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Abstract 
Purpose 
To develop a new optimization algorithm to carry out true dose painting by numbers (DPBN) 
planning based on full Monte Carlo (MC) calculation.  
Methods 
Four configurations with different clustering of the voxel values from PET data were proposed. 
An optimization method at the voxel level under Lineal Programming (LP) formulation was 
used for an inverse planning and implemented in CARMEN, an in-house Monte Carlo 
treatment planning system.  
Results 
Beamlet solutions fulfilled the objectives and did not show significant differences between the 
different configurations. More differences were observed between the segment solutions. The 
plan for the dose prescription map without clustering was the better solution. 
Conclusions 
LP optimization at voxel level without dose-volume restrictions can carry out true DPBN 
planning with the MC accuracy. 
 
Keywords: 
Dose painting by numbers, dose painting by contour, linear programming optimization, Monte 
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Introduction 
 

Nowadays, tumor heterogeneity is one important factor to be considered in radiation 
therapy. Functional information, as positron emission tomography (PET) or functional 
magnetic resonance imaging (fMRI), provides us image data associated to tumor progression 
and potential recurrence after therapy. Moreover, recent studies are based on the hypothesis 
that boosting volumes with high standard uptake value (SUV) on the pre-treatment 18F-fluoro-
deoxyglucose (FDG)-PET scan potentially increases local control while maintaining 
acceptable toxicity levels [1-4].  

The strategy for delivering a non-uniform dose distribution with a prescription based on 
functional information from medical images is called dose painting (DP) [5, 6]. There are two 
approaches to carry out the DP strategy: threshold-based dose painting by contours (DPBC) 
[7] and voxel-based dose painting by numbers (DPBN) [8]. In DPBC, sub-volumes within the 
tumor are differentiated in the functional images in order to be treated with an escalated dose 
level. In DPBN, an individual dose prescription is assigned to each voxel within the tumor, 
varying according to the voxel value in the functional image. These individual doses are 
usually represented in a dose prescription map. 

Tumour sub-volumes can be implemented in commercial treatment planning systems 
(TPS) to calculate a planning treatment with an escalated dose. Simultaneous integrated 
boost (SIB) is usually the used technique to achieve this dose. However, as far as we know, 
planning of DPBN at voxel level is not supported by any commercial TPS [9]. Some DPBN 
approximations have been made, by introducing sub-volumes as targets [10] or dose maps 
with prescription to the voxel as objective function [9], but always by using dose-volume 
based optimization algorithms.   

The purpose of this work is to present a new optimization algorithm based on LP to 
carry out true DPBN planning. This algorithm is able to implement directly constraints to 
voxels instead of volumes. Furthermore, we propose full Monte Carlo (fMC) calculation in our 
model as the adequate tool for planning so demanding dose prescription maps as those 
involved in DPBN. 

 
Material and Methods 
 
Imaging protocol and image analysis 
 

Images were acquired with a Siemens Biograph mCT 64 PET/CT scanner. FDG-PET 
images were reconstructed with OSEM3D (Ordered Subset Expectation Maximization in three 
dimensions) algorithm, with 2 iterations and 8 subsets. A post-reconstruction 2 mm Gaussian 
filter was used for dataset smoothing. A 200 x 200 image-matrix with a pixel size of 4 mm and 
a slice thickness of 3 mm was obtained. CT-based attenuation correction method was 
applied.  

A case of non-small cell lung cancer was selected to study our optimization approach 
for DPBN planning.  Breathing movements associated to this disease site were not taken into 
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account in order to achieve solutions only dependent on the prescription dose scheme 
proposed as input data for our model. The case was selected due to the current consensual 
use of FDG-PET for the characterization and staging of non small cell lung carcinoma 
(NSCLC). Also, the patient presented two spatially separated adenopathies, being a complex 
scenario to evaluate the behavior of the new optimization algorithm.  

