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Abstract

Carbon-based nanomaterials have drawn the attention of a large section of the scientific community in re-
cent years. Most research has focused on carbon nanotubes after some experimental studies reported outstanding
enhancements of the mechanical properties of polymeric matrices doped with small filler concentrations. Nev-
ertheless, some limiting factors such as high manufacturing cost and difficulty in obtaining adequate uniform
dispersions still remain an obstacle to the extensive manufacturing of these composites. Conversely, recent inves-
tigations demonstrate the superior properties of graphene, as well as better dispersion and relatively low manu-
facturing cost. Although these recent findings have begun to turn the attention towards graphene, the number of
publications dealing with the theoretical analysis of graphene-reinforced structural elements is rather scant. In this
context, the present work reports the bending and vibrational behavior of functionally graded graphene- and car-
bon nanotube-reinforced composite flat plates. The macroscopic elastic moduli of the composites are computed by
means of the Mori-Tanaka model. The results demonstrate superior load bearing capacity of graphene-reinforced
composite plates for both fully aligned and randomly oriented filler configurations. In addition, defects in the
microstructure stemming from agglomeration and restacking of graphene sheets into graphite platelets are also
analyzed.
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1. Introduction

Over the last two decades, a broad cross section of the scientific community has endeavored to develop carbon-
based nanomaterials for high-strength and multifuntional composite materials. In particular, Carbon NanoTubes
(CNTs) and graphene have shown promise for developing novel multifunctional nanocomposites [1–6]. CNTs,
which can be considered as a rolled-up graphene sheet, have been reported to provide remarkable enhancements of
the mechanical properties of polymeric matrices when dispersed at low concentrations [7, 8]. For instance, Qian et
al. [9] doped polystyrene with a concentration of 1 wt% of Multi-Walled Carbon NanoTubes (MWCNTs), reaching
improvements with respect to the neat polymer in the elastic modulus and in the break stress of 36-42% and ∼25%,
respectively. Notwithstanding the potential of CNTs, aspects such as their high manufacturing cost, difficulty
in obtaining adequate uniform dispersions, as well as their highly anisotropic properties, remain an obstacle to
the extensive development of CNT-reinforced polymer composites. In contrast, recent investigations agree to
indicate the superior properties of graphene and its derivatives [10–13]. It is noteworthy the experimental study of
Rafiee et al. [14] who compared the effective mechanical properties of epoxy loaded with graphene, Single-Walled
Carbon Nanotubes (SWCNTs), and MWCNTs at nanofiller concentrations of 0.1% wt. Their results showed that
graphene led to Young’s moduli 31% higher than those of pristine epoxy, whilst only 3% increments were reached
by SWCNTs. Their results also reported that Graphene sheet-Reinforced Composites (GRCs) outperformed those
doped with CNTs in terms of toughness and fatigue behavior. The superiority of graphene is ascribed to its high
specific surface area and nanofiller/matrix interlocking, as well as its two-dimensional geometry, which enables
more uniform filler distributions in comparison to CNTs. These excellent properties showcased by graphene,
together with its low manufacturing cost [15], make GRCs a promising multifunctional composite in the shorter
run.

Much research effort has been recently devoted to the synthesis and experimental characterization of GRCs.
Stankovich et al. [16] first successfully dispersed graphene sheets throughout polystyrene by means of chemical
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reduction of exfoliated Graphite NanoPlatelets (GNPs). Kalaitzidou et al. [17] analyzed the morphology and me-
chanical properties of GNP/polypropylene and showed that, in comparison to available commercial fillers such as
carbon fibers, carbon black and clays, GNPs had the strongest reinforcing effect for very low loadings up to 5%
in terms of Young’s modulus, as well as flexural and impact strength. Ramanathan et al. [18] reported the man-
ufacturing of poly(methyl methacrylate) (PMMA) loaded with Functionalized Graphene Sheets (FGSs). Their
results showed an outstanding increase of the elastic modulus of 33% with an addition of only 0.05 wt% of FGSs,
exceeding those obtained for SWCNT-PMMA composites. Another noteworthy contribution was done by Das et
al. [19] who studied the nano-indentation response of PolyVinyl Alcohol (PVA) and PMMA doped with FGSs.
Their results reported significant increases in both the elastic modulus and hardness with the addition of 0.6 wt%
of graphene. Despite these encouraging results from experimentation, the number of research works dealing with
the theoretical analysis of GRCs is still rather scarce and, as a consequence, the analysis of the mechanical re-
sponse of structural elements made of GRCs is at a very early stage. It is worth noting the work by Ji et al. [20]
who investigated the stiffening effect of graphene sheets dispersed in polymeric materials using the Mori-Tanaka
micromechanics method. Their results highlighted the superior stiffening capability of GNPs compared to CNTs.
Spanos et al. [21] used a micromechanical finite element approach to obtain the mechanical properties of compos-
ites reinforced by uniformly distributed GNPs. Rahman and Haque [22] employed Molecular Mechanics (MM)
and Molecular Dynamics (MD) simulations to study GNP/epoxy nanocomposites. Among diverse existing ap-
proaches, an increasing number of works in the open literature can be found on the application of the modified
Halpin-Tsai model for the modeling of GRCs. In this line, a noticeable contribution was done by Feng et al. [23]
who studied the nonlinear bending behavior of multi-layer polymer nanocomposite beams reinforced with Func-
tionally Graded (FG) distributions of GNPs. In that work, the dosage of GNPs was defined with continuous and
smooth functions across the thickness of the beams. An important conclusion of that work was that, in accordance
with previous works on other nanoinclusions [24, 25], higher concentrations of GNPs near the top and bottom
surfaces of the beams lead to stiffer responses. Similar recent works can be found on the nonlinear bending and
thermal postbuckling behaviors of nanocomposite beams in thermal environments and elastic foundations [26],
bending and vibrational behavior of FG-GNP-reinforced trapezoidal plates [27], axisymmetric bending of FG-
GRC circular and annular plates [28], or biaxially compressed buckling and postbuckling behaviors of FG-GRC
plates [29].

Along with these works reporting on the fascinating stiffening capacity of GNPs, there also exist some studies
in the literature that report no improvements or even reductions in the overall mechanical properties [30, 31]. One
of the main reasons of these discrepancies is the appearance of non-uniform spatial distributions of nanofillers.
Due to the electronic configuration of carbon-based nanoparticles as well as their high specific surface area, and
therefore, large van der Waals (vdW) attraction forces [32–34], both GNPs and CNTs tend to agglomerate. A no-
ticeable contribution in this respect was the work by Shi et al. [35] who introduced a two-parameter agglomeration
model to estimate the macroscopic elastic moduli of CNT-reinforced polymer composites. That approach consists
of considering the agglomerates as ellipsoidal inclusions so that one can conduct the homogenization process in
two separate steps. Their results demonstrated substantial decreases in the elastic moduli of the composites, what
supports the widespread thought of agglomeration as microstructure defects. Numerous research works can be
found in the literature on the application of the two-parameter agglomeration model for the analysis of heteroge-
neous CNT distributions [36–40]. Also, the two-parameter agglomeration model was utilized by Ji et al. [20] to
investigate the agglomeration effects in GRCs. Their results highlighted the detrimental effect of agglomeration
on the macroscopic mechanical behavior of the nanocomposites. Furthermore, it has been reported in the litera-
ture that individual layers of graphene undergo out-of-plane wrapping, rippling, folding, scrolling and crumpling
[41–43], which can weaken the effective behavior of GRCs. In this line, Ji et al. [20] extended the Mori-Tanaka
micromechanics approach to account for restacking of graphene sheets forming multi-layered graphite. Likewise,
their results reported reductions in the overall elastic moduli with increasing number of graphene sheets restacked
into graphite platelets.

