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Highlights

– Crack face contact problem including friction is studied infractured piezoelectric mate-
rials.

– An accurate and simple 2D numerical framework and solution scheme is proposed.
– The influence of friction on the stress and electric intensity factors (SIF and EIF) is

analyzed.
– Validation with several classical benchmark engineering solutions.
– The results reveal the key importance of including frictionin the SIF and EIF computing

when crack closure occurs.

Abstract Actuators, sensors, micro- and nano-electromechanical systems and other piezo-
electirc components are generally constructed in block form or as a thin laminated com-
posites. The study of the integrity of such materials in their various forms and small sizes
is still a challenge nowadays. To gain a better understanding of these systems, this work
presents a crack surface contact formulation that includesfriction and thus makes it pos-
sible to study the integrity of these advanced materials under more realistic crack surface
multifield operational conditions. The dual boundary element method (BEM) is used for
modeling frictional crack surface contact on piezoelectric solids in the presence of electric
fields, further taking into account the electrical semipermeable boundary conditions on the
crack. The formulation uses contact operators over the augmented Lagrangian to enforce
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contact constraints on the crack surfaces. The BEM reveals to be a very suitable methodol-
ogy for these interface interaction problems because it considers only the boundary degrees
of freedom, what makes it possible to reduce the number of unknowns and to obtain accurate
results with a much lower number of elements than formulations based on the standard finite
element method (FEM) or the eXtended finite element method (XFEM). The capabilities of
this methodology are illustrated by solving some benchmarkproblems.

Keywords Piezoelectric Materials· Crack Friction· Fracture Mechanics· Contact
Mechanics· Boundary Element Method· Semipermeable Electrical Boundary Conditions.

1 Introduction

Piezoelectric materials exhibit a multifield coupling which allows for their use as actuators
and sensors in many technological sectors of current interest, such as the aerospace and
automotive industries, or the biomedical and the electronics industries. Actuators, sensors,
micro- and nano-electromechanical systems and other PE components are generally con-
structed in block form or in a thin laminated composite. The study of the integrity of such
materials in their various forms and small sizes is still a challenge nowadays [1–3].

In general, crack surface contact problems is a key aspect that should be considered to
study integrity problems [4–6]. These pioneering (analytical) works showed that, when a
closed crack is considered in an elastic material, it is necessary to know the contact con-
dition of the crack surface to avoid, for instance, physically unrealistic interpenetration of
the crack surfaces or over estimation of stress intensity factors. Moreover, the crack sur-
face roughness also alters the direction of crack propagation [7] so it influences the crack
path [8]. Consequently, several numerical methodologies have been developed to provide
engineers with computational tools to consider crack surface frictional contact in fractured
materials. Due to the extremely good accuracy that the Boundary Element Method (BEM)
presents in fracture mechanics problems, several works [9–14] have studied the influence of
contact during the last thirty years. This problem have alsobeen tackled considering other
numerical techniques like finite element (FE) formulationswith enrichment functions, i.e.,
extended FE method (XFEM)[16–19], new advanced FE strategies [15] or a scaled boundary
finite element methodologies (SBFEM) [2].

However, to the best of the authors’ knowledge, numerical framework has never been
proposed for modeling crack face frictional contact problem in fractured piezoelectric mate-
rials. The BEM has been proven as one of the more suitable numerical formulation to study
fracture in piezoelectric materials for the last twenty years [20–25]. The BEM considers
only the boundary degrees of freedom involved in this multifield problem and allows us
to obtain a very good accuracy with a low number of elements. During those years, some
boundary element based formulations proposed how to consider nonlinear electrical and me-
chanical crack face boundary conditions in fractured piezoelectric (PE) materials [26,27],
or in magneto-electro-elastic (MEE) materials [28,29], considering the crack-face electro-
magnetic boundary conditions for fracture of magnetoelectroelastic materials presented in
[30]. Although several authors have modeled the case of normal contact conditions between
crack faces [26,31,33,34], frictional contact conditionswere not considered in those works.
Moreover, recent works on mulfield materials under contact conditions [35–38] have re-
vealed the strong influence of friction on the contact pressures, stress and electric/magnetic
fields.

