic defect; multiscale design and homogenization; coupled problems; finite element analysis; smart 
materials; network of contacts

1. Introduction

Piezoelectric composites represent an important class of materials which are frontrunners in integrated 
harvesting of ubiquitous mechanical energy. Specific applications can vary from wearable bio-mechanical 
energy harvesters [1-3] to application in civil infrastructure-integrated structural health monitoring 
devices [1, 4]. The interest in this class of materials stems from the possibility to tune the electro-elastic 
properties of the composite to suit application needs [1, 5]. A renewed interest in these material in the 
recent times is because of the possibility to manufacture them in a scalable manner using techniques such 
as 3D printing, which can lend microscale control over the fabrication process [5-8]. However, the 
performance of piezoelectric composites is limited by several factors. Firstly, this includes the relative 
softness of the matrix compared to the hard inclusions. The soft matrix takes up most of the applied strain 
and hence screens the inclusions from mechanical deformation, consequently reducing the piezoelectric 
response. Secondly, the matrices are typically polymeric, and hence have weak dielectric permittivity, 
compared to the poled inclusions. This prevents the electric flux generated within the inclusion from 
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flowing freely within the composite and hence restricts the piezoelectric response. While these two 
common limitations (mechanical and electrical) are important, an additional factor that may strongly 
affect the performance of piezocomposites must be noted. Indeed, the polycrystalline microstructure of 
the inclusions also plays a critical role in determining the piezoelectric response of the composite [9, 10]. 
Although in isolation, polycrystals allow an enhanced piezoelectric response compared to single crystals, 
in composites, this behaviour is not apparent, mainly because of the electrical bottleneck discussed earlier 
[4, 11]. There is a growing need to develop novel design strategies to address these limitations, specially 
in the area of lead-free piezoelectric composites, which is the main motivation here. The need for efficient 
composite design is fuelled by two main reasons: (i) the need to develop lead-free materials for eco-
friendly energy sensing/harvesting [1], and (ii) the need to enhance the performance of lead-free 
composites to the levels of lead-based composites, given a considerable current gap in their performances  
[1, 12]. The choice among lead-free piezoceramics is further constrained by the fact that a subset of these 
materials, such as Potassium-Sodium Niobate (KNN), pose considerable environmental threat in the 
process of extraction and disposal [13]. Therefore, in this paper, we focus on design strategies to enhance 
the performance of lead-free BaTiO3-based composites and structures, which have attracted recent 
attention in the context of eco-friendly approaches to processing and fabrication [14, 15]. BaTiO3-based 
composites have also been analyzed extensively through the development of models that study the 
nanoscale, microscale, and material dependent underpinnings of piezoelectric performance [16-24]. 

Here, we develop a modelling approach to simultaneously address these main limitations to piezoelectric 
composite performance, focusing on lead-free materials. In particular, we show that the elastic and 
dielectric properties of the matrix can be simultaneously improved by incorporating carbon nanotubes in 
the matrix. This becomes possible since carbon nanotubes simultaneously possess superior elastic 
properties, which can harden the matrix [25], and also excellent electrical conductivity, leading to 
percolative enhancement in dielectric permittivity of the modified matrix [26, 27]. While carbon-based 
nanomaterials, exemplified in this work by carbon nanotubes, are known to boost the piezoelectric 
response of composites [25], there are several important design issues that need to be addressed. One of 
the key such issues is connected with a low percolation threshold exhibited by nanotubes [27, 28], 
because of their high length-to-diameter aspect ratios and consequent ease with which percolative 
conducting networks are formed. This limits the amount of nanofiller that can be added to the matrix, and 
as a result, also limits the level of hardening in the matrix. Therefore, it is important to introduce material 
design variables which can help drive the percolation threshold up to higher values. It is well known that 
by reducing the aspect ratio of individual nanotubes, it is possible to increase the percolation threshold 
[27]. However, this comes at a cost of reduced matrix hardening [29], because higher aspect ratios are 
required for longer range fibrous reinforcement. On the other hand, we note that one of the aspects of 
composite design, which is traditionally considered undesirable, could possibly enable an increase in the 
percolation threshold, and hence in the piezoelectric response. In particular, more light should be shed on 
agglomeration of carbon nanotubes within the matrix, specifically in this context. Conventional composite 
designs aim at minimizing the percolation threshold and avoiding agglomeration [27, 30]. However, given 
the present requirements of increasing the percolation threshold, introducing controlled agglomerations 
could be a possible route to improve such conventional piezoelectric composite designs. This represents a 
design variation at the supramolecular level, which has recently generated interest in the literature due to 
enhanced electrical properties near percolation (e.g. [31]). Furthermore, at much smaller length scales, 
molecular/atomic defects such as vacancies also have an influence on the effective elastic properties of 
the nanotubes [32]. Therefore, this paper aims to bring in these novel aspects of design, stemming from 
atomic level variations to supramolecular clustering, to demonstrate their potential in tuning the electro-
elastic properties of the matrix. Moreover, the model developed here will also consider practically viable, 
randomly shaped and randomly positioned polycrystalline piezoelectric inclusions. This is based on the 
observation that tuning the polycrystallinity can be an efficient strategy to improve the performance of 
lead-free piezoelectric ceramics and their composites [9, 11].  Based on the available experimental data 
and this model, we evaluate the piezoelectric enhancement in composites, through the introduction of 
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carbon nanotubes, by simultaneously hardening the matrix and improving its dielectric permittivity. In 
doing this, we create a design paradigm where the above aspects, across various length-scales, can be 
used to control the electro-elastic behaviour of the matrix, for achieving better composite performance. 

The remainder of the paper is organized as follows: Section 2 provides the details of the model governing 
the coupled electro-elastic behaviour of the composite, along with the details of the composite geometry 
and boundary conditions. Section 3 provides details of the models describing the elastic and electrical 
properties of the constituent materials of the composite. In section 4, we discuss the role of 
supramolecular parameters (agglomeration), atomic defects (vacancies in CNTs), and their interplay in 
determining the piezoelectric performance of the composites. Section 5 summarizes our findings. 

2. Composite geometry, coupled model, and boundary conditions

We study the steady state behaviour of a two-dimensional piezoelectric composite architecture consisting 
of microscale piezoelectric inclusions, carbon nanotubes and their agglomerates. The following sub-
sections will provide details of the composite architecture, the coupled piezoelectric model used to study 
the behaviour of the composite, the materials models that govern the dielectric and mechanical properties 
of the composite, and the boundary conditions used to compute specific effective electro-elastic 
coefficients of interest.   

