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Abstract
Topological representations of binary digital images usually take into consideration different
adjacency types between colors.Within the cubical-voxel 3Dbinary image context, we design
an algorithm for computing the isotopic model of an image, called (6, 26)-Homological
Region Adjacency Tree ((6, 26)-Hom-Tree). This algorithm is based on a flexible graph
scaffolding at the inter-voxel level called Homological Spanning Forest model (HSF). Hom-
Trees are edge-weighted trees in which each node is a maximally connected set of constant-
value voxels, which is interpreted as a subtree of the HSF. This representation integrates
and relates the homological information (connected components, tunnels and cavities) of the
maximally connected regions of constant color using 6-adjacency and 26-adjacency for black
and white voxels, respectively (the criteria most commonly used for 3D images). The Euler-
Poincaré numbers (which may as well be computed by counting the number of cells of each
dimension on a cubical complex) and the connected component labeling of the foreground
and background of a given image can also be straightforwardly computed from itsHom-Trees.
Being ID a 3D binary well-composed image (where D is the set of black voxels), an almost
fully parallel algorithm for constructing the Hom-Tree via HSF computation is implemented
and tested here. If ID hasm1×m2×m3 voxels, the time complexity order of the reproducible
algorithm is near O(log(m1+m2+m3)), under the assumption that a processing element
is available for each cubical voxel. Strategies for using the compressed information of the
Hom-Tree representation to distinguish two topologically different images having the same
homological information (Betti numbers) are discussed here. The topological discriminatory
power of the Hom-Tree and the low time complexity order of the proposed implementation
guarantee its usability withinmachine learningmethods for the classification and comparison
of natural 3D images.
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1 Introduction

Nowadays, there is a strong interest in integrating computational topological notions and
methods to enhance both classical machine learning algorithms and deep learning models
[1, 2]. This interest is motivated, on the one hand, by the power of topological invariants and
representations for capturing global intrinsic properties of data sets and, on the other, by their
high degree of understandability and learning for both humans and computers.

A classic scheme in image understanding algorithms usually includes two important ini-
tial steps: Segmentation and region connectivity representation. The first one deals with
partitioning the initial image into regions, and in the last one a new data structure is cre-
ated specifying the connectivity relations between them. In turn, two fundamental types
of connectivity representations are distinguished in digital image processing attending to
the smallest component of the structure: those in which the n-xel is the minimum unit of
connectivity information (adjacency information) and those that work at inter-n-xel level
(incidence information). In adjacency-based representations, the most commonly used data
structure is that of a graph (see, for example, [3]). These models depend on the type of
adjacency used between n xels. For cubical-n-xel n-dimensional digital images, usually 2n
and (3n − 1)-adjacencies are considered. For incidence-based representations, abstract cell
complexes (ACC) are frequently considered as supporting data structures (see, for instance,
[4]). In fact, since an nD digital image is naturally represented by an n-dimensional ACC and
a graph can be seen as a 1-dimensional ACC, graph-based connectivity representations can
be seen as strategies for simplifying topological information by dimensionality reduction. In
this sense, classical region connectivity representations based on graphs may be considered
as appropriate tools for extracting partial topological information from nD digital images
(considered as ACCs) generally involving 0-dimensional holes (connected components) and
(n − 1)-holes (hypercavities).

One of the most notorious examples of graph-based connectivity representations is the
region adjacency graph (RAG), which is based mainly on two connectivity properties among
sets of pixels: adjacency and inclusion (see, for instance, [5, 6]). λ-RAG can be considered
as a connectivity model using λ-adjacency between n-xels. For nD images based on square
pixels, 2n-RAG and (3n −1)-RAG are the most common representations. From a topological
viewpoint, a region can be seen as an appropriate “cell complex hull” of the set of n-xels that
forms such a region. If the color palette of the image consists of two values (black=1 and
white=0), the pairs of different adjacency types (2n, 3n − 1) or (3n − 1, 2n) for black and
white pixels are generally used for the RAG. For example, the nodes of an (2n, 3n −1)-RAG
(in fact, a RAG tree) represent ACCs (also called topological regions) generated by black
2n-connected components (CCs) and white (3n − 1)-CCs. A duality topological property
is exhaustively used in nesting or inclusion relationships between regions: to identify an
(n − 1)-dimensional hole of a topological region generated by a λ-CC of one color with a
0-dimensional hole of a region generated by a λ′-CC of the other color that is “included” or
“surrounded” by the first (with λ, λ′ ∈ {2n, 3n −1}, λ′ �= λ). In the case of 3D binary images,
the (6, 26) -RAG tree and the (26, 6) -RAG tree are the most common representations of
region connectivity. The RAG representation for a set of well-known topological objects is
shown in Fig. 1.
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Fig. 1 The RAG and the Hom-Tree representation of four simple objects immersed in a 3D digital image
(white background): A sphere with two outer handles, a sphere with two inner handles, a sphere with one outer
and one inner handle, and a torus

In [6],Chapter 2,Rosenfeldwrites: “The topologyof ann-dimensional (2n, 3n−1)-picture
is defined by its RAG Tree. Two pictures are topologically equivalent if their RAG Trees are
isomorphic". Restricted to binary 2D images, the RAG tree contains all the homotopy-type
information of the foreground (black object according to our convention), but in higher
dimensions, this is, in general, not true (see [7]). In [8], a new representation called Hom-
Tree that improves the RAG-tree-based topological discrimination of 3D binary images is
presented.

Definition 1 [8] Let ID be a 3D binary image. The (6, 26)-Homological Tree of ID , denoted
by (6, 26) − HomTree(ID), is an edge-weighted (6, 26)-RAG Tree. The weight of an edge
(R, S), being R and S two nested regions of the Hom-Tree (and, consequently, one is nec-
essarily a black 6-CC and the other one is a white 26-CC), is the number of 1-dimensional
homological holes “shared” by R and S as ACCs.
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Only partial topological calculations related to the Hom-Tree representation are provided
in [8]. Here, we demonstrate that this unique representation can be efficiently computed from
a complete andflexible homotopymodel of ID (considered as a cubicalACC inter-voxel level)
called Homological Spanning Forest (or HSF, for short) (see [9, 10]).

The ability to isotopically differentiate two homologically equivalent volumes of theHom-
Tree representation is illustrated in the following. A simple example is shown in Fig. 1 with
several digital spheres having handles in various placements. Figure 1 shows the continuous
versions of these volumes and their respective Hom-Trees. Let us note that these volumes as
ACCs have the same Betti numbers, or, in other words, they are homologically equivalent.
All of them have one single connected component, two handles, and one cavity. In all these
cases, their RAG coincides, but theirHom-Tree representations are different from each other.
Let us note that the number of 1-dimensional homological holes shared by two regions is
different from the number of tunnels of the digital frontier between them. These examples
show how the proposed representation represents a step forward in improving the topological
classification of 3D digital images.

However, the ability to topologically recognize 3D binary images or simple volumes of
the Hom-Tree is limited. For instance, given a sphere connected to two handles (one interior
and one exterior) and a digital torus, both have the same Hom-Trees and they are actually
topologically different 3D objects (see Fig. 1).

An almost fully parallel algorithm for computing theHom-Tree of awell-composed binary
image ID is designed and implemented here. Let us now introduce the “well-composed”
concept. A (black) volume D is well-composed if any 26-CCs of D is also its 6-CC. A
3D binary image ID is well-composed if D is well-composed. In that case, (6, 26)-Hom-
Tree coincides with (26, 6)-Hom-Tree. Figure 2 shows critical configurations of cubes that
(modulo reflections and rotations) may not occur within D so that it is well-composed (see
[11]).

The theoretical time complexity order of the proposed method is near O(log(m1 +m2 +
m3)), beingm1×m2×m3 the dimensions of ID .We divide here its computation in four differ-
ent Algorithms 1–4, each one including a line in which its theoretical time complexity order
is detailed. A parallel computational method for obtaining the Euler-Poincaré characteristic
of D (both with 6-adjacency and 26-adjacency) via the construction of the (6, 26)-Hom-Tree
of ID is also highlighted. Finally, the potential applications of the Hom-Tree representation
to 4D data in the field of computational and artificial intelligence are envisioned.