DICOM data were imported in CARMEN TPS [11, 12], an in-house fMC treatment 
planning system controlled through a MATLAB platform. This software was specifically 
developed to allow previous image analysis to the optimization process. A primary tumor 
volume was located in the CT images. Co-registered PET/CT images were also evaluated by 
using the platform in order to determine the extension of the disease. Another adenopathy 
was then included together with the PET corrected primary tumor in the planning target 
volume (PTV). In addition, the organs at risk (OARs) were defined. PET and CT data were 
interpolated to a grid with 256 x 256 pixels per slice, with a 1.9 x 1.9 x 3 mm voxel size.  

 

 
In order to make an evaluation consistent with previous published works based on 

commercial planning systems [10, 13], SUV data from PET images were semi-automatically 
segmented for clustering. Regarding considerations about essential robust optimization in the 
case of DPBN related to noise in PET [14, 15], for this study, a specific algorithm based on 
Affine Propagation (AP) was implemented in CARMEN platform by utilizing a novel intensity 
affinity metric within the affinity propagation clustering framework [16]. For thresholding 
purpose, Kernel density estimation (KDE) uses Gaussian kernel but it lacks local adaptation 
in the PET images histogram. To improve local adaptation, an adaptive KDE is considered by 
means of the smoothing properties of linear diffusion processes. Also, due to the flexibility of 
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the AP method, the implemented algorithm generates a novel affinity function that best suited 
PET image segmentation effectively, where the radiotracer uptake regions is distributed 
widespread over the region. In this way, this algorithm is able to reflect the diffuse and 
multifocal nature of the uptake regions, due to uncertainties in object boundaries, low 
resolution and the inherent noise in PET images. Thus, random errors due to the PET images 
registration process is reduced becomes our approach in a robust optimization process 
regarding this kind of uncertainties. Different combinations of parameters were selected to 
obtain several levels of clustering. The maximum number of different levels distinguished by 
this algorithm was 7 (DPBN7 in figure 1). In addition, 5 and 3 clustering levels of the SUVs 
were generated (DPBN5 and DPBN3 in figure 1, respectively). The average SUV of each 
level was assigned to every voxel of this level. Unlike other works [10], the clusters of voxels 
were not considered as structures or sub-volumes within the target, since each voxel was 
treated as an independent entity during the planning process for all configurations. 
Furthermore, in order to put into value our model, it was also proposed the true option without 
clustering for planning study exclusively at the voxel level (TOTAL-DPBN in figure 1).  

 
DPBN prescription maps 

 
The dose prescription maps were generated with the same size of the PET/CT 

calculation grid, assigning zero values to those voxels located out of the PTV. For the voxels 
within the PTV, it was applied a linear relationship between the prescribed dose and SUV, 
based on previous work [17]. In this way, the dose value assigned to each voxel is linearly 
escalated from the minimum to the maximum prescription dose values. 
 A minimum dose value of 68 Gy, to be delivered in 41 fractions, was assigned, in order 
to maintain a standard prescribed dose to the conventional target defined only by means of 
the use of CT images. The maximum prescribed dose was 82 Gy.  

 
Optimization procedure for Monte Carlo planning 
 

Intensity modulated radiation therapy (IMRT) based on an inverse planning was carried 
out. A novel algorithm based on previous work by our group [11] has been developed, 
including an optimization method at the voxel level under Lineal Programming (LP) 
formulation (1), since the usual restriction of dose to volumes makes no sense for DPBN. The 
optimization consists of minimizing an objective function (min o.f.), in order to fulfill a set of 
constraints. 
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  subject to         (1) 

 
is the number of beamlets.  and  represent the penalization factors for 

the upper and lower dose in each voxel of the target, and  is the penalization factor for 
the dose in each voxel of the OARs. These factors are applied to the overdose and 
underdose vectors,  and   respectively.  and  are matrices with the individual dose 

coefficients and weights corresponding to each beamlet, respectively. and 
represent the required maximum and minimum dose thresholds for each voxel of the 

target.  represents the maximum dose for each voxel of the OARs.  and  
indicate the number of voxels of the target and the total number of voxels implicated in the 
optimization problem, respectively. 