2.1 Lead-free piezoelectric composites and geometric designs

We model the composite as a two-dimensional RVE in the x1-x3 plane as shown schematically in Figure 
1. The composite is made of four components: (i) the rectangular matrix with dimensions am and bm, (ii) 
microscale lead-free polycrystalline BaTiO3 piezoelectric inclusions, which are randomly shaped and 
randomly positioned within the composite, (iii) non-agglomerated carbon nanotubes (multi-walled or 
single-walled), (iv) agglomerated bundles of carbon nanotubes (multi-walled or single-walled). Our 
analysis is exemplified for an RVE with dimensions am and bm. The piezoelectric inclusions have 
dimensions of roughly 30 µm. More details on the geometry of the inclusions and the algorithm used to 
generate them are provided in appendix A1. The following considerations were taken into account while 
fixing the inclusion sizes: (i) the inclusions must be larger than the optimal grain sizes for enhanced 
piezoelectricity in polycrystals [10], which are in the sub-micron scale, and (ii)  the inclusions must be 
larger compared to experimentally observed nanotube agglomerate sizes (≈3µm [33]), so that the matrix 
with stand-alone CNTs and agglomerated bundles of nanotubes can be treated as a homogeneous medium 
surrounding the inclusions. The carbon nanotubes considered here are either multiwalled ((15,15) 
MWCNTs) or single-walled ((15,15) SWCNTs). Based on the available experimental data, specifically in 
the case of the dielectric properties of carbon nanotube-modified polymeric matrices [30], we fix the 
nanotube aspect ratio λ=LCNT/2RCNT at 100, where LCNT and RCNT are the length and the radius of the 
carbon nanotube. We summarize these geometrical parameters in Table 1.

2.2 Coupled electro-elastic fields of piezoelectric composites

The previous section provided the details of the composite geometry that is analysed in this paper. Here, 
we provide details of the electro-elastic model used to study the composite architecture detailed in section 
2.1 and schematically shown in Figure 1.  The basic relationships which linearly couple the electrical and 
mechanical fields are expressed as [11, 34]

, .                                       (1)                                                                                                     𝜎𝑖𝑗(𝐱) = 𝑐𝑖𝑗𝑘𝑙(𝐱)𝜀𝑘𝑙(𝐱) ‒ 𝑒𝑖𝑗𝑘(𝐱)𝐸𝑘(𝐱) 𝐷𝑗(𝐱) = 𝑒𝑗𝑘𝑙(𝐱)𝜀𝑘𝑙(𝐱) + 𝜖𝑗𝑘(𝐱)𝐸𝑘(𝐱)

In (1)  and  are the components of the elastic stress and strain tensors, respectively, Dj are the 𝜎𝑖𝑗 𝜀𝑖𝑗
components of the electric flux density vector, Ek are the components of the electric field vector, cijkl, eijk, 
and ϵij are the elastic coefficients, piezoelectric coefficients, and the dielectric permittivity coefficients, 
and x is (x1, x3). The relationship between the strain field and the displacement vector, and the relationship 
between the electric field and the electric potential are respectively given by



  

4

, .                                                                                              (2)𝜀𝑖𝑗 =
1
2(𝑢𝑖,𝑗(𝐱) + 𝑢𝑗,𝑖(𝐱))  𝐸𝑖(𝐱) =  ‒ 𝜙,𝑖(𝐱)

Considering the two-dimensional model discussed in Section 2.1, the equations (1)-(2) simplify into the 
following [11, 34]:

, ,                                                                                                                      (3)𝛔 = 𝐂𝛆 ‒ 𝐞𝑇𝐄  𝐃 = 𝐞𝛆 + 𝛜𝐄

where , , , and . The matrices C, e, 𝛔 = (𝜎11  𝜎33  𝜎13)𝑇 𝛆 = (𝜀11  𝜀33   𝜀13)𝑇 𝐄 = (𝐸1  𝐸3)𝑇 𝐃 = (𝐷1  𝐷3)𝑇

and  are defined as 𝛜

  ,  .                                                               (4)                                                                               𝐂 = [𝑐11 𝑐13 0
𝑐13 𝑐33 0
0 0 𝑐44

] 𝐞 =  [ 0 0 𝑒15
𝑒31 𝑒33 0 ], 𝜖 =  [𝜖11 0

0 𝜖33]
These basic relationships are further subject to conditions of equilibrium and Gauss’s law. Under the 
assumptions of vanishing body forces and vanishing volume charge densities, these governing equations 
are 

                                                                                                                                                𝜎𝑖𝑗,𝑗(𝐱) =  0,  𝐷𝑖,𝑖(𝐱) = 0.
(5)

The phenomenological relationships given by equations (2)-(4), subject to the assumption-based 
governing relationships given by equation (5), determine the steady state behavior of a linear electro-
elastic system. The well-posedness results in classes of generalized solutions for such coupled models, 
even in a more general dynamic setting, along with rigorous energy bounds, can be found in [35]. In our 
present analysis, this model has been implemented and simulated with the Finite Element Method in the 
context of the composite architecture specified in Figure 1.

2.3 Piezoelectric response of composites and boundary conditions

The previous sections provided the details of the composite geometry studied here and the coupled 
equations governing the piezoelectric behaviour of the composite. To evaluate the piezoelectric response 
of such composites, we calculate the effective e31 and e33 of the composite. The determination of these 
effective coefficients will need two separate boundary conditions which apply axial strains along the x1 
and x3 directions [11, 34]. These are shown in Figure 2(a) and (b) and are further summarized in the 
appendix A1. Using boundary conditions BC1, we calculate the effective properties , , and of 𝑒𝑒𝑓𝑓

11 𝑐𝑒𝑓𝑓
11 𝑐𝑒𝑓𝑓

13
the composite. Using the second set of boundary conditions BC2, we calculate the effective properties 

, , and  of the composite. In the following calculation, the volume average of a quantity A is 𝑒𝑒𝑓𝑓
33 𝑐𝑒𝑓𝑓

33 𝑐𝑒𝑓𝑓
13

represented as  and is calculated as〈𝐴〉

,                                                                                                                                      (6)〈𝐴〉 =
1

𝑎𝑚𝑏𝑚
∫

Ω𝐴𝑑Ω

where  is the volume over which the integration is carried out, which in this case is the total volume of Ω
the RVE. 

