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Abstract
In this paper, we prove that when a n-D cubical set is continuously well-composed (CWC), that is, when the boundary of its 
continuous analog is a topological (n − 1)-manifold, then it is digitally well-composed (DWC), which means that it does not 
contain any critical configuration. We prove this result thanks to local homology. This paper is the sequel of a previous paper 
where we proved that DWCness does not imply CWCness in 4D.
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1 Introduction

Digital well-composedness (DWCness) is a strong property
in digital topology, because it implies the equivalence of 2n-
and (3n −1)-connectivities in a set and in its complement. A
well-known application of this flavor ofWCness is the tree of
shapes [11,12], a powerful hierarchical representation of the
objects in a gray-level [20] or color image [10]. On the other
side, continuously well-composed (CWC) images are known
as “counterparts” of n-dimensional manifolds (or in short, n-
manifolds) in the sense that they do not have singularities (no
“pinches”) in their boundary. The consequence is that some
geometric differential operators can be directly computed
on the discrete sets, which can simplify or fasten specific
algorithms.

DWCness andCWCness are known to be equivalent in 2D
and in 3D [4,16]. As the sequel of [7] where we prove thanks
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to a counter-example that DWCness does not imply CWC-
ness in 4D, we prove in this paper that CWCness implies
DWCness in n-D.

Some other flavors of well-composednesses exist like
well-composedness in theAlexandrov sense [2,8,9,20], well-
composedness on arbitrary grids [2,23], weak well-compo-
sedness [5] or Euler well-composedness [6], but we will not
go further into details here.

The plan is the following: Sect. 2 presents an intuitive
explanation of the proof presented in this paper, Sect. 3 recalls
thematerial necessary to our proof inmatter of discrete topol-
ogy; Sect. 4 contains the proof of themain result of this paper;
Sect. 5 concludes the paper.

2 Intuitive Proof of our Main Theorem

Let us assume that we start from a finite set X of points ofZ
n .

We want to show that when we dilate X by a unitary centered
cube of radius 1

2 in R
n , then the topological properties of the

resulting CA(X) ⊂ R
n , called the continuous analog of X ,

are related to the properties of the initial set X . More exactly,
wewant to prove Theorem 5, which asserts that whenCA(X)

is regular in the sense that its boundary is a topological man-
ifold, then it means at the same time that the initial set X is
regular in the discrete manner. Being regular in a discrete
manner, in the context of discrete topology, means that a set
does not contain critical configurations, well known to lead
to topological issues. Using the technical terms, continuous
well-composedness implies digital well-composedness.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10851-021-01058-8&domain=pdf
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To prove that a regular CA(X) implies a regular X , wewill
proceed by counterposition, that is, wewill prove that as soon
as X contains (at least) one critical configuration, then the
continuous counterpart CA(X) contains a pinch at the center

m ∈
(
Z

2

)n
of this critical configuration (Sect. 4.3 is devoted

to prove this fact). From a technical point of view, we will
use local homology to compute local topological properties
of CA(X) at m to show that it is not a homology manifold,
and thus it is not a topological manifold either (we recall that
topology manifoldness implies homology manifoldness).

The methodology is then straightforward: by assuming
that X is not regular, we choose any of its critical config-
urations, we deduce its center m; since m belongs to the
boundary of CA(X) according to Lemma 1, we can study
the behavior of the boundary of CA(X) from a topological
point of view around m thanks to local homology. These
characteristics depend only on the configuration (we do a
case-by-case study) as stated by Theorem 4. We will obtain
that some homological issue appeared at m (since the local
homology group of dimension (n−1)will not be Z as stated
in Property 4) and then we will conclude that the boundary
of CA(X) is not a topological manifold.

Intuitively, this is the way the main proof of this paper will
be done.

3 Discrete Topology

As usual in discrete topology, we will only work with digital
sets, that is, non-empty strict subsets of Z

n which are finite
or whose complementary in Z

n is finite.