In this context, this work presents a crack surface contact formulation which makes it
possible to study the integrity of these advanced materialsunder more realistic crack surface
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multifield operational conditions. The dual BEM [39,40] is used for modeling frictional
crack surface contact on piezoelectric solids, in the presence of electric fields and using
a singe-domain formulation that permits to easily include the more realistic semiperme-
able electrical boundary conditions on the crack, while avoiding the need to define multiple
domains in order to incorporate the crack geometry [41]. Theformulation, based on pre-
vious works [23,26,35–37], uses the BEM for computing the elastic influence coefficients
and contact operators over the augmented Lagrangian to enforce contact constraints on the
crack surface. The capabilities of this methodology are illustrated by solving some bench-
mark problems.

The remainder of this work is organized as follows. Section 2presents the problem
description. Section 3 and Section 4 present the crack face mechanical and electrical contact
boundary conditions, respectively. The literature on BEM formulations is quite extensive,
so in Section 5 we briefly present the basic ideas of a dual boundary element formulation
to tackle fracture problems in piezoelectric materials. The discrete crack surface contact
nonlinear equations set is presented in Section 6 and the solution scheme is summarized
in Section 7. Section 8 presents the numerical results and discussion and, finally, Section 9
concludes the paper.

2 Problem formulation

Let us consider a two-dimensional, homogeneous, anisotropic and linear piezoelectric (PE)
cracked solidΩ ⊂ R

2 with boundary∂Ω (see Fig.1), in a Cartesian coordinate system(xi)
(i = 1,2). The mechanical equilibrium equations for this problem,in the absence of body
forces, and the electric equilibrium equations under free electrical charge are

σi j , j = 0 in Ω ,
Di,i = 0 in Ω ,

(1)

whereσi j are the components of Cauchy stress tensor andDi are the electric displacements.
The infinitesimal strain tensorγi j and the electric fieldEi are defined as

γi j = (ui, j +u j,i)/2 in Ω ,
Ei =−ϕ,i in Ω ,

(2)

with ui being the elastic displacement andϕ being the electric potential.
The elastic and electric fields are coupled through the linear constitutive law

σi j = ci jkl γkl −eli j El in Ω ,
Di = eikl γkl + εil El in Ω ,

(3)

whereci jkl andεil denote the components of the elastic stiffness tensor and the dielectric
permittivity tensor, respectively; andei jk are the PE coupling coefficients. These tensors
satisfy the following symmetries:ci jkl = c jikl = ci jlk = ckli j , eki j = ek ji , εkl = εlk, with
the elastic constant and dielectric permittivity tensors being positive definite.

The boundary∂Ω is divided in two disjoint parts:∂Ω = ∂Ωe∪ ∂Ωc, where∂Ωe de-
notes the external boundary and∂Ωc is the crack surface. Two partitions of the bound-
ary ∂Ωe are considered to define the mechanical and the electrical boundary conditions.
The first partition is:∂Ωe = ∂Ωu ∪ ∂Ωp, i.e., ∂Ωu being the external boundary on which
diplacements ˜ui are prescribed and∂Ωp with imposed tractions ˜pi . The second partition is:
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Fig. 1 Fractured piezoelectric domain.

∂Ωe = ∂Ωϕ ∪ ∂Ωq, being the electrical potential̃ϕ prescribed on∂Ωϕ , and the electrical
charges ˜q assumed on∂Ωq. Consequently, the Dirichlet boundary conditions are

ui = ũi on ∂Ωu,
ϕ = ϕ̃ on ∂Ωϕ ,

(4)

and the Neumann boundary conditions are given by

σi j ν j = p̃i on ∂Ωp,
Diνi = q̃ on ∂Ωq,

(5)

with νi being the outward unit normal to the boundary.
Finally, on the upper and lower crack faces (i.e.∂Ωc = ∂Ω+

c ∪ ∂Ω−
c ) self equilibrated

tractions and electric charges are considered:∆ pi = p+i + p−i = 0 and∆q= q++q− = 0.
However, aditional crack surface contact conditions have to be considered, as follows, on
∂Ωc.

3 Crack face mechanical contact conditions

In order to avoid material interpepenetration between crack-faces, the unilateral contact law
involves Signorini’s contact conditions on∂Ωc:

∆uν ≥ 0, p+ν ≥ 0, ∆uν p+ν = 0, (6)

where∆uν = u+ν −u−ν andp+ν = p+ ·ννν+
c , with ννν+

c being the unit normal on∂Ω+
c .