By applying the boundary conditions BC1, the following volume averages are obtained,

 ,  , , .                                                                                                〈𝜀11〉 = 𝜀11 〈𝜀33〉 =  0 〈𝜀13〉 =  0 〈𝐸𝑖〉 = 0
(7)

Using these volume averages, the following effective coefficients of the composite are calculated as [11, 
34]
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 ,   , ,                                                                                                      (8)𝑒𝑒𝑓𝑓
31 =

〈𝐷3〉
𝜀11

 𝑐𝑒𝑓𝑓
11 =

〈𝜎11〉
𝜀11

𝑐𝑒𝑓𝑓
13 =

〈𝜎33〉
𝜀11

where  is the volume average of the D3 component of the electric flux density vector. Similarly, by 〈𝐷3〉
using the second set of boundary conditions BC2, the following set of volume averages are obtained

 , , , .                                                                                            (9)〈𝜀11〉 = 0 〈𝜀33〉 =  𝜀33 〈𝜀13〉 =  0 〈𝐸𝑖〉 = 0

These volume averages are further used to calculate the following effective coefficients of the composite.

, , .                                                                                                       (10)𝑒𝑒𝑓𝑓
33 =

〈𝐷3〉
𝜀33

 𝑐𝑒𝑓𝑓
33 =

〈𝜎33〉
𝜀33

𝑐𝑒𝑓𝑓
13 =

〈𝜎11〉
𝜀33

In our calculations, we assume small strains and accordingly set  and  in BC1 and BC2, 𝜀11 𝜀33
respectively, to .1 × 10 ‒ 6

3. Material Models, CNT additions, and polycrystalline piezoelectric inclusions

In this section, we provide details of the models and experimental data that describe the electro-elastic 
properties of the non-piezoelectric PDMS matrix, the polycrystalline BaTiO3 inclusions, and the carbon 
nanotubes that are added to the matrix. 

3.1 Matrix models

We choose a soft polymer matrix, polydimethylsiloxane (PDMS), for our analysis. Experimental efforts 
to fabricate piezoelectric composites with soft matrices, by using 3D printing and other emerging 
technologies, have been receiving an increasing attention in literature [8, 15]. However, such soft matrices 
pose a dual challenge. First, their soft elastic properties screen the applied mechanical stimuli from the 
BaTiO3, thus resulting in a very small electric flux generation. Secondly, polymeric materials, in general, 
are weak dielectrics and thus impede the flow of electric flux out of the piezoelectric inclusions. 
However, a number of experiments, including recent efforts in these directions, indicate that both of the 
above issues can be circumvented. In particular, soft polymeric matrices can be hardened significantly by 
the addition of very small quantities of carbon nanotubes [25], with a simultaneous enhancement in the 
effective dielectric permittivity [26]. On the basis of these experimental observations, a soft matrix, 
exemplified here by PDMS, forms an ideal candidate to evaluate the possible improvements in the 
piezoelectric response, through elastic and dielectric enhancements. 

The elastic coefficients of the matrix are obtained from its Young’s modulus Em and its Poisson’s ratio 𝜈𝑚
, as described by equations (11)-(12) below:

 ,                                                               (11)𝐂𝐦 = [𝜆𝑚 + 2𝜇𝑚 𝜆𝑚 𝜆𝑚 0 0 0
𝜆𝑚 𝜆𝑚 + 2𝜇𝑚 𝜆𝑚 0 0 0
𝜆𝑚 𝜆𝑚 𝜆𝑚 + 2𝜇𝑚 0 0 0
0 0 0 𝜇𝑚 0 0
0 0 0 0 𝜇𝑚 0
0 0 0 0 0 𝜇𝑚

]
where 

 ,  .                                                                                                        𝜆𝑚 =  
𝐸𝑚𝜈𝑚

(1 + 𝜈𝑚)(1 ‒ 2𝜈𝑚) 𝜇𝑚 =
𝐸𝑚

2(1 + 𝜈𝑚)
(12)

Table 2 summarizes the material constants of the PDMS matrix for which computations have been carried 
out. The addition of carbon nanotubes and their agglomerates will further modify Em and .𝜈𝑚
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The effective elastic moduli of the CNT-modified matrix are obtained by using a two-parameter model, 
which calculates the effective properties based on the elastic coefficients of the pristine matrix, 
summarized in Table 2. Thermal degradation and thermal stability analysis of PDMS-based polymeric 
composites is an important issue that lies outside of the scope of this paper. We note, however, that a 
computationally efficient procedure for such analysis, developed for polymeric materials in a generic 
setting [36], can be incorporated in our modelling framework. We also refer the interested reader to 
several experimental works in this direction [37-39]. It is notable, from these works, that there is growing 
experimental evidence that the incorporation of CNTs may significantly enhance the thermal stability 
of composites, including those which are in the center of our attention here.

In our examples reported in section 4, the matrix is modified by addition of (15,15) multiwalled carbon 
nanotubes (MWCNTs) and single-walled nanotubes (SWCNTs). Our analysis of agglomeration of 
nanotubes is based on the addition of MWCNTs and the analysis of atomic scale vacancies is based on 
that of SWCNTs, where the presence of vacancies is expected to have a more considerable effect on the 
elastic properties of the nanotube. This alters both the elastic and the dielectric properties of the matrix. 
Firstly, addition of nanotubes hardens the matrix, thus leading to higher Young’s moduli (Figure 3(a), in 
the case of (15,15) MWCNTs). This is also accompanied by a reduction in the Poisson’s ratio (Figure 
3(b), in the case of (15,15) MWCNTs). This hardening is also affected by agglomeration of nanotubes. By 
using the transversely isotropic elastic properties of carbon nanotubes [41] and the elastic properties of 
the pristine matrix (cf. Table 2), the effective Young’s modulus and Poisson’s ratio of the matrix are 
modelled with a two-parameter model [41-43]. The model takes into account the agglomerations of the 
nanotubes through two parameters  and . While the latter is the fraction of the nanotubes, in the matrix, 𝜉 𝜁
that are agglomerated, the former is the volume fraction of the agglomerates in the composite matrix. 
When the parameters are equal, there are no agglomerations and CNTs are dispersed uniformly in the 
matrix. When , there are agglomerates. We consider two representative cases:  and . 𝜉 < 𝜁 𝜉 = 𝜁 𝜉 = 0.5𝜁
The variation of the effective Young’s modulus  and the Poisson’s ratio of the matrix, as a 𝐸𝑒𝑓𝑓

