Depésito de Investigacion
Universidad de Sevilla

Depdsito de Investigacion de la Universidad de Sevilla

https://idus.us.es/

This is an Accepted Manuscript of an article published by Elsevier Composite
Structures Vol. 284, on March 2022, available
at: https://doi.org/10.1016/j.compstruct.2021.115137

Copyright 2022. Elsevier. En idUS Licencia Creative Commons CC BY-NC-ND


https://idus.us.es/
https://doi.org/10.1016/j.fss.2017.04.014

XFEM crack growth virtual monitoring in self-sensing CNT reinforced polymer
nanocomposite plates using ANSYS

L. Rodriguez-Temblequé, J. Varga$, E. Garéa-Madag, F. C. Buront, A. Sae?

1 Escuela Técnica Superior de Ingenieria, Universidad e\,
Camino de los Descubrimientgf sSevilla 41092, Spain.

2 Escuela Técnica Superior de Ingenieria de Caminos, GamaPuertos, Universidad de Granada,
Campus Universitario de Fuentenueva, Granada 18071, Spain

Abstract

This paper presents an exXtended Finite Element Method (XHedded numerical scheme to compute electrical
resistivity changes caused by the presence of cracks ancralok growth. Using the commercial finite element
package ANSYS, the virtual continuous monitoring of theature is solved in two steps. First, the strain response of
the cracked composite domain is computed by means of the XHEMe second step, the electrical conductivity of
the piezorresistive elements located in the domain aretagdacording to the strain state and the electric resistanc
between two electrodes of the damaged plate is computed.cdmearison with the electric resistance measured
for the undamaged plate allows us to detect the presence rafck and its severity. Moreover, the crack growth
process can be also monitored via the electric resistarcenrents. Several numerical studies are provided to show
the capabilities of this computational framework.
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Highlights

e Implementation of an electro-mechanical computatiorsadtfire mechanics framework for crack-growth simu-
lation in carbon nanotube reinforced composites (CNTR&)aithe commercial software ANSYS.

e Computational scheme that accounts for both the mechaamchpiezoresistive behavior of cracked CNTRC:
X-FEM addresses the mechanical behavior of the CNTRC whigztoresistive finite elements are employed to
model the electrical behavior.

¢ Correlation study between crack growth and changes in dwral resistance of the structure.
¢ Influence of crack-defects in the sensor performance.

¢ Virtual monitoring and sensing of structural integrity @i@ctromechanical modelling of piezoresistive nanocom-
posites.

1. Introduction

Carbon NanoTube (CNT) reinforced composite (CNTRC) malerre receiving enormous attention from the
scientific and engineering communities in recent yeardowirig the widespread in CNT research that started during
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the early 1990s and the subsequent investigations on iehpalt industrial applications, CNT production capacity
has increased exponentially in later years and the advam€&&NT synthesis and functionalization have allowed its
effective use in many fields, ranging from the biomedical or angtiive industries to aerospace applicatichsd].

From a mechanical point of view, numerous studies revealthewaddition of small quantities of CNT to polymers
or precursor resins leads to a significant increase in tffeesis and strength of the resulting CNTRC. Furthermore,
fracture toughness and fatigue performance of the CNTRE iaiproves without compromising other mechanical
properties. For instance, Gojny et a] feported relevant improvements of streng#iQ%), stitness ¢15%) and
fracture toughness+@3%) when adding .6 wt% of amino-functionalized Double-Walled CNTs to an epoxytnina
Similarly, Hsieh et al. T] observed how the addition of®wt% of Multi-Walled CNTs (MWCNTS) to a thermosetting
epoxy polymer increased the measured fracture energy 83101223 An?, whilst the threshold strain-energy release
rate also increased from 24nF to 73 Jm?. The review paper by Domun et a8][collects many of the available data
prior to 2015- reporting the improvement on the mechanioaperties of nanomaterial toughened composites.

Furthermore, CNTs are electrically conductive fillers thate the ability to confer to the polymeric CNTRC
with conductive properties that, otherwise, would be abgethe neat matrix. CNTs take advantage of their large
aspect ratio to form percolative-type conducting netwpallisof it at low CNT concentrations9]. For instance, the
review work by Bauhofer and Kovac& (] reports maximum conductivities of 1000 $m for PMMA containing
10 wt% treated SWCNT, while conductivities up to 100rBwere observed for a polyethylene matrix doped with 1
wt% MWCNT. In this manner, the resulting electrically conduethetworks induce a piezoresistive behavior on the
CNTRC. Such enabled strain self-sensing capability enthis new class of composites as good candidates for their
use in Structural Health Monitoring (SHM) applications. éWastudies are scattered in the scientific literature that ta
advantage of this feature, from cement- to polymer-basetposites 11-18]. Of course, enhancement of the electro-
mechanical properties of the CNTRC depends on several k&yrfa like the type of CNT, their alignment, achieving
a homogeneous dispersion, the CNT aspect ratio or the CNiffaial interaction with the matrix, to mention a few.
Along these lines, recent advances in fabrication teclescue oriented towards ensuring the scalability and sgnsin
repeatability of such CNTRC, so that they become a realradtate for SHM.

At any event, researchferts have not only focused on manufacturing processes|émba developing reliable
numerical simulation tools that assist in predicting trecgb-mechanical behavior and the failure of CNTRC compo-
nents during their service life. In the literature, severaerical approaches permit to simulate crack-type defact
composites. However, within the context of CNTRC for SHMsitrucial that those methods allow anticipating: (i)
how the presence of cracks (and their growth) wiifeat the CNTRC structural integrity from a mechanical point o
view-; and (ii) how such presence will modify its sensor #ieal resistivity- capabilities. This will be preciseliia
main objective of the paper: developing a computationah&aork to simulate numerically crack growth in CNTRC.
To this end, the eXtended Finite Element Method (XFEWD21], as implemented in the commercial finite element
analysis software ANSYSP), will be used in conjunction with the coupled-field piezsigtive and electrostatic ele-
ments available in the ANSYS element library. The XFEM egtethe conventional finite element method to account
for cracks, based on the concept of partition of unity. Balbicthis technique enriches the degrees of freedom in the
model with additional displacement functions that accdanthe jump in displacements across the crack discontinu-
ity. In this way, cracks can be modeled in XFEM without exilljcmeshing the crack surfaces and it further allows
for arbitrary crack growth within the existing mesh, withdle necessity of remeshing.