3.1 Digital Topology and Digital well-composedness

Let n ≥ 2 be a (finite) integer called the dimension. Now,
let B = {e1, . . . , en} be the (orthonormal) canonical basis
of Z

n . We use the notation pi , where i belongs to �1, n�, to
determine the i th coordinate of the point p ∈ Z

n . We recall
that the L1-norm of a point p ∈ Z

n (seen as a vector) is
denoted by ‖.‖1 and is equal to∑i∈�1,n� |pi | where |.| is the
absolute value. Also, the L∞-norm is denoted by ‖.‖∞ and
is equal to maxi∈�1,n� |pi |.

For a given point p ∈ Z
n , the 2n-neighborhood in Z

n is
denoted by N2n(p) and is equal to {p′ ∈ Z

n ; ‖p − p′‖1 ≤
1}. In other words,

N2n(p) =
{
p + λi e

i ; λi ∈ {−1, 0, 1}, i ∈ �1, n�
}

.

p′‖∞ ≤ 1}. In other words, N3n−1(p) equals:

⎧⎨
⎩p +

∑

i∈�1,n�

λi e
i ; λi ∈ {−1, 0, 1}, i ∈ �1, n�

⎫⎬
⎭ .

From now on, let ζ be a value in {2n, 3n −1}. The starred
ζ -neighborhood of p ∈ Z

n is denoted byN ∗
ζ (p) and is equal

toNζ (p)\{p}. An element of the starred ζ -neighborhood of
p ∈ Z

n is called a ζ -neighbor of p inZ
n . Two points p, p′ ∈

Z
n such that p ∈ N ∗

ζ (p′) or equivalently p′ ∈ N ∗
ζ (p) are

said to be ζ -adjacent.
Let X be a subset of Z

n . A finite sequence π =(p0, . . . ,
pk) of points of X is called a ζ -path joining p0 and pk when
p0 is ζ -adjacent only to p1 in π , pk is ζ -adjacent only to
pk−1 in π , and if for all i ∈ �1, k − 1�, pi is ζ -adjacent only
to pi−1 and to pi+1 in π . Such a path is said to be of length
k.

A digital set X ⊂ Z
n is said to be ζ -connected when

there exists a ζ -path into X joining any pair of points of X .
A subset C of X which is ζ -connected and maximal in the
inclusion sense (that is, there is no subset of X greater than
C and ζ -connected) is said to be a ζ -component of X .

For any q ∈ Z
n and any F = ( f 1, . . . , f k) ⊆ B (F can

be an empty set), we denote by S(q,F) the set:

⎧⎨
⎩q +

∑

i∈�1,k�

λi f
i
∣∣ λi ∈ {0, 1},∀i ∈ �1, k�

⎫⎬
⎭ .

Fig. 1 The two connected sets depicted here represent 2D blocks. The
two white points of the block depicted on the left side are 2-antagonists
in this block, and draw a primary 2D critical configuration. In a same
manner, the two white points antagonists in the block depicted on the
right side draw a secondary critical configuration. Indeed, in a 2D space,
all critical configurations are at the same time primary and secondary

Fig. 2 The two connected sets depicted here represent 3D blocks. The
white points of the block depicted on the left side are 3-antagonists in
this block, and draw a primary 3D critical configuration. The set of six
white points in the block depicted on the right side draws a secondary
3D critical configuration

For a given point p ∈ Zn , the  (3n − 1)-neighborhood in 
Z
n is denoted by N3n−1( p) and is equal to { p′ ∈ Zn ; ‖p −
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Fig. 3 The two connected sets depicted here represent 4D blocks. The
white points of the block depicted on the left side are 4-antagonists
in this block, and draw a primary 4D critical configuration. The set of
fourteen white points in the block depicted on the right side draws a
secondary 4D critical configuration