In this paper, the bending and vibrational behaviors of FG-GRC polymer plates are investigated. The Mori-
Tanaka homogenization scheme is utilized to estimate the macroscopic elastic properties of the composites. The
numerical simulations are conducted with a self-developed First-order Shear Deformation (FSD) shell finite el-
ement code. Detailed parametric analyses are presented to assess the benefits, from a mechanical perspective,
of graphene compared to CNTs. In addition, the two-parameter agglomeration model is adopted to estimate the
agglomeration effects. Finally, the effects of restacking of graphene sheets on the bending and free-vibration
behaviors of composite plates are also analyzed.

This paper is organized as follows: Section 2 presents the composite plates analyzed in this study. Section 3
overviews the micromechanics homogenization of the elastic moduli of FG-GRC polymers, for both fully aligned
and randomly oriented filler configurations. Section 4 introduces the consideration of some limiting factors of
the load bearing capacity of polymer nanocomposites, including agglomeration effects and restacking of graphene
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sheets. Section 5 outlines the finite element formulation of FG-GRC plates. Section 6 presents the numerical
results and discussion and, finally, Section 7 concludes the paper and summarizes the main findings.

2. FG-GRC polymer plates

Figure 1 shows the polymer nanocomposite plates studied in this paper, with length a, width b, and thickness
t. An atom thick graphene sheet is comprised of a two-dimensional (2D) hexagonal network of covalently bonded
carbon atoms (see Fig. 2). In order to define the graphene microstructure, a local coordinate system x′1-x′2-x′3 is
set up as shown in Fig. 2(a). Thence, GNPs lay on the x′1-x′2 planes with x′3-axis normal to their surface. In the
case of fully aligned GRC plates, GNPs are assumed to be arranged in the global x1-x2 plane that is parallel to the
mid-plane of the plate as sketched in Fig. 1.
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Figure 1: Geometry and coordinate system of FG-GRC polymer plates.
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Figure 2: Coordinate system for a single graphene sheet (a) and a carbon nanotube (b).

In addition, GNPs are defined functionally graded across the thickness of the plate by four different distribu-
tions, namely UD, FG-V, FG-O and FG-X. UD represents the uniform distribution, whilst FG-V, FG-O and FG-X
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are power law distributions of GNPs across the thickness. According to these distributions, the GNP volume
fraction fr(z) is defined as a function of z ∈ [−t/2, t/2] as:

fr(z) = f ∗r (UD) (1a)

fr(z) =

(
2 |z|

t

)k

(k + 1) f ∗r (FG-X) (1b)

fr(z) =

(
t + 2z

2t

)k

(k + 1) f ∗r (FG-V) (1c)

fr(z) =

(
t − 2 |z|

t

)k

(k + 1) f ∗r (FG-O) (1d)

being f ∗r the total volume fraction of GNPs, and k a power-law index. The filler distribution along the thickness
direction is depicted in Fig. 3 for power-law indexes of 0.5, 0.7, 1, 1.3 and 1.8. It can be noted that linear
distributions are obtained if the grading index is set to one. In practice, the concentration of fillers fr is often
expressed in terms of weight fraction wt as follows:

fr =
wt

wt + (ρr/ρm) (1 − wt)
(2)

where ρr and ρm stand for the mass density of the fillers and the matrix material. Hence, the overall density of the
composite can be computed by the rule of mixtures as ρ = frρr + fmρm. Finally, the volume fraction of the matrix
is fm = 1 − fr.
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Figure 3: Variations of GNP volume fraction along the thickness direction for UD, FG-X, FG-V and FG-O profiles.

3. Micromechanics prediction of the effective elastic moduli of GRCs

This section briefly overviews the micromechanics prediction of the elastic moduli of GRCs. The Mori-Tanaka
(MT) homogenization framework is considered and both fully aligned and randomly oriented filler configurations
are studied.

3.1. Effective elastic properties of fully aligned nanoinclusions
Let V denote the Representative Volume Element (RVE) of an isotropic polymer matrix doped with a sufficient

number of fillers in such a way that the overall properties of the composite are statistically represented [44]. In
spite of the fact that a widely-accepted definition of the elastic moduli of graphene is still lacking in the literature,
most studies agree to consider graphene as transversely isotropic inclusions dispersed throughout the matrix. In
conjunction with Hill’s notation, the constitutive matrix for inclusions with transversely isotropic properties in the
local coordinate system x′1 − x′2 − x′3 (x′3 the axis of material symmetry) takes the form:
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C′r =



kr + mr kr − mr lr 0 0 0
kr − mr kr + mr lr 0 0 0

lr lr nr 0 0 0
0 0 0 pr 0 0
0 0 0 0 pr 0
0 0 0 0 0 mr


(3)

where kr, lr, mr, nr and pr are Hill’s elastic moduli [45]; kr is the plane-strain bulk modulus under lateral dilatation
in the x′1 − x′2 plane, nr is the uniaxial tension modulus in x′3 direction, lr is the associated cross modulus, mr and
pr are the shear moduli in the x′1 − x′2 and x′1 − x′3 planes, respectively. Throughout this work, the superscripts “r”
and “m” refer the corresponding quantity to the inclusion and matrix occupied portions of V. With this convention,
and assuming perfect bonding between phases, the relations between the total average strain and stress tensors in
the RVE, ε and σ, respectively, are defined by the rule of mixtures as follows:

ε = fmε
m

+ frε
r (4)

σ = fmσ
m

+ frσ
r (5)

here, εm and σm are the average strain and stress in the matrix, and εr and σr are the corresponding orientation-
dependent average fields in a typical inclusion. In addition, the interaction between the average inclusion strain
with the corresponding average matrix strain is governed by the strain concentration tensor A as:

εr
= A : εm (6)

Equations (4), (5), and (6), as well as the linear elastic constitutive laws of the phases, namely inclusion and
matrix as σr

= Cr : εr and σm
= Cm : εm, respectively, suffice to identify the overall stiffness C defined through

σ = C : ε. In the case of fully aligned fillers, the local and global coordinate systems coincide, i.e. C′r = Cr, and
the resulting overall constitutive tensor reads:

C = Cm + fr [(Cr − Cm) : A] (7)

The Mori-Tanaka (MT) method [46] is one of the most commonly used homogenization approaches due to
its simplicity. The MT method allows extending the theory of Eshelby [47, 48], restricted to one single inclusion
embedded in a semi-infinite elastic, homogeneous and isotropic medium, to the case of a finite domain doped with
multiple inhomogeneities. According to Benveniste’s revision [49], the effective elastic tensor by the MT method
writes:

C =
[
fmCm + fr

(
Cr : Adil

)]
:
(

fmI + frAdil
)−1

(8)

where I is the fourth rank identity tensor, and Adil
r denotes the strain concentration tensor for the limit case of a

single anisotropic ellipsoidal inhomogeneity in a dilute regime and whose expression reads:

Adil =
[
I + S : C−1

m : (Cr − Cm)
]−1

(9)