Although previous works have applied XFEM for fracture gsa in CNTRC, they have focused on simulating
the mechanical problem, but have not tackled tfieat of crack growth on the electrical conductivity of sedfasing
CNTRC polymer plates. For instance, Joshi et 28] pnalyzed the £ects of tensile loading on crack propagation in
CNTRC using X-FEM together with contour integral techniqoesvaluate the stress intensity factor and J integral.
Eftekhari et al. P4] developed an XFEM-multiscale approach to investigatentieehanical properties and fracture
behavior of carbon nanotube (CNT)-reinforced concretehoSeet al. R5] proposed an XFEM-based scheme to
evaluate the fective elastic properties of 3-D full five-directional et composites. More recently, Negi et al.
[26] utilized the XFEM to conduct the study of crack growth in &thectangular plate containing an edge crack and
a center crack and, subsequently, extended their approzafatyze the fect of additional defects in the form of
voids and inclusions in the materi@{]. Liu et al. [28] investigated the mechanical behavior and extra-stremitiy
and elongation increase mechanisms of ZNICu-Mg nanocomposites with the aid of high-resolutiogitil image
correlation (DIC) and XFEM. EbrahimP] developed new enrichment functions for CNTRC, using a ramallfinite
element characteristic equation for multi-material oftbpic composite domains. For stationary cracks, the astho
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analyzed in a previous world()] the crack-induced electrical resistivity changes in CNCTBYy implementing a dual
Boundary Element formulation combined with a finitéfdiences scheme.

On the other hand, Shindo and coworkers realized sevemikestuising the classical FEM displacement-based
formulation, as implemented in the commercial finite eletrmyde ANSYS, to analyze the behavior of cracked
CNTRC and further conducted the experimental validatiothefresults31-34]. In Kuronuma et al. 31], the authors
presented results for tensile tests on single-edge craulatel specimens of CNpolycarbonate composites, aimed
at estimating the critical loads for fracture instabikti@and further conducted elasticplastic finite element kitians
of the tests to evaluate the J-integrals correspondingetexberimentally determined critical loads. Later, Kunmau
et al. 32] generalized this study to analyze the fatigue crack graw#ponse of CN/polycarbonate composites.
While these works just focused on the mechanical responsecked CNT-based polymer composites, subsequent
papers tackled also their electrical resistance beha8®)34]. Shindo et al. presented i33J] the results of tensile
tests performed on single-edge cracked plate specimenil®fgBlymer composites, where the electrical resistance
change of the specimens was monitored. As in refererBHsahd [32], numerical simulation using ANSYS was
conducted to numerically replicate the obtained expertalemechanical results, whilst to simulate the electrical
behavior of the cracked specimen, the authors developedaaigitical model based on the definition dfextive
conductive pathways that directly related the change incthraposite specimen electrical resistance to the crack
extension and geometrical features of the specimen. Imthimer, the electrical problem is not solved using FEM,
but substituting the results of the mechanical FEM simatafcrack extension) into the proposed analytical formula,
with good correlation between the experimental and nurakrésults. These approach was later extended by Takeda
et al. [34] to mixed-mode Ml loading.

Arecent review paper by Yadav et aB5 summarizes some of the previous contributions in the sifiefiterature
on the topic of fracture analysis of CNTRC for structural lagggions.

In this paper, a numerical XFEM-based framework is propdsexhalyze crack-growth in CNT reinforced poly-
mer composites that accounts for both the mechanical amngsistive behavior of the CNTRC. The objective is
twofold: employing the numerical scheme to analyze how tlaelcdfects the CNTRC mechanical integrity of the
composite and further assess how its sensor performan@edssal by cracking. To this end, the ANSYS software will
be employed. The constitutive electro-mechanical modadinthe CNTRC composite follows a two-step procedure
[17, 30]: (1) in a first step, the homogenization of the mechanicapprties is conducted using a double-inclusion
mean-field approach; (2) whilst the second step addressé®thogenization of the electrical conductivity and piezo-
resistivity properties, by implementing the model pregilgyroposed by Gara-Madas et al. 6] and Buroni and
Garda-Madas B7]. The parameters of this micromechanics model are adjustedder to fit experimental results
available in the literaturel[/]. Once the constitutive parameters are defined, the XFEMagimented in ANSYS-
is employed to solve the mechanical problem and computetthin state in the cracked domain. Subsequently,
strains are related to local changes in piezoresistivityhat an additional non-homogeneous electrical condtictiv
problem has to be addressed. For this purpose, coupledefidents are used. In this manner, we can correlate
the crack-growth in the CNTRC with the electrical resistagbange measured between electrodes. The proposed
numerical framework is first validated for stationary craeld later applied to several crack-growth configurations.
The conducted numerical studies reveal that the preseribe ofack and its growth significantly modify the electrical
behavior and self-sensing capability of the CNTRC.

The remainder of the paper is organized as follows: Se@igummarizes the micromechanics approach adopted
to model both the mechanical and piezoresistive behavidhefCNT reinforced polymer. Sectighpresents and
discusses the details of the computational XFEM-basedédvark implemented in ANSYS to analyze the electro-
mechanical behavior of fractured CNTRC, both under statipand crack-growth conditions. In Sectidpsome
numerical results are presented and discussed, in ordardstigate the influence that the presence of a crack and its
growth- has in the sensory performance of the CNTRC. Seétimases the paper by summarizing the most relevant
conclusions of this study.

2. Micromechanics modeling of the electromechanical properties of MWCNT/epoxy nanocomposites

In the notation hereafter, blackboard-bold and bold Isteee used to denote fourth-ordér) and second-order
tensors(A), respectively. Colon notation is used to indicate the inmeduct between two fourth-order tensors
(A IBg)ijmn = Aijki Bamn-
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MWCNT |

Figure 1: Euler angles defining the relation between thentaten of a MWCNT in the local coordinate systen, K{O; x’lx’zxé} and the global
coordinate system, ¥{0; X3 X2 X3}.

2.1. Elastic properties

The elastic properties of MWCN&poxy nanocomposites are estimated in this work by adopticaye-shell in-
terphase modeBB, 39]. This approach embodies the filleratrix interfacial properties through finite elastic cogs
with constant thicknestssurrounding the fillers (see Fid@). The composite is thus conceived as a three-phase com-
posite, including the matrix, inclusions, and interphasih elastic tensor€m,, Cp andC;, respectively. Following
the double-inclusion method by Hori and Nemat-Nas46};, the dfective stithess tensor of a Representative Volume
Element (RVE) of a MWCN7epoxy composite can be obtained as:

C = (fCm+ F(Ci AD + T (Tp  ApY) : (ful + i A + T (Ap)) (1)
wheref,, f;, andf, denote the volume fractions occupied by fillers, interpbaa&o, and the matrix phase, respec-
tively. Angle brackets-) in Eq. (1) indicate orientational average in the space formed byrtarglesy andd shown
in Fig. 1. Interfaces in MWCNTepoxy composites are characterized by weak van der Waal¥)(farces, which
may be assimilated as penetrable soft interphases witmeoftactionf; [41, 42):

. 6f, | 7 3fp
fi=(1- fp)(l‘eXp{_l— f, [@ ¥ (2+ m)”2+

where the terny = t/Deq denotes the ratio between the thickneansd the equivalent diametBeq of the interphases.
The latter stands for the diameter of a sphere with volumeleiguthat of the particles. Given the aspect ratio of
MWCNTS s = Lent/Dent, With Lene and Dene being the filler length and diameter, respectivédy, takes the form
Deq = DentS'® [41, 42]. The termn(s) in Eq. (2) represents the sphericity of the fillers and is defined as:

(2)

283 tang
n(s) = m, 3)

whereg is given byy = arcos(¥s). The concentration tensors in EQ) for interphases and inclusion; and Ap,
respectively, can be expressed in terms of the correspgmiilite concentration tensons;’" andA‘,’)", as:

Ay = AT (ful + FAT + f48) 7, = pii (@)

AN =T+S:T,, x=np.i (5)
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Figure 2: (a) Schematic of the conductive mechanisms govethaglectrical conductivity of MWCN/Epoxy nanocomposites. (b) Deformable
cubic cell containing an embedded filler under a tri-axiaiststate £1, €2, £3).

with
T,=—(S+M,) ", x=pi )

M, = (Cy~Cm) :Cm x=p.i @

andsS being the mechanical Eshelby’s tensor for MWCNTSs idealizedralate ellipsoidal particles, afidhe fourth-
order identity tensor. Readers may refer to refered&efpr further details on the specific formulation $f

2.2. Electrical conductivity

Owing to the percolation-type behavior of CNT-based coritpsstheir electrical conductivity experiences a
sudden rise of several orders of magnitude when the filleceimation reaches the so-called percolation threshold,
fc. Below percolation {, < f¢), electrons can only travel between CNTs through a quantumeling éfect, also
known as electron hopping mechanism. However, once thelagian threshold is achieved{ > f;), some fillers
begin forming electrically conductive paths and both tieetbn hopping and the conductive networking mechanisms
contribute to the composite’s conductivig4, 45] as sketched in Fig2 (a). The electron hopping mechanism can be
modeled in the shape of interphases with electrical registiiven by the generalized Simmons’ formulés]:

d.h? 4rd
Roc(d) = — 8 ( e

ex
ae? (2ma)/? P\n
with mandebeing the mass and the electric charge of the electron,ctaplg, A the height of the tunneling potential
barrier,athe contact area of the fillers the reduced Planck’s constant, aihdhe average inter-particle distance. The
latter is usually approximated in a piecewise fodd][asd, = d. for f, < f;, andd; = dc(fc/fp)l/3 for f, > f¢, with
d; being the maximum filler separation at which tunneling pextiEin of electrons is possible. The thicknésand

conductivity«j,; of the conductive interphases, as well as the volume fradtier of the dfective fillers (MWCNTs
plus interphases) can be computed4s £7]:

(2m)1/2), @

d _ (Dent + 2tc)2 (Lent + 2tc) f

a
_? :
aRm(ds)” D2 Lon P
5

1
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On this basis, MWCN/interphase ensembles can be modeled as equivalent ropdikieles with transversely
isotropic conductivity (refer to44, 48] for further details), and the overall electrical conduitii of the composite
can be estimated by the Mori-Tanaka method4&s 49:

Keff = km+ (L = &p) (Cen) + Ep(Ten) (10)

with
Ten = fert (ken — km) Aen, (11)
Ien = fert (ken — km) Ac, (12)

where subscriptE H andCN refer to the electron hopping and conductive networkinghmaisms, respectively, and
km IS the conductivity tensor of the matrix phase. The t¢pmm Eq. (L0) denotes the fraction of percolated MWCNTSs,
which can be approximated &:

0, 0< fp<fe
Ep=1 £33 (13)

1_—1:(:;]_/3, fcﬁfpﬁl

Quantities related to the electron hopping and the condiogtwork mechanisms in Eq4.0)-(12) are computed
considering filler aspect ratias= Lcnt/Dent ands = Lent/Dent — o0 [47], respectively. In particular, the electric field
concentration tensolsgy andAcy in Egs. (L1) and (L2), respectively, can be obtained from the general form of the
concentration tensadk [44]:

A= AT (1= fore) 1 + ferg (ATY) 7, (14)
with A%" denoting the dilute concentration tensor given by:
AT = {1+ S () ™ (ke — k) (15)

with | being the identity matrix. Assuming ellipsoidal inclussowith symmetry axisc;, the components of the
Eshelby’s tenso8in Eq. (15) read 6> 1) [51]:

1/2 ~
822 = 533 = Z(Tsl)w [S(Sz — 1) —cosh 1 S] s

Si11 =1-2S,,.

(16)

2.3. Piezoresistance modeling

Within the framework of the previously overviewed microrhanics approach, it is possible to estimate the
piezoresistivity properties of MWCN&poxy composites through the incorporation of strain-oedualterations of
the electron hopping and conductive networking mechaniSpecifically, three mainfiects are commonly recog-
nized in the literatured6, 52): (i) volume expansion and reorientation of fillers, (iigaikage of conductive paths, and
(iif) variation of the inter-particle properties. The vahe expansion and filler reorientation mechanisms can be-simu
lated by the deformable cell model illustrated in FAgb). As shown by the authors in referen@€] dilation-induced
effects are usually more influential than those due to distartiothis case, when dg-sided cubic cell loaded with a
MWCNT is subjected to an arbitrary dilation strain (e2, €3), its volume changes froivly = Ig toV = Igzlzzzg, with
& = 1+ ¢ (see Fig2 (b)). The deformation is primarily sustained by the matwikjch is considerably more flexible
than the MWCNT, thereby the apparent filler content varies as:
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Additionally, the embedded MWCNT also experiences a retatén as an result of the applied dilation, which
can be defined as a variation of the Euler angles fremg)(to (y’,8’). The closed-form expression of the strain-
dependent orientation distribution function (ODF) undengral dilation strain€X(y’, 8), was derived by the authors

as Bo:

—2-2-2
818583

525 cog pr + &5 (5 cog y + & sin’ y') sir? g

No volume expansion is experienced by the composite whejeciel to distortion, thereby thdfective filler
volume fraction remains unaltered and only filler reori¢intatakes place. Such reorientatidiieets can be estimated
using a deformable cell model similar to the one previouklyn in Fig.2 (b). In the particular case of shear strain

£32 in the cellxp-x3 plane, the authors reported in referen8€] the corresponding closed-form expression for the
distortion-dependent ODF as:

Qy.p) = (18)

]3/2'

(.8 = (1= despsiny sing’ cosp’ + 4e3, siny sin,B/)%/2 . (19)

The filler reorientation induced by external mechanicaliat reduces the randomness of the filler dispersion and,
as a consequence, the percolation threshold increasesefédt can be accounted for by computing the percolation
thresholdf. by means of the stochastic percolation model of Komori andistéma B3], exploiting the strain-
dependent ODFs reported in Eq&8) and (L9) (refer to B6] for further details). Finally, mechanical strains may
also dfect the electron hopping mechanism through variations efrtter-particle distancd, and the height of the
potential barrierl. Some research works in the literature suggest that, atttawsevels ¢ 10~%), these magnitudes
vary linearly with strain asq4]:

da = dao(l + Cj_S),

A= /lo(l + Czs), (20)

where subscript 0 relates the corresponding quantitigsetonstrained system. The ter@sandC, are proportion-
ality constants, usually obtained by fitting experimentsid