We call this set the block associated with the pair (q,F);

its center is q +∑i∈�1,k�
f i

2 , and its dimension, denoted by
dim(S), is equal to k. More generally, a set S ⊂ Z

n is said
to be a block when there exists a pair (q,F) ∈ Z

n × P(B)

such that S = S(q,F).
Then, we say that two points p, p′ ∈ Z

n belonging to a
block S are antagonists in S when the distance between them
equals the maximal distance using the L1 norm between two
points in S; in this case we write p′ = antagS(p). Note that
the antagonist of a point p′ in a block S containing p exists
and is unique. Two points that are antagonists in a block of
dimension k ≥ 0 are said to be k-antagonists; k is then called
the order of antagonism between these two points.

Note that in the particular case where p and p′ are 0-
antagonists, p = p′, the center of the block is equal to p,
and the corresponding family of vectors is F = ∅.

We say that a digital subset X ofZn contains a critical con-
figuration in a block S of dimension k ∈ �2, n� when there
exist two points {p, p′} ∈ Z

n that are antagonists in S s.t.
X ∩ S = {p, p′} (primary case) or s.t. S \ X = {p, p′} (sec-
ondary case). Figures 1, 2 and 3 depict examples of critical
configurations.

Then, a digital set X ⊂ Z
n is said to be digitally well-

composed (DWC) [3] when it does not contain any critical
configuration.

3.2 Basics in Topology and Continuous
well-composedness

Definition 1 (Topological spaces [1,14]) Let T be a set, and
let U be a set of subsets of T such that:

– T and ∅ are in U ,
– Any union of elements of U is in U ,
– Any finite intersection of elements of U is in U .

Then, U is said to be a topology, and the pair (T ,U) is
called a topological space. The elements of T are called the
points of (T ,U), and the elements of U are called the open

Fig. 4 The continuous analog of the set {0, 1} × {0, 1, 2, 3}

sets of (T ,U). We will abusively say that T is a topological
space, assuming it is supplied with its topology U .

An open set which contains a point of T is said to be a
neighborhood of this point. For any subset Y of T , we denote
by Y c its complement in T ; that is, Y c = T \ Y . Let T be a
topological space. A set Y ⊆ T is said to be closed when it
is the complement of an open set in T .

Definition 2 ([18]) A topological space M is said to be
locally Euclidean of dimension n ≥ 0 at x ∈ M if x has
a neighborhood that is homeomorphic to an open subset of
R
n .

Definition 3 A second countable space is a topological space
X whose topology has a countable basis, that is, there exists
some countable collection U = {Ui }∞i=1 of open sets of X
such that any open subset of X can be written as a union of
elements of some subfamily of U .
Definition 4 AHausdorff space is a topological space where
distinct points have disjoint neighborhoods.

Definition 5 ([18]) A topological n-manifold M with bound-
ary with n ≥ 0 is a second countable Hausdorff space that is
locally Euclidean of dimension n at each x ∈ M , and such
that there exists for any x ∈ M an open set U containing x
and a homeomorphism φU : U → R

n or a homeomorphism
φU : U → R≥0 × R

n−1.

Let us recall what is continuous well-composedness for n-
D sets according to Latecki [16,17]. The continuous analog
CA(p) of a point p ∈ Z

n is the closed unit cube centered at
this point with faces parallel to the coordinate planes:

CA(p) = {p′ ∈ R
n ; ‖p − p′‖∞ ≤ 1/2}.

Note that for any p ∈ Z
n , the topological space CA(p)

is an example of (connected and compact) topological mani-
fold with boundary, and the set R

n is a topological manifold
without boundary.

