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Abstract

This paper presents an eXtended Finite Element Method (XFEM)-based numerical scheme to compute electrical
resistivity changes caused by the presence of cracks and thecrack growth. Using the commercial finite element
package ANSYS, the virtual continuous monitoring of the structure is solved in two steps. First, the strain response of
the cracked composite domain is computed by means of the XFEM. In the second step, the electrical conductivity of
the piezorresistive elements located in the domain are updated according to the strain state and the electric resistance
between two electrodes of the damaged plate is computed. Thecomparison with the electric resistance measured
for the undamaged plate allows us to detect the presence of a crack and its severity. Moreover, the crack growth
process can be also monitored via the electric resistance increments. Several numerical studies are provided to show
the capabilities of this computational framework.
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Highlights

• Implementation of an electro-mechanical computational fracture mechanics framework for crack-growth simu-
lation in carbon nanotube reinforced composites (CNTRC), using the commercial software ANSYS.

• Computational scheme that accounts for both the mechanicaland piezoresistive behavior of cracked CNTRC:
X-FEM addresses the mechanical behavior of the CNTRC whilstpiezoresistive finite elements are employed to
model the electrical behavior.

• Correlation study between crack growth and changes in the electrical resistance of the structure.

• Influence of crack-defects in the sensor performance.

• Virtual monitoring and sensing of structural integrity viaelectromechanical modelling of piezoresistive nanocom-
posites.

1. Introduction

Carbon NanoTube (CNT) reinforced composite (CNTRC) materials are receiving enormous attention from the
scientific and engineering communities in recent years. Following the widespread in CNT research that started during
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the early 1990s and the subsequent investigations on its potential industrial applications, CNT production capacity
has increased exponentially in later years and the advancesin CNT synthesis and functionalization have allowed its
effective use in many fields, ranging from the biomedical or automotive industries to aerospace applications [1–5].

From a mechanical point of view, numerous studies reveal howthe addition of small quantities of CNT to polymers
or precursor resins leads to a significant increase in the stiffness and strength of the resulting CNTRC. Furthermore,
fracture toughness and fatigue performance of the CNTRC also improves without compromising other mechanical
properties. For instance, Gojny et al. [6] reported relevant improvements of strength (+10%), stiffness (+15%) and
fracture toughness (+43%) when adding 0.5 wt% of amino-functionalized Double-Walled CNTs to an epoxy matrix.
Similarly, Hsieh et al. [7] observed how the addition of 0.5 wt% of Multi-Walled CNTs (MWCNTs) to a thermosetting
epoxy polymer increased the measured fracture energy from 133 to 223 J/m2, whilst the threshold strain-energy release
rate also increased from 24 J/m2 to 73 J/m2. The review paper by Domun et al. [8] collects many of the available data
prior to 2015- reporting the improvement on the mechanical properties of nanomaterial toughened composites.

Furthermore, CNTs are electrically conductive fillers thathave the ability to confer to the polymeric CNTRC
with conductive properties that, otherwise, would be absent in the neat matrix. CNTs take advantage of their large
aspect ratio to form percolative-type conducting networks, all of it at low CNT concentrations [9]. For instance, the
review work by Bauhofer and Kovacs [10] reports maximum conductivities of 10,000 S/m for PMMA containing
10 wt% treated SWCNT, while conductivities up to 100 S/m were observed for a polyethylene matrix doped with 1
wt% MWCNT. In this manner, the resulting electrically conductive networks induce a piezoresistive behavior on the
CNTRC. Such enabled strain self-sensing capability entails this new class of composites as good candidates for their
use in Structural Health Monitoring (SHM) applications. Many studies are scattered in the scientific literature that take
advantage of this feature, from cement- to polymer-based composites [11–18]. Of course, enhancement of the electro-
mechanical properties of the CNTRC depends on several key factors, like the type of CNT, their alignment, achieving
a homogeneous dispersion, the CNT aspect ratio or the CNT interfacial interaction with the matrix, to mention a few.
Along these lines, recent advances in fabrication techniques are oriented towards ensuring the scalability and sensing
repeatability of such CNTRC, so that they become a real alternative for SHM.

At any event, research efforts have not only focused on manufacturing processes, but also on developing reliable
numerical simulation tools that assist in predicting the electro-mechanical behavior and the failure of CNTRC compo-
nents during their service life. In the literature, severalnumerical approaches permit to simulate crack-type defects in
composites. However, within the context of CNTRC for SHM, itis crucial that those methods allow anticipating: (i)
how the presence of cracks (and their growth) will affect the CNTRC structural integrity from a mechanical point of
view-; and (ii) how such presence will modify its sensor electrical resistivity- capabilities. This will be precisely the
main objective of the paper: developing a computational framework to simulate numerically crack growth in CNTRC.
To this end, the eXtended Finite Element Method (XFEM) [19–21], as implemented in the commercial finite element
analysis software ANSYS [22], will be used in conjunction with the coupled-field piezoresistive and electrostatic ele-
ments available in the ANSYS element library. The XFEM extends the conventional finite element method to account
for cracks, based on the concept of partition of unity. Basically, this technique enriches the degrees of freedom in the
model with additional displacement functions that accountfor the jump in displacements across the crack discontinu-
ity. In this way, cracks can be modeled in XFEM without explicitly meshing the crack surfaces and it further allows
for arbitrary crack growth within the existing mesh, without the necessity of remeshing.

Although previous works have applied XFEM for fracture analysis in CNTRC, they have focused on simulating
the mechanical problem, but have not tackled the effect of crack growth on the electrical conductivity of self-sensing
CNTRC polymer plates. For instance, Joshi et al. [23] analyzed the effects of tensile loading on crack propagation in
CNTRC using X-FEM together with contour integral techniqueto evaluate the stress intensity factor and J integral.
Eftekhari et al. [24] developed an XFEM-multiscale approach to investigate themechanical properties and fracture
behavior of carbon nanotube (CNT)-reinforced concrete. Sahoo et al. [25] proposed an XFEM-based scheme to
evaluate the effective elastic properties of 3-D full five-directional braided composites. More recently, Negi et al.
[26] utilized the XFEM to conduct the study of crack growth in a thin rectangular plate containing an edge crack and
a center crack and, subsequently, extended their approach to analyze the effect of additional defects in the form of
voids and inclusions in the material [27]. Liu et al. [28] investigated the mechanical behavior and extra-strengthening
and elongation increase mechanisms of CNT/Al-Cu-Mg nanocomposites with the aid of high-resolution digital image
correlation (DIC) and XFEM. Ebrahimi [29] developed new enrichment functions for CNTRC, using a new local finite
element characteristic equation for multi-material orthotropic composite domains. For stationary cracks, the authors
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analyzed in a previous work [30] the crack-induced electrical resistivity changes in CNTRC by implementing a dual
Boundary Element formulation combined with a finite differences scheme.