In light of the formulation above, the relative change ingtéty of the plane-stress solids investigated heregafte
can be related to the mechanical strain terzsas [36]:

Ap1i/po| |11 A2 O lens
Apao/po|l = A1z A1x 0 ||e2zf, (21)
Ap12/po 0 0 Aullewz

wherep;; are the components of the resistivity tenggf; = K;flf, andpy is the resistivity of the composite in the
absence of mechanical strains. The teapsienote the piezoresistivity ciients. Specificallyd1; represents the
longitudinal piezoresistivefiect, 1, relates the transverse piezoresistiffe@, andis4 describes the shear piezoresis-
tive effect. Once the strain sensitivity curves are obtaings {po), the piezoresistivity cd&cients can be estimated
as the slope of a linear regression (interested readers efeyto Garta-Madas et al. 86] for further theoreti-

cal details). Alternatively, the piezoresistivity dbeients;; can also be obtained in closed-form by applying the
formulation for the modeling of piezoresistive fiber-r@irded composites with percolation-type behavior proposed
by Buroni and Gada-Madas B7] (further theoretical details can be found i87], where open-source computer
codes in MATLAB and Python languages with the correspondimgementation for the piezoresistive ¢beient of
CNT/epoxi composites are also presented).

3. Virtual crack growth monitoring of cracked nanocomposite panels

3.1. Mechanical problem solution

Consider a homogeneous and isotropic two-dimensional oloomantaining pre-existing cracks under complex
loading state. Two kind of problems are considerstitionary crack problemand crack-growth problemsUpon
growing, a planar crack under the mixed mode possibly kirks @ertain angle from its original plane. This angle

7



depends on the mixticity degree, or in other words, on theivel amount of mode 1l to mode | loading. Then, we can
say that two criteria are required in order to decide if: (pra-existing crack will grow, and if it does, (ii) in which
direction. In order to model this complex mechanical problppropriate computational methodologies are required.
As mentioned at the introduction, XFEM technique is selédtethis work. In this subsection we briefly review
the key points for the analysis of mixed-mode cracking peois by means of XFEM methodology implemented in
ANSYS Mechanical APDL 19.272].

3.1.1. Direction of the kink

A propagating crack seeks the path of maximum driving fosoeynder mixed-mode it needs not to be confined
to its initial plane. In the framework of a cohesive crack mlpdh crack-growth criterion must be specified for
newly cracked cohesive segments to initiate ahead of trstilegicracks 22]. In the literature, there exists several
methods in order to decide which direction the kink cracletalbased both on energy or on stresses. However in
ANSYS Mechanical APDL 19.2 implementatio®d] only two criteria are available: maximum circumferengaless
criterion and circumferential stress criterion basedrgn= 0. In this work the criterion by Erdogan and SBH| is
selected, who by looking to experimental data propose tteakink angles are well predicted by the plane with the
maximum circumferential stresghen sweeping around the crack tip. Up to discretizationessboth methods yield
the same result.

3.1.2. Crack growth criterion

For agrowing crack the XFEM formulation, as implemented in the commerciatérdlement package ANSYS
Mechanical APDL 19.272] does not account for the presence of singularities at tdeoéthe cracks, then classical
criteria based on Stress Intensity Factors are not availdbbnsequently, once the crack path is decided with above
criterion, a mode | cohesive growth is herein considered. Mthe crack-growth criterion is reached ahead of the
crack, new cohesive segments are introduced in the elerabetl of the current crack front, and crack propagation
evolves. The new crack segments are such that they fullyheutlements ahead of the crack. The crack propagates
at the rate of only one element at a time.

Fracture cohesive processes initiate at a given critidalevaf the normal stressesnax (See Figure3). As the
normal displacement between the two surfaces of the crasdguent increases, the cohesive stresses in the cracked
segment gradually decrease to zero as the deformationgss®g. The decay of the cohesive stresses is modeled
based on a rigid linear cohesive laBg]. Figure 3 shows the linear evolution evolution of the stresses in thelyn
cracked segments. The valuexfaxis taken from the fracture energy expression:

1

Gec = E(Tma%sn, (22)

whereGc is the fracture energy ang is the normal displacement jump at the completion of debundh detailed
explanation about the values of the parameters considetbeé cohesive law and the Eg2) will be presented in the
following section.

3.1.3. XFEM formulation

Itis well known that the XFEM provides a mesh independentagximation for the non-smooth mechanical prob-
lems with discontinuous and singular solutions, therefohas been widely used in fracture mechanics simulations
since the pioneering works of Belytschko et dl9f21], Moes and Belytschkd[7], Sukumar et al. 8] or Fries and
Belytschko p9].

For stationary crack analysjsSXFEM makes use of local enrichment functions to model tlgpldicement field
near the crack face (discontinuous field) and crack tip (stgtic field). For instance, in two-dimensional crack
modeling, the approximate displacement field for a fourasoelement can be expressedXs; p0Q]:

4 4
u(X):ZNi(X){ui+H(X)ai+ZFj(X) b;'}, (23)
i=1 =1

whereu; represents the nodal displacements ve®dX) denotes the conventional nodal shape functiet{X) stands
for the Heaviside step function which takes valadsor +1 depending on which side of the crack the sampling point
8
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Figure 3: Linear evolution of the stresses in the newly cedckegments: the cohesive stresses in the cracked segmer o whereas the
unloading and reloading path at any point C follows the path.C

is locateda; is the enriched nodal degrees of freedom vector accourtinpé jump in displacements,j(X) are the
crack-tip enrichment functions ar!nﬂ is the nodal degrees of freedom vector accounting for theketip singularity
(see Figd (a)). The asymptotic crack-tip enrichment functidn$X) are derived from the analytical solution of stress
and displacement fields near the crack tip area. See fonestaferenceslp, 58] for their expressions in isotropic
materials:

(Fi(r.6) 1}y = { Visin(6/2) ; Vrcos(6/2) ; Visin(9/2)sin(e) ; Vicos(6/2)sin(s) |. (24)
with (r, 6) being the coordinates of a polar coordinate system witlotiggn centered at the crack tip. The interested
reader is referred to referendg0] for the expressions of; in anisotropic elastic materials, or referencég] [and
[62] for piezoelectric and magnetoelectroelastic materiaspectively . The use of these special elements allows
us to handle the crack tip asymptotic stresses in a straighdfd manner, eliminating the need to remesh crack-tip
regions when further conducting crack-growth simulations