𝑚 𝜈𝑒𝑓𝑓
𝑚

function of volume fraction fCNT of MWCNTs are shown in Figure 3(c)-(d), respectively, for these two 
states of agglomeration. It is seen that the hardening of the matrix is reduced (Figure 3(c)) in the presence 
of the agglomerates and the effective Poisson’s ratio is higher in the matrix with agglomerates (Figure 
3(d)). Further, the introduction of atomic vacancy defects in the nanotubes brings about a reduced 
effective Young’s modulus and an increased Poisson’s ratio in the matrix, as shown in Figures 3(e)-(f), 
for (15,15) SWCNT-modified matrices. Therefore, from the perspective of the effective elastic properties 
of the matrices, it appears that nanotube-agglomeration and atomic defects adversely affect the matrix 
hardening with CNTs, thus pointing to a reduced enhancement in the piezoelectric response. 

The addition of MWCNTs also increases the dielectric permittivity of the matrix. Based on existing 
experimental evidence [27, 44], the variation of the dielectric constant with fCNT follows a percolation 
behaviour, described by the equation 

,                                                                                                                                (13)𝜖𝑒𝑓𝑓
𝑚 =  𝜖𝑚( 𝑓𝑐

𝑓𝑐 ‒ 𝑓𝐶𝑁𝑇)𝑝

where is the relative permittivity of the pristine polymer matrix, fc is the percolation threshold of the 𝜖𝑚
nanotubes, fCNT is the volume fraction of the nanotubes in the matrix, and p is a critical exponent 
determining the percolative variation of the effective permittivity. The percolation threshold, fc, and the 
critical exponent, p, are functions of mainly the aspect ratio of the MWCNTs and the agglomeration 
characteristics.  Experiments clearly show that when the aspect ratio of the CNTs is unchanged, 
agglomeration of the nanotubes leads to an increased percolation threshold [27, 30]. Intuitively, this 
means that for a given volume fraction VCNT of nanotubes in the composite, agglomeration reduces the 
probability of establishing a connected network, and hence increases the percolation threshold. Several 
models have been developed to understand the dependence of the agglomeration state of a composite and 
its percolation threshold (e.g. [27, 30]). We apply here a model developed in [30] which expresses the 
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agglomeration state of the system using the parameter , which is the fraction of the total number of 𝜁
nanotubes that are agglomerated. This model estimates  for various experimental samples, using the 𝜁
observed values of fc. However, this estimation assumes that all agglomerates consist of 7 CNTs which 
are hexagonally close-packed [45]. The validity of this approach is discussed further and generalized in 
Appendix A2. As it stands now, to the best of our knowledge, this is the most complete experimental data 
currently available, which analyses CNTs of similar aspect ratios across different agglomeration states. 
Therefore, it is expected that this model can provide a revealing critical insight into the role of 
agglomeration in deciding the effective dielectric properties of the matrix. Using this model, the analytical 
relation [30] between  and  is expressed as 𝑓𝑐 𝜁

,                                                                          𝑓𝑐 =
𝑚𝜁(1 + 𝑆1)(1 + 𝑆2)(3𝜆 + 2) + (1 ‒ 𝜁)(1 + 𝑆1)(1 + 𝑆2)(3𝑛2𝜆 + 2𝑛3)

2𝑚𝜁(1 + 𝑆2)(3𝜆2 + 12𝜆 + 8) + 2(1 ‒ 𝜁)(1 + 𝑆1)(3𝑛𝜆2 + 12𝑛2𝜆 + 8𝑛3)
(14)

where m is the number of CNTs in an agglomerate, n is a factor multiplying the radius RCNT  (refer to 
Table 1) of the nanotube to give an approximate radius of the agglomerate, , and 𝑆1 = 5.231(2𝜆) ‒ 0.569 𝑆2

.= 5.231𝑛0.569(2𝜆) ‒ 0.569

Table 3 lists the calculated parameter  for various experimentally measured values of fc, when carbon 𝜁
nanotubes with aspect ratio of  are dispersed in varying agglomeration states, in a polymer 𝜆 = 100
matrix. It is seen, that as the fraction  of agglomerated MWNCTs increases, the percolation threshold 𝜁
also increases. From equation (14), we also calculate predicted percolation threshold for a sample with no 
agglomerations (i.e. ), which is equal to 0.608%.   𝜁 = 0

There is no conclusive evidence in the literature on the value of critical exponent. However, it has been 
demonstrated that by chemical functionalization of nanotubes, the critical exponent, p, can be tuned in the 
range 1.0-1.23 [46]. Smaller values of p, nearing 0.8, have also been reported [47]. We therefore assume 
p=1.2 in our analysis which allows the best dielectric enhancement, on the basis of experimental 
observations. Figure 4 shows an example plot of  for fc=1.0 and p=1.2. 𝜖𝑒𝑓𝑓

𝑚

3.2 Polycrystalline model for piezoelectric inclusions

We consider polycrystalline piezoelectric inclusions, where the electro-elastic coefficients depend on the 
polycrystalline microstructure. The motivation to consider polycrystals in piezoelectric composites stems 
from recent findings, where it was demonstrated that inclusions with controlled randomness in 
domain/grain-orientation can outperform single crystalline inclusions, provided the matrix has a high 
permittivity, which is capable of efficiently coupling electric flux through the composite [4, 11]. 
Furthermore, the interest to consider polycrystalline inclusions is driven by the fact that lead-free 
materials such as BaTiO3, which form the central aspect of this paper, are shown to exhibit better 
piezoelectric performance compared to their single crystal counterparts [9]. The basis of our consideration 
has been the model developed in [9] to obtain the effective properties of polycrystalline inclusions as a 
function of parameter α, which quantifies the orientation of the poled polycrystal. When α tends to zero, 
the polycrystal is highly oriented and resembles a single crystalline inclusion. On the other extreme, when 
α tends to infinity, we have a highly disoriented polycrystal with no net piezoelectric activity. The model 
and the effective electro-elastic coefficients are summarized in the appendix A3. We emphasize here that 
the parameter α can be tuned by controlling the poling process – the poling electric field, temperature and 
so on, for which different experimental techniques exist [48]. However, exact experimental measurements 
of α is still a challenge.