On the other hand, Shindo and coworkers realized several studies using the classical FEM displacement-based
formulation, as implemented in the commercial finite element code ANSYS, to analyze the behavior of cracked
CNTRC and further conducted the experimental validation ofthe results [31–34]. In Kuronuma et al. [31], the authors
presented results for tensile tests on single-edge crackedplate specimens of CNT/polycarbonate composites, aimed
at estimating the critical loads for fracture instabilities, and further conducted elasticplastic finite element simulations
of the tests to evaluate the J-integrals corresponding to the experimentally determined critical loads. Later, Kuronuma
et al. [32] generalized this study to analyze the fatigue crack growthresponse of CNT/polycarbonate composites.
While these works just focused on the mechanical response of cracked CNT-based polymer composites, subsequent
papers tackled also their electrical resistance behavior [33, 34]. Shindo et al. presented in [33] the results of tensile
tests performed on single-edge cracked plate specimens of CNT/polymer composites, where the electrical resistance
change of the specimens was monitored. As in references [31] and [32], numerical simulation using ANSYS was
conducted to numerically replicate the obtained experimental mechanical results, whilst to simulate the electrical
behavior of the cracked specimen, the authors developed andanalytical model based on the definition of effective
conductive pathways that directly related the change in thecomposite specimen electrical resistance to the crack
extension and geometrical features of the specimen. In thismanner, the electrical problem is not solved using FEM,
but substituting the results of the mechanical FEM simulation (crack extension) into the proposed analytical formula,
with good correlation between the experimental and numerical results. These approach was later extended by Takeda
et al. [34] to mixed-mode I/II loading.

A recent review paper by Yadav et al. [35] summarizes some of the previous contributions in the scientific literature
on the topic of fracture analysis of CNTRC for structural applications.

In this paper, a numerical XFEM-based framework is proposedto analyze crack-growth in CNT reinforced poly-
mer composites that accounts for both the mechanical and piezoresistive behavior of the CNTRC. The objective is
twofold: employing the numerical scheme to analyze how the crack affects the CNTRC mechanical integrity of the
composite and further assess how its sensor performance is affected by cracking. To this end, the ANSYS software will
be employed. The constitutive electro-mechanical modeling of the CNTRC composite follows a two-step procedure
[17, 30]: (1) in a first step, the homogenization of the mechanical properties is conducted using a double-inclusion
mean-field approach; (2) whilst the second step addresses the homogenization of the electrical conductivity and piezo-
resistivity properties, by implementing the model previously proposed by Garcı́a-Maćıas et al. [36] and Buroni and
Garćıa-Maćıas [37]. The parameters of this micromechanics model are adjustedin order to fit experimental results
available in the literature [17]. Once the constitutive parameters are defined, the XFEM as implemented in ANSYS-
is employed to solve the mechanical problem and compute the strain state in the cracked domain. Subsequently,
strains are related to local changes in piezoresistivity, so that an additional non-homogeneous electrical conductivity
problem has to be addressed. For this purpose, coupled-fieldelements are used. In this manner, we can correlate
the crack-growth in the CNTRC with the electrical resistance change measured between electrodes. The proposed
numerical framework is first validated for stationary cracks and later applied to several crack-growth configurations.
The conducted numerical studies reveal that the presence ofthe crack and its growth significantly modify the electrical
behavior and self-sensing capability of the CNTRC.

The remainder of the paper is organized as follows: Section2 summarizes the micromechanics approach adopted
to model both the mechanical and piezoresistive behavior ofthe CNT reinforced polymer. Section3 presents and
discusses the details of the computational XFEM-based framework implemented in ANSYS to analyze the electro-
mechanical behavior of fractured CNTRC, both under stationary and crack-growth conditions. In Section4, some
numerical results are presented and discussed, in order to investigate the influence that the presence of a crack and its
growth- has in the sensory performance of the CNTRC. Section5 closes the paper by summarizing the most relevant
conclusions of this study.

2. Micromechanics modeling of the electromechanical properties of MWCNT/epoxy nanocomposites

In the notation hereafter, blackboard-bold and bold letters are used to denote fourth-order(A) and second-order
tensors(A), respectively. Colon notation is used to indicate the innerproduct between two fourth-order tensors
(A : B)i jmn ≡ Ai jkl Bklmn.
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Figure 1: Euler angles defining the relation between the orientation of a MWCNT in the local coordinate system, K′ ≡
{

0; x′1x′2x′3
}

and the global
coordinate system, K≡ {0; x1x2x3}.

2.1. Elastic properties

The elastic properties of MWCNT/epoxy nanocomposites are estimated in this work by adoptinga core-shell in-
terphase model [38, 39]. This approach embodies the filler/matrix interfacial properties through finite elastic coatings
with constant thicknesst surrounding the fillers (see Fig.1). The composite is thus conceived as a three-phase com-
posite, including the matrix, inclusions, and interphaseswith elastic tensorsCm, Cp andCi , respectively. Following
the double-inclusion method by Hori and Nemat-Nasser [40], the effective stiffness tensor of a Representative Volume
Element (RVE) of a MWCNT/epoxy composite can be obtained as:

C =
(

fmCm + fi 〈Ci : Ai〉 + fp

〈

Cp : Ap

〉)

:
(

fmI + fi 〈Ai〉 + fp

〈

Ap

〉)−1
, (1)

where fp, fi , and fm denote the volume fractions occupied by fillers, interphases ratio, and the matrix phase, respec-
tively. Angle brackets〈·〉 in Eq. (1) indicate orientational average in the space formed by Euler anglesγ andθ shown
in Fig. 1. Interfaces in MWCNT/epoxy composites are characterized by weak van der Waals (vdW) forces, which
may be assimilated as penetrable soft interphases with volume fractionfi [41, 42]:

fi = (1− fp)

(

1− exp

{

−
6 fp

1− fp

[

η

n(s)
+

(

2+
3 fp

n2(s)(1− fp)

)

η2+

+
4
3

(

1+
3 fp

n(s)(1− fp)

)

η3

]})

,

(2)

where the termη = t/Deq denotes the ratio between the thicknesst and the equivalent diameterDeq of the interphases.
The latter stands for the diameter of a sphere with volume equal to that of the particles. Given the aspect ratio of
MWCNTs s = Lcnt/Dcnt, with Lcnt and Dcnt being the filler length and diameter, respectively,Deq takes the form
Deq = Dcnts1/3 [41, 42]. The termn(s) in Eq. (2) represents the sphericity of the fillers and is defined as:

n(s) =
2s2/3 tanϕ
tanϕ + s2ϕ

, (3)

whereϕ is given byϕ = arcos(1/s). The concentration tensors in Eq. (1) for interphases and inclusions,Ai andAp,
respectively, can be expressed in terms of the corresponding dilute concentration tensors,Adil

i andAdil
p , as:

Aχ = A
dil
χ :

(

fmI + fiA
dil
i + fpA

dil
p

)−1
, χ = p, i (4)

A
dil
χ = I + S : Tχ, χ = p, i (5)
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Figure 2: (a) Schematic of the conductive mechanisms governingthe electrical conductivity of MWCNT/epoxy nanocomposites. (b) Deformable
cubic cell containing an embedded filler under a tri-axial strain state (ε1, ε2, ε3).

with

Tχ = −
(

S +Mχ

)−1
, χ = p, i (6)

Mχ =
(

Cχ − Cm

)−1
: Cm, χ = p, i (7)

andS being the mechanical Eshelby’s tensor for MWCNTs idealized as prolate ellipsoidal particles, andI the fourth-
order identity tensor. Readers may refer to reference [43] for further details on the specific formulation ofS.