The normal contact constraints presented in (6) can be formulated as:

p+ν −PR+(p̂
+
ν ) = 0, (7)
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wherePR+(•) is the normal projection function (PR+(•) =max(0,•)) andp̂+ν = p+ν −rν ∆uν
is the augmented normal traction. The parametersrν is the normal dimensional penalization
parameter (rν ∈ R

+).
In general, frictional contact condition on crack surfacesshould be considered. So the

Coulomb friction restriction can be summarized as:

∆uτ =−λ p+τ , λ ≥ 0, |p+τ | ≤ µ p+ν , λ (p+τ −µ p+ν ) = 0, (8)

whereλ is an scalar,µ is the friction coefficient,∆uτ = u+τ −u−τ andp+τ = p+ ·τττ+c , with τττ+c
being the unit tangential vector on∂Ω+

c .
The frictional contact constraints (8) can be also formulated using a contact operators

as:

p+τ −PEρ (p̂
+
τ ) = 0, (9)

wherep̂+τ = p+τ − rτ ∆uτ is the augmented tangential traction,rτ being the tangential dimen-
sional penalization parameter (rτ ∈ R

+), andPEρ (•) : R −→ R is the tangential projection
function defined as

PEρ (p̂
+
τ ) =

{
p̂+τ if |p̂+τ |< ρ,
ρ(p̂+τ /|p̂+τ |) if |p̂+τ | ≥ ρ, (10)

with ρ = µ p+ν , as it was defined in Eq. (7).

4 Crack face electrical contact conditions

The electrical boundary conditions on the crack-faces∂Ωc can be defined in the general
form as

q+ = κc∆ϕ/∆uν , (11)

where∆ϕ = ϕ+−ϕ−. In Eq. (4),κc is the electrical permittivity of the medium between
the crack faces and it is defined by the product of the relativepermittivity of the considered
medium (κr ) and the permittivity of the vacuum (κo = 8.85·10−3 C/(GVm)): κc = κrκo.
So, in contrast to the impermeable or the permeable crack-face boundary conditions, this
expression presents a non-linear relation between mechanical displacements, electrical po-
tential and electrical charges.

In order to consider both semi-permeable crack-face conditions and crack-face contact
conditions, Eq. (4) is redefined asq+ = κ̃∆ϕ/∆uν ,

κ̃ =

{
κc if ∆uν > 0,
∞ if ∆uν = 0.

, (12)

According to (12), the electrical contact condition shows that when there is no contact (i.e.
crack opening displacements∆uν > 0) on∂Ωc, the normal component of the electric dis-
placement field isq+ = κc∆ϕ/∆uν , ∂Ωc being the permittivity parameter that allows us
to impose permeable, impermeable or semipermeable crack face conditions. Nevertheless,
when there is contact (i.e.,∆uν = 0, and consequentlỹκ = ∞), electric potentials on the
crack faces are the same:∆ϕ = 0.
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5 Boundary integral equations

The dual formulation for the BE solution of crack problems considers both the extended
displacement (EDBIE) and the extended traction (ETBIE) boundary integral representations
to overcome the difficulty of having two coincident boundaries∂Ω+

c and∂Ω−
c . In this way,

the EDBIE is applied for collocation pointsξξξ on ∂Ωe and on either of the crack faces, say
∂Ω−

c , to yield

cIJ(ξξξ )uJ(ξξξ )+−
∫

∂Ω
p∗IJ(x,ξξξ )uJ(x)dS(x) =

∫

∂Ω
u∗IJ(x,ξξξ )pJ(x)dS(x), (13)

wherex is a boundary point,uJ is the extended displacement vector (see Barnett & Lothe
representation [42])

uJ =

{
u j J 6 2
ϕ J = 3,

(14)

pJ is the extended tractions vector

pJ =

{
p j J 6 2
q J= 3,

(15)

cIJ depends on the local geometry of the boundary∂Ω at the collocation pointξξξ ; u∗IJ andp∗IJ
are the extended displacement fundamental solution and theextended traction fundamental
solution at a boundary pointx due to a unit extended source applied at pointξξξ , respectively
[20] .