In this paper, the XFEM formulation, as implemented in thenotercial finite element package ANSY®Y, is
employed. To this end, ANSYS considers the following two moels:

e (i) Singularity-Based Method (SBM): the displacement films in the FEM formulation are enhanced by
introducing both the additional enrichment functions tbapture the displacement jumps across the crack
surfaces and the crack-tip singularities. SBM correspdaadie formulation sketched in ER). This will
be the approach employed for the stationary crack analgsispresented. For this purpose, the four-nodes
ANSYS elemenPLANE-182is considered under plane stress element behaviour.

e (ii) Phantom-Node Method (PNMBB-66]: this method accounts only for the displacement jumpssxcthe
crack faces, while ignoring the crack-tip singularity a@mition. This will be the approach employed in this
paper to analyze static crack-growth problems. In the PNkl ctack-tip has to be located at the edge of a finite
element and the displacement approximation for a four-sBdANE-182element becomes

4
u(X) = > Ni(X) { Ui + H(X) &} (25)
i=1

However, introducing phantom nodes superposed on the tpalement nodes as shown in Eidgb), the dis-
placement function can be rewritten in terms of the disptaamts of the real nodes and the phantom no6gls [
as a superposed element that splits the parent elementiotsubelements

4
uX.7) = >N { H (= F(X) ) ul2) + H (F(X) ) u?(D)} (26)
i=1
9
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Figure 5: Partition of elements cut by the crack into subnglas for numerical integration in ANSYS.

In the expression above,represents the pseudo-time steb,and ui2 are the nodal displacements vectors in
subelement 1 and 2, respectivelyX) is the crack surface definitiorf (X) = 0: Fig4 (b) shows how the active
part of element 1 holds fof(X) < 0 and consequently, the active part of element 2 holds () > 0) and
H(X) is the Heaviside step function

1, x>0,
H("):{o x<0. 27)

Regarding the numerical integration over the enriched elgs) ANSYS overcomes the discontinuity along the
crack by partitioning the féected elements into sub-triangles, as Fidepicts (see for instance refsl9 20| for
details on how to deal with the numerical integration of th&EM enriched functions and overcome théidulties
associated to both the discontinuity along the crack anditigularity at the crack tip).

3.1.4. Fracture energy
The addition of the MWCNTSs into the epoxy results in a nanocosite which exhibits enhanced strength and
stiffness and, even more important, a significant increase ituf@toughness. These behaviours are for instance re-
ported in Gojny et al. ing], where the fracture toughness of CNT-based polymeric cam@osites was investigated.
10
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Figure 6: Schematic description of possible fracture meamasiof CNTs §]: (a) Initial state of the CNT; (b) pull-out caused by CMTatrix
debonding in case of weak interfacial adhesion; (c) rupafr€NT strong interfacial adhesion in combination with exiea and fast local
deformation; (d) telescopic pull-out fracture of the outsyrdr due to strong interfacial bonding and pull-out of theeintube; (e) bridging and
partial debonding of the interface local bonding to the mxagriables crack bridging and interfacial failure in the mmmded regions.

Table 1: Fracture energy experimental valugs [
MWCNT Wi%) 0 Q1 02 05

Gc (Im?) 133 162 188 223

They also showed that the highest value of fracture toughwes obtained when the CNTs were well dispersed in
the polymer, as expected.

More recently, Hsieh et al.7] showed that the fracture toughne$&J and fracture energyG3c) of the epoxy
polymers increased steadily as the nanotube content wesased. They measured how the valu&gfincreased
from 133 Jm? (for the unmodified epoxy) to 223rd° by the addition of & wt% of MWCNTSs (see Tablé). More-
over, they observed in the fracture surfaces: river lingdctl of brittle failures and the evidence which reveals
the origin of the toughening mechanisms: nanotube pullaoat bridging can be clearly observed. Here, the mean
pulled-out length is B um, with a standard deviation af2.8 um. Note that the MWCNTSs are typically 120m
long after sonication, so the measured average pulleceagth is much shorter than the nanotube length. Thus, the
suggested sequence of events is that the nanotubes willidisind from the matrix to allow pull-out. However, as
the nanotubes are long and not straight, they rupture r#tler pulling-out completely. Therefore, energy will be
absorbed by debonding, by friction between the nanotubetangolymer as it is pulled-out and by fracture of the
nanotubes. These work§,[7] also reported in their studies that the main observed tenigly mechanisms were
nanotube pull-out, plus debonding and plastic void growde(Figs). The sword-in-sheath pull-out could also be
considered as a toughening mechanisms. For the sworceattshreaking mechanism, the outer shell of the MWCNT
fractures in tension and the inner shells pull-out from with However, as no shell were observed in the voids, the
sword-in-sheath pull-out mechanism can be discounted.

In this work, an addition of ® wt% of MWCNTSs is next considered for our analysis. ThereforeuasngGe =
223 Jm? for the fracture energy value amy = 7.5 um for the normal displacement jump at the completion of
debonding, the value of the maximum stress consistent Wil @2) is: o-max = 60 MPa.

11



Table 2: Hrective electromechanical properties of the MWQ8fJoxy [17, 41].
wt% E (G Pa) v K (STT]_l) A11 A1 Agq
0.5 2.86 028 122x1072 6.84 799 119

3.2. Electrical problem solution

The electric resistance between two electrodes of the desnagnocomposite domain can be computed and, by
comparison with the electric resistance measured for thamaged domain, we can detect the presence of a crack
and its severity. For this reason, the electrostatic fiemmon-homogenous domain needs to be computed, in absence
of space-charge density, by solving the partifiedential equation,

V- (kV¢) = 0. (28)

This equation describes the electric potentig)l distribution within a given regiorf)e characterized by a non-
homogenous electric conductivity tenggwhich can be computed as= p~! wherep denotes the electrical resistivity
tensor.

Due to the piezoresistive behavior of the CNT-reinforcemhposite material, once the strains have been computed
inside the domain and, therefore, the non-homogeneousietdconductivity (or its inverse, the electrical resigy)
is known at each internal point, it is possible to solve theregponding electric problem to characterize how the
presence of the cracktacts the electrical conductivity. According to EQJ1), the relative resistivity changes &
Ap/po) can be computed as:= Ile. Consequently, the non-homogenous electric resistigitgdr can be computed
as discussed abovi{, 36], from:

P =po(l +1) = po(l + &) (29)

Adopting the electrodes configuration similar to the cralciiate presented in Fig, one simple way to quantify
the electric resistivity changes induced by the preseneecadick in the cracked plate would be to evaluate the electric
resistance between electrod& ¢f the damaged plate and compare its value with the ele@sistance measured
for the undamaged plat&(). The electric resistanc®) of a plate of thicknesscan be computed as

(30)

whereA¢ = ¢1 — ¢, is the voltage dference recorded between electrodeslaisdhe electric current flowing through
the plate, which may be computed from the electric flux dgri{l = —xV¢) as

+l
I:fJndAzf Jntdx. (32)
A =l
with t being the plate thickness.