2.2. Electrical conductivity

Owing to the percolation-type behavior of CNT-based composites, their electrical conductivity experiences a
sudden rise of several orders of magnitude when the filler concentration reaches the so-called percolation threshold,
fc. Below percolation (fp < fc), electrons can only travel between CNTs through a quantum tunneling effect, also
known as electron hopping mechanism. However, once the percolation threshold is achieved (fp ≥ fc), some fillers
begin forming electrically conductive paths and both the electron hopping and the conductive networking mechanisms
contribute to the composite’s conductivity [44, 45] as sketched in Fig.2 (a). The electron hopping mechanism can be
modeled in the shape of interphases with electrical resistivity given by the generalized Simmons’ formula [46]:

Rint(da) =
da~

2

ae2 (2mλ)1/2
exp

(

4πda

~
(2mλ)1/2

)

, (8)

with mandebeing the mass and the electric charge of the electron, respectively,λ the height of the tunneling potential
barrier,a the contact area of the fillers,~ the reduced Planck’s constant, andda the average inter-particle distance. The

latter is usually approximated in a piecewise form [44] asda = dc for fp < fc, andda = dc

(

fc/ fp

)1/3
for fp ≥ fc, with

dc being the maximum filler separation at which tunneling penetration of electrons is possible. The thicknesstc and
conductivityκint of the conductive interphases, as well as the volume fraction fe f f of the effective fillers (MWCNTs
plus interphases) can be computed as [44, 47]:

tc =
1
2

da, κint =
da

aRint(da)
, fe f f =

(Dcnt + 2tc)
2 (Lcnt + 2tc)

D2
cnt Lcnt

fp. (9)
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On this basis, MWCNT/interphase ensembles can be modeled as equivalent rod-likeparticles with transversely
isotropic conductivity (refer to [44, 48] for further details), and the overall electrical conductivity of the composite
can be estimated by the Mori-Tanaka method as [45, 49]:

κe f f = κm + (1− ξp) 〈ΓEH〉 + ξp 〈ΓCN〉 , (10)

with

ΓEH = fe f f (κEH − κm) AEH, (11)

ΓCN = fe f f (κCN − κm) ACN, (12)

where subscriptsEH andCN refer to the electron hopping and conductive networking mechanisms, respectively, and
κm is the conductivity tensor of the matrix phase. The termξp in Eq. (10) denotes the fraction of percolated MWCNTs,
which can be approximated as [50]:

ξp =



























0, 0 ≤ fp < fc

f 1/3
p − f 1/3

c

1− f 1/3
c

, fc ≤ fp ≤ 1
(13)

Quantities related to the electron hopping and the conductive network mechanisms in Eqs. (10)-(12) are computed
considering filler aspect ratioss= Lcnt/Dcnt ands= Lcnt/Dcnt→ ∞ [47], respectively. In particular, the electric field
concentration tensorsAEH andACN in Eqs. (11) and (12), respectively, can be obtained from the general form of the
concentration tensorA [44]:

A = Adil
{(

1− fe f f

)

I + fe f f

〈

Adil
〉}−1
, (14)

with Adil denoting the dilute concentration tensor given by:

Adil =
{

I + S (κm)−1 (κc − κm)
}−1
, (15)

with I being the identity matrix. Assuming ellipsoidal inclusions with symmetry axisx,3, the components of the
Eshelby’s tensorS in Eq. (15) read (s> 1) [51]:

S22 = S33 =
s

2(s2−1)3/2

[

s
(

s2 − 1
)1/2
− cosh−1 s

]

,

S11 = 1− 2S22.
(16)

2.3. Piezoresistance modeling

Within the framework of the previously overviewed micromechanics approach, it is possible to estimate the
piezoresistivity properties of MWCNT/epoxy composites through the incorporation of strain-induced alterations of
the electron hopping and conductive networking mechanisms. Specifically, three main effects are commonly recog-
nized in the literature [36, 52]: (i) volume expansion and reorientation of fillers, (ii) breakage of conductive paths, and
(iii) variation of the inter-particle properties. The volume expansion and filler reorientation mechanisms can be simu-
lated by the deformable cell model illustrated in Fig.2 (b). As shown by the authors in reference [36], dilation-induced
effects are usually more influential than those due to distortion. In this case, when anl0-sided cubic cell loaded with a
MWCNT is subjected to an arbitrary dilation strain (ε1, ε2, ε3), its volume changes fromV0 = l30 to V = l30ε1ε2ε3, with
εi = 1+ εi (see Fig.2 (b)). The deformation is primarily sustained by the matrix,which is considerably more flexible
than the MWCNT, thereby the apparent filler content varies as:

f ∗ =
V0 f
V
=

f
ε1ε2ε3

. (17)
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Additionally, the embedded MWCNT also experiences a reorientation as an result of the applied dilation, which
can be defined as a variation of the Euler angles from (γ, β) to (γ′, β′). The closed-form expression of the strain-
dependent orientation distribution function (ODF) under general dilation strains,Ω(γ′, β′), was derived by the authors
as [36]:

Ω(γ′, β′) =
ε

2
1ε

2
2ε

2
3

[

ε
2
2ε

2
3 cos2 β′ + ε2

1

(

ε
2
2 cos2 γ′ + ε23 sin2 γ′

)

sin2 β′
]3/2
. (18)

No volume expansion is experienced by the composite when subjected to distortion, thereby the effective filler
volume fraction remains unaltered and only filler reorientation takes place. Such reorientation effects can be estimated
using a deformable cell model similar to the one previously shown in Fig.2 (b). In the particular case of shear strain
ε32 in the cell x2-x3 plane, the authors reported in reference [36] the corresponding closed-form expression for the
distortion-dependent ODF as:

p(γ, β′) =
(

1− 4ε32 sinγ sinβ′ cosβ′ + 4ε232 sinγ sinβ′
)−3/2
. (19)

The filler reorientation induced by external mechanical strains reduces the randomness of the filler dispersion and,
as a consequence, the percolation threshold increases. This effect can be accounted for by computing the percolation
threshold fc by means of the stochastic percolation model of Komori and Makishima [53], exploiting the strain-
dependent ODFs reported in Eqs. (18) and (19) (refer to [36] for further details). Finally, mechanical strains may
also affect the electron hopping mechanism through variations of the inter-particle distanceda and the height of the
potential barrierλ. Some research works in the literature suggest that, at low strain levels (< 10−4), these magnitudes
vary linearly with strain as [54]:

da = da,0(1+C1ε),

λ = λ0(1+C2ε),
(20)

where subscript 0 relates the corresponding quantities to the unstrained system. The termsC1 andC2 are proportion-
ality constants, usually obtained by fitting experimental data.