The continuous analog C A(X) of a digital set X ⊂ Z
n

(see Fig. 4) is the union of the continuous analogs of the
points belonging to the set X :

CA(X) =
⋃
p∈X

CA(p).
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Fig. 5 Boundary of the continuous analog of a set: in dashed circles, the
elements p of X , in gray the squares corresponding to CA(p) centered
at the points p, and in red the boundary of the continuous analog of
X all around X [This picture is better viewed in color.] (Color figure
online)

However, contrary to CA(p), a topological space CA(X)

(with X some digital subset of Z
n) is not necessarily a topo-

logical manifold, as depicted later (see Fig. 11).
Then, we will denote by bdCA(X) the topological bound-

ary (see Fig. 5) of CA(X):

bdCA(X) = CA(X) \ Int(CA(X)),

where Int(.) is the (topological) interior operator. That is,
Int(CA(X)) is a subset of CA(X)which is open andmaximal
in the inclusion sense.

Let X be a subset ofZn .We say that X is a continuouswell-
composed set (CWC) when the boundary of its continuous
analog bdCA(X) is a (n − 1)-manifold, that is, if for any
point p ∈ X , the (open) neighborhood of p in bdCA(X) is
homeomorphic1 to R

n−1.
Note that it is well known that the boundary of the con-

tinuous analog is self-dual:

Proposition 1 Let X be a digital subset of Z
n, then:

bdCA(X) = bdCA(Xc).

Thus, any digital set X subset of Z
n is CWC iff its com-

plement Xc is CWC.

3.3 Local Homology

Since it will be useful in the sequel, let us recall that for A
and B two sets, the Cartesian product of A and B is denoted
by A × B and is equal to {(a, b) ; a ∈ A, b ∈ B}.

3.3.1 Cubical Sets

Definition 6 (Definition 2.1 p. 40 of [13]) An elementary
interval is a closed interval I ⊂ R of the form

I = [l, l + 1], or I = {l},

for some l ∈ Z. Elementary intervals that consist of a single
point are said to be degenerate, while those of length 1 are
said to be nondegenerate.

Definition 7 (Definition 2.3 p. 40 of [13]) An elementary
cube Q in R

n is a finite product of elementary intervals, that
is,

Q = I1 × · · · × In ⊂ R
n

where each Ii is an elementary interval. The set of elementary
cubes in R

n is denoted by Kn .

Note: It is important not to confuse the n-dimensional
cubes CA(p) for p ∈ Z

n , used to build the continuous
analogs of discrete sets, with k-cubes (with k ∈ �0, n�) used
in cubical homology, which represent the faces of these n-
dimensional cubes seen as cubical complexes and allow us
to compute homology groups. Remark also that a translation
by half coordinates is needed to convert CA(p) or its faces
into a k-cube (and conversely). For example, in 1D, the 1-
cube [0, 1] is centered at x = 1

2 when CA(0) = [− 1
2 ,

1
2

]
is

centered at x = 0 and then we use a translation of − 1
2 to

convert the 1-cube into CA(0). However, these translations
can be ignored in this paper since topological properties are
preserved by translations in R

n .

Definition 8 (Definition 2.4 p. 41 of [13]) Let Q = I1×· · ·×
In ⊂ R

n be an elementary cube. The interval Ii is referred
to as the i th component of Q and is written as Ii (Q). The
dimension of Q is defined to be the number of nondegenerate
components in Q and is denoted by dim(Q). Also, we define

Kk := {Q ∈ K ; dim(Q) = k}

and

Kn
k := Kk ∩ Kn .

Definition 9 (Definition 2.9 p. 43 of [13]) A set X ⊂ R
n is

cubical if X can be written as a finite union of elementary
cubes. If it is a cubical set, we adopt the following notation:

K(X) := {Q ∈ K ; Q ⊆ X}

and

Kk(X) := {Q ∈ K(X) ; dim(Q) = k}.

Definition 10 (p. 47 of [13]) With each elementary k-cube
Q ∈ Kn

k , we associate an algebraic object Q̂ called an ele-
mentary k-chain of R

n . The set of all elementary k-chains of
R
n is denoted by

1 We call homeomorphism a bicontinuous bijection. When there exists 
some homeomorphism f : A → B such that B = f (A), we say that 
these spaces are homeomorphic.
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K̂n
k := {Q̂ ; Q ∈ Kn

k },

and the set of all elementary chains of R
n is given by

n⋃
k=0

K̂n
k .