The Eshelby’s tensor S, well documented in Mura [50], accounts for the interaction of the mechanical strain
within an isolated inclusion and the elastic surrounding medium. In order to count on a general framework for the
analysis of both 2D graphene layers and 1D CNTs, and considering the high aspect ratios of both nanoinclusions,
the fillers can be approximately defined as ellipsoidal inclusions as:

x2
1

a2
1

+
x2

2

a2
2

+
x2

3

a2
3

≤ 1 (10)

with a1, a2, and a3 the semi-axes of the inclusions in the x1, x2 and x3 axes. Hence, the general Eshelby’s tensor
is defined as:

S i jkl = S jikl = S i jlk, (11a)

S 1111 =
3

8π(1 − νm)
a2

1I11 +
1 − 2νm

8π(1 − νm)
I1, (11b)

S 1122 =
1

8π(1 − νm)
a2

2I12 − 1 − 2νm

8π(1 − νm)
I1, (11c)
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S 1133 =
1

8π(1 − νm)
a2

3I13 − 1 − 2νm

8π(1 − νm)
I1, (11d)

S 1212 =
a2

1 + a2
2

16π(1 − νm)
I12 +

1 − 2νm

16π(1 − νm)
I1, (11e)

∆(s) =

√
(a2

1 + s)(a2
2 + s)(a2

3 + s) (12a)

I1 = 2πa1a2a3

∫ ∞

0

ds
(a2

1 + s)∆(s)
(12b)

I11 = 2πa1a2a3

∫ ∞

0

ds
(a2

1 + s)2∆(s)
(12c)

I12 = 2πa1a2a3

∫ ∞

0

ds
(a2

1 + s)(a2
2 + s)∆(s)

(12d)

The remaining coefficients can be found by simultaneous cyclic permutation of (1,2,3) and (a1,a2,a3). The
definition of the Eshelby’s tensor in Voigt matrix notation writes:

S pq =

S i jkl if p = 1, 2, 3
2S i jkl if p = 4, 5, 6

(13)

Finally, for practical interest, the Hill’s elastic moduli of the resulting composite (k, l,m, n, p) can be expressed
in terms of engineering constants as [36]:

E11 = n − l2

k
, E22 =

4m(k − l2)
k − l2 + mn

, (14)

ν12 = ν13 =
l

2k
, G12 = G13 = p, (15)

ν23 =
n(k − m) − l2

n(k + m) − l2
, G23 =

E22

2 (1 + ν23)
(16)

where E11 and E22 denote the longitudinal and transverse effective Young’s moduli, G12, G13, ν12 and ν12 are the
out-of-plane shear moduli and Poisson’s ratios, and G23 and ν23 denote the in-plane shear modulus and Poisson’s
ratio.

3.2. Effective elastic properties of randomly oriented nanoinclusions

In order to describe the orientation of a general ellipsoidal inclusion, three Euler angles (θ, φ, ψ) are de-
fined as illustrated in Fig. 4. Due to the high number of fillers contained in the RVE, the description of their
orientation field is of statistical nature. Hence, the probability of a filler lying in an infinitesimal range of an-
gles [θ, θ + dθ] × [

φ, φ + dφ
] × [

ψ, ψ + dψ
]

is given by Ω(θ, φ, ψ) sin(θ)dθdφdψ, with Ω(θ, φ, ψ) being the so-called
Orientation Distribution Function (ODF). Any ODF must satisfy the following normalization condition:∫ 2π

0

∫ 2π

0

∫ π/2

0
Ω(θ, φ, ψ) sin(θ)dθdφdψ = 1 (17)

The integration of any ODF-weighted tensor F(θ, φ, ψ) over all possible orientations in the Euler space, also
referred to as the orientational average of F, 〈F〉, is defined through:

〈F〉 =

∫ 2π

0

∫ 2π

0

∫ π/2

0
F(θ, φ, ψ)Ω(θ, φ, ψ) sin(θ)dθdφdψ (18)

The tensor F′ in the local coordinate system x′1 − x′2 − x′3 is related to the global coordinate system using
Fi jkl = aipa jqakralsF′pqrs, where a is the transformation matrix consisting of θ, φ, and ψ rotation angles. If the
fillers are completely randomly oriented, the ODF is Ω(θ, φ, ψ) = 1/4π2. According to the MT method, the overall
constitutive tensor is defined as:

C =
(

fmCm + fr
〈
Cr(θ, φ, ψ)Adil(θ, φ, ψ)

〉)
:
(

frI + fr
〈
Adil(θ, φ, ψ)

〉)−1
(19)
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Figure 4: Schematic illustrating the Euler angles (θ, φ, ψ) defining the orientation of a platelet inclusion.

4. Factors limiting the load bearing capacity

In this section, factors limiting the load bearing capacity are incorporated in the previously presented microme-
chanics approach, including agglomeration and restacking of graphene sheets.

4.1. Agglomeration effects

A critical phenomenon to be taken into consideration for the simulation of GRCs is the appearance of non-
uniform spatial distributions of nanoinclusions. The difficulty in obtaining good fiber dispersions is related to the
circumstance that nanofillers tend to agglomerate in bundles. This effect is attributed to the electronic configura-
tion of carbon-based nanoparticles and their high specific surface area which increases the vdW attraction forces
between fillers [32–34]. It is extensively reported in the literature that bundles can substantially decrease the
overall mechanical properties of the composites. In this paper, a two-parameter agglomeration model is adopted
to model the effective mechanical properties of non-uniform distributions of fillers. This approach differentiates
two regions, one with high filler concentration, corresponding to spherical clusters, and another with low filler
concentration, that is the surrounding composite. Therefore, the total volume of fillers, Vr, dispersed in V can be
divided into the following two parts:

Vr = Vbundles
r + Vm

r (20)

where Vbundles
r and Vm

r denote the volumes of fillers dispersed in the bundles and in the matrix, respectively. In
order to characterize the agglomeration effects, Shi et al. [35] introduced two parameters, ξ and ζ, as follows:

ξ =
Vbundles

V
, ζ =

Vbundles
r

Vr
(21)

where Vbundles is the volume occupied by the bundles. The agglomeration parameter ξ represents the volume ratio
of bundles with respect to the total volume V . On the other hand, ζ stands for the volume ratio of fillers within the
bundles with respect to the total volume V . This pair of parameters unequivocally determines the agglomeration
scheme as outlined in Fig. 5 (a). After some manipulations, the filler volume fractions in the bundles and the
surrounding composite, c1 and c2, respectively, can be expressed as:

c1 = fr
ζ

ξ
, c2 = fr

1 − ζ
1 − ξ (22)

It can be extracted from Eq. (22) that ζ ≥ ξ must be fulfilled in order to impose a higher filler concentration
in the clusters. The limit case ζ = ξ represents an uniform distribution of fillers, whilst the heterogeneity degree
grows for larger values of ζ up the limit case ζ = min (1, ξ/ fr). Hence, the homogenization process can be carried
out in two steps. Firstly, the overall constitutive tensor of the inclusions, Cin, and the surrounding composite,
Cout, are obtained with polymer as matrix and nanoparticles as reinforcing phase with volume fractions c1 and
c2, respectively. Secondly, the effective constitutive tensor of the composite, C∗, is computed considering the
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surrounding composite as matrix material and bundles as inclusions. On this basis, the micromechanics approach
of Eq. (8) can be extended to account for agglomeration. Moreover, the consideration of agglomeration effects
can be readily extended in the realm of functionally graded materials as sketched in Fig. 5 (b).

c1

c2

c3

Cout

Cin

Cout

Cin

C*

(a)

(b)

t

Figure 5: Schematic representation of the two parameter agglomeration model (a) and of a functionally graded material with
agglomerates (b).