The paper is organized as follows. The state of the art is reviewed in Section 2. In
Section 3 some basic concepts needed for understanding this paper and an overall descrip-
tion of the algorithm that extracts the HSF and the Hom-Tree are introduced. Section 4 fully
describes the parallel implementation of the previous representations for well-composed
images. Section 5 exposes some examples of Hom-Tree representations for synthetic images
and shows some preliminary results and future applications within the medical image and
machine learning context. The paper concludes in Section 6.

Fig. 2 Critical configurations of
cubes (modulo reflections and
rotations) that may not occur
within a 3D volume so that it is
well-composed
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2 Related works

Some of the most relevant conceptual topological representations applied to digital images
can be classified into three groups:

• Models based on graphs (region adjacency graphs, image pyramids, component tree,
alpha trees, tree of shapes, image pyramid [12], etc.) ;

• Models based on combinatorial topology (discrete Morse theory [13], combinatorial
maps [14], Reeb graphs [15], skeletons [16, 17], Homological Spanning Forest model
[18, 19], etc.);

• Models based on algebraic topology (Effective Homology [20], Algebraic-Topological-
model [21, 22], Persistent Homology [23, 24], etc.).

All of these models are constructed using an abstract, algebraic, or geometric scenario for the
given digital image, called embedding model, allowing image topological calculus. The most
common embedding models for digital images are based on polyhedral tessellations, lattices,
graphs, and ACCs. Polyhedral representations of nD (n ≥ 2) digital images based on cubical
complex decomposition and subsequent descriptions of the RAG tree for the adjacency pair
(2n, 3n−1) are given, for instance, in [25–27]. TheACC embeddingmodel for digital images
has been extensively studied in [28].

Given a binary 3D image ID (where D corresponds to the set of black voxels) and an
adjacency pair (λ, λ′) (being λ, λ′ ∈ {6, 26} and λ �= λ′), a new edge-weighted graph
structure called (λ, λ′)-Homological Region Adjacency Tree (Hom-Tree, for short) was firstly
theoretically defined in [8]. This structure, seen as an unweighted graph, coincides with the
classical RAG tree and contains all the λ-homological information of the foreground D
and all the λ′-homological information of the background, both defined by their respective
analogous cell complexes. The present paper is the first work in which a parallel algorithm
for computing the Hom-Tree of a well-composed binary 3D image is designed and fully
implemented.

Let λ be 6 or 26. The λ-Euler-Poincaré characteristic or number of a binary 3D image
ID (fixing a priori the adjacency type λ for the foreground set of n-xels D) is one of the most
important topological invariants in digital topology andmanymethods have been proposed for
its computation. For a 3D image ID , the λ-Euler-Poincaré number can be globally expressed
by three Betti numbers [25], the formula is as follows:

χ(ID) = β0 − β1 + β2

where, β0 is the number of maximally λ-connected foreground set (called also objects), β1

is the maximal number of nonseparating cuts (also called tunnels) and β2 is the number of
cavities or voids that the foreground object has. The Euler-Poincaré number can be locally
calculated by the formula:

χ(ID) = n0 − n1 + n2 − n3

where nk is the number of cells of dimension k (k = 0, 1, 2, 3) of any abstract cell complex
“geometrically modeling” the foreground using λ-adjacency type. In the next section, cubical
cell complexes analogous of this kind are described. Numerous methods of Euler-Poincaré
number computation based on local measures are reported in the literature (see, for example,
[29, 30]). On the other hand, the number of methods for computing Euler-Poincaré number
based on Betti numbers is much smaller and is essentially based on homology calculation
([31]). From Definition 1 of the Hom-Tree, the following result immediately follows:
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Theorem 1 [8] Let ID a binary 3D image. From the (6, 26)-Hom-Tree representation of
ID, it is possible to straightforwardly compute the 6-Euler-Poincaré number of ID and the
26-Euler-Poincaré number of II\D.

3 Understanding topological calculus for digital images

The topological calculus proposed here rests on three abstract image models that respectively
shape the input, the functional process and the output of any topological image processing
operation: the embeddingmodel, the functionalmodel and the conceptualmodel. The embed-
ding imagemodel is determined by the notion of abstract cellular complexes, which naturally
allow topological aspects to be worked on. The functional model is based on the concept of
dynamical abstract cell complexes, which are nothing but the “wire skeleton” of the ACC
input. And, finally, homological image information is straightforwardly attainable from any
Homological Spanning Forest representation of the image. This nonunique conceptual model
can be derived from the functional one thanks to an exhaustive process of erasing incidence
relationships but preserving global connectivity at homological level.

3.1 Embedding and functional models

First, we provide a slightly modified version of the definition of the classical relational ACC
notion (see [4] for a survey). Mainly, the ACC bounding relation is specified by a function
for which the “transitivity” is not assumed.

Definition 2 The triple K = (K , dms, B) is a dynamical abstract cell complex (DACC, for
short) if it is endowed by the following elements:

• Structure. K = ⋃
q≥0 Kq is a (non-negative integer) graded set of elements (cells), such

that Kp ∩ Kq = ∅, for p �= q;
• Dimension. A dimension function dms : K → N ∪ {0} defined by dms(c) = q for

c ∈ Kq ;
• Function. A bounding function B : K × K → N ∪ {0}, satisfying that if B(c′, c) �= 0,

then dms(c′) = dms(c) − 1.

In the case of considering a transitive bounding relation instead of a bounding function
B, then we retrieve the notion of the classical ACC [32]. Given a DACC K = (K , dms, B),
it is possible to construct an ACC, denoted by ACC(K) = (K , dms, B), having the same
structure K and dimension dms as that of K, and with a transitive bounding relation generated
by the rule: (c′, c) ∈ B if B(c′, c) �= 0. Reciprocally, given an ACC K = (K , dms, B), its
associated DACC, that is, DACC(K) = (K , dms, B), can be constructed having the same
structure and dimension as that of K and a bounding function defined by B(c′, c) = 1 if
(c′, c) ∈ B and dms(c′) = dms(c) − 1, and zero otherwise. The following result follows
immediately:

Proposition 1 Let K = (K , dms, B) be an ACC. The Euler-Poincaré characteristic of K
coincides with that of DACC(K).

Let us define the boundary set ∂K(c) of a q-cell c ∈ Kq as follows: ∂K(c) = {c′ ∈
Kq−1|B(c′, c) = 1}. Analogously, we can define the coboundary set of a cell.
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Definition 3 Ageometric or homologically coherentDACCK = (K , dms, B) is aDACCsuch
that: (a) If B(c′, c) �= 0, then B(c′, c) = 1, ∀c′, c ∈ K; and (b)

∑
c′,c′′∈K B(c′′, c′)∗ B(c′, c)

is an even number, ∀c ∈ K. Let us note that ∗ is the operation of the product for N∪{0}. A
geometric ACC K is an ACC such that its associated DACC(K), is geometric.

More concretely, we deal here with the classical geometric ACC analogous Cell(ID) of
a 3D binary digital image ID based on cubical voxels. Cell(ID) is an ACC in which the
physical cubical voxels (volumes), their faces, edges and vertices are the different dimension
cells of Cell(ID) (see [33]). Its bounding function counts the incidence relations between
two (geometrical) cells. Its associated DACC, DACC(Cell(ID)), can be expressed under a
node-weighted graph format, called the connectivity graph G(Cell(ID)) of ID . It is a graph
having as nodes the cells of Cell(ID) and as edges the un-ordered incidence relations between
cells with dimensions differing in one.