In light of the formulation above, the relative change in resistivity of the plane-stress solids investigated hereafter
can be related to the mechanical strain tensorε as [36]:





















∆ρ11/ρ0

∆ρ22/ρ0

∆ρ12/ρ0





















=





















λ11 λ12 0
λ12 λ11 0
0 0 λ44









































ε11

ε22

ε12





















, (21)

whereρi j are the components of the resistivity tensorρe f f = κ
−1
e f f, andρ0 is the resistivity of the composite in the

absence of mechanical strains. The termsλi j denote the piezoresistivity coefficients. Specifically,λ11 represents the
longitudinal piezoresistive effect,λ12 relates the transverse piezoresistive effect, andλ44 describes the shear piezoresis-
tive effect. Once the strain sensitivity curves are obtained (∆ρi j/ρ0), the piezoresistivity coefficients can be estimated
as the slope of a linear regression (interested readers may refer to Garćıa-Maćıas et al. [36] for further theoreti-
cal details). Alternatively, the piezoresistivity coefficientsλi j can also be obtained in closed-form by applying the
formulation for the modeling of piezoresistive fiber-reinforced composites with percolation-type behavior proposed
by Buroni and Garćıa-Maćıas [37] (further theoretical details can be found in [37], where open-source computer
codes in MATLAB and Python languages with the correspondingimplementation for the piezoresistive coefficient of
CNT/epoxi composites are also presented).

3. Virtual crack growth monitoring of cracked nanocomposite panels

3.1. Mechanical problem solution

Consider a homogeneous and isotropic two-dimensional domain containing pre-existing cracks under complex
loading state. Two kind of problems are considered:stationary crack problemsandcrack-growth problems. Upon
growing, a planar crack under the mixed mode possibly kinks at a certain angle from its original plane. This angle
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depends on the mixticity degree, or in other words, on the relative amount of mode II to mode I loading. Then, we can
say that two criteria are required in order to decide if: (i) apre-existing crack will grow, and if it does, (ii) in which
direction. In order to model this complex mechanical problem appropriate computational methodologies are required.
As mentioned at the introduction, XFEM technique is selected in this work. In this subsection we briefly review
the key points for the analysis of mixed-mode cracking problems by means of XFEM methodology implemented in
ANSYS Mechanical APDL 19.2 [22].

3.1.1. Direction of the kink
A propagating crack seeks the path of maximum driving force,so under mixed-mode it needs not to be confined

to its initial plane. In the framework of a cohesive crack model, a crack-growth criterion must be specified for
newly cracked cohesive segments to initiate ahead of the existing cracks [22]. In the literature, there exists several
methods in order to decide which direction the kink crack takes, based both on energy or on stresses. However in
ANSYS Mechanical APDL 19.2 implementation [22] only two criteria are available: maximum circumferentialstress
criterion and circumferential stress criterion based onσrθ = 0. In this work the criterion by Erdogan and Sih [55] is
selected, who by looking to experimental data propose that the kink angles are well predicted by the plane with the
maximum circumferential stresswhen sweeping around the crack tip. Up to discretization issues, both methods yield
the same result.

3.1.2. Crack growth criterion
For agrowing crack, the XFEM formulation, as implemented in the commercial finite element package ANSYS

Mechanical APDL 19.2 [22] does not account for the presence of singularities at the end of the cracks, then classical
criteria based on Stress Intensity Factors are not available. Consequently, once the crack path is decided with above
criterion, a mode I cohesive growth is herein considered. When the crack-growth criterion is reached ahead of the
crack, new cohesive segments are introduced in the elementsahead of the current crack front, and crack propagation
evolves. The new crack segments are such that they fully cut the elements ahead of the crack. The crack propagates
at the rate of only one element at a time.

Fracture cohesive processes initiate at a given critical value of the normal stresses,σmax (see Figure3). As the
normal displacement between the two surfaces of the crackedsegment increases, the cohesive stresses in the cracked
segment gradually decrease to zero as the deformation progresses. The decay of the cohesive stresses is modeled
based on a rigid linear cohesive law [56]. Figure3 shows the linear evolution evolution of the stresses in the newly
cracked segments. The value ofσmax is taken from the fracture energy expression:

GC =
1
2
σmaxδn, (22)

whereGC is the fracture energy andδn is the normal displacement jump at the completion of debonding. A detailed
explanation about the values of the parameters considered in the cohesive law and the Eq.(22) will be presented in the
following section.

3.1.3. XFEM formulation
It is well known that the XFEM provides a mesh independent approximation for the non-smooth mechanical prob-

lems with discontinuous and singular solutions, thereforeit has been widely used in fracture mechanics simulations
since the pioneering works of Belytschko et al. [19–21], Möes and Belytschko [57], Sukumar et al. [58] or Fries and
Belytschko [59].

For stationary crack analysis, XFEM makes use of local enrichment functions to model the displacement field
near the crack face (discontinuous field) and crack tip (asymptotic field). For instance, in two-dimensional crack
modeling, the approximate displacement field for a four-nodes element can be expressed as [19, 20]:

u(X) =
4

∑

i=1

Ni(X)



















ui + H(X) ai +

4
∑

j=1

F j(X) b j
i



















, (23)

whereui represents the nodal displacements vector,Ni(X) denotes the conventional nodal shape functions,H(X) stands
for the Heaviside step function which takes values−1 or+1 depending on which side of the crack the sampling point

8



Figure 3: Linear evolution of the stresses in the newly cracked segments: the cohesive stresses in the cracked segment fromA to B whereas the
unloading and reloading path at any point C follows the path C-O.

is located,ai is the enriched nodal degrees of freedom vector accounting for the jump in displacements,F j(X) are the
crack-tip enrichment functions andb j

i is the nodal degrees of freedom vector accounting for the crack-tip singularity
(see Fig.4 (a)). The asymptotic crack-tip enrichment functionsF j(X) are derived from the analytical solution of stress
and displacement fields near the crack tip area. See for instance references [19, 58] for their expressions in isotropic
materials:

{ F j(r, θ) }4j=1 =
{ √

rsin(θ/2) ;
√

rcos(θ/2) ;
√

rsin(θ/2)sin(θ) ;
√

rcos(θ/2)sin(θ)
}

, (24)

with (r, θ) being the coordinates of a polar coordinate system with theorigin centered at the crack tip. The interested
reader is referred to reference [60] for the expressions ofF j in anisotropic elastic materials, or references [61] and
[62] for piezoelectric and magnetoelectroelastic materials,respectively . The use of these special elements allows
us to handle the crack tip asymptotic stresses in a straightforward manner, eliminating the need to remesh crack-tip
regions when further conducting crack-growth simulations.

In this paper, the XFEM formulation, as implemented in the commercial finite element package ANSYS [22], is
employed. To this end, ANSYS considers the following two methods:

• (i) Singularity-Based Method (SBM): the displacement functions in the FEM formulation are enhanced by
introducing both the additional enrichment functions thatcapture the displacement jumps across the crack
surfaces and the crack-tip singularities. SBM correspondsto the formulation sketched in Eq. (23). This will
be the approach employed for the stationary crack analysis next presented. For this purpose, the four-nodes
ANSYS elementPLANE-182 is considered under plane stress element behaviour.