4.2. Restacking of graphene sheets

In practical nanocomposites, 2D graphene sheets have a tendency to stack up and form multi-layered graphite
due to the steric effect and the vdW interaction between different sheets. The shape of graphite influences the
stiffening effect due to its dominance in the Eshelby’s tensor. We inspect the situation where GNPs stack up in
the shape of ellipsoids with two semi-major axes equal in length, i.e. a1 = a2, and a semi-minor axis a3 defined
by the aspect ratio a3/a1 representing the thickness of the resulting restacked graphene sheets, as shown in Fig. 6.
On this basis, the Eshelby’s tensor can be reckoned by Eqs. (11) and (12). When tensile loads are transferred to
the stacked graphene sheets, vdW bonding between layers is likely to fail before graphitic carbon-carbon bonding,
leading to further exfoliation of the particle. For this reason, the in-plane elastic moduli remain similar to those of
graphene sheets although the out-of plane modulus approximates that of graphite, as shown in the MM simulations
of Chou et al. [51].
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Figure 6: Schematic representation of restacking of graphene sheets forming multi-layered graphite (a) and equivalent ellipsoid
(b).

Fig. 7 shows the normalized longitudinal effective moduli E‖/Em of a composite reinforced by fully aligned
restacked graphene sheets as a function of the ratio of semi-axes a3/a1. It is observed in this figure that small
values of a3/a1, that is a low restacking degree, yield optimum stiffening properties. Conversely, when the aspect
ratio a3/a1 increases up to E-2, the stiffening effect is seriously diminished.

10−5 10−4 10−3 10−2 10−1 100
0

2

4

6

8

a3/a1

E
‖/

E
m

Figure 7: Normalized effective longitudinal moduli of a composite reinforced by fully aligned restacked graphene sheets
(Em=1.9 GPa, νm=0.3, kr=620.0 GPa, lr=15.0 GPa, nr=36.5 GPa, mr=440.0 GPa, pr=4.0 GPa).

5. Finite element formulation

Considering moderately thick GRC polymer plates, the First order Shear Deformation Theory (FSDT) is
employed to account for the displacement field {u, v,w}T within a plate domain, according to the displacements
and rotations of the mid-plane of the plate:

u(x, y, z)
v(x, y, z)
w(x, y, z)

 =


uo(x, y)
vo(x, y)
wo(x, y)

 + z


ϕx(x, y)
ϕy(x, y)

0

 (23)
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where uo, vo and wo denote the respective translation displacements of a point at the mid-plane of the plate in x,
y and z directions; ϕx and ϕy stand for rotations of a transverse normal about the positive y and negative x axes,
respectively. Hence, the in-plane and transverse shear strains write:

εxx

εyy

εxy

 = ε0 + zK,
{
γyz

γxz

}
= γ0 (24)

where:

ε0 =


∂uo
∂x
∂vo
∂y

∂uo
∂y + ∂vo

∂x

 , K =


∂ϕx
∂x
∂ϕy

∂y
∂ϕx
∂y +

∂ϕy

∂x

 , γ0 =

ϕy + ∂wo
∂y

ϕx + ∂wo
∂x

 (25)

In order to implement the constitutive equations of FG-GRCs into the modeling, let us note the constitutive
equations in Voigt’s notation as follows:

σxx

σyy

σxy

σyz

σxz

 =


Q11(z) Q12(z) 0 0 0
Q12(z) Q22(z) 0 0 0

0 0 Q66(z) 0 0
0 0 0 Q44(z) 0
0 0 0 0 Q55(z)

 ·

εxx

εyy

εxy

εyz

εxz

 (26)

Q11 = E11
1−ν12ν21

, Q22 = E22
1−ν12ν21

, Q12 = ν21E11
1−ν12ν21

,

Q66 = G12, Q44 = G23, Q55 = G13
(27)

Note that Qi j varies with z according to the grading profile of the fillers across the thickness. Thus, the
components of the extensional stiffness, CE, bending-extension-coupling stiffness, CC, bending stiffness, CB, and
transverse shear stiffness, CS, are defined by the following integrals:

(Ci j
E ,C

i j
C ,C

i j
B) =

∫ t/2
−t/2 Qi j(z) · (1, z, z2)dz (i, j = 1, 2, 6),

Ci j
S = 1

ks

∫ t/2
−t/2 Qi j(z)dz (i, j = 4, 5)

(28)

where ks denotes the transverse shear correction factor for two-phase FG materials, given by Efraim and Eisen-
berg [52] as:

ks =
6 − (νr

12 fr + νmVm)
5

(29)

The generalized displacements at any point within an element domain Ωe are independently interpolated using
the same shape functions as:

(uo, vo,wo) =
∑n

i=1 Ni(ξ, η)(ui, vi,wi),

(ϕx, ϕy) =
∑n

i=1 Ni(ξ, η)(ϕxi, ϕyi)
(30)

where Ni(ξ, η) are the shape functions of a bilinear four-noded Q4 element. Following the standard procedure, the
finite element equations of composite plates subjected to external loading can be expressed as:

Kd = F (31)

where K, d, and F are the global stiffness matrix, nodal displacements and load vector, respectively. The global
stiffness matrix K is computed by assembling the element stiffness matrix Ke given by:

Ke = Ke
E + Ke

B + Ke
S (32)

where Ke
E, Ke

B and Ke
S stand for extensional, bending and shear element stiffness matrices, respectively, and are

computed as follows:

Ke
E =

∫
Ωe

(Bm)T CEBmdΩ +

∫
Ωe

(Bb)T CCBmdΩ (33)

Ke
B =

∫
Ωe

(Bb)T CBBbdΩ +

∫
Ωe

(Bm)T CCBbdΩ (34)
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Ke
S =

∫
Ωe

(Bs)T CSBsdΩ (35)

Bm =

Ni,x 0 0 0 0
0 Ni,y 0 0 0

Ni,y Ni,x 0 0 0

 , Bb =

0 0 0 Ni,x 0
0 0 0 0 Ni,y

0 0 0 Ni,y Ni,x

 (36)

Bs =

[
0 0 Ni,y 0 Ni

0 0 Ni,x Ni 0

]
(37)

The load vector of the element, Fe, is computed as:

Fe =

∫
Ωe

[
Ne] qodΩ (38)

where qo is the transverse load over the element.
In a free vibration analysis, the composite plate is assumed to undergo a harmonic motion and the dynamic

properties, mode shapes Φ and frequencies ω, can be obtained by solving the eigenvalue equations:(
K − ω2

i M
)
Φi = 0 (39)

where the global mass matrix M is computed by assembling the element mass matrices given by:

Me =

∫
Ωe

[
Ne]T [

ρ
] [

Ne] dΩ (40)

where

[
ρ
]

=


I0 0 0 I1 0
0 I0 0 0 I1
0 0 I0 0 0
I1 0 0 I2 0
0 I1 0 0 I2

 (41)

in which I0, I1 and I2 are the normal, coupled normal-rotary and rotary inertial coefficients, respectively, and
defined by:

(I0, I1, I2) =

∫ h/2

−h/2
ρ(z)

(
1, z, z2

)
dz (42)

Let us note that the mass density ρ(z) in the latter equation varies across the thickness according to the func-
tionally grading of the fillers.