The topological coordinate system used in this paper for the connectivity graph
G(Cell(ID)) of an image ID having dimensions m1 ×m2 ×m3, is based on a matrix encod-
ing of ID . Let us first define (N∪{0}) + 1

2 as the set of rational numbers of the kind n + 1
2 ,

where n ∈ N ∪ {0}. The 3-cells (physical voxel) are encoded by the vectors (x1, x2, x3),
1 ≤ xi ≤ mi , xi ∈ N, i = 1, 2, 3. The 2-cells are encoded by vectors (x1, x2, x3), where two
coordinates are natural numbers, and the other one belongs to (N∪ {0}) + 1

2 . The 1-cells are
encoded by vectors (x1, x2, x3), where one coordinate is a natural number, and the other two
belong to (N ∪ {0}) + 1

2 . Cells 0 are encoded by vectors (x1, x2, x3), where all coordinates
belong to (N∪{0}) + 1

2 . Figure 5 (left) shows an example of such a system.
Depending on the type of adjacency chosen (6 or 26), given a set of voxels V of ID , we

define the following associated ACCs:

• The 26-adjacency cell complex hull Cell26(V ) = (Cell26(V ), dim26, B26), which is the
ACC such that its 3-dimensional cells are the physical voxels of V and its 2, 1 and 0-cells
are the corresponding faces, edges and corners of the voxels of V . Its dimension function
applied to the cell c is denoted by dim26(c). Its bounding relation satisfies (c′, c) ∈ B26

iff c′ has a lower dimension than c and they are incident.
• The 6-adjacency cell complex hull Cell6(V ) = (Cell6(V ), dim6, B6) which might be
seen as a “dual” ACC to Cell26(V ). Here, the 0-dimensional cells are the physical voxels
of V , its 1-cells are specified by a pair of 6-adjacent volumes, its 2-cells are 4-tuples of
volumes (v1, v2, v3, v4) such that vi and v j (i ≤ j) are 6-adjacent if i − j = 3 mod 4,
and its 3-cells are 8-tuples of volumes forming a cube. Its dimension function applied to
the cell c is denoted by dim6(c). Its bounding relation satisfies (c′, c) ∈ B6 iff c′ has a
lower dimension than c and they are incident.

Note that Cell6(V ) is a cellular subcomplex of Cell26(V ) (analogously, for the corre-
sponding DACC grids) and that Cell(ID) = Cell26(V ) where V is the set of voxels of ID . A
well-known classical result can immediately be derived:

Proposition 2 Let ID a binary 3D image, being D the foreground set of voxels. The 6-
Euler-Poincaré characteristic of ID coincides with the Euler-Poincaré characteristic of the
geometric ACC Cell6(D). The 26-Euler-Poincaré characteristic of ID coincides with the
Euler-Poincaré number of Cell26(D)

It is clear thatG(Cell(ID)) is the connectivity graph for both Cell6(ID) and Cell26(ID). An
(unoriented) edge c, c′ of G(Cell(ID)) with dim26(c) = dim26(c′) − 1 (resp. of Cell6(ID))
generates a primal (resp. dual) vector (c, c′) of Cell26(ID) (resp. of Cell6(ID)). In this way,
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both ACCs (and their associated DACCs) can be interpreted as symmetric systems, in the
sense that if a cell c is connected to another c′ in G(Cell(ID)) by a directed path p (sequence
of primal and dual vectors), then c′ is also connected to c by a path having the same edges
as p, but changing primal for dual vectors and vice versa.

In fact, the main DACCs of interest for the (6, 26)-HomTree representation are
DACC(Cell6(D)) and DACC(Cell26(ID \ D)).

3.2 Conceptual model

The graph-based HSF framework computes homological information of objects embedded
in a digital image ID , which are ACCs generated by maximally connected sets of voxels
having the same color. This framework is mainly based on the construction of a smaller
(exclusively in terms of vectors involved) asymmetric system (that is, a directed graph) within
the connectivity graph of ID , preserving cell path-connectivity [34]. Let us emphasize that
although directed graphs are needed for the construction of an HSF, graphs belonging to an
HSF representation are non-directed. From now on, we will refer to homological properties
of voxel connected components, as to the properties of their associated ACCs.

The goal of this topological graph-based data structure is to save cell-nodes (given at
inter-voxel level) and their incidence relationships within G(Cell(ID)), in such a way that
only graph transformations over the structure are needed to correctly and efficiently retrieve
global topological information of both the foreground D and the background ID \ D (for
example, connected components, region’s Euler-Poincaré number, etc.). More precisely, a
Homological Spanning Forest model (HSF, for short) on a (6, 26)-image ID is a graded set
of graphs with cell-nodes of dimension k and (k + 1) (k = 0, 1, 2) such that the topological
properties of ID can be easily deduced from them.

Definition 4 [9] An HSF model of a geometric ACC K = (K , B, dim) of dimension n is
formed by a set of connected incidence graphs involving k and (k + 1)-cells, being 0 ≤ k ≤
n − 1 and satisfying the following conditions:

(a) HSF-graphs of the model involving 0 and 1-cells are trees with the maximal number of
0-cells connected through the minimum possible number of 1-cells. In other words, the
number of 0-cell nodes in such a tree is equal to the number of its 1-cell nodes plus one.
The set of such graphs is denoted by (0, 1)-HSF of K.

(b) HSF graphs involving k and (k + 1)-cells (1 ≤ k ≤ n − 1) are graphs (non necessarily
trees) having the maximal number of k-cells (that are not involved in the (k − 1, k)-HSF
graphs of the model) connected through the minimum possible number of (k + 1)-cells.
The set of such graphs is denoted by (k, k + 1)-HSF of K.

An HSF-model of an ACC is obviously a subgraph of its associated DACC.
Here, we are mainly interested in a special kind of HSF models:

Definition 5 An (6, 26)-frontier-adapted HSF for a binary 3D image ID is an HSF model of
ID , such that restricted to ACCs Cell6(D) and Cell26(ID \ D) they are true HSF-models of
them.

In light of this definition, an HSF model of the ACC Cell6(D) (respectively, Cell26(D))
allows a straightforward computation of the 6-adjacency (resp. 26-adjacency) Euler-Poincaré
characteristic of the image ID . Themain theoretical result of this paper can therefore be stated.

Theorem 2 Let ID be a binary 3D image. Its (6, 26)-Hom-Tree model can be constructed
based on the computation of any (6, 26)-frontier-adapted HSF model of ID.
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Sketch of the proof of Theorem 2:
We only give here a sketch of the proof, and we refer to Section 4 for design and imple-

mentation details of the different algorithms involved in the Hom-Tree construction. Here,
we simply outline the main ideas that support the construction of the Hom-Tree structure
from an HSF representation of the image, both globally and locally.

Global computation Given a binary image ID with a set of black 6-CCs {R1, ..., Rb} and a
set ofwhite 26-CCs {S1, . . . , Sw}, the output of a frontier-adaptedHSFconstruction algorithm
gives, for each black orwhite connected component R, a set of graphs HSF(R) that covers all
cells of R at the inter-voxel level. Each graph of this kind has as nodes k-cells and (k+1)-cells
(k ≥ 0) and is denoted as the (k, k + 1)-graph.

A (k, k+1)-graphG is essential ifχ(G) = �{k-cell nodes of G}−�{(k + 1)-cell nodes of G} �=
0 (where � means cardinality of a set). Respectively, G is inessential when χ(G) is equal to
0. For each (black or white) connected component R of ID , there is exactly one essential
(0, 1)-HSF(R) tree (its 0-cells must be connected through a set of 1-cells since the object
is connected) and the Euler-Poincaré characteristic χ(R) of R as cell complex (that is,
χ(R) = �{0-cells in R} − �{1-cells in R} + �{2-cells in R} + �{3-cells in R}) agrees with
the alternate sum

1 −
∑

G∈(1, 2)-graph of R

χ(G) +
∑

G∈(2, 3)-graph of R

χ(G)

Taking advantage of the duality properties of the homological characteristics of the black
6-CCs and white 26-CCs in 3-dimensional ambience, we can deduce a new isotopic invariant
of ID , by adding weights to the edges of the classical rooted RAG tree of ID . This tree
corresponds to the (6, 26)-Hom-Tree, and the weight of the edge (Ri , S j ) is given by the
number of tunnels that the CCs Ri and S j share [8].

Local computation Placing vectors (c, c′) (where c and c′ are a k-cell and a (k + 1)-cell
respectively) on the essential HSF-graph in a maximal way and satisfying that any cell
belongs to at most one vector (see [35]), we are able to represent homological characteristics
of ID at connectivity graph level. Hence, we can define critical cells as those that remain
unpaired within the essential HSF (k, k + 1)-graphs, which must evidently have dimension
k. Let us limit ourselves to say that the combinatorial homology features of any region R
are intimately associated to the number of critical cells of its essential HSF sub-graphs on
a frontier-adapted HSF. In particular, the number of tunnels of R agrees with the number
of critical 1-cells existing in the (1, 2)-HSF(R) sub-graphs. This particular region-growing
strategy at inter-voxel level is sequentially guided by two criteria:

(a) Merging through the boundary: A k-cell c (cell with dimension k, k ≥ 1) and all the
(k − 1)-cells of ∂K(c) are included as nodes in a HSF-graph G of dimension (k − 1, k)
(composed by (k − 1)-cells and k-cells) if there is an odd number of cells of ∂K(c)
belonging to G.