• (ii) Phantom-Node Method (PNM) [63–66]: this method accounts only for the displacement jumps across the
crack faces, while ignoring the crack-tip singularity contribution. This will be the approach employed in this
paper to analyze static crack-growth problems. In the PNM, the crack-tip has to be located at the edge of a finite
element and the displacement approximation for a four-nodes PLANE-182element becomes

u(X) =
4

∑

i=1

Ni(X) { ui + H(X) ai} . (25)

However, introducing phantom nodes superposed on the parent element nodes as shown in Fig.4 (b), the dis-
placement function can be rewritten in terms of the displacements of the real nodes and the phantom nodes [63]
as a superposed element that splits the parent element into two subelements

u(X, τ) =
4

∑

i=1

Ni(X)
{

H (− f (X) ) u1
i (τ) + H ( f (X) ) u2

i (τ)
}

. (26)
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(a) (b)

Figure 4: (a) Crack terminating inside the element. (b) Crack terminating at the edge of the element.

Figure 5: Partition of elements cut by the crack into sub-triangles for numerical integration in ANSYS.

In the expression above,τ represents the pseudo-time step,u1
i andu2

i are the nodal displacements vectors in
subelement 1 and 2, respectively,f (X) is the crack surface definition (f (X) = 0: Fig.4 (b) shows how the active
part of element 1 holds forf (X) < 0 and consequently, the active part of element 2 holds forf (X) > 0) and
H(x) is the Heaviside step function

H(x) =

{

1, x > 0,
0, x ≤ 0.

(27)

Regarding the numerical integration over the enriched elements, ANSYS overcomes the discontinuity along the
crack by partitioning the affected elements into sub-triangles, as Fig.5 depicts (see for instance refs. [19, 20] for
details on how to deal with the numerical integration of the X-FEM enriched functions and overcome the difficulties
associated to both the discontinuity along the crack and thesingularity at the crack tip).

3.1.4. Fracture energy
The addition of the MWCNTs into the epoxy results in a nanocomposite which exhibits enhanced strength and

stiffness and, even more important, a significant increase in fracture toughness. These behaviours are for instance re-
ported in Gojny et al. in [6], where the fracture toughness of CNT-based polymeric nanocomposites was investigated.
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Figure 6: Schematic description of possible fracture mechanisms of CNTs [6]: (a) Initial state of the CNT; (b) pull-out caused by CNT/matrix
debonding in case of weak interfacial adhesion; (c) ruptureof CNT strong interfacial adhesion in combination with extensive and fast local
deformation; (d) telescopic pull-out fracture of the outer layer due to strong interfacial bonding and pull-out of the inner tube; (e) bridging and
partial debonding of the interface local bonding to the matrix enables crack bridging and interfacial failure in the non-bonded regions.

Table 1: Fracture energy experimental values [7].

MWCNT (wt%) 0 0.1 0.2 0.5
GC (J/m2) 133 162 188 223

They also showed that the highest value of fracture toughness was obtained when the CNTs were well dispersed in
the polymer, as expected.

More recently, Hsieh et al. [7] showed that the fracture toughness (KC) and fracture energy (GC) of the epoxy
polymers increased steadily as the nanotube content was increased. They measured how the value ofGC increased
from 133 J/m2 (for the unmodified epoxy) to 223 J/m2 by the addition of 0.5 wt% of MWCNTs (see Table1). More-
over, they observed in the fracture surfaces: river lines typical of brittle failures and the evidence which reveals
the origin of the toughening mechanisms: nanotube pull-outand bridging can be clearly observed. Here, the mean
pulled-out length is 7.8 µm, with a standard deviation of±2.8 µm. Note that the MWCNTs are typically 120µm
long after sonication, so the measured average pulled-out length is much shorter than the nanotube length. Thus, the
suggested sequence of events is that the nanotubes will firstdebond from the matrix to allow pull-out. However, as
the nanotubes are long and not straight, they rupture ratherthan pulling-out completely. Therefore, energy will be
absorbed by debonding, by friction between the nanotube andthe polymer as it is pulled-out and by fracture of the
nanotubes. These works [6, 7] also reported in their studies that the main observed toughening mechanisms were
nanotube pull-out, plus debonding and plastic void growth (see Fig.6). The sword-in-sheath pull-out could also be
considered as a toughening mechanisms. For the sword-in-sheath breaking mechanism, the outer shell of the MWCNT
fractures in tension and the inner shells pull-out from within it. However, as no shell were observed in the voids, the
sword-in-sheath pull-out mechanism can be discounted.

In this work, an addition of 0.5 wt% of MWCNTs is next considered for our analysis. Therefore, assumingGC =

223 J/m2 for the fracture energy value andδn = 7.5 µm for the normal displacement jump at the completion of
debonding, the value of the maximum stress consistent with the Eq.(22) is: σmax= 60 MPa.
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Table 2: Effective electromechanical properties of the MWCNT/epoxy [17, 41].
wt% E (GPa) ν κ (Sm−1) λ11 λ12 λ44

0.5 2.86 0.28 1.22× 10−2 6.84 7.99 1.19

3.2. Electrical problem solution

The electric resistance between two electrodes of the damaged nanocomposite domain can be computed and, by
comparison with the electric resistance measured for the undamaged domain, we can detect the presence of a crack
and its severity. For this reason, the electrostatic field ina non-homogenous domain needs to be computed, in absence
of space-charge density, by solving the partial differential equation,

∇ · (κ∇φ) = 0. (28)

This equation describes the electric potential (φ) distribution within a given regionΩel characterized by a non-
homogenous electric conductivity tensorκ, which can be computed asκ = ρ−1 whereρ denotes the electrical resistivity
tensor.

Due to the piezoresistive behavior of the CNT-reinforced composite material, once the strains have been computed
inside the domain and, therefore, the non-homogeneous electrical conductivity (or its inverse, the electrical resistivity)
is known at each internal point, it is possible to solve the corresponding electric problem to characterize how the
presence of the crack affects the electrical conductivity. According to Eq. (21), the relative resistivity changes (r =
∆ρ/ρo) can be computed as:r = Πε. Consequently, the non-homogenous electric resistivity tensor can be computed
as discussed above [17, 36], from:

ρ = ρo(I + r) = ρo(I +Πε). (29)

Adopting the electrodes configuration similar to the cracked plate presented in Fig.7, one simple way to quantify
the electric resistivity changes induced by the presence ofa crack in the cracked plate would be to evaluate the electric
resistance between electrodes (R) of the damaged plate and compare its value with the electricresistance measured
for the undamaged plate (Ro). The electric resistance (R) of a plate of thicknesst can be computed as

R=
∆φ

I
, (30)

where∆φ = φ1− φo is the voltage difference recorded between electrodes andI is the electric current flowing through
the plate, which may be computed from the electric flux density J (J = −κ∇φ) as

I =
∫

A
JndA ≈

∫ +l

−l
Jntdx. (31)

with t being the plate thickness.
It should be emphasized that, even though the mechanical problem is homogeneous, due to the piezoresitive

behavior of the MWCNT reinforced composite (i.e. elastic deformations cause electrical conductivities variations)
and to the electrical-conductivity discontinuities produced by the crack, the electrical problem (28-31) has to be
solved under non-homogeneous electrical conductivities conditions. We follow such a two-step algorithm, based on
first solving the mechanical XFEM fracture problem and , subsequently defining the corresponding electrical problem
because the currentANSYS XFEM implementation does only support linear elastic isotropic material behaviour (i.e.,
it does not directly support coupled field elements).