6. Numerical results

In this section, detailed parametric analyses of the bending and vibrational behavior of FG-GRC polymer
plates are presented. According to the geometrical definition presented in Fig. 1, square plates a/b = 1 with
thickness-to-width ratio t=a/50 are utilized for illustrative purposes unless otherwise indicated. The boundary
conditions at any simply supported (S) or clamped (C) edge can be defined as follows:us = w = ϕs = 0⇐ Simply supported edge (S)

un = us = w = ϕn = ϕs = 0⇐ Clamped edge (C)
(43)

with u and ϕ standing for translation and rotational degrees of freedom, respectively. Subscripts n and s denote
the normal and tangential directions, respectively. The various non-dimensional parameters used throughout this
section are defined as:

Frequency parameter : λ = ω
b2

π2

√
ρmt
D
, (44a)

Central deflection : w̄ =
wo

t
, (44b)

Central axial stress : σ̄ =
σ · t2

|qo| · a2 (44c)
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where wo stands for vertical deflection at the central point, ω the angular frequency of the composite plates, and
D = Emt3/12(1 − ν2

m) is the flexural rigidity of the neat polymer plate.
With regard to the different constituents analyzed in this work, the elastic moduli and mass density of the

different phases are summarized in Table 1. The in-plane Young’s modulus and Poisson’s ratio of graphene sheets
have been assumed E11 = 1020 GPa and ν12 =0.4, respectively, in accordance with Lee et al. [53] and Reddy
et al. [54]. The out-of-plane modulus E33 and the shear modulus G13 are assumed to be 100 times the in-plane
modulus, while the Poisson’s ratio ν31 is taken as 1% of ν12, i.e. E33 = G13 = 102000 GPa and ν31=0.004
[20]. Hence, the stiffness tensor for graphene sheet inclusions can be noted as Cgraphene

r =(2kr, lr, nr, 2mr, 2pr) =

(1700, 6.8, 102000, 738, 204000) GPa. With regard to restacked graphene sheets, according to the MM simula-
tions of Chou et al. [51] and the work of Ji et al. [20], the stiffness tensor for restacked graphene sheets is chosen
as Cgraphite

r = (1240, 15, 36.5, 880, 8) GPa. On the other hand, SWCNTs have been also considered for compar-
ison purposes. According to the results by Popov et al. [55], the stiffness tensor for (5,5) SWCNTs is CCNT

r =

(60, 10, 450, 2, 2) GPa. Finally, the matrix material studied in this paper is polystyrene with Young’s modulus
Em = 1.9 GPa and Poisson’s ratio νm=0.3 so that its isotropic stiffness tensor can be noted as Cm = (3κm, 2µm) =

(4.75, 1.46), with κm and µm being the matrix’s bulk and shear moduli, respectively.

Table 1: Hill’s elastic moduli (k, l, n,m, p) and mass density (ρ) of constituent phases, Ref. [14, 20, 55–57].

Graphene Graphite CNT Polystyrene

kr (GPa) 850.0 620.0 30.0 Em (GPa) 1.9
lr (GPa) 6.8 15.0 10.0 νm 0.3
nr (GPa) 102000.0 36.5 450.0 ρm (kg/m3) 1040
mr (GPa) 369.0 440.0 1.0
pr (GPa) 102000.0 4.0 1.0
ρr (kg/m3) 2250 1060 1400

6.1. Validation and comparison results

In order to demonstrate the validity of the present approach, convergence analyses are first conducted in order
to check the stability of the finite element formulation. Then, the solutions of the proposed approach for GRCs
are benchmarked against previously published results in the open literature.

6.1.1. Bending and free vibration convergence analysis of isotropic plates
In this first set of analyses, a mesh convergence study is performed for the bending and free vibration solution

of square fully clamped (CCCC) isotropic plates. To this aim, square plates with dimensions a = b = 1 m are
defined with varying thickness-to-width ratio, namely t/a = 10−1, 10−2, 10−3 and 10−4. The transverse shear
correction factor is assumed ks=6/5, and the Young’s modulus and Poisson’s ratio are defined as E = 10920 N/m2

and ν = 0.3, respectively. Firstly, the results of the mesh convergence study for the central deflection wo under
uniform transverse loading qo = −1 N/m2 are shown in Fig. 8 (a). Four sets of mesh sizes n × n (4 × 4, 8 × 8,
16 × 16, 24 × 24 and 32 × 32) are defined. On the other hand, Fig. 8 (b) shows the mesh convergence study for
the fundamental frequency ω1 with a mass density per unit volume ρ = 1 kg/m3. Results are expressed in terms
of relative error with respect to the solutions provided by a fine mesh of 64 × 64 elements and denoted by wexact

o
and ωexact

1 for displacements and natural frequencies, respectively. The results demonstrate the convergence of the
numerical formulation and 24×24 elements are considered accurate enough for the purpose of this work. In order
to prove the accuracy of the selected mesh density, the first four modes of vibration of fully simply supported
(SSSS) plates are computed for two thickness-to-width ratios, namely t/a = 0.01 and 0.1. Results are compared
against Mindlin closed-form solutions [58], and results by Liew et al. [59] in Table 2. The results for the selected
24×24 mesh density show excellent agreement with the reference solutions and, therefore, it is adopted throughout
the subsequent calculations.
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Figure 8: Mesh convergence study of the bending response (a) and fundamental frequency (b) of CCCC isotropic plates with
varying thickness to width ratios t/a (qo = −1 N/m2, a = b = 1 m, E = 10920 N/m2, ν = 0.3, ρ =1 kg/m3).

Table 2: Comparison study of natural frequencies, (ωa
√
ρ/G, G = E/(2(1-ν))), of SSSS square isotropic plates (a = b = 1 m,

E = 10920 N/m2, ν = 0.3, ρ = 1 kg/m3).

t/a Mode no. Present Mindlin [58] Liew et al. [59]

0.1 1 0.9319 0.9300 0.9220
2 2.2330 2.2190 2.2050
3 2.2330 2.2190 2.2050
4 3.4265 3.4060 3.3770

0.01 1 0.0965 0.0963 0.0961
2 0.2422 0.2406 0.2419
3 0.2422 0.2406 0.2419
4 0.3877 0.3848 0.3860

6.1.2. Comparison analyses
Once the numerical approach has been shown valid for the aim of this paper, the present micromechanics

framework is compared against existing results in the literature. Firstly, the theoretical estimations of the MT
homogenization approach are benchmarked against the experimental results of Choudhury [60] in Fig. 9. In that
work, Poly-p-phenylene benzobisthiazole (PBT)/graphene nanocomposite films with different filler contents were
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fabricated and characterized. The Young’s modulus and Poisson’s ratio of PBT are defined as Em = 2.24 GPa and
νm = 0.35, respectively. In addition, in order to further validate the present micromechanics approach, estimates
provided by the modified Halpin-Tsai micromechanics model are also included. Considering graphene sheets as
rectangular platelets with length lGNP, width wGNP, and thickness hGNP, the in-plane moduli, E‖ and E⊥, write
[61, 62]:

E‖ = Em
1 + ξLηL fr
1 − ηL fr

, (45)

E⊥ = Em
1 + ξwηw fr
1 − ηw fr

, (46)

ηL =
E11/Em − 1
E11/Em + ξL

, (47)

ηw =
E11/Em − 1
E22/Em + ξw

(48)

with ξL and ξw being parameters that characterize the geometry of GNPs as:

ξL = 2
lGNP

hGNP
, (49)

ξw = 2
wGNP

hGNP
(50)