(b) Region color similarity: Any cell is endowed with one color and a color-dependant
dimension. Therefore, region color similarity at the inter-voxel level is prioritized.

Having said that, the idea to construct a frontier-adapted HSF is based on the cellular
technique of crack transport (see [18]). During the HSF construction process, the (k, k + 1)
-edges can be classified into primal and dual (k, k + 1)-vectors, so that each HSF graph can
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be interpreted as a directed graph. In this context, when we say that a cell falls into a critical
one, we mean that they belong to the same essential HSF graph. A k-crack represents the
boundary relations of a (k + 1)-cell expressed under vector format. Given a k-cell c and a
(k + 1)-cell c′, with c being in the boundary of c′, a primal vector is a (k, k + 1)-vector
connecting the tail c with the head c′. The opposite edge, a (k, k + 1)-vector connecting c′
with c, is a dual vector. Thus, a k-crack contains exactly one primal vector (c, c′) and as
many dual vectors (c′, c′′) as k-cells are in the boundary of c′, being c′′ �= c.

In order to correctly adapt the HSF computation algorithm to the computation of theHom-
Tree (see step (d) in Fig. 3), we first need to work on the auto-dual cubical grid, specifying
the contribution of each black and white set C of eight mutually 6-adjacent voxels to the
global computation of an HSF of ID and of its corresponding CCs. For instance, if we have
a set C of this type with only one white voxel, its contribution in terms of cells to a white
26-CC is of: one 0-cells, six 1-cells, eleven 2-cells and seven 3-cells; and its contribution in
terms of cells to a black 6-CC is reduced to one 0-cell. Therefore, as mentioned before, each
inter-voxel element of the auto-dual cubical grid is endowed with a unique color and with a
color-dependent dimension, before constructing an HSF of ID .

The rest of steps in Fig. 3 are to be detailed in Section 4.
Let us note that the cells of an inter-voxel frontier cubical complex between two regions

Ri and S j shape a connected boundary surface that is the geometric intersection of the set
of physical voxels of Ri with the ones of S j . Finally, boundary and coboundary operations
need to be applied to the critical cells of the different black 6-CCs and white 26-CC, so that
the Hom-Tree representation is obtained. Firstly, black critical 0-cells (CCs) are paired by
duality to white critical 2-cells (cavities) and vice-versa; then critical 1-cells of black 6-CC
(tunnels) are paired by duality with critical 1 cells of its neighboring white 26-CC. After the
first step, the edges of the RAG tree of ID are determined. After the second one, the weights
of the edges are computed. Note that it is therefore correct to speak of tunnels shared by a
black 6-CC and a white 26-CC. In fact, these tunnels are shared by their associated image
ACCs.

A straightforward consequence of Theorem 2 is the following one:

Corollary 1 There is an algorithm for computing the 6-adjacency (resp. 26-adjacency) Euler-
Poincaré number of ID based on the computation of any (6, 26)-frontier-adapted HSF model
of ID.

Fig. 3 Main steps of the Hom-Tree computation via HSF. The computation of a frontier-adapted HSF is the
last step performed by Algorithm 4. The Hom-Tree can be straightforwardly extracted once the HSF structure
has been obtained (see Section 4)

123



Parallel Homological Calculus... 87

4 Parallel generation of Hom-Tree

The main steps of the complete construction process of Theorem 2 are shown in Fig. 3.
The proposed algorithm is divided into four steps: (a) Local MrSF (Morse Spanning Forest)
construction; (b) Global MrSF construction; (c) Frontier-adapted HSF; and (d) Hom-Tree
generation. These steps are detailed in the following subsections. Due to the fact that imple-
menting the general case would imply a more complex treatment and development, we
restrict ourselves here to detail the computation of the (6, 26)-Hom-Tree for well-composed
images (in which every 26-CC of constant color is also a 6-CC). Note that in this case of
well-composedness, the (6, 26)-Hom-Tree is isomorphic to the (26, 6)-Hom-Tree.

The complexity order of the complete process remains close to the logarithm of the sum of
the image’s dimensions. More concretely, step (a) is fully parallel, that is, O(1), step (b) has
a maximum time order of log2 (m1 +m2 +m3), step (c) also has logarithmic time, and step
(d) is fully parallel. Figure 3 summarizes the time orders for the different steps of the whole
HSF calculation consideringm1×m2×m3 computation processors. Pseudocodes explaining
each step have been formally written (see Algorithms 1 and 2 for step (a), Algorithm 3 for
step (b) and Algorithm 4 for step (c)). Note that these pseudocodes describe the sequential
versions of the corresponding parallel algorithms involvedwithin theHom-Tree computation.
The MATLAB/OCTAVE implementation presented here faithfully follows these sequential
pseudocodes. The theoretical complexity of the parallel algorithms is as well detailed. Note
that the algorithm pseudocodes only show those essential matrices for HSF computations.
Additional matrices used for codification are defined in the MATLAB/OCTAVE codes.

With the aim of clearly showing the algorithm’s output in every step, a simple GUI
(Graphical User Interface) has been as well implemented (see Fig. 4). This software has been
used to produce the figures of this Section.

Fig. 4 GUI of the Hom-Tree application
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4.1 MrSF construction at local level: activation of processing units

Taking as embedding scaffolding of a given image ID its associated DACC Cell6(ID), the
0-cells inherit the properties (such as color; black or white from now on) of the voxels of
ID . Within our parallel framework, one processing element is defined per voxel. Given a
foreground voxel v, each processing unit PU (v) is centred in the common corner of the
eight mutually 26-adjacent voxels, where v corresponds to the voxel located in the lower left
front corner (Fig. 5).

Algorithm 1 returns two matrices that are directly obtained from the DACC grid. The first
one contains the color assigned to each k-dimensional cell according to its neighbors. The
second one stores the set of potential critical cells. During the construction of such matrices,
and with the aim of promoting parallelism, for each voxel, we only check its 6-adjacent
voxels towards certain predefined directions (+Z,+Y,+X in our implementation).

For example, in the case of foreground voxels, 0-cells are considered as potentially critical
if there is no other foreground voxel towards directions (+Z,+Y,+X) (intuitively, this means
that these background adjacent 0-cells form a corner). In the general case, a k-cell is poten-
tially critical if at least one of its coboundary (k+1)-cells towards directions (+Z,+Y,+X) has
a different color than the k-cell. As a consequence, in Fig. 7 a foreground 2-cell is selected
as potentially critical if it is located in the vertex of a corner that is parallel to the first octant,
and potential foreground critical 1-cells appear for L-shapes, oriented towards the positive
axes. 3-cells are never critical for 3D images. To sum up, potential critical cells at this stage
are those having cells of different color on their borders.

After Algorithm 1, an initial HSF of the whole image, called Morse Spanning Forest
MrSF(ID), is built (see Algorithm 2). It is necessary to emphasize that the resulting MrSF
graphsmay not necessarily be trees andwill then be pruned to trees, so that parallel computing
is promoted. Roughly speaking, an MrSF(ID) is composed of a set of (k, k + 1)-trees
(k = 0, 1, 2) , having as nodes cells of dimension k and cells of dimension k + 1, and
having as edges some incidence relations between these cells, called (k, k + 1)-edges (see
Definition 4).

In Fig. 5 (left), a visual example of all the cells and trees of a given MrSF are depicted.
This figure represents a ring parallel to the XOY plane. The circles, triangles, squares and

Fig. 5 Left: A gross ring perpendicular to Z axis. For clarity purpose, only foreground trees are depicted.
Critical cells are highlighted by surrounding them with a dashed circle. Right: It is Hom-Tree. Solid symbols
are for foreground cells and hollow symbols for the background ones. Associations among these cells are
shown with dashed arcs. The topological duality properties from which these associations are extracted can
be found in Section 4.4
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Algorithm 1 Cell values and possible critical cells

stars represent 0-cells, 1-cells, 2-cells and 3-cells, respectively. Foreground cells are drawn
with solid shapes, and hollow shapes are used for background cells. There are (0, 1), (1, 2)
and (2, 3)-trees, represented by red, yellow, and blue lines, respectively. The thickest lines
represent the critical cells of the corresponding tree.