4 Results and discussion

We divide our discussion into three sections. First, we will discuss the effects of incorporating well 
dispersed, non-agglomerated, (15,15) MWCNTs in the matrix, on the piezoelectrtic performance. This 
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will be followed by a discussion of our findings on the influence of agglomerated clusters of CNTs in the 
analysis of piezoelectric response. Thirdly, we will consider the effects of atomic vacancy defects on the 
piezoelectric performance. Our study has been exemplified here for 5 different RVEs with increasing 
volume fractions Vp of the piezoelectric inclusions, as shown in Figure 5. 

4.1  Piezoelectric composites with non-agglomerated nanotubes

Incorporation of carbon nanotubes has a dual effect – hardening of the matrix and improving its dielectric 
constant. These two aspects can act synergistically to improve the piezoelectric response relative to the 
composite without nanotubes. In our simulations for this study involving non-agglomerated nanotubes, 
we fix fc=1.0 and p=1.2 which are close to experimentally observed values as discussed in section 3.1. 
First, we notice that as the nanotube volume fraction fCNT increases, the effective elastic moduli of the 
matrix also increase, as shown in Figure 6, for α=0 and for several representative volume fractions Vp of 
piezoelectric inclusions. It is seen that the polycrystallinity of the piezoelectric inclusions has little effect 
on the effective elastic moduli, compared to the more pronounced effect of the nanotube fill-fraction. 
Furthermore, the introduction of carbon nanotubes enhances the permittivity of the matrix, following a 
percolative behaviour. In the vicinity of the percolation threshold, the effective permittivity of the matrix 
dramatically increases, as shown by Figure 4. Such high permittivities allow a relatively easy flow of 
electric flux from the piezoelectric inclusions [4, 11], leading to better piezoelectric performance.

Owing to the large elastic moduli of the piezoelectric inclusions, the effective moduli also increase as Vp 
increases. However, the key point is that for a given Vp, the inclusion of nanotubes in the matrix leads to 
an almost linearly dependent increase in the elastic moduli of the composite. The increased hardness of 
the matrix can now efficiently channel the applied mechanical stimuli to the piezoelectric inclusions, 
which otherwise would have been screened.  In fact, by breaking the electrical bottleneck imposed by the 
otherwise weak-dielectric environment, composites with polycrystalline piezoelectric inclusions having 
controlled random domain orientations (dictated by the parameter α), exhibit better piezoelectric 
behaviour. This behaviour is seen in the plots of the effective parameters e31 and e33 of the composites, 
irrespective of Vp (Figures 7(a)-(e) and 8(a)-(e)). The combined effect of matrix hardening and dielectric 
enhancement in the matrix leads to considerable improvements in both the effective piezoelectric 
coefficients. This shows that the inclusion of nanotubes in piezoelectric composites, and in particular in 
lead-free materials analyzed here, is a viable design strategy for significant improvements in piezoelectric 
performance. Further, from Figures 7(f) and 8(f), we notice that the enhancement in the effective 
piezoelectric coefficients of polycrystalline-inclusion-based composites is higher for higher inclusion 
volume fractions Vp. This is because of better electrical coupling between the high permittivity inclusions, 
when they are relatively closer to each other. In the case of the RVE with Vp=43.16%, we notice almost a 
50% improvement in the effective coefficients e31 and e33, around α=0.5, compared to the values of the 
single-crystal-based composite (α=0). We further analyze the variation in the effective piezoelectric 
coefficients e31 and e33 of the composites, for different Vp, as a function of the nanotube fill-fraction fCNT 
(Figure 9). Here, we study the behaviour of the composites with , which from our preceding 𝛼 = 0.5
analysis, represents an optimal polycrystalline configuration for the piezoelectric inclusions. From Figure 
9(a)-(b), it is clear that the effective piezoelectric coefficients improve with increasing CNT addition, with 
the curves suggesting a percolative behaviour. Figures 9(c)-(d) further show the effective coefficients e31 
and e33, respectively, relative to their values with no CNT additions. These figures reveal that addition of 
CNTs can lead to improvements exceeding 2-3 orders of magnitude in both the effective coefficients. The 
negative sign in Figure 9(c) indicates the reversal of the sign of the effective e31, which is positive for a 
pristine matrix and negative for a CNT-modified matrix. This sign reversal follows from the reduction in 
the Poisson’s ratio of the matrix on addition of CNTs, as seen in Figure 3(b), which causes a reversal in 
the direction of the strain component  [11]. This demonstrates that soft polymeric matrices modified 𝜀31
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with carbon nanotubes and piezoelectric inclusions, which are poled to obtain optimal randomness in 
domain orientation (optimal α), can exhibit significantly higher piezoelectric performances.

4.2 Piezoelectric composites with partially agglomerated nanotubes

We have seen that well-dispersed nanotubes lead to significant improvements in the piezoelectric 
response. However, in the experimental scenario, it is common for nanotubes to get agglomerated, 
because of varying processing conditions [27]. Further, the degree of agglomeration of nanotubes within a 
composite can be controlled by tuning the process parameters. Therefore, controlled agglomeration can be 
viewed as a material design parameter, which would allow the tuning of the effective mechanical and 
electrical properties of the composite. With respect to fCNT, the fill-fraction of the nanotubes, we consider 
two cases for our analysis: (i) the behaviour where fCNT is not large enough for the matrix to achieve high 
permittivities due to percolative enhancement (in particular, we consider fCNT=0.5%), and (ii) the 
behaviour just before percolation (in particular, we consider fCNT=0.999fc). Our representative example 
will be shown for the composite architecture with 16 inclusions (Vp=26.67%).