In accordance with the ellipsoidal definition introduced in the MT model in Fig. 2, lGNP = a1, wGNP = a2 and
hGNP = a3. When GNPs are arranged randomly in the x1-x2 plane, the composite results in a transversely isotropic
material whose in-plane elastic modulus E‖ can be approximated by the Voigt-Reuss model [63] as:

E‖ =
3
8

E‖ +
5
8

E⊥ (51)

and the transverse modulus in the x3-axis, E⊥, can be computed as:

E⊥ = Em
1 + 2η33 fr
1 − η33 fr

, (52)

η33 =
E33/Em − 1
E33/Em + 2

(53)

Finally, when GNPs are randomly oriented, the composite exhibits isotropic properties with overall elastic
modulus [62]:

E = 0.49Ec + 0.51E⊥ (54)

In addition, another Halpin-Tsai solution has been also included as proposed by Van Es [62] for disk-like
platelet inclusions with modified in-plane shape factors. In this case, ξL and ξw in Eqs. (49) and (50) are modified
as ξL = (2/3)lGNP/hGNP and ξw = (2/3)wGNP/hGNP. In this case, results are denoted as H-T (B), while those
obtained with the shape factors from Eqs. (49) and (50) are denoted as H-T (A). The geometrical properties of
GNPs are defined as lGNP = wGNP = 1.25 µm and hGNP = 1.14 nm [60]. It can be observed in Fig. 9 that
the solutions for fillers laying on the x1-x2 plane, i.e. H-T (A)/(B) 2D random from Eq. (51), as well as the
MT model with fully aligned configuration, largely exceed the experimental results. Since no special aligning
technique was undertaken in the manufacturing process of the composites, the filler configuration presumably
corresponds to a completely random orientation distribution. Accordingly, it is observed that the solutions for fully
random distribution of fillers yield closer results to the experimental ones. It is also noticeable that the Halpin-Tsai
solutions with modified shape factors, (B), provide very close results to MT’s estimates. These results demonstrate
the capability of the proposed micromechanics approach to provide quantitative estimations of the macroscopic
elastic moduli of GRCs.

In order to further the comparison of the simple Halpin-Tsai model and the present micromechanics approach,
Figs. 10 (a) and (b) show the estimates by both approaches for fully aligned and random configurations, respec-
tively. In addition, the theoretical bounds of Voigt [64] and Reuss [65], as well as the Hashin-Shtrikman-Walpole
bounds (HSW) [66, 67] are also included. In the case of fully aligned configurations, the MT model is shown to
provide results that are coincident with the upper HSW bound. With regard to the Halpin-Tsai model, the esti-
mates are close to the Voigt bound. In the limit case of infinite aspect ratio a3 → ∞, the Halpin-Tsai model has
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been reported in the literature to coincide with the Voigt bound [62]. It is important to note that, in the case of
randomly oriented distributions as in Fig. 10 (b), the load bearing capability of the fillers is reduced resulting in
less stiff composites. Some results in the literature report about the superior mechanical and electrical properties
of composites doped with aligned nanofillers by means of the application of high electric [68] or magnetic fields
[69]. However, aligning of GNPs or CNTs remains a costly and intricate task. This type of results strengthens
the importance of developing cost efficient aligning techniques for the development of high performance GRC
polymers. Let us also note that, in a similar way to the previous analysis, both approaches yield close results when
modified shape factors are utilized (H-T (B)), particularly for low filler contents. Finally, let us recall that it has
been reported in the literature that the MT model may violate the HSW bounds [70]. Nevertheless, it can be seen
in Fig. 10 (b) that for low filler contents, as typically used in practice, both approaches are comprised between
these boundaries and are thus acceptable.
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Figure 9: Comparison between the theoretical values predicted by the Halpin-Tsai and Mori-Tanaka (MT) models against the
experimental Young’s modulus data obtained for GNP/PBT nanocomposites by Choudhury [60]. H-T (A) and HT (B) stand
for Halpin-Tsai estimates with shape factors (ξL, ξw) = 2(lGNP/hGNP,wGNP/hGNP) and (ξL, ξw) = (2/3)(lGNP/hGNP,wGNP/hGNP),
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Figure 10: Halpin-Tsai and Mori-Tanaka (MT) estimates of the macroscopic elastic moduli of GNP/PBT nanocomposites for
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Finally, in order to prove the validity of the modeling of FG-GRCs, the results of the present approach are
compared against those published by Song et al. [71]. In that work, the authors studied the free and forced
vibrations of FG-GRC plates by a Navier based solution and the Halpin-Tsai model. The fillers are assumed to
lay on the mid-plane and are randomly oriented around the normal direction. The graphene sheets are defined as
rectangular platelets with dimensions lGNP = 2.5 µm, wGNP = 1.5 µm and hGNP = 1.5 nm. Epoxy is selected
as matrix material with density ρm = 1.20 g/cm3 and elastic properties Em = 3.0 GPa and νm = 0.34. GNPs are
dispersed at a weight fraction of wt = 1% and functionally graded across the thickness of plates with dimensions
a = b = 0.45 m and thickness t = a/10. Table 3 collects the comparison results of the natural frequencies of
FG-GRC plates for UD, FG-X, FG-0 and FG-V filler grading profiles. Parameters m and n stand for the number of
half-waves in the mode shapes in the x and y directions, respectively. It can be observed that the present approach
provides very similar results in all the cases what demonstrates the accuracy of the present formulation. Note that
the non-dimensional natural frequencies utilized in [71], ω = ωt

√
ρm/Em, are slightly different to the expression

given at the beginning of this section.

Table 3: Comparison study of non-dimensional natural frequencies ω = ωt
√
ρm/Em for simply supported FG-GRC epoxy

plates (wt = 1%, a = b = 0.45 m, t = a/10).

Neat epoxy UD FG-0 FG-X FG-V

Modes (m,n) Ref. [71] Present Ref. [71] Present Ref. [71] Present Ref. [71] Present Ref. [71] Present

1, 1 0.058 0.058 0.122 0.121 0.102 0.097 0.138 0.141 0.112 0.117
2, 1 0.139 0.139 0.290 0.289 0.246 0.234 0.325 0.331 0.267 0.265
2, 2 0.213 0.213 0.444 0.443 0.380 0.363 0.494 0.503 0.411 0.410
3, 1 0.260 0.261 0.540 0.542 0.465 0.447 0.598 0.612 0.501 0.501
3, 2 0.325 0.326 0.677 0.678 0.586 0.564 0.745 0.760 0.630 0.625
3, 3 0.426 0.427 0.887 0.856 0.776 0.749 0.969 0.987 0.829 0.824

6.2. Parametric analyses

The results obtained by the proposed methodology have been shown to be stable and similar to those provided
in the literature. Some new results are now presented. Here we analyze the static response of FG-GRC plates
under uniform transverse loads, the free vibration behavior, as well as the influence of microstructure defects such
as agglomeration or stacking into graphite nanoplatelets.

6.2.1. Bending of FG-GRC polymer plates
Several numerical examples are provided to investigate the bending behavior of FG-GRC polymer plates.