The use of LP makes it possible to distinguish individually each voxel within the 
involved volumes and allows us to simplify the initial problem by means of a selection of 
voxels in a specific region. This selection can be also a representative randomized sample of 
the whole volume with the subsequent reduction on computation time. 

On the other hand, faced with the quadratic methods [18], linear programming has 
clear advantages regarding geometric uncertainties to develop a robust optimization process. 
With LP it is possible imposing specific constraints to the voxels clearly implied in the 
uncertainties. In the case of DPBN, these voxels can be those involved in the few differences 
found in the direct comparison between functional images along the treatment. These 
considerations for the robustness would increase significantly the number of beamlets and 
voxels involved in the optimization, but the problem would still be dealt, as it was 
demonstrated by Chan et al. [19] in their study on robust optimization in LP for IMRT. This 
feature has not been implemented yet in our algorithm, because more data are needed for a 
robust formulation. 

The planning was calculated to be delivered by a 6 MV photon beam of an Elekta 
Axesse linac with a multileaf collimator width of 4 mm at isocenter. A phase-space data 
(PSD), previously simulated with the EGSnrc Monte Carlo user code BEAMnrc [20, 21], was 
divided into small rectangular regions, in order to generate a grid of finite-sized beamlets for 
an inverse optimization process. This process is able to find the corresponding weights to 
produce a fluence or intensity map for each beam. The beamlets dose contribution (BDC) to 
every voxel of the PTV was calculated using a modified version of the DOSXYZnrc user code 
[22], named BEAMDOSE [23], implemented in CARMEN platform.  The weights of these 
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BDCs were optimized by using the LP formulation (1). The corresponding fluence maps were 
subsequently sequenced with an in-house specific sequencer [24] which considers photon 
interactions with the xMLC based on previous full MC simulations. Besides the obtained 
segments from the sequencing process, a set of direct apertures 
method was added for all incidences in order to ensure the PTV coverage.  

The PSD files corresponding to the segments were obtained with BEAMnrc at the 
bottom of linac head. Dose contributions of these segments in the voxelized PET/CT were 
calculated with BEAMDOSE. Finally, the optimal weights representing the final monitor units 
(MU) for each segment were optimized by the same LP formulation.  

All MC simulations were distributed on a cluster of four 12-core 2.19 GHz CPUs AMD 
Opteron, in a parallel architecture. A grid calculation consisting on 256 × 256 voxels per slice 
was used, together to a number of beamlets around 1500 for a very high resolution dose 
calculation able to assess the feasibility of our approach. 
 
Visualization and evaluation of results 
 

The main objective of DPBN process is to be more ambitious by delivering a 
heterogeneous dose to the target, so the homogeneous coverage of the PTV dose cannot be 
an adequate criterion to evaluate the quality of the treatment planning [6]. Also, a true DPBN 
approach should not manage volumes or structures for evaluation of planning, such it is 
usually done in clinical practice with conventional dose-volume histogram (DVH) and isolines 
analysis.  

Quality index (Q) of the plan has been the evaluation method most used for DPBN 
strategy [10, 25]. This index is defined as the ratio between the obtained dose with the 
planning process and the wished dose for each voxel of target. It is graphically represented 
by a cumulative quality index volume histogram (QVH). The ideal QVH is a step function with 
Q=1 for all the voxels of the target. Q0.95-1.05 value was evaluated for the treatment plans, 
defined as the fraction of the voxels of the PTV receiving 95% - 105% of the prescribed dose. 
In order to evaluate the target and the OARs together (that is, in the same QVH), the dose 
received by each OAR and the corresponding dose toxicity value was divided by the lowest 
prescribed dose value, obtaining a representation relative to this dose value. Therefore, 
OARs dose toxicity values could be also represented in the same histogram. A visualization of 
spatial distribution of Q values was also developed for analyzing axial slices, in order to 
evaluate potential overdosage and underdosage zones in target. 