Given a three-dimensional image, the construction of the MrSF lies within the fact that
there are nine possible activation states for any processing element, which are depicted in
Fig. 6. Note that, as mentioned above, one processing element per voxel is considered. It
should be understood that when we say that a vector belongs to an HSF tree, it means that its
corresponding edge (in terms of connection), tail, and head (in terms of nodes) are included
in such a tree.

A single primal (0, 1)-vector v is considered to be included within the (0, 1)-tree of each
processing element (marked in red in Fig. 5). The corresponding dual (1, 0)-vector (whose
tail is the head of v) is likewise included within the same tree. The rules followed to build
the (1, 2) and (2, 3)-trees are similar. In these cases, up to two dual vectors may go from a
(k + 1)-cell to a k-cell (k = 1, 2). An obvious rule for the preservation of the trees must be
maintained at this stage: Only those dual vectors that connect the same dimensional tree are
allowed. Note that dual inter-voxel connections can be extensive, that is, we can activate all
the possible dual vectors that do not contravene the tree allocation for each cell. However,
as we are interested in building trees (but not graphs) for efficient parallel processing of
crack transports (see Section 4.3) some dual (2, 1)-vectors are not activated in our current
implementation. More exactly, for those k-cells that can receive two dual vectors coming
from (k + 1)-cells (k = 1, 2), only one of them is activated.
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Fig. 6 Activation states for a processing unit with its primal vectors. Each processing unit contains eight active
cells: one 0-cell (drawn with an empty circle), three 1-cells (triangles), three 2-cells (squares) and one 3-cell
(star). The red, yellow and blue arrows belong to the (0, 1), (1, 2), (2, 3)-trees, resp. Left: Three states when
the (0, 1) primal vector goes to +X. Center: Three state when the (0, 1) primal vector goes to +Y. Right: Three
states when the (0, 1) primal vector goes to +Z

For some objects, the set of possible critical cells obtained through these local interactions
is the correct one. This is the case of the object of Fig. 5 (left). Critical cells are drawn by
our tool with thicker lines: foreground contains one critical 0-cell and one critical 1-cell,
and background contains one critical 0-cell, one critical 1-cell and one critical 2-cell. The
main advantage of this local MrSF construction method is that it can be computed in a fully
parallel manner for each voxel (timing order is O(1)). The topological duality properties that
allow us to obtain the relations between critical cells that are depicted in Fig. 5 (right) are
explained in Section 4.4.

4.2 Global MrSF construction

Once a (local) MrSF has been built, its trees are to be labeled in terms of connected graphs
(see Algorithm 3), obtaining what we call the global MrSF.
This labeling consists of tracking the label from every cell to a new one. Note that potential
critical cells are labeled with a unique identifier and are the roots of a tree (thus, they sink to
themselves). There may also exist cells that are the roots of inessential trees. Additionally,
jump distances from any cell to the critical cell of its belonging tree can be easily computed
here. Most existing labeling algorithms perform this tracking using the label number stored
at each site ([36]). That is, they compute label[i] = label[label[i]], where the element label[i]
works as an index to search for a different element in the same list label[i], until the label
remains unchanged. We refer the reader to Section 3 and Algorithm 1 of [36] for a detailed
description of these types of algorithmic processes. In our case, we use two additional pieces
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Algorithm 2 Local MrSF (MrSF construction at local level: Activation of processing units)

of information: which of the cells may be critical (whose labels will remain unchanged) and
the magnitudes and directions of the hops from one cell to the root. Note that the first jump
is immediately given by the local MrSF information. To build trees at this stage, additional
prunings within the resulting graphs might be done for the (1)-cracks.

According to the definition of primal and dual vectors from the previous stages, it is
obvious that the maximum distance between two cells is (m1 + m2 + m3). Besides, using
the process label[i] = label[label[i]], the jump distances increase in a geometric manner of
ratio 2.

4.3 Frontier-adapted HSF construction via crack transports

The final step consists of minimizing the number of critical cells, leading to a new HSF that
is frontier-adapted (see Algorithm 4). From now on, this final HSF will be named HSF(ID).
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Algorithm 3 Global MrSF

Within this HSF, taking into consideration only cells belonging to the 6-cellularization of the
foreground, we have an HSF of D (in fact, of Cell6(D); however, if considering only cells
belonging to the 26-cellularization of the background, we have the HSF of its complement
(that is, of Cell26(ID \ D)).

As we have commented before, in some occasions, the MrSF is already a frontier-adapted
HSF. This is because every k-cell can be paired to a (k − 1)-cell towards a positive direction
(+X, +Y or +Z). In these cases, no crack transports are needed. This is the case of Fig. 5
(left). Only the 0 cell with the highest coordinate values, that is (X,Y,Z)=(4,4,3), cannot
be paired to a 1-cell. Likewise, the 1-cell located at (X,Y,Z)=(1.5,2,3), cannot be matched
to a foreground 2-cell, being therefore the critical cell of the ring tunnel. Proceeding in a
similar way for the background, a 2-cell (X,Y,Z)=(1.5,1,1) represents its cavity and a 1-cell
(X,Y,Z)=(2.5,0.5,1.5) is the critical cell of its tunnel.

The general case implies a lot of crack transports in order to minimize the number of
critical cells of an object. In most of the cases, many transports can be performed in parallel.
Bearing in mind 6-adjacency and in order to promote parallelism, cracks are only defined
toward positive directions: +X, +Y, +Z. These cracks will allow one to build the different
trees for a given image. The simplest way to ensure that a pair of redundant critical k and
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Algorithm 4 Frontier-adapted HSF construction via crack transports
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(k + 1)-cells (referred as crt and crt ′ respectively) can be transported in parallel (with
other pairs) is by first inspecting the (k + 2,k + 1)-tree belonging to the coboundary of crt
(represented as dashed black lines in Fig. 7, bottom left), and then the (k,k + 1)-tree that
goes in the reverse direction (represented as dashed red lines in the same Fig.). Note that the
(k + 2,k + 1)-tree was built from (k + 2)-cells to (k + 1)-cells to promote parallel transports;
so it is considered as a directed one. In this figure, dots, triangles and diamonds represent k,
(k+1) and (k+2)-cells, respectively. When the reverse path from crt falls again in crt ′, this
pair of paths generates a cycle, and the transport of crt and crt ′ can be done in parallel (with
many other transports, which would produce others different cycles). This would happen in
Fig. 7 (top left) for the two pairs of 0 and 1 cells. Once a redundant pair is detected, the
crack transport proceeds as follows: Firstly, the edge that connects crt to a (k + 1)-cell of
a different object is deleted (represented by an arrow over critical cells in Fig. 7, top and
bottom left). All edges that connect crt ′ with the (k + 1,k + 2)-tree must as well be erased,
because crt ′ now belongs to a (k,k + 1)-tree. After that, these cells are no longer critical.
Secondly, new edges (solid black lines in Fig. 7, bottom left) need to be added to connect
crt ′ to some of its boundary cells. The boundary cells to be connected are: those belonging
to the tree of the no longer critical k-cell crt (left dot) and those belonging to the tree of the
remaining critical k-cell of the same object (right dot). After that, the (k + 1)-cell belongs to
a (k, k + 1)-tree. This parallel transport process corresponds to the Algorithm 4). In the next
paragraph, parallel transports are explained using Fig. 7 for the 0, 1 and 2 (false) critical cells.
Note that the first loop in Algorithm 4 ends when no cancelation of false critical cells can still
be done (variable n01cancelled_pairs remains to be null). Then, the rest of false critical cell

Fig. 7 Crack transports. Top Left: An object composed by three planes parallel to the axis yields initially to
three critical 0-cells, three critical 1-cells and one critical 2-cell that appear in the MrSF. Arrows are the primal
vectors to their nearest contour cells. The arrows indicate the forward and backward paths that have to be
followed to pair the false critical cells. Top Right: resultant critical 0-cell of the HSF after doing the transports.
Bottom Left: The detection of a pair of redundant k and k + 1 critical cells and the crack transport process.
Here, dots, triangles and diamonds are k, k + 1 and k + 2 cells, resp. Arrows are also the primal vectors to
their nearest contour cells, dashed red lines express trees. Bottom Right: HSF returned by our tool showing
only one critical foreground 0-cell, marked with a thicker red segment. Pink segments are edges coming from
the transports
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pairs are to be sequentially canceled in the last f or loop, so that at the end of this algorithm
we always get a set of final critical cells. Finally if some transports could not be carried out
in parallel, we would proceed as explained in [9].