Consequently, the ETBIE is applied for collocation pointsξξξ on the other crack surface,
∂Ω+

c ,

cIJ(ξξξ )pJ(ξξξ )+ =
∫

∂Ω
s∗IJ(x,ξξξ )uJ(x)dS(x) =−

∫

∂Ω
d∗

IJ(x,ξξξ )pJ(x)dS(x), (16)

to complete the set of equations to compute the extended displacements and tractions on
∂Ω . In Eq. (16)s∗IJ andd∗

IJ are obtained by differentiation ofu∗IJ andp∗IJ [20], as

d∗
IJ(x,ξξξ ) =−Ns(ξξξ )CsIKru

∗
KJ,r(x,ξξξ ), (17)

s∗IJ(x,ξξξ ) =−Ns(ξξξ )CsIKr p
∗
KJ,r(x,ξξξ ), (18)

with Ns(ξξξ ) being the outward unit normal to the boundary at the source point and

CiJKl =





Ci jkl , J,K = 1,2
eli j , J = 1,2;K = 3
eikl , J = 3;K = 1,2
−εil , J,K = 3,

(19)

where the lowercase (elastic) and uppercase (extended) subscripts take values 1, 2 and 1, 2,
3, respectively. Furthermore, Symbols−∫ and=

∫
in Eqs. (13) and (16) stand for the Cauchy

Principal Value (CPV) and the Hadamard Finite Part (HFP) of the integral, respectively.
When the cracks are mechanically and electrically selfequilibrated, i.e.,∆ pI = p+I +

p−I = 0 on∂Ωc (the superscripts+ and− stand for the upper and lower crack surfaces), it
would be enough to apply the EDBIE for collocation pointsξξξ on ∂Ωe and the ETBIE for
collocation pointsξξξ on either side of the crack, say∂Ω+

c , to yield

cIJ(ξξξ )uJ(ξξξ )+−
∫

∂Ωe

p∗IJ(x,ξξξ )uJ(x)dS(x)+−
∫

∂Ω+
c

p∗IJ(x,ξξξ )∆uJ(x)dS(x)=
∫

∂Ωe

u∗IJ(x,ξξξ )pJ(x)dS(x)

(20)
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pI (ξξξ )+ =
∫

∂Ωe

s∗IJ(x,ξξξ )uJ(x)dS(x)+ =
∫

∂Ω+
c

s∗IJ(x,ξξξ )∆uJ(x)dS(x) =−
∫

∂Ωe

d∗
IJ(x,ξξξ )pJ(x)dS(x)

(21)
Eqs. (20) and (21) yield a complete set of equations to compute the extended displacements
and tractions on∂Ωe and the extended crack opening displacements∆uI = u+I −u−I on∂Ωc.
In Eq. (21), as previously discussed in Ref. [23], the free term cIJ has been set to 1 because
of the additional singularity arising from the coincidenceof the two crack surfaces.

6 Crack surface contact discrete equations

Numerical evaluation of the ETBIE requiresC1 continuity of the displacements. As in pre-
vious works [23], discontinuous quadratic elements with the two extreme collocation nodes
shifted towards the element interior are used to mesh the cracks. The asymptotic behavior
of the extended displacements near the crack tip is modelledvia discontinuous quarter-point
elements. For the rest of the boundaries, continuous quadratic elements are employed. A
detailed justification of the discretization procedure canbe found in [23].

A collocation procedure on boundary integral equations (20) and (21) leads to the fol-
lowing system of equations:Ax = F, where the boundary conditions have been imposed and
all the unknowns have been passed to vectorx, to yield

[
Axe A∆uc A∆ϕc Apc Aqc

]





xe

∆uc

∆ϕϕϕc
pc

qc





= F. (22)

In expression (22),xe collects the nodal external unknowns (i.e. the nodal unknowns on
∂Ωe), ∆uc and∆ϕϕϕc collect the nodal crack opening displacements and electricpotentials,
respectively, onxc, pc contains the normal and tangential nodal contact tractions(i.e. pν
andpτ ) andqc contains the nodal electric charges. MatricesAxe, A∆uc, A∆ϕc, Apc andAqc

are constructed with the columns of matrices yielded from the numerical integration of Eqs.
(20) and (21).

The electric charge on every contact nodei can be expressed in terms of the electric
potential according to the electrical contact condition (4), as:(qc)i = −κ̃((∆uν)i)(∆ϕϕϕc)i .
So equation (22) can be written as

[
Axe A∆uc Ã∆ϕc Apc

]




xe

∆uc

∆ϕϕϕc
pc





= F, (23)

beingÃ∆ϕc = A∆ϕc − κ̃κκ(∆uν)Aqc andκ̃κκ(∆uν) a diagonal matrix, i.e.:

κ̃κκ(∆uν) = diag( κ̃((∆uν)1), · · · , κ̃((∆uν)i), · · · , κ̃((∆uν)Nc) ) . (24)

Finally, the mechanical contact restrictions (7) and (9) are defined on every contact node
i as:

(pν)i −PR+( (pν)i − rν(∆uν)i ) = 0, (25)
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(pτ)i −PEρ ( (pτ)i − rτ(∆uτ)i ) = 0, (26)

wherepν andpτ contain the normal and tangential contact tractions of every contact node
i and∆uν and∆uτ contain the normal and tangential nodal crack opening displacements,
respectively.