 
Results and discussion 
 

The total planning time spent ranged from 6 to 8 hours. The necessary times spent for 
each stage in the whole planning process were around the following: 30 minutes for beamlets 
dose calculation; 30 minutes for beamlets weights optimization; 180 minutes for segments 
dose calculation and 200 minutes for segments weights optimization. It is necessary to 
remark that the optimization is a sequential process so it is not suitable for parallelization. For 
this work, a demanding calculation was considered in order to link the results exclusively to 
the approach, leaving aside the level of resolution, which could be relaxed for more efficient 
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process in a clinical application scenario.  
Table 1 shows the resulting parameters of the planning process for the four 

configurations. The Q0.95-1.05 values increased when the dose prescription maps were more 
heterogeneous, both for beamlets and segment solutions. Higher heterogeneity in dose 
prescription maps leaded the high gradients become slow dose transitions between the 
neighboring clusters, simplifying the optimization problem. The needed segments number to 
achieve the dose distributions was lower for the configurations with lower clustering level, 
being the monitor units number high for all cases. 

 
Table 1. Characteristics of the plans obtained for the cases with different clustering levels of voxels (DPBN3, 
DPBN5 AND DPBN7), and the case without any cluster of voxels (TOTAL DPBN). 

Study Q0.95-1.05 (beamlets) Q0.95-1.05 (segments) Segments number MU/fraction 

DPBN3 93.3% 86.9% 235 2337 

DPBN5 97.7% 91.8% 235 2286 

DPBN7 98.1% 95.6% 291 2157 

TOTAL-DPBN 97.8% 95.7% 351 2057 

 
Figure 2 shows the QVHs corresponding to the 4 proposed configurations for DPBN 

approach planned by our model. Theoretical beamlet solutions (dashed lines) and deliverable 
segment solutions (solid lines) are represented. Beamlet solutions did not show significant 
differences between the 4 configurations, what indicated a correct behavior of the proposed 
LP formulation. More differences can be observed for the 4 segment solutions, what was 
related to the different contribution of beam modifiers to achieve each solution and the 
associated secondary radiation. The dose to the OARs increased considerably regarding the 
beamlet solutions due to the scattering, transmission and dose leakage from the MLC. 
However, these undesirable doses remained under the corresponding toxicity levels for the 
OARs. For all configurations, the segmentation process led to a group of segments which 
reproduced efficiently the fluence maps, and therefore, achieving Q values for the target close 
to 1 in most of voxels, as can be observed in Table 1. Unexpectedly, the larger the proposed 
number of clusters, the better solution was achieved. Even more, the plan with the dose 
prescription map without clustering was slightly the better solution.  

 For all configurations, the conventional target was adequately covered with the 
standard prescribed dose by means of segments solutions, but a larger volume of body 
received lower doses, due to a higher secondary radiation than usual. This effect is strongly 
dependent on the collimation device able to deliver the plan, and it was not observed for all 
the beamlets solutions. The role of beam modifiers had to be more relevant to achieve so 
demanding heterogeneous dose distributions. As an example, dose distribution for the 
TOTAL-DPBN configuration is shown in figure 3 (top).  

 Figure 3 (bottom) represents the spatial distribution of the Q values for the same case, 
showing an excellent agreement between the planned dose and the prescribed dose. Only a 
low number of voxels appeared underdosed, and none of the voxels appeared overdosed.  
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Conclusions 
 

A treatment planning process based on full Monte Carlo simulation and under LP 
optimization can solve the DPBN approach with accuracy and following a robust optimization 
process. The results showed that DPBN technique works as a guide for the optimization 
process by setting the necessary gradients for achieving the heterogeneous solution 
according to the dose prescription map. The final result for delivery is strongly dependent on 
the used collimation system device. Planning to be delivered by MLC could generate a dose 
spillage too high to the body. Other models of MLC with lower interleaf transmission could 
achieve better solutions than obtained in this work. Efforts are being made to obtain segments 
with a larger area and lower shield, as well as to perform a DPBN planning for VMAT, where 
the dose spillage could be reduced. Anyway, future works will be focused to extend our model 
to tomotherapy device, CyberKnife system or hadrontherapy to analyze the degeneration 
degree from beamlet solution inherent to each delivery system.  
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Table 1
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Figure 3
Click here to download high resolution image