Our tool converts the MrSF into the HSF by transporting in a first step those false critical
0-cells with false critical 1-cells, using the (1, 2)-tree for the forward path and the (0, 1) for
the reverse path. When the reverse path falls again in the initial critical 0-cell, the transport
can be done in parallel with many other transports, as it supposes a unique path along a pair
of trees. In the case of Fig. 7, two pairs of false critical 0 and 1-cells are canceled. The last
critical 0-cell (upper and most right cell in the OYZ plane) cannot be canceled, as it remains
as the representative of the object (one connected component). In a second step, those false
critical 1-cells are canceled with critical 2-cells, using the (2, 3)-tree for the forward path
and the (1, 2) for the reverse path. Once again, when the reverse path falls again in the initial
critical 1-cell, the transport can be carried out in parallel with many other transports. For the
object in Fig. 7, one pair of false critical 1 and 2-cells are canceled. Thus, no cavity nor tunnel
remain for this object, as expected. As a result, the HSF must only contain one critical 0-cell
after doing the transports (Fig. 7, right). The HSF returned by our tool is shown in Fig. 7,
bottom, containing only one critical foreground 0-cell, marked with a thicker red segment.
Pink segments are edges that come from the three transports explained previously.

The most basic tree representation consists of simply bookkeeping a label for each cell;
thus, the crack transport can be reduced to a pointer-like switching in the label structures. The
construction of the initial MrSF components and trees allows to transform an MrSF(ID)

into an HSF(D), via crack transports and achieving an elevated parallelism degree.
A complete implementation has been done and can be downloaded in [37]. Figure 11 of

the Appendix A includes detailed information about this process.
The transport processmay require several steps, so an intermediateMrSFmay be produced

at the end of each step until the HSF is achieved. In each step, a set of false critical 1-cells can
be deleted (crack transports are performed) with the same number of false critical 0-cells.
Similar operations candelete pairs of false critical 1-cells and2-cells. In thedo...while loopof
the Algorithm 4, note that crack transports are performed only if ccend_back are the same cells
as cc0. In this case, the MrSF (represented by cell_labels) is appropriately changed through
the function doing_transport(), and therefore the pair of false critical cells is deleted. Here
we limit ourselves to highlighting that moving along trees guarantees that the uniqueness in
the selection of the different couples of (0, 1)-cells (or (1, 2-cells)) is ensured, and therefore
there is no need for synchronization primitives. In this sense, perfect parallelism is achieved
in these transports; thus, their time order can be considered as O(1). Similarly, for the pairing
of false (1, 2)-MrSF critical cells, a similar parallel procedure can be performed, preserving
the time order as O(1). The number of incident cells is lower in this ulterior pairing. However,
the transports along these paths for couples of (0, 1)-cells and (1, 2)-cells do not imply that
complete pairing has been done and that these transports would give us the final HSF. There
are complex shapes that need some subsequent iterations. The exact form of these shapes
will be studied elsewhere; for the present work, the experimental results in the next section
reveal that the number q of subsequent iterations needed for different types of images is less
than 5 for most of the analyzed 3D images. Besides, some of the images tested required a
sequential stage of (0, 1)-cell coupling that cannot be processed in parallel. This is due to the
necessary pruning of some (1, 2)-vectors done in the previous stage. This pruning implies
that some paths along the whole (1, 2)-tree are lost. As a consequence, some false 0-cells are
not able to find the corresponding false critical 1-cell on some occasions. These (0, 1)-pair
cancelations are described in the last part of Algorithm 4 (after the do...while loop). Note that
if ccposi tive and ccnegative are different, the crack transport is performed, MrSF (represented
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by cell_labels) is then appropriately changed via the function doing_transport(), and the
pair of false critical cells is therefore deleted. Either ccposi tive or ccnegative can be chosen
for cancelation.

As illustrated in the next section, the number of sequential transports (denoted s01 in
Fig. 3) represents less than 0.5% of the number of voxels even for random images, which
is around ten times lower for the natural images analyzed. Pruning was also done for the
inverse path 2/1/2, which means that some (1, 2)-transports can either be done in parallel
(which number is denoted as s12 in Fig. 3). Nevertheless, for real or random 3D images, the
percentage of these sequential (1, 2)-transports is negligible. In summary, the time order of
one parallel step in stage (c) is O(1). Besides, a small number q of parallel transport iterations
is required for most of the images. Finally, the time order would diverge from O(1) only for
the small percentage of sequential transports. One final remark that highlights the practical
significance of our method is that many useful geometric properties (area, perimeter, etc.)
can be computed at the same time and also in parallel along with the HSF.

4.4 Hom-Tree construction

Given an HSF(D), we can directly obtain theHom-Tree structure of ID . Taking into account
the fact that a tree is homotopy equivalent to a point, the (0, 1)-trees of the different black and
white CCs of ID can be contracted within the (0, 1)-tree of the whole image. According to
the generation of an HSF structure, each critical 0-cell of a given color has a crack associated
with it that connects it with the opposite color. Thus, the nesting of the component (and
then the classical RAG tree) can be easily found. Moreover, those critical cells of higher
dimensions can be associated with the component of their border cells. In 3D, tunnels add
valuable information when relating each tunnel with a pair of foreground and background
components. In addition, cavities (represented by critical 2-cells) have a dual relation with
critical 0-cells. From now on, these relations are expressed in theHom-Trees of the processed
images, using dashed arcs to enclose related cells.

For example in Fig. 5 (right) the Hom-Tree for a gross ring of Fig. 5 (left). Solid symbols
are used for foreground cells and hollow symbols for the background ones. The topological
duality property existing between a foreground object and its surrounding background, is
reflected within the HSF structure as follows: the foreground object as a CC (represented by
a 0-cell) produces a cavity in the background (represented by a 2-cell); the foreground tunnel
(represented by a 1-cell) induces another background tunnel (represented by a background
1-cell). These associations are shownwith dashed arcs. Only the background critical 0-cell of
the canvas, which is the root of the tree, does not present any association. Additionally, color
associations are shown with yellow lines (both for background and for foreground cells).
Apart from them, there is a red line, which corresponds to the fact that the foreground object
is embedded in the background. This line is weighted with 1 because only a pair of tunnels
appear.

Another interesting example where Hom-Tree can help distinguish it from other homo-
logically equivalent (but not isotopically) objects (see Fig. 1) is the case of an empty cube
with one diameter and an outer handle. Figure 8 shows the (0, 1)-tree and all trees for the
cells composing the foreground object. Note that our current implementation focuses on
distinguishing non isotopically equal objects through the use of homological relations. A
step further that is intended for future work is the generation of sets of 1-cycles that delineate
homology groups with a minimal total length (as addressed from another point of view in [38]).

123



Parallel Homological Calculus... 97

Fig. 8 Left:An empty cubewith one diameter and an outer handle. Right: The (0, 1)-tree of the cells composing
the foreground object. Bottom: All the trees for the foreground object

Similarly in Fig. 9 (Top) these associations are depicted for a more complex image:
A sphere with one diameter and an outer handle (composing the foreground object) that is
surrounded by the background (see Fig. 9, Bottom). Again, the topological duality property of
an image canbe rediscoveredwithin theHSFstructure bypairing every critical foreground cell
with its corresponding background counterpart (shownwith dashed arcs). Foreground critical
cells (solid symbols) are paired with the critical cells in the background (hollow symbols). In
this example, the foreground CC is related to the background cavity, the foreground cavity
of the sphere is paired to a background CC, and foreground tunnels are paired to background
tunnels. Again, only one critical background 0-cell (the root of the canvas tree) does not
present any association.

To sum up, once the 1 and 2 related cells have been identified, Hom-Tree can be simply
reduced to the edges that connect the 0-cells (black and white little circles in Fig. 5, Right)
plus a weight indicating the number of tunnels that hang from each component.