Figures 10(a) and (b) show the effective coefficients e31 and e33 of the composite, as a function of α when 
fCNT=0.5%. It is clear from these plots, that the agglomeration of nanotubes has a detrimental effect on the 
piezoelectric response. This is because, agglomeration leads to lesser matrix-hardening compared to the 
well-dispersed matrix architecture (Figure 3(c)). Although agglomeration leads to an increased 
percolation threshold, and consequently to a higher matrix permittivity (cf. Formula (13)), this increase is 
opposed by a reduction in the effective elastic moduli of the matrix due to agglomeration. Therefore, 
when the nanotube fill-fractions are substantially smaller than the percolation threshold, agglomeration of 
nanotubes is undesirable. However, at percolation, the situation reverses. Agglomeration leads to 
increased percolation thresholds, thus allowing the addition of higher nanotube content in the matrix 
before percolation. Moreover, although agglomeration of nanotubes reduces the hardening effect, this can 
eventually be compensated with the addition of more nanotubes into the matrix because of a larger 
window before percolation. Hence, at percolation, it is seen that the matrices with agglomerated 
nanotubes are harder than the matrices with well-dispersed nanotubes, at the cost of higher amounts of 
CNT additions. Also, at percolation, the permittivities of the matrices escalate to large values, with the 
agglomerated architecture exhibiting higher permittivities. Under such conditions, the mechanical 
hardening of the matrix and the dielectric enhancement through percolation contribute synergistically 
towards an improved piezoelectric response. As seen from Figures 10(c) and (d), at nanotube percolation, 
agglomeration leads to better effective coefficients e31 and e33 compared to composites with non-
agglomerated matrices. It is further seen that higher agglomerations (higher ) can lead to better 𝜁
piezoelectric response. Thus, the agglomeration of nanomaterial fillers, which is conventionally seen to be 
detrimental to composite performance, could also be desirable, at least to some extent, in the context of 
enhanced piezoelectric composite performance. Taking into account the experimental data considered 
here, for the agglomerations, the improvements in both the effective coefficients, e31 and e33, exceed 30% 
(Figure 10(c)-(d)). There is further scope for improvement in the piezoelectric performance through 
optimal agglomeration engineering. In achieving this goal, our current analysis may complement and 
provide further insight to the development of advanced molecular modelling and experimental techniques 
for polymeric composites [49-54]. At the same time, this analysis is attainable on scales substantially 
larger than more refined atomistic and molecular modelling methodologies would presently allow, which 
is a critically important feature for emerging scalable technologies such as 3D printing.

To summarize this part of the study, we notice that the agglomeration of nanotubes has two competing 
effects on the piezoelectric performance. Firstly, agglomeration reduces the hardening of the matrix 
compared to well-dispersed composite architectures. This reduces the piezoelectric activity, away from 
the percolation threshold of nanotubes. However, because of the increased percolation thresholds in 
matrices with agglomeration, and a consequent larger allowance to introduce more nanomaterial before 
percolation occurs, the agglomeration process may lead to both better hardening and higher matrix 
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permittivities, near percolation, compared to well-dispersed matrices. Therefore, matrices with adequately 
dispersed carbon nanotubes with a small amount of remnant agglomeration might be optimal for 
enhanced piezoelectric performance of the composite.

4.3 Piezoelectric composites modified by carbon nanotubes with atomic vacancy defects

We now consider the effects of atomic scale defects, such as vacancy defects, on the piezoelectric 
response of the composite. Molecular simulations have provided evidence that both the Young’s modulus 
and the Poisson’s ratio of carbon nanotubes decrease on the introduction of even a small amount of 
vacancies (vacancy concentration fv=1-2%) [32]. This removal of atoms from their lattice positions 
softens the nanotubes, and in the context of piezoelectric composites, this means that the hardening effect 
of the carbon nanotubes on the matrix will be reduced. Having this in mind, in this section we consider 
the possibility of using a supramolecular effect of CNT-agglomeration to negate the influence of 
molecular-scale defects. In particular, we consider for our analysis (15,15) single-walled carbon 
nanotubes, because in this case the effect of vacancy defects is expected to be more pronounced than in 
MWCNTs. We assume the same percolation thresholds, as those of MWCNTs. Figures 11(a)-(c) show 
the effective Young’s modulus of the matrix in the presence of defective and agglomerated nanotubes, for 
various defect concentrations fv and agglomeration states (in the range of interest for this analysis). 
Similarly, Figures 11(d)-(f) show the effective Poisson’s ratio of these matrices. Only small vacancy 
concentrations (1-2%) are considered and two agglomeration states corresponding to  𝜁 = 0.15,𝜉 = 0.5𝜁
and  are analyzed. The reference composite architecture for comparison in all these 𝜁 = 0.40,𝜉 = 0.5𝜁
cases has no agglomerations (i.e. ) and no vacancy defects (fv=0%). We scrutinize the behaviour of 𝜁 = 𝜉
the composite near nanotube percolation. Away from percolation, the implications of defects and 
agglomerations are trivial in that they would lead to a reduced piezoelectric response. Figures 12(a)-(b) 
show the effective parameter e31 of the composite, as a function of α, for vacancy concentration fv =1% 
and 2% respectively. Figures 12(c)-(d) show similar results for the effective parameter e33 of the 
composites. It is seen from these results that in the composites with no nanotube agglomerates, an 
increase in the vacancy concentration fv results in decreased effective coefficients e31 and e33. However, 
with the introduction of agglomerates, the situation improves, because of the increased percolation 
threshold and the consequently widened window for CNT-addition. As the degree of agglomeration 
increases (i.e. as  increases), the piezoelectric response of the structures with atomic defects improves 𝜁
beyond the reference composite architecture which has neither agglomerates nor atomic defects. Further, 
on comparing the results for fv=1% and 2%, it is evident that as the vacancy concentration increases, more 
agglomerations would be needed to compensate the influence of atomic defects. Therefore, the loss in the 
matrix-hardening due to defective nanotubes can be compensated by nanotube agglomerations. This 
opens up new design paradigms where the degradation of a material property at atomic scales can be 
compensated by constructive material design at a larger length scale. 