It should be emphasized that, even though the mechanichlgmois homogeneous, due to the piezoresitive
behavior of the MWCNT reinforced composite (i.e. elasticodefations cause electrical conductivities variations)
and to the electrical-conductivity discontinuities prodd by the crack, the electrical proble®8(31) has to be
solved under non-homogeneous electrical conductiviteslitions. We follow such a two-step algorithm, based on
first solving the mechanical XFEM fracture problem and , sgjpently defining the corresponding electrical problem
because the curreANSYS XFEM implementation does only support linear elastic igpit material behaviour (i.e.,
it does not directly support coupled field elements).

The electrical problem is also solved by using the commeEficitie element packagdNSYS. In this case, the
ANSYS elementPLANE-223is considered. This element supports the piezoresistiysiphamong others. The
information about the elements which are located in thekcraidransferred from an output file generated by the
mechanical problem solution.

12
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Figure 7: (a) Cracked plate under uniform stresg ). (b) Electrodes position in the cracked MWCMe¢poxy composite plate.

3.3. Crack growth monitoring based on resistance changes

The following solution scheme is proposed in order to martit@ crack growth based on electrical resistance
changes. The three main steps are summarized irBrigd consist in:

I. Solve the quasi static crack-growth analysis using th&IPRbr every mechanical load step, the crack elements
and the tip coordinates are stored in an output file whichlvélconsidered in the step |l.

Il. For every mechanical load step, we should solve an étettfpiezoresistive) problem considering the same
element mesh and element numbering as the step |. As thealeknts numbers are known from the previous
step, we can deactivate these elements to take into acdwidigcontinuity in the electric field caused by the
crack. In time step, the electric piezoresistive propsriiee updated from the mechanical strains computed in
eachelement at step I. Subsequently, the electric poteatisbe computed and the electric flux density in the
electrodes can be stored for every load step in another tiilgau

lll. Finally, the electric resistance between the eleatds computed for every load step according30) @nd
(31). So the presence of the crack and its growth can be monitaaetie electric resistance changes.

For the sake of completeness, a flowchart scheme has beadeddh Appendid. It illustrates the solution scheme
with ANSYS.

4. Crack detection: numerical studies

4.1. Stationary crack analysis

The proposed virtual monitoring scheme presented in thisk@ee Fig.7) is applied to detect damage in a
cracked MWCNTepoxy composite plate due to several inclined crack cordiipms. In the following studies, the
electromechanical properties considered for the MW@dxy composite were presented in Tabfer 0.5 wt% of
MWCNT. The theoretical predictions in this table have beetaioled by inverse calibration of the micromechanics
model previously presented in Sectianlo do so, the model parameters have been computed throadiegrdescent
minimization of the mean squared errors between experamhéata and the theoretical predictions as reported in a
previous work by the authors in referendd]. For completeness, the comparison between the thedrptadictions

13



For every load step, solve and storage:
- element solutions (&, o)

- the crack elements

Solve the mechanical problem via the > the crack tip cordinates

XFEM (Phantom-Node Method)
For every load step:
- Update the electric conductivity properties

p =p(I+1Mg)
Kk=p?
- Update the electric conductivity properties for those
elements belonging to the crack
- Solve and storage the electric potential on nodes

Solve the electrical (Piezoresistive)
problem for every load step

V-(kVep)=0
- Storage the electric flux density in the electrodes
J =—-KkV¢
For every load step, compute:
Compute the electric resistance - Electric current
between the electrodes +L
for every load step "L’"d‘q~f_L1"t‘ix
1 > Electric resistance
$1— o
End R= i

Figure 8: Solution scheme.

of the piezoresistive cdigcients of MWCNTepoxy composites using the micromechanics approach pessén
Section2.3and the experimental characterization results reportesldnyi et al. 7] is reported in AppendiB.

Firstly, a stationary crack analysis using the XFEM undenplstress conditions is solved to show the accuracy
of the finite element mesh adopted in Figfor L/a = 10 and a crack a crack angie= 45°. Fig. 10 (a) shows the
influence of the crack orientation angle) (on the stress intensity factok§ /K, andK;; /K, (beingK, = oy /ra),
by comparison with the theoretical solutiod8]. The XFEM results show an excellent agreement with theyical
solution. The resulting mesh has been selected after ctindube corresponding convergence studies. For instance,
Fig. 10 (b) presents a convergence studykgfie = 60°) andK,, (o = 6C°).

4.1.1. Resistance changes: influence of the crack size

After the above validation, we next analyze the influencehef ¢rack size on the electric resistance changes
in the damaged plate. So, the electrical problem has beerdsalith the same mesh, under both permeable and
impermeable crack-face electrical boundary conditioasttdy the influence of the crack size parametgn) on
the electric resistance. The prescribed electric potisntia the electrodes arep, = 0 V and¢; = 10 V (see
Fig.7(b)). These results are presented in Bifj.taking into account several orientations 6f the crack. Results were
computed under both piezoresistive (dotted line) and riemgpesistive (continuous line) conditions. The eleatric
piezoresistive problem has been solved usingAN&YS elementPLANE-223and the electrical (non-piezoresistive)
problem has been solved using the elemnANE-121[22].

We can see how the resistané® (elative to the undamaged plate resistarRg (ncreases with the crack size
(a), or in other words, with the decrease of the rdtj@ (see Fig.11), as expected . Moreover, the resistangg (
also increases for decreasing values of ang{the orientation of the crack relative to the electrodes), iSs clear
that the electric field isféected by the crack size and the crack orientation. Exjllustrates the electric potential
distributions forL./a = 5 and two crack orientationg = 0° anda = 45°. However, the influence of the piezoresistive
behaviour of the material on the electric resistance chaigaot so significant, when compared with the changes
caused by the presence of the damage, i.e., the crack. IaEithe dotted lines (piezoresistive analysis) are almost
coincident with the continuous lines (non-piezoresistinalysis).
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Figure 9: Mesh details for the stationary crack analysiegifie XFEM.
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Figure 10: (a) Influence of the crack orientatiar) 6n the stress intensity factorij /Ko andK; /Ko, beingK, = ayy vra. (b) Convergence study
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Figure 13: Influence of the crack permittivity conditioms/km) and the crack orientatio) on the electric resistance changes.

4.1.2. Resistance changes: influence of the electric pivityitcrack conditions

It is also important to consider the crack-face electriayptivity conditions. Namely permeable, impermeable
and semipermeable crack conditions are next considered.ciidtk permittivity is designated as and its values
oscillate betweer; ~ 0 (i.e., impermeable crack conditions) aqd~ «n, (i.€., perfectly permeable crack conditions),
being«m, the electric conductivity of the undamaged and the unstchpiate.