The electrical problem is also solved by using the commercial finite element packageANSYS. In this case, the
ANSYS elementPLANE-223 is considered. This element supports the piezoresistive physic, among others. The
information about the elements which are located in the crack is transferred from an output file generated by the
mechanical problem solution.
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(a) (b)

Figure 7: (a) Cracked plate under uniform stress ( ¯σyy). (b) Electrodes position in the cracked MWCNT/epoxy composite plate.

3.3. Crack growth monitoring based on resistance changes

The following solution scheme is proposed in order to monitor the crack growth based on electrical resistance
changes. The three main steps are summarized in Fig.8 and consist in:

I. Solve the quasi static crack-growth analysis using the PNM. For every mechanical load step, the crack elements
and the tip coordinates are stored in an output file which willbe considered in the step II.

II. For every mechanical load step, we should solve an electrical (piezoresistive) problem considering the same
element mesh and element numbering as the step I. As the crackelements numbers are known from the previous
step, we can deactivate these elements to take into account the discontinuity in the electric field caused by the
crack. In time step, the electric piezoresistive properties are updated from the mechanical strains computed in
eachelement at step I. Subsequently, the electric potential can be computed and the electric flux density in the
electrodes can be stored for every load step in another output file.

III. Finally, the electric resistance between the electrodes is computed for every load step according to (30) and
(31). So the presence of the crack and its growth can be monitoredvia the electric resistance changes.

For the sake of completeness, a flowchart scheme has been included in AppendixA. It illustrates the solution scheme
with ANSYS.

4. Crack detection: numerical studies

4.1. Stationary crack analysis

The proposed virtual monitoring scheme presented in this work (see Fig.7) is applied to detect damage in a
cracked MWCNT/epoxy composite plate due to several inclined crack configurations. In the following studies, the
electromechanical properties considered for the MWCNT/epoxy composite were presented in Table2 for 0.5 wt% of
MWCNT. The theoretical predictions in this table have been obtained by inverse calibration of the micromechanics
model previously presented in Section2. To do so, the model parameters have been computed through gradient descent
minimization of the mean squared errors between experimental data and the theoretical predictions as reported in a
previous work by the authors in reference [41]. For completeness, the comparison between the theoretical predictions
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Figure 8: Solution scheme.

of the piezoresistive coefficients of MWCNT/epoxy composites using the micromechanics approach presented in
Section2.3and the experimental characterization results reported bySanli et al. [67] is reported in AppendixB.

Firstly, a stationary crack analysis using the XFEM under plane stress conditions is solved to show the accuracy
of the finite element mesh adopted in Fig.9 for L/a = 10 and a crack a crack angleα = 45o. Fig. 10 (a) shows the
influence of the crack orientation angle (α) on the stress intensity factorsKI/Ko andKII /Ko (beingKo = σ̄yy

√
πa),

by comparison with the theoretical solution [68]. The XFEM results show an excellent agreement with the analytical
solution. The resulting mesh has been selected after conducting the corresponding convergence studies. For instance,
Fig. 10 (b) presents a convergence study onKI (α = 60o) andKII (α = 60o).

4.1.1. Resistance changes: influence of the crack size
After the above validation, we next analyze the influence of the crack size on the electric resistance changes

in the damaged plate. So, the electrical problem has been solved with the same mesh, under both permeable and
impermeable crack-face electrical boundary conditions, to study the influence of the crack size parameter (L/a) on
the electric resistance. The prescribed electric potentials on the electrodes are:φo = 0 V and φ1 = 10 V (see
Fig.7(b)). These results are presented in Fig.11, taking into account several orientations (α) of the crack. Results were
computed under both piezoresistive (dotted line) and non-piezoresistive (continuous line) conditions. The electrical
piezoresistive problem has been solved using theANSYS elementPLANE-223and the electrical (non-piezoresistive)
problem has been solved using the elementPLANE-121[22].

We can see how the resistance (R) relative to the undamaged plate resistance (Ro) increases with the crack size
(a), or in other words, with the decrease of the ratioL/a (see Fig.11), as expected . Moreover, the resistance (R)
also increases for decreasing values of angleα (the orientation of the crack relative to the electrodes). So, it is clear
that the electric field is affected by the crack size and the crack orientation. Fig.12 illustrates the electric potential
distributions forL/a = 5 and two crack orientations:α = 0o andα = 45o. However, the influence of the piezoresistive
behaviour of the material on the electric resistance changes is not so significant, when compared with the changes
caused by the presence of the damage, i.e., the crack. In Fig.11, the dotted lines (piezoresistive analysis) are almost
coincident with the continuous lines (non-piezoresistiveanalysis).
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Figure 9: Mesh details for the stationary crack analysis using the XFEM.

(a) (b)

Figure 10: (a) Influence of the crack orientation (α) on the stress intensity factors:KI /Ko andKII /Ko, beingKo = σ̄yy
√
πa. (b) Convergence study

on KI (α = 60o) andKII (α = 60o).

15



Figure 11: Influence of the size of the crack (L/a) and the crack orientation (α) on the electric resistance changes for both: electrostatic and
piezoresistive models. In this figure,Ro is the electric resistance of the undamage plate.

(a) (b)

Figure 12: Electric potential (φ) [V] distribution forL/a = 5, φo = 0 V, φ1 = 10V and the crack orientations: (a)α = 0o and (b)α = 45o.
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Figure 13: Influence of the crack permittivity conditions (κc/κm) and the crack orientation (α) on the electric resistance changes.

4.1.2. Resistance changes: influence of the electric permittivity crack conditions
It is also important to consider the crack-face electric permittivity conditions. Namely permeable, impermeable

and semipermeable crack conditions are next considered. The crack permittivity is designated asκc and its values
oscillate betweenκc ≈ 0 (i.e., impermeable crack conditions) andκc ≈ κm (i.e., perfectly permeable crack conditions),
beingκm the electric conductivity of the undamaged and the unstrained plate.

For the damaged plate withL/a = 3, Fig.13 shows the influence of the crack permittivity conditions (κc/κm) and
the crack orientation (α) on the electric resistance ratio (R/Ro), beingRo the electric resistance of the undamaged
plate. We can observe how the electric permeability of the crack is another parameter that determines the electric
resistance of the plate. The more impermeable crack face conditions are, the greater is the electric resistance observed
in the crack. This is easily observed in Fig.14, where the electric potential distribution are presented for L/a = 5,
α = 45o and the crack permittivity conditions: (a)κc/κm = 0.0001 and (b)κc/κm = 0.5.