Given any finite collection {Q̂1, . . . , Q̂m}, we are allowed to
consider sums of the form

α1 Q̂1 + · · · + αm Q̂m

where α1, . . . , αm are arbitrary integers. In particular, for
each Q ∈ Kn

k , define Q̂ : Kn
k → Z by

Q̂(P) :=
{
1 if P = Q,

0 otherwise,

and let 0 : Kn
k → Z be the zero function, namely, 0(Q) = 0

for all Q ∈ Kn
k Then, Q̂ is the elementary chain dual to the

elementary cube Q.

Definition 11 (Definition 2.16 p. 48 of [13]) The group Cn
k

of k-dimensional chains of R
n (k-chains for short) is the free

Abelian group generated by the elementary chains of K̂n
k . In

particular, K̂ n
k is the basis of Cn

k .

Definition 12 (Definition 2.23 p. 51 of [13]) Given two ele-
mentary cubes P ∈ Kn

k and Q ∈ Kn′
k′ , we define the cubical

product of P̂ and Q̂ such as

P̂ � Q̂ := P̂ × Q.

3.3.2 Chain Complexes and Boundary Operator

Definition 13 (Definition 2.27 p. 53 of [13]) Let X ⊂ R
n be

a cubical set. Let K̂(X) := {Q̂ ; Q ∈ K(X)}. Then, Ck(X)

is the subgroup of Cn
k generated by the elements of K̂k(X)

and is referred to as the set of k-chains of X. Since we know
that X ⊂ R

n , it is not necessary to write a superscript n in
K̂k(X) and Ck(X).

Note that given any c ∈ Ck(X), we have the decomposi-
tion

c =
∑

Qi∈K(X)

αi Q̂i

where αi ∈ Z.

Definition 14 (Definition 2.31 p. 54 of [13]) Given k ∈ Z,
the cubical boundary operator ∂k : Cn

k → Cn
k−1 is a homo-

morphism of free Abelian groups, which is defined for an
elementary chain Q̂ ∈ K̂n

k by induction on the embedding

number as follows. Consider first the case n = 1. Then,
Q is an elementary interval and hence Q = {l} ∈ K1

0 or
Q = [l, l + 1] ∈ K1

1 for some l ∈ Z. Define

∂k Q̂ :=
{

0 if Q = {l},
{̂l + 1} − {̂l} if Q = [l, l + 1].

Note that k can take here two different values, k = 0 if
Q = {l} and k = 1 if Q = {l, l + 1}.

Now assume that n > 1. Let I = I1(Q) and P = I2(Q)×
· · · × In(Q), then we can write that

Q̂ = Î � P̂.

Define

∂k Q̂ := ∂k1 Î � P̂ + (−1)k1 Î � ∂k2 P̂,

where k1 = dim(I ) and k2 = dim(P). Finally, we extend
the definition to all chains by linearity; that is, if c = α1 Q̂1+
· · · + αm Q̂m , then

∂kc := α1∂k Q̂1 + · · · + αm∂k Q̂m .

Proposition 2 Let Q = [0, 1]k ⊂ R
n be a k-elementary cube

with k ≥ 1. Then, the boundary of Q̂ equals

∂k Q̂ :=
k−1∑
i=0

(−1)iAlg
(
[0, 1]i × {1} × [0, 1]k−1−i

)

−
k−1∑
i=0

(−1)iAlg
(
[0, 1]i × {0} × [0, 1]k−1−i

)
,

where Alg(P) is just a notation representing P̂.

Proof The proof follows from Definitions 12 and 14. ��
Proposition 3 (Proposition 2.39 p. 280 of [13]) Let X ⊂ R

n

be a cubical set. Then,

∂k(Ck(X)) ⊆ Ck−1(X).