7 Solution method

The nonlinear equations set (23–26) can be solved using different solution schemes accord-
ing to [43,44]. In this work, the system (23–26) will be solved using the Uzawa’s method.
This iterative solution scheme is presented in [45,43,46,47] and more recently in [48–50],
for contact and wear problems, and in [35,37], for multifieldPE materials in contact.

To compute the variables on load step(k), z(k) = (x(k)e ,∆u(k)
c ,∆ϕϕϕ(k)

c ,p(k)
c ), when the

variables on previous instantz(k−1) are known:

(I) Initialize z(0) = z(k−1) and iterate using (n) index.
(II) Solve:

[
Axe Auc (Aϕc − κ̃κκ(p(n)

ν )Aqc)
]




xe

∆uc

∆ϕϕϕc





(n+1)

=−Apc p(n)
c + F̃, (27)

whereF̃ = F− (κ̃κκ(n)/∆ΦΦΦ (n))Aqc, κ̃κκ(n) is a diagonal matrix that depends on the con-
tact status of every contact node and∆ΦΦΦ (n) is a diagonal matrix defined as:∆ΦΦΦ (n) =

diag((∆ϕϕϕ(n)
c )1, · · · ,(∆ϕϕϕ(n)

c )i , · · · ,(∆ϕϕϕ(n)
c )Nc).

(III) Update contact tractions and contact status for everycontact nodei:

(p(n+1)
ν )i = PR−( (p

(n)
ν )i + rν(∆u(n+1)

ν )i ), (28)

(p(n+1)
τ )i = PEρ ( (p

(n)
τ )i − rτ (∆u(n+1)

τ )i ), (29)

whereρ = µ|(p(n+1)
ν )i |. So if (p(n+1)

ν )i < 0, nodei is assumed to be in contact.
(IV) Update diagonal matrix̃κκκ(n+1) as a function of the contact status computed in previous

step.

(V) Compute the errorΨ(z(n+1)) =max{‖∆u(n+1)
c −∆u(n)

c ‖, ‖∆∆∆ϕϕϕ(n+1)
c −∆ϕϕϕ(n)

c ‖, ‖p(n+1)
c −

p(n)
c ‖}.

(a) If Ψ(z(n+1))≤ ε, the solution for the instant (k) is reached, soz(k) = z(n+1).

(b) Otherwise, return to (II) evaluating:p(n)
c = p(n+1)

c andκκκ(n) = κκκ(n+1).

After the solution at step (k) is reached, the solution for the next step is achieved by setting:
z(0) = z(k) and returning to (I).

8 Numerical examples

The previously sketched formulation offers a suitable framework to study the influence of
crack face frictional contact and nonlinear electric boundary conditions on fracture response
of piezoelectric materials. In order to validate the formulation and to understand the influ-
ences of these factors, several benchmark problems have been studied.
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Fig. 2 Crack in an infinite domain under far field uniform stress (σ22) and electric displacements (D2).

Table 1 Material properties of PZT-4, from [20].

Elastic coefficients (GPa)
C11 139.00
C12 74.30
C22 115.00
C66 25.60
Piezoelectric coefficients (C/m2)
e21 −5.2
e22 15.1
e16 12.7
Dielectric constants (C/(GVm))
ε11 6.461
ε22 5.62

8.1 Crack in unbounded domain

The first example corresponds to a finite straight crack alongthex1-directionin an infinite
PZT-4 plane under a uniform far field stress or electric displacement (see Fig. 2).This ex-
ample allows us to check the formulation under nonlinear electrical crack face boundary
conditions. The material constants are shown in Table 1, theaxis of symmetry of the mate-
rial being thex2-axis.Moreover, to mesh the crack, five quadratic elements are considered,
crack tip elements being discontinuous quarter-point elements.