5 Conclusions

In summary, we have devised a computational framework to analyse enhanced piezoelectric composite 
designs through the inclusion of mechanically and electrically superior carbon nanotubes in the matrix. In 
particular, we have observed that carbon nanotubes can simultaneously harden the matrix and improve its 
dielectric constant resulting in considerable improvements in the piezoelectric response that may exceed 
2-3 orders of magnitude. Such improvements are further increased together with the increase in the 
volume fractions of the piezoelectric inclusions. The performance of composites with polycrystalline 
piezoelectric inclusions with optimally tuned randomness in their domain orientations can exceed the 
performance of their single-crystal counterpart composite designs by up to 50%, at carbon nanotube 
percolation conditions. Further, we have also demonstrated that agglomeration of carbon nanotubes, 
which is often considered undesirable, can help enhance piezoelectric performance under certain 
conditions. While the agglomeration reduces the extent of hardening in the matrix, it also increases the 
percolation threshold, which allows for addition of more nanotubes and further hardening. Therefore, at 
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percolation, the matrix is both harder and has higher permittivity compared to matrices at percolation 
without agglomerates. This leads to a higher piezoelectric response, at percolation, in composites which 
have carbon nanotube agglomerates. With the agglomeration states considered in our study, we predict 
improvements exceeding 30% in the effective piezoelectric coefficients. This improvement can be further 
tuned through optimal engineering of nanotube agglomerations. Finally, we considered the influence of 
atomic scale vacancy defects in the CNT on the performance of the composites. Although atomic 
vacancies soften the nanotubes and thus impede matrix-hardening, this can be compensated through the 
introduction of constructive molecular design at larger length scales, in the form of nanotube 
agglomerations. Through increased percolation thresholds, composites with agglomerated and defective 
CNTs are demonstrated to perform better in comparison to composites without agglomerates and atomic 
defects. Therefore, this work opens up new design paradigms in which conventionally undesirable 
material properties at atomic and supra-molecular length scales can be simultaneously engineered to 
improve the performance of piezoelectric composites. 
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Appendices

A1: Randomly shaped polycrystalline inclusions and boundary conditions: computational 
implementation

The random shapes were generated using a MATLAB code. The algorithm for the generation of the 
random shapes is summarized below

Step 1 – Select a random number of sides n for the polygon to be generated in the range [n1, n2].

Step 2 – Select random angle  between 0° and 90°. Select the range of random radii R1 and R2 defining 𝜃0
the concentric circles within which the random shape will be spatially bounded. The center of these 
circles is the origin of the local coordinate system.

Step 3 - Select an initial R0 in the range [Rmin,Rmax]. The first vertex of the random object is defined in the 
local coordinates as (R1, ), where the reference origin is at the center of the random concentric circles. 𝜃1

Step 4 – The next vertex of the polygon is at (R2, ) (in general (Ri, )) in the local coordinate system, 𝜃2 𝜃𝑖
which is obtained by a random incremental rotation by an angle , about the local origin, which is in the 𝜃
range [10°, ], and a random selection of the radius R in the range [R1, R2]. Joining the  𝜃𝑚𝑎𝑥 = 360/𝑛
points (Ri-1 , ) and (Ri , ) by a straight line, to form the ith edge of the polygon𝜃𝑖 ‒ 1 𝜃𝑖

Step 5 – Repeat Step 4 till the total rotation adds up to 360°. Now there are “n+1” sets of coordinates. It is 
to be ensured that (R0, ) = (Rn, ). Join these points by a straight line to get the nth edge of the polygon𝜃0 𝜃𝑛

Parameters used in the study:

For each inclusion, the number of sides, n, of the polygonal inclusion, is chosen in step one, randomly in 
the range [n1, n2], where 

n1: 10
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n2: 20 

Also, the two bounding concentric circles within which the inclusion is spatially bounded, have radii R1 
and R2 which are randomly selected as follows:

R1: Randomly chosen between 7.5 μm and 10.5 μm.

R2: Randomly chosen between 12 μm and 15 μm.

This algorithm generates polycrystals of sizes not exceeding 30 μm. i.e. the inclusions are spatially 
bounded within concentric circles of average radii 9 μm and 13.5 μm.

There are two boundary conditions used in the calculations – BC1 and BC2 as highlighted schematically 
in Figure 2. The two boundary conditions and the corresponding effective parameters of the composite 
which are calculated through its application are listed below:

1) BC1 – 𝑐𝑒𝑓𝑓
11 , 𝑐𝑒𝑓𝑓

13 ,𝑒𝑒𝑓𝑓
31

2) BC2 - 𝑐𝑒𝑓𝑓
33 , 𝑐𝑒𝑓𝑓

13 ,𝑒𝑒𝑓𝑓
33

The computations were carried out with minimum and maximum element sizes of 10 nm and 2 µm, 
respectively. Convergence was achieved with mesh refinements which were carried out to resolve the 
sharp regions of transitions around the random edges and vertices of the randomly shaped inclusions.

A2: The validity of the analytical relation between the percolation threshold and agglomeration 
state 
Equation (14), originally derived in [30], expressed analytically the relationship between the percolation 
threshold for CNTs in a matrix and the fraction  of the total nanotubes that are agglomerated. We note 𝜁
that the calculations in [30] assume that the all agglomerates are a bundle of 7 carbon-nanotubes, 
hexagonally close-packed. This is a restrictive assumption in many practical scenarios where the 
agglomerate size can be random. We modify equation (14), by considering a more general relationship 
between m and n. Equation (14) is given below for convenience and clarity of the arguments that follow. 

.                                                                      𝑓𝑐 =
𝑚𝜁(1 + 𝑆1)(1 + 𝑆2)(3𝜆 + 2) + (1 ‒ 𝜁)(1 + 𝑆1)(1 + 𝑆2)(3𝑛2𝜆 + 2𝑛3)

2𝑚𝜁(1 + 𝑆2)(3𝜆2 + 12𝜆 + 8) + 2(1 ‒ 𝜁)(1 + 𝑆1)(3𝑛𝜆2 + 12𝑛2𝜆 + 8𝑛3)
(AE1)

By using available geometrical data for the number of non-intersecting smaller circles that can be packed 
within a larger circleAR, we derive following relation between n and m:

                                                                                                𝑛 = 0.8179log (𝑚) + 0.08226𝑚 + 1.02
(AE2)

By combining equations (AE1) and (AE2), we obtain a more general relation between fc and . Taking the 𝜁
experimentally measured percolation thresholds from [30] (cf. Table 3), we calculate , using the above 𝜁
relations. The results are plotted in Figure AF1. It is seen that when only a small portion of CNTs are 
agglomerated, for agglomerates having more than approximately 5 CNTs,  depends only weakly on m, 𝜁
and could be considered constant in a first order approximation. Hence, the assumption made in [30] 
could be justifiable even in real scenarios where agglomerate sizes are random. It should be noted that in 
the composites with higher percolation thresholds, where a larger portion of the CNTs are agglomerated, 
the dependence of  on m is stronger. Therefore, a simplistic model which assumes that agglomerates are 𝜁
of constant sizes, provides a less realistic picture as the agglomeration density increases. To develop our 

AR Friedman, E., Circles in circles, 2005, https://www2.stetson.edu/~efriedma/cirincir/ (Date accessed 19 March 2019) 

https://www2.stetson.edu/~efriedma/cirincir/


  

13

arguments even further, more sophisticated multiscale models, accounting for molecular interactions and 
random agglomeration sizes, would be necessary. Moreover, for random agglomeration packing densities, 
it would be necessary to obtain more accurate relations between the random composite structure and the 
percolation threshold, which require further experimental work in this area.