4.1.3. Resistance changes: two cracks configurations
To conclude the stationary crack analysis, we next analyze whether the present methodology could identify more

than one defect, i.e., could distinguish between a single horizontal crack and two horizontal cracks. For this purpose,
the two horizontal cracks configuration sketched in Fig.15 is considered. Both cracks have the same semilenght (a2)
and their location is defined byδx, i.e., the horizontal distance between the crack tips, andδy, i.e., the vertical distance
between them. In this case, impermeable crack-face electric permittivity conditions are considered:κc = 0 and the
value of both cracks size parameter is:L/a2 = 5. The same material properties as in the previous examples are
adopted for the plate. Only electrical behaviour is considered in this example, while the piezoresistive behaviour of
the material is not modeled in this case, once checked its lowinfluence on the results for stationary crack configuration
(as Section4.1.1illustrates)

Influence of the relative position between both cracks (i.e., δx andδy) on the electric resistance (R2cracks) is studied.
In order to see the difference between the electric resistance with one single cracked domain, the electric resistance
ratio R2 cracks/R1 crack is presented in Fig.16, whereR1crack is the electric resistance computed for a single cracked
domain whose crack semilength isa1 = 2a2.
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(a) (b)

Figure 14: Electric potential (φ) [V] distribution forL/a = 5, φo = 0 V, φ1 = 10 V andα = 45o crack permittivity conditions: (a)κc/κm = 0.0001
and (b)κc/κm = 0.5.

Figure 15: Location of two cracks in a MWCNT/epoxy composite plate.
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Figure 16: Influence of the relative positions (δx,δy) of the two cracks on the electric resistance.

We can observe in Fig.16 how the electric resistance ratio (R2 cracks/R1 crack) is equal to one, whenδx = 0 and
δy = 0. However, important differences are observed when|δx| > 0 and/or |δy| > 0. For instance, let us observe the two
cases showed in Fig.17, where the electric potential (φ) distribution as a function ofδy/a2 = {0,0.5,2} is presented for
δx = 0 in Fig.17 (a) andδx/a2 = 0.5 in Fig.17 (b). Whenδx = 0, the greaterδy is, the lower is the electric resistance
observed. The same behaviour is observed for|δx| > 0. However, different resistances are observed between|δx| > 0
and|δx| < 0. This could allow us to correlate the crack configurations with the recorded electric resistance changes.

4.2. Crack-growth monitoring
This section presents two examples where the virtual crack-growth monitoring is developed. The first example

considers a plate with an interior crack, under imposed vertical displacements. The second examples studies a three-
point bending problem with an initial traction-free crack at the middle of the bottom edge of the specimen. Both
analyses consider the same material, a MWCNT/epoxy composite with a 0.5% weight content of MWCNTs (see
Table2).

4.2.1. Cracked plate
The crack-growth analysis is applied on a MWCNT/epoxy composite square (2L × 2L) plate with an interior

inclined crack (see Fig.18 (a)). The value of the plate length isL = 0.1 m, the initial semilength of the crack is
ao = 0.01 m and two angles are considered:α = 0o andα = 45o. The specimen is subjected to imposed vertical
displacements (¯uy) on the upper edge of the domain. For the electrical problem,the electrodes position in the plate
presents the same configuration as it was described in Fig.7 (b), withφo = 0 V andφ1 = 10.

The numerical simulations are performed under plane stressand electrical impermeable crack permittivity con-
ditions, considering the very fine mesh presented in Fig.18 (b). The election of the mesh has been done taking into
account the convergence study presented on Fig.19, where the plate response diagrams are presented. Fig.19(a)
shows the resultant reaction force (F/Fo) on the lower face of the plate (y = −L) versus the vertical displacement on
the upper face of the plate (i.e.,uy/uo at y = L). 19(b) shows the crack extension (a/L) versus the vertical displace-
mentuy/uo aty = L. The displacement is presented relative to the imposed vertical displacement,i.e.,uo = ūy, and the
reaction force (F) is presented divided by the theoretical reaction on the undamaged plate:Fo = EAuo/2L.
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δy/a2 = 0

δy/a2 = 0.5

δy/a2 = 2

(a) (b)

Figure 17: Electric potential (φ) [V] distribution as a function ofδy/a2 = {0, 0.5,2} for: (a)δx/a2 = 0 and (b)δx/a2 = 0.5.
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(a) (b)

Figure 18: (a) Cracked plate under imposed vertical displacements (ūy). (b) Mesh details for the crack-growth analysis using the XFEM.

(a) (b)

Figure 19: Convergence study on the plate response diagrams:(a ) the resultant reaction force on the lower face of the plate (F/Fo) versus the
vertical displacement on the upper face of the plate (i.e.,uy/uo at y = L), (b) the crack extension (a/L) versus the vertical displacementuy/uo at
y = L.
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The coordinate of the crack tip and the electric potential distributions are computed for every load step. The
evolution of the vertical displacements (uy) and the electric potential (φ) distributions are presented in Fig.20 (a) and
Fig. 20 (b), respectively, caused by an inclined (α = 45o) crack growth.

Additionally, the electrical resistance between the electrodes is computed, according to Eq. (30) and Eq. (31), for
every load step. Consequently, the crack tip coordinates and the electric resistance are known for every load step.
Therefore, the electric resistance changes caused by the crack growth can be analyzed. Fig.21 presents the electric
resistance changes caused by a horizontal crack growth (blue lines) and an inclined crack growth (black lines). The
evolution of the electric resistance (R) with the crack length (a) is showed in Fig.24, where the electric resistance
is presented relative to the electric resistance of the undamaged plate (Ro), i.e., whenao = 0. The crack length is
presented relative to the initial crack length (ao). Results have been computed under piezoresistive (dottedline) and
non-piezoresistive (continuous line) conditions. We can observe the same behaviour as the one observed in Section
4.1 for the stationary crack case, i.e., the influence of the piezoresistive behaviour on the electric resistance changes
is not so significant when compared with the changes induced into the electric field by the presence of the crack.

4.2.2. Three-point flexural test
This last numerical example solves the three-point bendingproblem with an initial traction-free crack at the middle

of the bottom edge of the MWCNT/epoxy composite specimen presented in Fig.22 (a). The length of the beam is
L = 0.1 m, the height of the beam isW = 0.03 m and the initial crack length inao = 0.005 m. This beam is subjected
to a prescribed displacement (¯uy) boundary condition which is applied at the center of the topedge of the beam.
Regarding the electrical boundary conditions on the specimen, Fig.22 (b) shows the electrical boundary conditions,
being the electrodes located at both ends of the beam. Moreover, impermeable crack permittivity conditions are
considered not only in the initial crack, but also during thecrack growth.

The very fine mesh presented in Fig.22 (c) has been considered to solve both, the crack growth mechanical
problem and the electrical problem, according to Section3. Similarly to previous numerical studies, the electrical
problem is solved including the piezoresistive behaviour (PLANE-223 ANSYSelement) and the electrical (non-
piezoresistive) behaviour (PLANE-121ANSYS element). Fig.23 presents the convergence study developed on the
beam response diagrams to select the proper mesh for the studies. Fig. 23(a) shows the load deflection-curve, i.e.,
vertical reaction force (F/Fo) versus the vertical displacement (uy/uo) at x = L/2 and Fig.23(b) presents the crack
extension (a/W) versus the maximum deflection of the beam (i.e.,uy/uo at x = L/2). The deflection is presented
relative to the imposed vertical displacement,i.e.,uo = ūy, and the reaction force (F) is presented divided byFo =

48EIouo/L3, whereIo is the damage cross-section moment of inertia:Io = (W − ao)3/12. The convergence analysis
reveals the importance of selecting a fine mesh for the studies.