The obtained crack opening displacements in normal direction and electric potential
increment along the crack due to an uniform electric displacements loading:D2 = 1C/m2

are shown in Fig.3(a) and Fig.3(b), respectively.Results in Fig.3 are presented in a non-
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dimensional form,∆uν,o and ∆ϕo being the crack opening displacements and the elec-
tric potential increment, respectively, obtained in [30] for impermeable crack-face electric
boundary conditions. It can observed how the permittivity parameterκc clearly affects the
crack opening displacements and the electric potential increment along the crack. More-
over, the results are compared with the known exact analytical solution obtained by [30] for
ideal crack-face electric boundary conditions (i.e., impermeable and permeable conditions),
showing an excellent agreement. The extended crack openingdisplacement components∆uI

for the ideal crack-face electric boundary conditions can be written as

∆uI = 2YIJ (σ∞
J2−σc

J2)
√

a2−x2
1, (30)

whereσ∞
J2 are the applied extended stresses,σc

J2 are the extended stresses on the crack
surfaces andY is the compliance (Irwin) matrix, as defined in [23]. In the expression above,
the repeated indexes implies summation.

Same conclusions were observed in Fig.4 for an uniform traction loading:σ22 = 1GPa,
where it may be observed a perfect agreement between the numerical and the analytical solu-
tions for impermeable and permeable crack-face electric boundary conditions.The increase
of ∆uν caused by the increase of theκc value in Fig.4(a) is due to the fact that both the me-
chanical and the electrical fields are fully coupled, as it may be observed in the compliance
(Irwin) matrix.

To illustrate the convergence of the proposed solution scheme under nonlinear crack-
face electrical boundary conditions, convergence studieshave been included for the case of a
Griffith crack in a piezoelectric material. Fig.5 shows the relative error evolution (Ψ(z(n))/Ψ(z(o)))
with the number of iterations for several meshes and different values of the permittivity pa-
rameter (κc). Results reveal that the proposed methodology is robust and accurate. While the
number of iterations is hardly affected by the number of elements used to mesh the crack, it
is however significantly affected by the severity of the nonlinear crack-face electrical bound-
ary conditions: a low number of iterations have been observed for fully permeable or fully
impermeable electrical conditions, whereas a greater number of iterations are required for
convergence when semipermeable conditions hold on the crack-faces.

The influence of the permittivity parameterκc on extended stress intensity factors:KI ,
KII andKIV , for the uniform electric displacements loading is presented in Fig.6. According
to [51,23], those extended stress intensity factors are determined from the nodal values from
the extended crack opening displacements across the crack,as




KII

KI

KIV


=

√
π
8r̄

Y−1




∆u1

∆u2

∆ϕ


 , (31)

where, in this case, the ¯r is the distance between the crack tip and the extreme node of the
quarter-point elements andKIV denotes the electric displacement intensity factor.

Finally, results in Fig.6 correspond to the crack subjectedto an uniform remote electric
displacements loading and depicts the intensity factors. Consequently, when the permittivity
parameterκc increases, i.e., when perfect permeable crack-face boundary conditions are
considered, the extended stress intensity factors tend to zero.

8.2 Inclined crack under compression

In order to validate this crack surface frictional contact formulation, another benchmark
problem is solved. In this example, the formulation is applied for a mathematical degenerate
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(a)

(b)

Fig. 3 Influence of the permittivity parameterκc on: (a) the crack opening displacements and (b) the electric
potential increment along the crack due to an uniform electric displacements loading:D2 = 1C/m2.
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(a)

(b)

Fig. 4 Influence of the permittivity parameterκc on: (a) the crack opening displacements and (b) the electric
potential increment along the crack for uniform traction loading: σ22 = 1GPa.
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Fig. 5 Error evolution for several meshes and different values of the permittivity parameter (κc).

Fig. 6 Influence of the permittivity parameterκc on the intensity factorsKI , KII andKIV for the uniform
electric displacements loadingD2 = 1C/m2.
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Fig. 7 A crack under compression in an unbounded domain.

case, i.e., elastic and isotropic material. Fig. 8.2 shows asingle crack of length 2a in an
unbounded domain and subjected to a compressive remote stressσ (i.e., σ11 = −σ ). The
analytical solution of this plane strain state is availablein [4] for comparison. The mode-I
stress intensity factor (SIF)KI = 0, as the crack surfaces remain closed under compression.
However, the analytical solution for the mode-II SIF is