5 Experimental results and potential applications

A complete implementation of the proposed algorithm for the (6, 6)-adjacency pair has been
performed in the MATLAB / OCTAVE language ([37]). This pair is chosen for implemen-
tation to simplify the resulting code. Thus, every processing unit (for both background and
foreground voxels) follows the foreground criterion explained in the previous section. The
mentioned language favors an inherent parallel codifying, and special care has been taken
to promote element-by-element matrix operations whenever possible. These operations can
be executed theoretically in a fully parallel manner. Only a few parts of the whole process
cannot be executed using this kind of operations, thus yielding a few loop structures including
loop-carried dependencies. In order to test the correctness of Alg. 1, 2, 3, 4 and to evaluate
their theoretical time complexity (under the assumption that a processing element is available
for each cubical voxel), we proceed with a set of tests that measure the number of parallel
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Fig. 9 Top: Same object as Fig. 8 (composing the foreground object) that is surrounded by the background.
For clarity purpose, only the (0, 1)-tree is depicted. Bottom: It is Hom-Tree. Foreground cells are drawn with
solid symbols and background with hollow symbols

and sequential transports that need to be performed. Recall that the number of sequential
transports is the only non-parallel part of our implementation.

Three sets of experiments have been taken into account to test the discriminatory power,
efficiency and practical use of the proposed representation.

5.1 Experiments testing the Hom-Tree topological discrimination power

A simple object representing a foreground ring normal to the Z axis is shown in Fig. 5.
There is one 0-cell (representative of the foreground connected component) and one 1-cell
(representative of the foreground tunnel). Correspondingly, the background ambience that
surrounds the ring contains one 0-cell (represented by the most upper right 0-cell), one 1-cell
(the foreground ring is seen like a tunnel for the background) and a 2-cell, representative of
the background cavity (which is indeed the foreground ring). The fact that each critical cell
has its corresponding dual (except the background component of the canvas) implies that the
Euler-Poincaré number of the whole 3D image is equal to 1. This fact shows the ability of
the Hom-Tree representation to topologically classify images.

An automatic homotopy deformation tool (a thinning-thickening software based on the
notion of a simple 3D point [16], and developed for this purpose as detailed in [8]), has been
used to support experimentation. Synthetic images have been randomly deformed using
such a deformation tool, validating the isotopy-invariance property of the Hom-Tree. This
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software corroborates that homotopically (in fact, isotopically) equivalent shapes return the
same Hom-Tree. Examples of these experiments are included in Appendix B.

The Hom-Tree representation is also able to distinguish non-isotopic patterns having the
same homology (a sphere with two inner handles against a sphere with two outer handles, a
ring inside a sphere against a sphere surrounded by a ring, etc.). It is worth mentioning that
some dissimilar nesting of digital objects cannot be distinguished using the Hom-Tree repre-
sentation: this is the case of a torus versus a sphere with an inner tunnel and an external one.
Both result in the same Hom-Tree representation and edge weights. Further considerations
in this matter are discussed in Section 6.

5.2 Experiments testing parallelism and efficiency of the Hom-Tree construction

In this Section experiments were performed using modifications of 3D Menger Sponges of
different dimensions. The initial structures used to generate these new fractals are constructed
filling a few planes (OX, OY and/or OZ) within the Menger Sponges of recursion 2 and 3 for
different values of x, y and z. A variation of the Menger sponge of recursion level 2 in which
theOX plane for x=1, the OY plane for y=3 and theOZ plane for z=1 are filled; and a variation
of the Menger sponge of recursion level 3, in which the OX plane for x=1, the OY plane for
y=3 and the OZ plane for z=1 are filled. In these cases, some transports to cancel (1, 2)-pairs
of false critical cells are necessary. The detailed results can be seen in Appendix B. In order
to check the correctness of our implementation, we validate the Euler-Poincaré characteristic
of different Menger sponges. Note that the Euler-Poincaré characteristic can be directly
extracted for the number of cells in every column of each table, due to the fact that the HSF
building has previously divided the different objects of the image into separated trees. For
example, Euler-Poincaré characteristic for the first Menger sponge 2X1Y3Z1 results to be:
1−28+10 = −17. Evidently, this number remains constant along the different parallel and
sequential stages until the final HSF is completed. Then, Betti numbers are obtained in this
column of the final HSF. In all cases, the first parallel transport iteration of (0, 1)-cell pairs
yielded the correct result. However, the results for the (1, 2)-pairs were very divergent. On the
one hand, for some sponges the final HSFs are obtained through our parallel transportation
method; on the other hand, for some others, the parallel transports produce moderate results
(around fifty per cent of sequential (1, 2)-pair transports were required). Table 1 presents a
summary of the results for three modified sponges.

There is no doubt that synthetic images are homologically complex and the parallel pro-
cessing of anHSF can bemore expensive. On the contrary, parallel computing is very efficient
for random images, and even more so for real medical images. For the ten small random
images (up to 15× 15× 15) tested, the results were not very meaningful: The percentage of
parallel transports for the (1, 2)-pairs were always a 100% and only one image presented a
percentage of 97% for the (0, 1)-pairs.

For bigger images, some sequential transport iterations were needed. We refer the reader
to the Appendix B (Tables 2 and 3) to consult the mean number of critical cells for the first
four parallel and last sequential transport iterations of (0, 1)-cell pairs, and for the following
parallel and final sequential transport of (1, 2)-cell pairs, given a set of five 20×20×20 and
30 × 30 × 30 B/W random images of 50% density, respectively.

The last three columns reveal patently the efficiency of our parallel processing: the first
phase of parallel (0, 1)-transports reached more that three quarters of the total necessary
transports. After the fourth parallel stage, this percentage reaches more than 90%, which
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Fig. 10 Left: Unweighted Hom-Tree for a 30 × 30 × 30 fragment of a medical image of PET used as an
example

supposes a sequential number of steps that is less than 0.5% of the total number of voxels
for any random image. The results about (1, 2) pairs are even better: almost all couples can
be canceled in parallel.

5.3 Experiments using real images

The third set of tests was performed for three real binary 3D medical images. Clinical Micro
Computer Tomography Images of trabecular bones (obtained by the ETH, Zurich) were
selected due to their typically complex topology, consisting of many cavities and tunnels
(see Table 4 in the Appendix B). The results are similar to those of random images, that is,
around a 90% of (0, 1)-pair transports and around 97% of (1, 2)-pair transports can be done
in a fully parallel manner just in four iterations for the first pairs and in one iteration for the
second ones. Because natural images are usually simpler than random ones, fewer transports
are necessary for them. In fact, the sequential number of steps for this set of medical images
is around ten times inferior (less than 0.05% of the total amount of voxels).

The presence of critical 1 and 2-cells is very common in many 3D medical images, which
present a good number of tunnels and cavities (see Fig. 10). Due to the high resolution of
the employed data, which correspond to a PET (Positron Emission Tomography) image of a
person’s head, downsampling over the pixels was performed with a factor of 6, followed by a
segmentation from applying Otsu’s method in order to obtain the final binary image. Despite
decreasing the resolution of the image, interesting results were obtained. Thus, bounding
relations among critical cells may serve in the future to analyze the complex nature of these
images.

6 Conclusions

In this paper, the design of a new parallel algorithm for computing the Hom-Tree representa-
tion model of a 3D binary digital (6, 26)-image is presented. This Hom-Tree representation
codifies the topological duality relationships among homology characteristics via a cellular
complex analogous to the image. A complete implementation of the proposed algorithm has
been performed in theMATLAB/OCTAVE language. The results show that its time complex-
ity order is almost logarithmic (only remaining a linear term less than 0.5%of the total amount
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of voxels even for random images). The usability of the Hom-Tree model is shown through
examples in which its ability to homologically, homotopically and isotopically differentiate
between similar objects is demonstrated.

The potential of this new representation opens new research lines that will be addressed
in future work. We plan to advance in the construction of new graph-based representation
models improving the topological discriminatory power of the Hom-Tree model in a 3D
binary image context (i.e. classification of complex topological structures like knots) and
to properly extend the Hom-Tree model to color and n-dimensional digital images. In this
last respect, the extension of the HSF algorithm and the Hom-Tree representation to 4D data
will allow analyzing how topological structures evolve over time and how they change or
conserve their previous interactions. Likewise to the Definition 1 and for the case of higher
dimensions, the Hom-Tree weight of an edge (R, S), (being R and S two nested regions and,
consequently, one is necessarily a black (2n − 1)-CC and the other one is a white (2n − 1)-
CC), is a vector composed of the numbers of k-dimensional homological holes “shared” by
R and S, being 1 ≤ k ≤ (n − 2).