Table 4 shows the non-dimensional central deflection w̄ for UD, FG-V, FG-O and FG-X GRC polymer SSSS
plates subjected to a uniform transverse load qo = −0.01 MPa. In order to evaluate the effect of non-linear filler
gradings across the thickness, different power-law indexes have been selected, namely k = 0.5, 1.0 and 1.8. It is
noticeable that the filler content has a deep influence on the central deflection of the plates. For instance, in the
case of uniform distributions, polymers doped with 1% GNP may lead to more than 85% decrease in the central
deflection with respect to the pristine polymer. It is also interesting to note that the central deflections of FG-V
and FG-O GRC polymer plates are larger than those of UD GRC plates, while those of the FG-X GRC polymer
plates are smaller. This is because the profile of the reinforcement distribution determines the stiffness of the
plates. In the FG-X case, larger power-law indexes, i.e. higher filler concentrations at top and bottom layers, lead
to lower central deflections. Hence, these results support the idea of optimal distribution as the limit case of fillers
concentrated at both layers, i.e. k → ∞. These results also stress the main advantage of FG materials, which can
tune the overall stiffness by adjusting the distribution of the fillers along the thickness direction of the plates.

Similar conclusions can be extracted from a stress analysis. Fig. 11 (a) shows the non-dimensional stress σ̄xx

distribution along the thickness for FG-GRC polymer plates subjected to a uniform transverse load qo = −0.01
MPa with a filler volume fraction of fr = 0.01. Due to the symmetric distribution (with respect to the mid-plane)
of reinforcements for UD, FG-O and FG-X GRC polymer plates, the central axial stress distributions is anti-
symmetric. In the case of FG-V and FG-O distributions, the axial stress is close to zero at the bottom and top
layers, respectively. This is because the concentration of fillers vanishes at these points for these two distributions.
The effect of non-linear filler gradings across the thickness is further investigated in Fig. 11 (b) for FG-V GRC
polymer plates. Similar to the previous analysis, as k decreases the stress tends to linearize and, conversely, as k
increases so does the stress at the top layer where fillers are more concentrated. It is concluded that non-linear
filler distributions across the thickness, as may arise in practice as a source of uncertainty in the manufacturing
process, have a substantial effect on the overall stiffness of FG-GRC polymers.
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Table 4: Non-dimensional central deflection w̄ = wo/t in FG-GRC plates under uniform transverse loading q0 = 0.01 MPa for
various filler grading power-law distributions and filler contents (a/b = 1, t = a/50, SSSS).

fr UD FG-X FG-V FG-O

k = 0.5 0 1.461E+00 1.461E+00 1.461E+00 1.461E+00
0.01 2.165E-01 1.746E-01 2.351E-01 2.945E-01
0.05 5.113E-02 4.065E-02 5.628E-02 7.217E-02
0.1 2.719E-02 2.179E-02 2.989E-02 3.815E-02

k = 1.0 0 1.461E+00 1.461E+00 1.461E+00 1.461E+00
0.01 2.165E-01 1.526E-01 2.396E-01 3.754E-01
0.05 5.113E-02 3.536E-02 5.852E-02 9.638E-02
0.1 2.719E-02 1.907E-02 3.113E-02 5.096E-02

k = 1.8 0 1.461E+00 1.461E+00 1.461E+00 1.461E+00
0.01 2.165E-01 1.331E-01 2.391E-01 5.028E-01
0.05 5.113E-02 3.079E-02 6.153E-02 1.405E-01
0.1 2.719E-02 1.673E-02 3.302E-02 7.487E-02
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Figure 11: Non-dimensional central axial stress σ̄xx = σ·t2
|qo |·a2 in FG-GRC plates under a uniform load q0 = −0.1 MPa for various

linear reinforcement grading (a), and sensitivity analysis of power-law index k for FG-V reinforce grading (b) ( fr = 0.01,
a/b = 1, t = a/50, SSSS).
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6.2.2. Free vibration of FG-GRC polymer plates
The effect of the filler content on the free vibration behavior of fully aligned UD-GRC plates is analyzed in

Fig. 12 for both SSSS (a) and simply supported with one free edge (SSSF) (b) boundary conditions. For compari-
son purposes, both GNP and SWCNT nanofillers are studied with properties defined in Table 1, corresponding to
solid and dashed lines, respectively. The first three mode shapes for both nanocomposites and boundary conditions
are depicted in Fig. 13. It is evidenced that the stiffening effect of GNPs overtakes that of CNTs for all the natural
frequencies. For instance, the addition of graphene at a volume fraction of 0.05 rises the fundamental frequency
λ1 of the SSSS composite plates up to five times that of the neat polymer, whilst CNTs only doubles this value.
Let us remark that, in the case of GRCs, the second and third natural frequencies overlap due to symmetry about
x − z and y − z planes, in accordance with the mode shapes shown in Fig. 13. In order to further this comparison
in terms of mode shapes, the MAC (Modal Assurance Criterion) matrix is depicted in Fig. 14 for SSSS boundary
condition. It is observed that the MAC matrix is not a diagonal matrix and the order of appearance of charac-
teristic mode shapes disordered due to the in-plane anisotropy of CNT-reinforced composites. For example, it is
observed that the third bending mode for CNT-reinforced composites corresponds to the third mode shape, while
for GNP-reinforced composites it does not appear until the sixth mode shape. This fact, together with the better
dispersion of GNPs reported in the literature, supports the widespread thought of graphene as superior nanofillers
for the development of high-performance composites.
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Figure 12: Non-dimensional natural frequencies versus filler volume fraction for fully aligned GNP- and CNT-reinforced
composite plates, corresponding to solid and dashed lines, respectively (UD, a/b = 1, t = a/50, SSSS (a) and SSSF (b)
boundary conditions).
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Figure 14: MAC matrix comparing the first seven mode shapes of fully aligned GNP- and CNT-reinforced composite plates
with SSSS boundary condition (UD, a/b = 1, t = a/50, fr = 0.2).

The comparison between the stiffening effect of GNPs and CNTs is also conducted for randomly oriented
configurations as shown in Fig. 15 (a) and (b), respectively. Thence, frequency values obtained for fully aligned
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nanofillers are denoted with solid lines, while those obtained for randomly oriented configurations are denoted
with dashed lines. When fillers are randomly oriented, both composites exhibit isotropic properties and, thus,
the second and third natural frequencies coincide. In both cases, the fundamental frequencies of plates doped
with fully aligned fillers surpass those with randomly oriented fillers. However, in some other cases, e.g. fourth
mode shape in Fig. 15 (b), it can be observed that the resonant frequencies are higher for random configurations.
This fact is ascribed to the loss of anisotropy when fillers are randomly oriented. In order to further explain
these results, the elastic moduli obtained for both nanofillers and configurations are shown in Fig. 16. Both
nanofillers exhibit highly anisotropic properties when fully aligned, being the longitudinal elastic modulus, E‖,
several orders of magnitude higher than the transverse modulus, E⊥. However, when nanofillers are randomly
oriented, composites exhibit isotropic properties with lesser E‖ but higher E⊥ in comparison to fully aligned
configurations. This fact, along with mode shapes shown in Fig. 13, gives response to the higher frequencies
of some mode shapes for randomly oriented filler configurations. When the number of sine waves increases,
the contribution of the transverse bending stiffness so does and, therefore, randomly oriented configurations may
result in higher natural frequencies. With regard to the comparison between nanofillers, GNPs lead to much
stiffer composites so that similar conclusions to the previous analysis can be extracted here. It is interesting
to note that for CNT-reinforced composites, the structural behavior is considerably different for fully aligned and
random orientation configurations. When CNTs are aligned in the x2 direction, the composite exhibits transversely
isotropic properties with x2 as transverse isotropy axis. As the content of CNTs increases, the anisotropy degree
of the composite plates so does and, therefore, the first mode shapes begin to be defined by a higher number of
sine waves perpendicular to the filler direction. On the other hand, fully aligned GNPs are defined parallel to the
mid-plane of the plate. In this case, assuming plane stress conditions, the behavior of the GRC plates is isotropic
and, thus, the mode shapes do not change substantially for randomly oriented configurations.
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Figure 15: Non-dimensional natural frequencies for GNP- (a) and CNT-reinforced composite plates (b) versus filler volume
fraction with fully aligned and randomly oriented filler configurations, corresponding to solid and dashed lines, respectively
(UD, a/b = 1, t = a/50, SSSS boundary condition).
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6.2.3. Effect of agglomeration and restacking of graphene sheets on the bending and vibrational behavior of
FG-GRC polymer plates