Definition 15 (Definition 2.40 p. 59 of [13]) The boundary
operator for the cubical set X is defined to be

∂Xk : Ck(X) → Ck−1(X)

obtained by restricting ∂k : Cn
k → Cn

k−1 to Ck(X).

Definition 16 (Definition 2.41 p. 59 of [13]) The cubical
chain complex for the cubical set X ⊂ R

n is

C(X) := {Ck(X), ∂Xk }k∈Z,
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where Ck(X) are the groups of cubical k-chains generated
by K(X) and ∂Xk is the cubical boundary operator restricted
to X.

3.3.3 Homology Groups

Definition 17 (p. 60 of [13]) Let X ⊆ R
n be a cubical set. A

k-chain c ∈ Ck(X) is called a cycle in X if ∂kc = 0. The set
of all k-cycles in X, which is denoted by Zk(X), is ker ∂Xk
and forms a subgroup of Ck(X). Explicitly,

Zk(X) := ker ∂Xk = Ck(X) ∩ ker ∂k ⊆ Ck(X).

A k-chain c′ ∈ Ck(X) is called a boundary inX if there exists
c ∈ Ck+1(X) such that ∂k+1c = c′. Thus, the set of boundary
elements in Ck(X), which is denoted by Bk(X), consists of
the image of ∂Xk+1. Since ∂Xk+1 is a homomorphism, BK (X)

is a subgroup of Ck(X). Explicitly,

Bk(X) := im ∂Xk+1 = ∂k+1(Ck+1(X)) ⊆ Ck(X).

Definition 21 (Definition 9.1 p. 280 of [13]) A pair of cubical
sets X and A with the property that A ⊆ X is called cubical
pair and is denoted by (X, A).

Relative homology is used to compute how two spaces
A,X such that A ⊆ X differ from each other. Intuitively,
we want to compute the homology of X modulo A: we
want to ignore the set A and everything connected to it.
In other words, we want to work with chains belonging to
C(X)/C(A), which leads to the following definition:

Definition 22 (Definition 9.3 p. 280 of [13]) Let (X, A) be
a cubical pair. The relative chains of X modulo A are the
elements of the quotient groups

Ck(X, A) := Ck(X)/Ck(A).

The equivalence class of a chain c ∈ C(X) relative to C(A)

is denoted by [c]A. Note that for each k, Ck(X, A) is a free
Abelian group. The relative chain complex of X modulo A
is given by

{Ck(X, A), ∂
(X,A)
k }

where ∂
(X,A)
k : Ck(X, A) → Ck−1(X, A) is defined by

∂
(X,A)
k [c]A := [∂Xc]A.

Obviously, this map satisfies ∂
(X,A)
k−1 ∂

(X,A)
k = 0. The relative

chain complex gives rise to the relative k-cycles:

Zk(X, A) := ker ∂(X,A)
k ,

the relative k-boundaries

Bk(X, A) := im ∂
(X,A)
k+1 ,

and finally the relative homology groups:

Hk(X, A) := Zk(X, A)/Bk(X, A).

Note that for c ∈ Ck(X), we can write [c]A = c + Ck(A)

using the coset notation since [c]A represents the equivalence
class whose representative is c.

Proposition 4 (Proposition 9.4 p. 281 of [13]) Let X be an
(edge-)connected cubical set and let A be a non-empty cubi-
cal subset of X. Then,

H0(X, A) = 0.

Recall that since ∂k ∂k+1 = 0 (Proposition 2.37, pp.58 
of [13]), every boundary is a cycle and thus Bk (X) is a sub-
group of Zk (X).

We say that two cycles c1, c2 ∈ Zk (X) are homologous 
and we write c1 ∼ c2 if c1 − c2 is a boundary in Ck (X), that 
is, c1 − c2 ∈ Bk (X). The  equivalence classes are then the 
elements of the quotient group Zk (X)/Bk (X).