A3: The effective electro-elastic coefficients of polycrystalline BaTiO3 piezoelectric inclusions
The effective elastic, piezoelectric, and relative permittivity coefficients of polycrystalline BaTiO3 were 
obtained, by interpolation, from [9]. These effective properties are plotted in Figure AF2. As explained in 
the main text, these coefficients are functions of orientation parameter α which can vary from 0 to . ∞

 corresponds to a single-crystal or a polycrystal with all grains having similar orientation. The other 𝛼→0
extreme  corresponds to a randomly oriented polycrystal, in which there is no net piezoelectric 𝛼→∞
activity. It is notable that, in isolated polycrystals of BaTiO3 (with ), the effective coefficients e33 𝛼 ≈ 0.5
and e31 exhibit higher values compared to highly oriented crystals, which we exploit in a composite 
architecture by using matrices with enhanced permittivities.
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Figures (main text)

Figure 1 – Schematic of the piezoelectric composite RVE with randomly shaped polycrystalline 
piezoelectric inclusions randomly dispersed in a square matrix. The matrix is further modified by the 
addition of carbon nanotubes (multiwalled or single-walled) and is assumed to contain agglomerates of 
these nanotubes. The axis system used in the study is also illustrated.
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Figure 2 – Two sets of boundary conditions (a) BC1 and (b) BC2, used to calculate the effective electro-
elastic coefficients of the composite. 

Figure 3 (color online) – The effective Young’s modulus  and the effective Poisson’ ratio of the 𝐸𝑒𝑓𝑓
𝑚 𝜈𝑒𝑓𝑓

𝑚
PDMS matrix as a function of the MWCNT fill fraction fCNT,(a)-(b) plot the effective parameters for a 
system without nanotube agglomerations, (c)-(d) plot the effective parameters for agglomerated systems. 



  

18

Figure 4 – The percolative dependence of the relative permittivity of the matrix on the carbon nanotube 
fill-fraction fCNT. Here, the percolation threshold, fc, and the critical exponent, p, are assumed to be 1% and 
1.2 respectively. 

Figure 5 – The five RVEs considered in this study along with different piezoelectric inclusion fill 
fractions Vp.
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Figure 6 (color online) – The effective elastic moduli of the composites with uniformly dispersed 
nanotubes, as a function of the nanotube fill-fraction fCNT. (a)-(e) show relations between the effective 
moduli and fCNT for various piezoelectric inclusion fill fractions Vp. α=0 in all these plots.

Figure 7 – The effective coefficient e31 of the composite as a function of the polycrystalline orientation 
parameter, α, and nanotube fill-fraction fCNT, shown for different volume fractions Vp of the piezoelectric 
inclusions in (a)-(e). (f) shows the effective parameter e31 (color online) as a function of α, relative to its 
value at α=0, near the percolation threshold for the nanotubes (i.e. fCNT=0.99%, where fc=1.0%).
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Figure 8– The effective coefficient e31 of the composite as a function of the polycrystalline orientation 
parameter α, and nanotube fill-fraction fCNT, shown for different volume fractions Vp of the piezoelectric 
inclusions in (a)-(e). (f) shows the effective parameter e31 (color online) as a function of α, relative to its 
value at α=0, near the percolation threshold for the nanotubes (i.e. fCNT=0.99%, where fc=1.0%).
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Figure 9 (color online) – (a) and (b) show the effective parameters e31 and e33 of composites as a function 
of the nanotube fill fraction fCNT, for different volume fractions Vp of the piezoelectric inclusions. (c) and 
(d) show the same effective parameters as (a) and (b), respectively, relative to their values with pristine 
matrices without CNT addition.

Figure 10 (color online)– (a) and (b) show the effective coefficients e31 and e33 respectively, for various 
states of nanotube agglomeration, with fCNT=0.5%, (c) and (d) show the effective coefficients e31 and e33 
of the composite, for various states of agglomeration with fCNT=0.999fc.
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Figure 11 (color online) – The effective elastic properties of the PDMS matrix modified by (15,15) 
SWCNTs with simultaneous presence of atomic vacancy defects and nanotube agglomerations. The 
results are plotted for vacancy concentration fv = 0%,1%, and 2%.

Figure 12 (color online) – The effective coefficients e31 ((a)-(b)) and e33 ((c)-(d)) of composites SWCNTs 
with atomic vacancies and nanotube agglomerations. The reference sample has fv=0 and no 
agglomerations (i.e. ).  (a) and (c) compare the results with fv=1% and increasing agglomeration, 𝜁 =  𝜉
and (b) and (d) compare the results with fv=2% and increasing agglomerations. 
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Figures (appendices)

Figure AF1 – The agglomeration state  as a function of number of CNTs, m, in an agglomerate. 𝜁

Figure AF2 – Effective electro-elastic coefficients of polycrytalline BaTiO3 as a function the orientation 
parameter α.
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Tables

Table 1 – Geometrical parameters exemplified in the simulations.

Table 2- Mechanical and dielectric properties of the matrix materials used in this study.

Material constant M1: PDMS (soft matrix)  [40]
Tensile modulus, Em (Pa)  2 × 106

Poisson’s ratio, νm  0.499
 𝜖11/𝜖0  2.72
 𝜖33/𝜖0  2.72

Table 3: The agglomeration states and the corresponding percolation thresholds considered in this study.

fc (%) 0.7 0.9 1.09
𝜁 0.15 0.40 0.57

Matrix
Geometrical parameter Value (μm)
am 150

bm 150
Inclusions (Radially bound between two 
concentric circles of random radii R1 and R2)
Geometric parameter Value (μm)
R1 range 7.5-10.5

R2 range 12.0-15.0
Carbon nanotubes
Type 2RCNT (nm) λ=LCNT/2RCNT

SWCNT (15,15) 2.04 100
MWCNT (15,15) 2.04 100