The evolution of the electric resistance (R) with the crack length (a) is showed in Fig.24, where the electric
resistance is presented relative to the electric resistance of the undamaged beam (Ro), i.e., whenao = 0, and crack
length, relative to the height of the beam (W). We can observe the same behaviour as it was obtained in previous
examples, i.e., the electric resistance increases with thecrack length. Moreover, the influence of the piezoresistive
behaviour on the electric resistance changes is negligiblewhen compared with the changes caused by the crack.

Finally, Fig.25presents the evolution of the electric resistance (R) with the maximum vertical displacement (uy) at
point A, until the objective value ¯uy is reached. Similarly to Fig.24, the electric resistance is presented relative to the
electric resistance of the undamaged beam (Ro). The observed electric resistance evolution in the figure reveals that the
crack does not grow monotonously with the deflection of the beam. The constant values for the electric resistance (i.e.,
the flat regions of the curve) indicates a crack growth arrestzone, whereas the increments on the electric resistance is
indicative of a crack growth, so that crack growth can be corelated with the changes in the electrical resistance of the
structure.

5. Summary and conclusions

Previous studies illustrate the potential of carbon nanotubes (CNT) as doping nano-additives that can be employed
to improve both the mechanical and electrical properties ofpolymeric materials. In this manner, the mechanical prop-
erties (tensile strength, elastic modulus and fracture toughness) of the resulting CNT reinforced composite (CNTRC)
may be significantly increased by adding low contents of CNT.Furthermore, the addition of well dispersed CNT to
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(a) (b)

Figure 20: Influence of an inclined (α = 45o) crack growth evolution on: (a) the vertical displacements (uy) [m] distribution and (b) the electric
potential (φ) [V] distribution.
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Figure 21: Electric resistance changes caused by a horizontal crack growth (blue lines) and an inclined crack growth (black lines), under piezore-
sistive (dotted line) and non-piezoresistive (continuousline) conditions.

a certain amount, induces electrical conductivity characteristics in the otherwise non-conductive polymeric matrix.
This later property has been exploited to develop self-sensing CNTRC that have the ability to correlate changes in
electrical resistivity with modifications in mechanical strain.

In this context, developing numerical tools that assist in estimating the electro-mechanical behavior of these novel
materials under the existence of crack-type damage becomescrucial. This paper has presented an XFEM-based
numerical framework to simulate how crack-growth affects both the mechanical and electrical behavior of CNTRC
materials, that is, how damage affects not only the structural integrity of the component but its self-sensing capability
as well.

To this end, the micromechanics model of the electromechanical properties of MWCNT/epoxy nanocomposites,
as previously presented by some of the authors in [36], has been first employed to obtain the equivalent (elastic and
piezoresistive) properties of the CNTRC. Subsequently, the commercial finite element software ANSYS has been
utilized to analyze crack growth by following a two-step scheme:

1) In a first step, the mechanical problem is solved by the XFEMas implemented in ANSYS-, so that the strain
state in the cracked domain is computed at each element.

2) The second step implies updating the piezoresistive properties of the elements in terms of the computed strain
field (step 1). This results into the definition of a non-homogeneous electrical conductivity problem that, there-
after, is solved using the coupled-field elements availablein the ANSYS software.

The proposed numerical scheme has been successfully applied in the paper to analyze several stationary crack and
crack-growth configurations. In particular, to characterize how the presence of cracking affects the electric potential
field measured in the plates under the electrodes configuration presented in Fig.7 (b) or Fig.22(b). Various parameters
have been considered in the analysis, like the electric permeability of the crack, the crack orientation or the severity
of the damage, i.e., the crack size. The obtained results reveal that:
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(a)

(b)

(c)

Figure 22: (a) Three-point flexural test. (b) Electrodes position in the beam. (c) Mesh details.
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(a) (b)

Figure 23: Convergence study on the beam response diagrams: (a) load deflection-curve (i.e., vertical reaction forceF/Fo versus the vertical
displacementuy/uo at x = L/2), (b) crack extensiona/W versus the maximum deflection of the beam (i.e.,uy/uo at x = L/2).

Figure 24: Evolution of the electric resistance (R) with the crack length (a). The electric resistance is presented relative to the electric resistance of
the undamaged beam (Ro) and crack length is presented relative to the height of the beam (W).
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Figure 25: Evolution of the electric resistance (R) with the vertical displacement (uy) relative toūy. The electric resistance is presented relative to
the electric resistance of the undamaged beam (Ro), whereas the vertical displacement is presented relative to the vertical displacement imposed at
the center of the top edge of the beam (¯uy).

- the lower the crack permittivity is, the better sensor efficiency is observed;

- under electrically impermeable crack-face conditions, the influence of the piezoresistive effect is negligible.
This means that the discontinuity induced in the electric field by the presence of the crack surpasses the effect
of the change in piezoresistivity provoked by the modification of the strain field due to the crack;

- electric resistance measurements are clearly sensitive to changes in the size and/or the orientation of the crack.

In summary, cracking does not only compromise the mechanical integrity of CNTRC components, but it does
also modify their strain self-sensing capabilities. Virtual crack growth monitoring can effectively be conducted by
employing the proposed numerical XFEM scheme, in order to further correlate the presence and severity of cracks
with the electric resistance measurements in CNTRC plates.
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A. Flowchart scheme

The flowchart scheme of the ANSYS implementation is presented in Fig.26. It should be noted that the three
solution steps mentioned in Section3.3are underlined in the figure.
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Figure 26: Flowchart scheme with ANSYS.

28



P
ie

zo
re

si
st

iv
it

y
 c

o
effi

ci
en

ts

CNT filler weight content [%]
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

5

10

15

20

25

30

35

40

45

Percolation

threshold 
11

 Present work


12

 Present work

Sanli et al.

Figure 27: Experimental validation of the adopted micromechanics approach to predict the piezoresistivity coefficients of MWCNT/epoxy com-
posites.

B. Experimental validation of the piezoresistive modeling

In order to demonstrate the accuracy of the micromechanics approach previously introduced in Section2.3, the
theoretical predictions of the piezoresistivity coefficients of MWCNT/epoxy composites are benchmarked against
the experimental results reported by Sanli et al. [67] in Fig. 27. Those authors characterized the strain self-sensing
properties of dog-bone shaped samples under laterally unconstrained uni-axial stretching (ε1, ε2 = ε3 = −νε1). To
do so, the piezoresistivity coefficients were identified as the slope of the linear fitting of therelative variation of
the electrical resistance of samples doped with five different CNT contents under quasi-static tensile loading. The
electrodes where located perpendicular to the direction ofthe load, thereby the reported gauge factors correspond
to λ11 in Eq. (21). In Fig. 27, both the longitudinalλ11 and transverseλ12 theoretical piezoresistivity coefficients
are presented. The model parameters are the same as those used in Section4. The close agreements between the
theoretical and the experimental results forλ11 confirm the accuracy of the adopted micromechanics approach. It
is observed in this figure that the piezoresistivity coefficients achieve maximum values at filler contents around the
percolation threshold (≈ 0.27%). Additionally, it is noted that the transverse piezoresistivity coefficientλ12 exhibits
slightly higher values than the longitudinal oneλ11 all along the whole range of filler concentrations.
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