KII = σ
√

πasinα(cosα −µ sinα) (32)

whereµ can be written as a function of the friction angle (φ ): µ = tan(φ).
The material constants employed are: Young’s modulusE = 70 GPa and Poisson’s

ratio ν = 0.2. Results are presented in Fig. 8, where the normalizedKII (KII /σ
√

πa) is
showed for various inclination angles (α) of the crack and different friction angles (φ =
0o,15o,30o,45o). An excellent agreement between analytical and numericalsolutions can
be observed.In this example, nonlinear crack-face mechanical boundaryconditions (i.e.
frictional contact) are considered for electroelastic problems. The convergence ratios ob-
served for the Uzawa scheme in these examples are analogous to the ratios observed in [50]
for frictional contact problems using the BEM in elastic problems.

After validating the frictional contact methodology, thisformulation is now applied for
a piezoelectric material whose properties are presented inTable 1.In order to study only the
influence of frictional contact conditions on cracked piezoelectric materials, Section 8.2 and
Section 8.3 show two benchmark problems presented in the literature, where impermeable
crack face boundary conditions (i.e.,κc = 0) are considered. Fig.9 shows the normalized
stress (KI , KII ) and electric (KIV ) intensity factors at the tip of the crack due to remote ten-
sion for different crack orientation angles (α) and different friction angles (φ ). The extended
stress intensity factors (ESIF), i.e.,KI , KII andKIV , were computed according to (31).Due
to the mechanical and electrical fully coupled compliance (Irwing) matrix, the crack-face
tangential slip (∆uτ ) causes not null ESIFs values. The ESIFs in Fig.9 show the same be-
havior that has been observed in Fig.: when the crack angle (α) is equal or greater than the
friction angle (φ ), i.e.,α ≥ φ , the crack-face is subject to stick conditions. So the values of
the ESIFs become null.Results show again the enormous influence of friction on the stress
and electric intensity factors and, consequently, on the integrity of these systems. Therefore,
modeling friction is mandatory in order to obtain valid results.
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Fig. 8 Numerical results vs. analytical solutions for normalizedKII (KII /σ
√

πa) for various inclination an-
gles (α) and different friction angles (φ ).

Table 2 Material properties of PZT-4, from [21].

Elastic coefficients (GPa)
C11 139.00
C12 74.30
C22 113.00
C66 25.60
Piezoelectric coefficients (C/m2)
e21 −6.98
e22 13.84
e16 13.44
Dielectric constants (C/(GVm))
ε11 6.0
ε22 5.47

8.3 Branched crack

This example considers a branched crack in an unbounded plane, whose geometry is shown
in Fig.10. The material is PZT−4 and the material constants are given in Table 2. The axis
of symmetry of the material is thex2−axis and the main crack is along thex1−axis with
a branch with an angleθ initiating from one of the crack tips. Five quadratic elements are
considered to mesh the main crack. Two equal length elementsare used for the branch when
its length isb= a/10 and nine elements whenb= a/2. Crack tip elements are discontinuous
quarter-point. The crack is under a uniform far field stress along the y-axis and the ESIF are
evaluated in accordance to Eq. (31).
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(a)

(b)

(c)

Fig. 9 Normalized stress (KI , KII ) and electric (KIV ) intensity factors at the tip of the crack due to remote
tension for different crack orientation angles (α) and different friction angles (φ ).
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Fig. 10 A branched crack under uniform traction in an unbounded domain.

Crack branching is a common phenomenon in the fracture of brittle materials. However,
the multifield coupling makes crack branching more complex for piezoelectric materials
than for elastic materials. One of the pioneering works thatstudied this problem was pub-
lished by Xu and Rajapakse [21]. They presented a theoretical framework which made it
possible to study crack branching on piezoelectric materials. For instance, they presented
the values of the ESIF versus the branch angleθ for different lengths of the branch when
an uniform traction along thex2−axis was applied. However, in those cases, no frictional
contact conditions were considered on the crack faces. So, crack faces interpenetration were
observed for some values ofθ and consequently, over-or-under estimated values of the ES-
IFs were computed.

Fig.11 shows the normalized stress intensity factorsKI at the tip of a branched crack
due to remote tension. A comparison between the boundary element solution including fric-
tionless contact and the analytical solution from [21] for different branched crack orientation
angles (θ ) and branch lengths (b) is considered. We can observe negative values ofKI on [21]
whenθ is greater than certain value (i.e.,θ > 90o for b= a/10 andθ > 80o for b= a/2).
Nevertheless,KI tends to zero for those branch angles when contact is considered. So crack
closure is observed whenθ > 100o for b= a/10 andθ > 90o for b= a/2.