For the damaged plate wittya = 3, Fig. 13 shows the influence of the crack permittivity conditiorg/ k) and
the crack orientationa() on the electric resistance rati®/R,), beingR, the electric resistance of the undamaged
plate. We can observe how the electric permeability of tlaelcis another parameter that determines the electric
resistance of the plate. The more impermeable crack fadditemms are, the greater is the electric resistance obderve
in the crack. This is easily observed in Fiigl, where the electric potential distribution are presented_fa = 5,
a = 45° and the crack permittivity conditions: (&)/«xm = 0.0001 and (bk./«m = 0.5.

4.1.3. Resistance changes: two cracks configurations

To conclude the stationary crack analysis, we next analymther the present methodology could identify more
than one defect, i.e., could distinguish between a singledatal crack and two horizontal cracks. For this purpose,
the two horizontal cracks configuration sketched in Eigis considered. Both cracks have the same semileraght (
and their location is defined b, i.e., the horizontal distance between the crack tips sanice., the vertical distance
between them. In this case, impermeable crack-face elgmtrimittivity conditions are considered; = 0 and the
value of both cracks size parameter Isfa, = 5. The same material properties as in the previous examptes a
adopted for the plate. Only electrical behaviour is considén this example, while the piezoresistive behaviour of
the material is not modeled in this case, once checked itgribwence on the results for stationary crack configuration
(as Sectiort.1.lillustrates)

Influence of the relative position between both cracks, @,eandsy) on the electric resistancBfracks is studied.
In order to see the flierence between the electric resistance with one singl&etadomain, the electric resistance
ratio R, cracks/ R1 crack 1S presented in Figl6, whereRyqrack is the electric resistance computed for a single cracked
domain whose crack semilengthag = 2a;.
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Figure 16: Influence of the relative positiord,fy) of the two cracks on the electric resistance.

We can observe in Fidl6 how the electric resistance ratiBy(cracks/ R1 crack) 1S €qual to one, wheé, = 0 and
dy = 0. However, important dierences are observed wheg > 0 andor |6y| > 0. For instance, let us observe the two
cases showed in Fig.7, where the electric potentiap) distribution as a function ofy/a; = {0, 0.5, 2} is presented for
dx = 01in Fig. 17 (a) andsx/a, = 0.5 in Fig. 17 (b). Whens, = 0, the greateéy is, the lower is the electric resistance
observed. The same behaviour is observedsipr- 0. However, diferent resistances are observed betwégn- 0
and|sy| < 0. This could allow us to correlate the crack configuratioith ¥he recorded electric resistance changes.

4.2. Crack-growth monitoring

This section presents two examples where the virtual cgackth monitoring is developed. The first example
considers a plate with an interior crack, under imposedogrtlisplacements. The second examples studies a three-
point bending problem with an initial traction-free cradktlae middle of the bottom edge of the specimen. Both
analyses consider the same material, a MW@@ddxy composite with a.8% weight content of MWCNTSs (see
Table2).

4.2.1. Cracked plate

The crack-growth analysis is applied on a MWGCHpoxy composite square (% 2L) plate with an interior
inclined crack (see Figl8 (a)). The value of the plate length is= 0.1 m, the initial semilength of the crack is
a, = 0.01 m and two angles are considered= 0° anda = 45°. The specimen is subjected to imposed vertical
displacementsu() on the upper edge of the domain. For the electrical probtemelectrodes position in the plate
presents the same configuration as it was described irv i), with ¢, = 0 V and¢, = 10.

The numerical simulations are performed under plane stned<lectrical impermeable crack permittivity con-
ditions, considering the very fine mesh presented in Byb). The election of the mesh has been done taking into
account the convergence study presented orilgigvhere the plate response diagrams are presented. 15{@)
shows the resultant reaction forde/E,) on the lower face of the platg & —L) versus the vertical displacement on
the upper face of the plate (i.ey/u, aty = L). 19(b) shows the crack extensioa/() versus the vertical displace-
mentuy/u, aty = L. The displacement is presented relative to the imposeitakdisplacement,i.eu, = uy, and the
reaction force ) is presented divided by the theoretical reaction on thematyed platef, = EAW,/2L.
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Figure 18: (a) Cracked plate under imposed vertical dispieres (i). (b) Mesh details for the crack-growth analysis using tfEXI.

1 T T T T 1 T T T T
—N. elements = 7279 - —N. elements = 7279
0.9 [ N. elements = 10202 0.9 [ [ N. elements = 10202
= = 'N. elements = 15762 = = *N. elements = 15762
08 ====:N, elements = 21915 08k ====:N, elements = 21915
— N. elements = 43036 . — N. elements = 43036
0.7 07}t

o
(2]
T
o
(2]
T

.|
L oosf Zosf
w (0]
0.4r 041
03+ 1 03+ L
~ I I
02t BT 02+t ) 1 i
0.1t 1 0.1 R
0 ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
u /uO uy /u
(@) (b)

Figure 19: Convergence study on the plate response diagi@mshe resultant reaction force on the lower face of theeplgF,) versus the
vertical displacement on the upper face of the plate (iygL, aty = L), (b) the crack extensiora(L) versus the vertical displacemeu/u, at
y=L.

21



The coordinate of the crack tip and the electric potentiatritiutions are computed for every load step. The
evolution of the vertical displacements;f and the electric potentiap) distributions are presented in Fig0 (a) and
Fig. 20 (b), respectively, caused by an inclined=£ 45°) crack growth.

Additionally, the electrical resistance between the etekts is computed, according to E§0(and Eq. 81), for
every load step. Consequently, the crack tip coordinatdstize electric resistance are known for every load step.
Therefore, the electric resistance changes caused bydhbk growth can be analyzed. F@l presents the electric
resistance changes caused by a horizontal crack growté [jbkes) and an inclined crack growth (black lines). The
evolution of the electric resistancB)(with the crack lengthd) is showed in Fig24, where the electric resistance
is presented relative to the electric resistance of the madad plateR,), i.e., whena, = 0. The crack length is
presented relative to the initial crack length)( Results have been computed under piezoresistive (datedand
non-piezoresistive (continuous line) conditions. We chsenve the same behaviour as the one observed in Section
4.1 for the stationary crack case, i.e., the influence of theguesistive behaviour on the electric resistance changes
is not so significant when compared with the changes induttedtie electric field by the presence of the crack.

4.2.2. Three-point flexural test

This last numerical example solves the three-point benglioblem with an initial traction-free crack at the middle
of the bottom edge of the MWCN@&poxy composite specimen presented in B@(a). The length of the beam is
L = 0.1 m, the height of the beam W = 0.03 m and the initial crack length &, = 0.005 m. This beam is subjected
to a prescribed displacement ) boundary condition which is applied at the center of the ¢dge of the beam.
Regarding the electrical boundary conditions on the spewgjririg.22 (b) shows the electrical boundary conditions,
being the electrodes located at both ends of the beam. Meremmpermeable crack permittivity conditions are
considered not only in the initial crack, but also during thack growth.