Functional magnetic resonance images (fMRI) are a well-known example of how inter-
actions among topological structures are beginning to be studied. For example, suppose that
a 4th dimensional canvas for a given window time t be C4

t , where every 3D image will be a
subset for a given temporal sample, that is, C3

t ⊂ C4
t . A healthy patient undertaking a stimu-

lation test exhibits a brain activity pattern that generates a temporal sequence of 3D images.
That is, the 4th dimension could allow to track the spatial distribution changes between con-
secutive times, i.e, the time-series given by:C3

t0 −C3
t1 −C3

t2 − ...−C3
tn . The resulting set of all

the computed topological information, comprised of the different Hom-Trees for every 3D
temporal frame, opens a new field of machine learning approaches focused on processing the
compressed topological Hom-Trees instead of the complete and huge 4-dimensional images
[39]. This condensed topological information may help find disease markers that allow for
the diagnosis and detection of anomalies within these and other application contexts.

AHom-Tree hierarchical system following the boundary scale-space model introduced in
[40] is also to be developed. An implementation in C++ is feasible and will be performed in
the near future, by slightly modifying our previous HSF implementation published in [41].
The complicated programming of HSF trees in a parallel fashion points in the direction that a
C++ version using the paradigm of an inherent parallel Cellular Automata, might be the most
practical solution to release a fast and efficientHom-Tree implementation. Finally,Hom-Tree
representationmay be incorporated into the field of 3D imagemachine learning as an efficient
image preprocessing step, providing topological information to the process.

Appendix

A parallel generation of Hom-Tree. HSF construction via crack transports

For each critical MrSF 0-crack, we calculate in parallel the movements along (1, 2) and
(0, 1) trees. Firstly, there are six possible paths leaving from each critical 0-cell and moving
through the (1, 2)-tree. One of them is selected for every criticalMrSF 0-crack, and the (1, 2)-
trees (tracking frontier digital surfaces), fall onto the corresponding 2-cells (black arches in
Fig. 11). From these 2-cells, it is resolved what critical 1-crack has a primal vector to them.
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Fig. 11 The six possible paths from a critical MrSF 0-cell moving through the (1, 2)-tree to determine if this
0-cell can be paired with a 1-cell in parallel. The higher black 0-cell is a critical MrSF 0-cell, having three
incident 1-cells (going towards positive directions, drawn with blue darts). Every one of these 1-cells has two
incident 2-cells (going towards negative directions, drawn with yellow arrows). Then, black arches depict
movements along the (1, 2)-tree. These movements begin tracking a digital surface frontier, and finally fall
onto 2-cells. From these 2-cells, the critical 1-cells that have a primal vector to them are shown (see white
arrows). Then, the back moves are computed in order to determine if the couple 0-cell, 1-cell can be paired.
Every 1-cell has two incident 0-cells (red arrows). Thus, movements of these 0-cells through the (0, 1)-tree
yield three different cases: 1) the 1-cell can be deleted (a crack transport is done) with the initial critical 0-cell,
because only one of its two (0, 1)-paths fell into the initial 0-cell; 2) the 1-cell is the representative of a tunnel
(it is a true critical 1-cell), since these two (0,1) paths fell into the same 0-cell; 3) Nothing can be determined,
because the two (0,1) paths fell into two different 0-cells (so the 1-cell remains the same)
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104 P. Real et al.

Then, every 1-cell has two incident 0-cells (red arrows in Fig. 11) , and the two back
movements for these 0-cells are computed in parallel in order to determine if the couple of
(0, 1)-cells can be eliminated, and so the transport is carried out. The movements of these
0-cells through the (0, 1)-tree yield three different cases (processed in an independent and
parallel manner for each couple of (0, 1)-cells). These cases are: a) the 1-cell can be deleted
(a crack transport is carried out) with the initial critical 0-cell, because only one of its two
(0, 1)-paths fell into the initial 0-cell; b) the 1-cell is the representative of a tunnel (it is a
true critical 1-cell), since these two (0,1) paths fell into the same 0-cell; c) nothing can be
determined, because the two (0, 1)-paths fell into two different 0-cells (in this case, the 1-cell
remains the same).

Note that moving along trees guarantees that the uniqueness in the selection of the dif-
ferent couples of (0, 1)-cells is ensured, and therefore there is no need for synchronization
primitives. In this sense, perfect parallelism is achieved in these six paths, thus, their time
order can be considered as O(1). Summing up, for each critical MrSF 0-crack, six set of
paths must be computed (all the paths of each set in parallel). Likewise, for the pairing of
couples of critical MrSF 1-crack, a similar parallel procedure can be performed, preserving
the time order as O(1). The number of incident cells is inferior in this ulterior pairing. More
concretely, each critical MrSF 1-cell has only two possible paths that go through (2, 3)-trees.
These trees would fall into 3-cells that have associated (through primal vectors) with a possi-
ble critical 2-cell. Each of these 2-cells has up to four 1-cells in their borders; thus, four back
movements along (1, 2)-trees must be then calculated. A comparison of the 1-cells where the
back movements fall will result in these cases: 1) the 2-cell may be the representative of a
cavity (a true critical HSF 2-cell), since at least two of them fell into the initial critical MrSF
1-cell; 2) the 2-cell can be paired with the initial critical MrSF 1-cell, because only one of the
back travel fell into this last; 3) nothing can be determined, because the two previous cases
did not occur.

B Further experimental results

Figure 12 shows examples of deformed objects generated with the automatic homotopy
deformation (thinning-thickening) software, based on the notion of a simple 3D point. Up to
500 26-simple points have been randomly added/removed 100 times for each of these cases:
Three concentric spheres, one torus with two spheres inside, and one sphere with two spheres
inside. These examples were used to corroborate that homotopically (in fact, isotopically)
equivalent nesting return the same Hom-Tree.

Fig. 12 Three examples of deformed objects: Three concentric spheres, one torus with two spheres inside,
and one sphere with two spheres inside
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Fig. 13 HSF of a sphere with two external handles. The color code is the same as in the paper. All trees are
displayed along with their corresponding critical cells. In the upper right part of the figure, a red link represents
the background CC of the image

In Fig. 13 an HSF of a foreground sphere with two external handles is completely drawn
to distinguish that the borders of its two critical 1-cells (marked with thickest yellow lines
at Z = 2, Y = 2, X = 2.5 and X = 6.5) fall into the foreground component. Moreover,
there are two additional tunnels for the external background component (ahead of the two
previous ones at Y = 1.5).

Tables 2 and 3 show the mean number of critical cells for the first four parallel and last
sequential transport iterations of (0, 1)-cell pairs, and for the following parallel and final
sequential transport of (1, 2)-cell pairs for a set of five 20× 20× 20 and 30× 30× 30 B/W
random images, resp. These images were generated using a 50/50 probability for colors,
and surrounded by six thin faces of background voxels according to our working premises.
Actually, a fifth iteration would transport another one or two (0, 1)-pairs more for two of the
bigger images tested.

Table 4 presents a summary of the results for the images of the trabecular bone.
The Hom-Tree is able to distinguish non-isotopic patterns having the same homology.

An interesting example occurs when a ring inside a sphere is contrasted against a sphere
surrounded by a ring (see Figs. 14 and 15 )(Fig. 16).
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Fig. 14 Left: foreground (0, 1)-Tree for a ring inside a sphere. The same color convention is followed. Only
foreground 0, 1 and 2-cells are shown. Critical cells are marked with a gross vertical segment. Right:Hom-Tree
for this object

Fig. 15 Left: foreground (0, 1)-Tree for a sphere inside a ring. The same color convention is followed. Only
foreground 0, 1 and 2-cells are shown. Critical cells are marked with a gross vertical segment. Right:Hom-Tree
for this object

Fig. 16 HSF of a torus. Only 1-cells (empty triangles) are plotted for the sake of clarity. Critical 0, 1, 2-cells
are marked with green circles, triangles and squares resp. Only those relevant sub-graphs to detect boundaries
are labeled (in fact, some sub-graphs are very short due to pruning to prevent cycles when building the HSF).
The blue arrow points to an inactive edge (due to pruning) that would determine a cycle in sub-graph 5. Note
that sub-graph 5 holds both critical 1-cells (marked with green triangles). Green dashed arrows indicate the
boundary relations that compound a cycle inside sub-graph 5.
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