Next, the influence of frictional contact on the ESIFs is studied in detail for a branch
lengthb= a/2. Fig.12 presents the normalized stress (KI , KII ) and electric (KIV ) intensity
factors at the tip of a branched crack due to remote tension for different branch orientation
angles and different friction angles (φ = 0o,15o,30o,45o). Fig.12(a) shows the normalized
stress intensity factorKI at the tip of a branched crack. As we would expect, friction does
not affectKI , only θ and the normal contact constraints. However,KII andKIV are clearly
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Fig. 11 Normalized stress intensity factorsKI at the tip of a branched crack due to remote tension:Kb
I /Ko,

beingKo = σ
√

πa. Comparison between the boundary element solution includingfrictionless (µ = 0) contact
and the analytical solution from [21] for different branched crack orientation angles (θ ) and branch lengths
(b).

affected not only by the normal contact constraints, but also by friction.Fig.12(b) shows how
the normalized stress intensity factorsKII is affected by crack closure on the branch when
θ > 90o. Moreover, significant reduction onKII can be observed as the friction coefficient
increases when compared to [21]. Same situation is presented on Fig.12(c) for the electric
intensity factorsKIV . However, in this case, the effect of contact is significantly stronger, i.e.,
a non-smooth peak onKIV is observed for the crack branching closure aroundθ ≈ 90o. This
is due to the combined effect of crack closure (i.e. crack-face contact) and the impermeable
electrical crack-face boundary conditions (i.e.κc = 0). Once again, the influence of friction
and the need to incorporate this phenomenon in the model is clear from Fig.12(b) and 12(c).

8.4 Curved crack in unbounded domain

Finally, to show the use of the current procedure for curved crack geometries, this section
presents a curved crack in an unbounded domain (see Fig.13),where crack-face frictional
contact conditions are considered. The crack region is under a uniform far field stress (σ22=
1 GPa) along the material and crack axis of symmetry. The material properties are the same
as in the previous example and they were presented in Table2.Several cracks for elastic
stress loading are analyzed, with semi-anglesθ between 0 and 120 degrees.

The computed values of the normalized ESIFsKI , KII andKIV are shown versusθ in
Fig.14. Similarly to [23], the ratioχ between the dielectric constantε22 and the piezoelectric
constante22 has been used to represent a dimensionless value ofKIV . Computed values of
KI andKII are shown in Fig.14(a) and Fig.14(b), respectively, whereas the obtained values
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(a)

(b)

(c)

Fig. 12 Influence of frictional contact on the normalized stress (KI , KII ) and electric (KIV ) intensity factors
at the tip of a branched crack due to remote tension for different branched crack orientation angles (θ ), i.e.
Kb

I /Ko, Kb
II /Ko andKb

IV /Ko, beingKo = σ
√

πa.
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Fig. 13 Curved crack in unbounded domain.

of KIV are shown in Fig.14(c). These results show the great influence that crack curvature
has on the ESIFs. It may be observed that large values ofθ (θ ≥ 90o) imply crack closure.
Moreover, Fig.14(b) shows a significant reduction onKII when the friction coefficient in-
creases. As we mentioned in the previous example, the electric intensity factorKIV presents
a non-smooth peak due to the crack closure aroundθ ≈ 90o.

9 Conclusions

A dual boundary element formulation has been presented and further applied to study frac-
ture phenomena in PE materials. The formulation avoids unrealistic assumptions usually
considered for the boundary conditions on the crack surfaces. In particular, it accounts for
both surface frictional contact between crack faces and electrically semipermeable bound-
ary conditions. The accuracy and validity of the proposed formulation have been verified by
comparison of the obtained numerical results against some classical benchmark problems,
exhibiting an excellent agreement with the analytical solution available in the literature. The
numerical examples presented reveal the key importance of including friction in the model
in order to accurately compute the stress and electric intensity factors in situations where
crack closure occurs.Finally, we would like to emphasize that, although the papercontains
only examples for crack problems in infinite domains, the boundary element formulation is
also valid for bounded domains.
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(a)

(b)

(c)

Fig. 14 Influence of frictional contact on the normalized stress (KI , KII ) and electric (KIV ) intensity factors
at the tip of a curved crack due to remote tension for differentcurved crack angles (θ ).
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