This set of analyses investigates the influence of defects in the microstructure of FG-GRCs, including agglom-
eration and restacking effects. Fig. 17 shows the non-dimensional central deflection w̄ for UD GNP-reinforced
polymer plates with different filler volume fractions, namely fr = 0.05, 0.10, 0.15 and 0.20, as well as varying
agglomeration degree and SSSS boundary conditions. The agglomeration parameter ξ is kept constant with value
0.2, while the remaining agglomeration parameter ζ ranges from 0 to 1. In other words, the ratio of spherical
bundles with respect to the total volume of the RVE is fixed, while the filler distribution ranges between the limit
cases of all the fillers dispersed outside and inside the bundles. The limit case of ξ = ζ = 0.2 stands for perfectly
uniform distribution, while the heterogeneity stems from the distinct filler concentrations within and outside the
bundles. It is observed this figure that the agglomeration of fillers entails detrimental effects on the overall stiffness
of the composite plates. Especially, large increases in the non-dimensional deflection are found for agglomera-
tion parameters ζ above 0.8. The agglomeration of fillers in bundles can be thus understood as defects in the
microstructure. The agglomeration effect on the non-dimensional fundamental frequency is also investigated in
Fig. 18. In this case, the results for four linear functionally graded distributions, namely UD, FG-X, FG-V and
FG-O are studied in Figs. 18 (a), (b), (c) and (d), respectively. It is evidenced that the agglomeration of GNPs
induces detrimental effects on the macroscopic properties of the composites in all the cases. For instance, in the
case of fr = 0.2 and UD distribution, the limit case when all the nanofillers are gathered within the bundles yields
reductions of the fundamental frequency up to 80% with respect to the uniform dispersion. This sort of results
highlights the importance of developing efficient dispersion techniques to tackle the appearance of agglomerates
which act as defects in the resulting microstructure. In this case, in a similar way to previous results, FG-X
distribution leads to the highest frequency values.

The effect of non-linear distribution of the fillers across the thickness has been also studied for the particular
case of FG-X distribution as shown in Fig. 19. As expected from previous analyses, it can be observed that higher
power-law indexes, i.e. more fillers located at the top and bottom layers, lead to higher frequency values. However,
it is also interesting to note that the agglomeration effects are more critical for higher power-law indexes where
higher frequency reductions are registered.
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Figure 17: Non-dimensional central deflection of a composite plate reinforced by randomly oriented UD GNPs subjected to a
uniform transverse loading q0 = 0.01 MPa with agglomeration effects (UD, ξ = 0.2, k = 1, a/b = 1, t = a/50, SSSS).
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Figure 18: Non-dimensional fundamental frequency of a composite plate reinforced by randomly oriented UD (a), FG-X (b),
FG-V (c) and FG-O (d) GNPs with agglomeration effects (ξ = 0.2, k = 1, a/b = 1, t = a/50, SSSS).

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

ζ

λ
1

k = 0.1
k = 0.5
k = 0.7
k = 1.0
k = 1.3
k = 1.8

Figure 19: Non-dimensional fundamental frequency of a composite plate reinforced by randomly oriented FG-X GNPs with
different power-law indexes k and agglomeration effects (ξ = 0.2, a/b = 1, t = a/50, SSSS).
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The restacking effects on the non-dimensional central deflection and fundamental frequency of SSSS UD
GRC plates are inspected in Figs. 20 and 21, respectively. Fully aligned and randomly oriented configurations
are studied and denoted with solid and dashed lines, respectively. In accordance with Fig. 6, the restacking of
graphene sheets forming multi-layered graphite platelets can be modeled by ellipsoidal inclusions with aspect
ratios a3/a1. As previously discussed, graphene sheets can stack up forming multiple sheets. When tensile loads
are transferred to the stacked graphene sheets, the vdW dispersion bonding between layers is likely to fail before
graphitic carbon-carbon bonding, leading to further exfoliation of the particle. Hence, the material properties of
the graphene sheets with restacking effects are taken as those defined for graphite in Table 1. It is extracted that for
increasing number of stacked graphite layers, i.e. higher aspect ratio a3/a1, the overall stiffness decreases for both
cases. It is especially critical for aspect ratios a3/a1 above E-3 where the most drastic reductions are found. These
results evidence that the stiffening effect of graphene sheets may be dramatically reduced when a considerable
fraction of fillers stacks up forming platelets of graphite.
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Figure 20: Non-dimensional central deflection of a composite plate reinforced by graphene sheets with restacking effects and
subjected to an uniform transverse loading q0 = 0.01 MPa (UD, a/b = 1, t = a/50, SSSS boundary condition, solid and dashed
lines denote fully aligned and randomly oriented configurations, respectively).
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Figure 21: Non-dimensional fundamental frequency of a composite plate reinforced by graphene sheets with restacking effects
(UD, a/b = 1, t = a/50, SSSS boundary condition, solid and dashed lines denote fully aligned and randomly oriented
configurations, respectively).
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7. Conclusions

This paper presents a study of the bending and vibrational behavior of FG-GRC plates by means of a Mori-
Tanaka micromechanics model. A self-developed finite element code on the basis of FSDT plate elements have
been used to conduct the numerical studies. Harmful effects reported in the literature such as agglomeration and
restacking of graphene sheets have been considered. In order to highlight the superior load bearing capacity of
GNPs compared to CNTs, detailed parametric analyses have been presented. Micromechanical aspects such as
filler content, filler distribution, heterogeneous filler dispersions and restacking of graphene into graphite platelets
have been investigated. Overall, the key findings of this work are summarized as follows:

• The stiffening effect of GNPs as mechanical additives have been shown superior in comparison to CNTs.
In both fully aligned and randomly oriented configurations, graphene has been shown to provide stiffer
macroscopic properties for the same filler content.

• The numerical results have demonstrated that functionally graded GNPs can tune the overall stiffness of the
composite plates. In addition, it has been shown that fillers concentrated at the top and bottom layers of the
plates lead to the highest natural frequencies.

• Agglomeration of fillers into clusters may be understood as a mechanical defect in the microstructure of
the composite. The results demonstrated critical reductions of the resonant frequency as the heterogeneity
degree of the filler dispersion increases.

• The restacking of graphene sheets into graphite platelets is a limiting factor of the macroscopic behavior of
these composites. The numerical results showed dramatic reductions of the effective resonant frequencies
for higher fractions of graphene sheets lumped into graphite platelets.

The present work is envisaged to provide a valuable theoretical framework to investigate the behavior of GRC
structural elements. In virtue of a tractable analytical formulation, the present approach is readily applicable to an
extensive range of structural elements, as well as to the design of high performance FG-GRCs.
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