The very fine mesh presented in FRR (c) has been considered to solve both, the crack growth meia
problem and the electrical problem, according to Sec8orsimilarly to previous numerical studies, the electrical
problem is solved including the piezoresistive behavidRkANE-223 ANSYSelement) and the electrical (non-
piezoresistive) behaviouPLANE-121 ANSYS element). Fig.23 presents the convergence study developed on the
beam response diagrams to select the proper mesh for thesstidg. 23(a) shows the load deflection-curve, i.e.,
vertical reaction forceR/F,) versus the vertical displacement (u,) at x = L/2 and Fig.23(b) presents the crack
extension /W) versus the maximum deflection of the beam (iLp/u, at x = L/2). The deflection is presented
relative to the imposed vertical displacement,iug.= Uy, and the reaction force~| is presented divided bk, =
48E U,/ L3, wherel, is the damage cross-section moment of inettia= (W — a,)3/12. The convergence analysis
reveals the importance of selecting a fine mesh for the fudie

The evolution of the electric resistandg) (with the crack lengthd) is showed in Fig24, where the electric
resistance is presented relative to the electric resistahthe undamaged bearR,}, i.e., whena, = 0, and crack
length, relative to the height of the bealv), We can observe the same behaviour as it was obtained ifopsev
examples, i.e., the electric resistance increases witlerdnek length. Moreover, the influence of the piezoresistive
behaviour on the electric resistance changes is negligiben compared with the changes caused by the crack.

Finally, Fig.25 presents the evolution of the electric resistarfienith the maximum vertical displacemengy at
point A, until the objective valuey is reached. Similarly to Fig24, the electric resistance is presented relative to the
electric resistance of the undamaged beBg). (The observed electric resistance evolution in the figeweals that the
crack does not grow monotonously with the deflection of theneThe constant values for the electric resistance (i.e.,
the flat regions of the curve) indicates a crack growth amese, whereas the increments on the electric resistance is
indicative of a crack growth, so that crack growth can belated with the changes in the electrical resistance of the
structure.

5. Summary and conclusions

Previous studies illustrate the potential of carbon named(CNT) as doping nano-additives that can be employed
to improve both the mechanical and electrical propertigsobfmeric materials. In this manner, the mechanical prop-
erties (tensile strength, elastic modulus and fracturghioass) of the resulting CNT reinforced composite (CNTRC)
may be significantly increased by adding low contents of CRUfthermore, the addition of well dispersed CNT to
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potential ¢) [V] distribution.
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Figure 21: Electric resistance changes caused by a hoaizenaick growth (blue lines) and an inclined crack growtla¢kllines), under piezore-
sistive (dotted line) and non-piezoresistive (continunes) conditions.

a certain amount, induces electrical conductivity chaméstics in the otherwise non-conductive polymeric matrix
This later property has been exploited to develop selfingnfSNTRC that have the ability to correlate changes in
electrical resistivity with modifications in mechanicalah.

In this context, developing numerical tools that assisstmeating the electro-mechanical behavior of these novel
materials under the existence of crack-type damage becorneml. This paper has presented an XFEM-based
numerical framework to simulate how crack-growtfieats both the mechanical and electrical behavior of CNTRC
materials, that is, how damag#exts not only the structural integrity of the component kaiself-sensing capability
as well.

To this end, the micromechanics model of the electromechaproperties of MWCN/epoxy nanocomposites,
as previously presented by some of the author8@h has been first employed to obtain the equivalent (elasiic a
piezoresistive) properties of the CNTRC. Subsequently,cbmmercial finite element software ANSYS has been
utilized to analyze crack growth by following a two-step ste:

1) In afirst step, the mechanical problem is solved by the XRENMplemented in ANSYS-, so that the strain
state in the cracked domain is computed at each element.

2) The second step implies updating the piezoresistivegrtigs of the elements in terms of the computed strain
field (step 1). This results into the definition of a non-homrogous electrical conductivity problem that, there-
after, is solved using the coupled-field elements availabibe ANSYS software.

The proposed numerical scheme has been successfully@dpptiee paper to analyze several stationary crack and
crack-growth configurations. In particular, to charaatemow the presence of crackinfjexts the electric potential
field measured in the plates under the electrodes configanatesented in Fig. (b) or Fig.22 (b). Various parameters
have been considered in the analysis, like the electric @abitity of the crack, the crack orientation or the severity
of the damage, i.e., the crack size. The obtained resultaltvat:
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Figure 25: Evolution of the electric resistand®) (vith the vertical displacementi) relative touy. The electric resistance is presented relative to
the electric resistance of the undamaged beag)y (vhereas the vertical displacement is presented relatitteetvertical displacement imposed at
the center of the top edge of the beam) (—

- the lower the crack permittivity is, the better sensiiceency is observed;

- under electrically impermeable crack-face conditiohg, influence of the piezoresistivéfect is negligible.
This means that the discontinuity induced in the electrid fixy the presence of the crack surpasses ffece
of the change in piezoresistivity provoked by the modifimatof the strain field due to the crack;

- electric resistance measurements are clearly sensititieainges in the size afod the orientation of the crack.

In summary, cracking does not only compromise the mechhinitzgrity of CNTRC components, but it does
also modify their strain self-sensing capabilities. Vatgrack growth monitoring canfliectively be conducted by
employing the proposed numerical XFEM scheme, in order tthéu correlate the presence and severity of cracks
with the electric resistance measurements in CNTRC plates.
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A. Flowchart scheme

The flowchart scheme of the ANSYS implementation is preskintd=ig26. It should be noted that the three
solution steps mentioned in SectiB8rBare underlined in the figure.
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Figure 27: Experimental validation of the adopted micromeudsaapproach to predict the piezoresistivity fiments of MWCNTepoxy com-
posites.

B. Experimental validation of the piezoresistive modeling

In order to demonstrate the accuracy of the micromechaipipsoach previously introduced in Secti@rB, the
theoretical predictions of the piezoresistivity @odents of MWCNTepoxy composites are benchmarked against
the experimental results reported by Sanli et &l7] jn Fig. 27. Those authors characterized the strain self-sensing
properties of dog-bone shaped samples under laterallynstreoned uni-axial stretchingy, &, = 3 = —ve;). To
do so, the piezoresistivity cfiicients were identified as the slope of the linear fitting of tékative variation of
the electrical resistance of samples doped with fivedint CNT contents under quasi-static tensile loading. The
electrodes where located perpendicular to the directiothefload, thereby the reported gauge factors correspond
to 411 in Eq. 1. In Fig. 27, both the longitudinall;; and transverse;, theoretical piezoresistivity cdigcients
are presented. The model parameters are the same as thdse @setiond. The close agreements between the
theoretical and the experimental results figg confirm the accuracy of the adopted micromechanics approkich
is observed in this figure that the piezoresistivity fi@géents achieve maximum values at filler contents around the
percolation thresholdx( 0.27%). Additionally, it is noted that the transverse pies@stvity codficient 11, exhibits
slightly higher values than the longitudinal org all along the whole range of filler concentrations.
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