Definition 18 (Definition 2.42 p. 60 of [13]) The k-th homol-
ogy group is the quotient group

Hk (X) := Zk (X)/Bk (X).

The homology of X is the collection of all homology groups 
of X. The shorthand notation for this is

H(X) := {Hk (X)}k∈Z.

Definition 19 (Definition 2.43 p. 60 of [13]) Given c ∈ 
Zk (X), [c]∈ Hk (X) is the homology class of c in X.

Definition 20 (Definition 2.50 p. 67 of [13]) A sequence of 
vertices V0, . . . ,  Vn ∈ K0(X) is an edge path in X if there 
exists edges E1, . . . ,  En ∈ K1(X) such that Vi−1, Vi are the 
two faces of Ei for i = 1, . . . , n. For  V , V ′ ∈ K0(X), we  
write V ∼X V ′ if there exists an edge path V0, . . . ,  Vn ∈ 
K0(X) in X such that V = V0 and V ′ = Vn . We say that X 
is edge-connected if V ∼X V ′ for any V , V ′ ∈ K0(X).

3.3.4 Relative Homology

Now, we recall some background in matter of relative homol-
ogy.
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3.3.5 Exact Sequences

Definition 23 (Definition 9.15 p. 289 of [13]) A sequence of
groups and homomorphisms

· · · → G3
ψ3−→ G2

ψ2−→ G1 → . . .

is said to be exact at G2 when

im ψ3 = kerψ2.

It is an exact sequence if it is exact at every group.

Corollary 1 (The exact homology sequence of a pair (Corol-
lary 9.26 p. 297 of [13])) Let (X, A) be a cubical pair. Then,
there is a long exact sequence:

· · · → Hk+1(A)
ι∗−→ Hk+1(X)

π∗−→ Hk+1(X, A)
∂∗−→ Hk(A) → . . .

where ι : C(A) ↪−→ C(X) is the inclusion map and π :
C(X) → C(X, A) is the quotient map.

3.3.6 The First Isomorphism Theorem

Let us briefly recall the first isomorphism theorem, critical
to compute homology groups in the diagrams depicted at the
end of the paper.

Theorem 1 The first isomorphism theorem states that for two
groups G and H, with φ a homomorphism from G to H, then
G/ ker(φ) � im (φ).

3.3.7 Mayer–Vietoris Sequence of a Pair

Theorem 2 (p. 142 of [19]) A cubical subset X0 of a cubical
set X is a cubical set which is a subset of X. Let X be a
cubical set; let X0,X1 be two cubical subsets. of X such that
X = X0 ∪ X1. Let L = X0 ∩ X1. Then, there exists an exact
sequence:

· · · → Hk(L)
φk→ Hk(X0) ⊕ Hk(X1)

ψk→ Hk(X)
∂k→ Hk−1(L) → . . .

called the Mayer–Vietoris sequence of (X0,X1).

The interested reader can refer to the proof of this theorem
in [19] (pp. 142) to get the details about which homomor-
phisms were used to obtain such a remarkable result.

3.3.8 Manifolds and Local Homology

Definition 24 ([21]) A cubical set X is said to be locally a
homological n-manifold at x ∈ X if the homology groups
{Hi (X,X \ {x})}i∈Z satisfy:

Hi (X,X \ {x}) =
{

Z when i = n,

0 otherwise.

Fig. 6 How to compute ξ(z) (the encircled disks) from a given point z
(the not-encircled disks of the same color) (Color figure online)

Then, X is said to be a n-dimensional homological manifold
if it is locally an n-dimensional homologicalmanifold at each
point x ∈ X.

Theorem 3 ([21]) A topological manifold is a homological
manifold.

More details about local homology can be found in [15,
22].

4 The Proof that CWCness Implies DWCness
in n-D

To prove that CWCness implies DWCness in n-D, we pro-
ceed by counterposition: we prove that when a digital set
contains a primary or secondary critical configuration, then
the boundary of its continuous analog is not a homological
(n−1)-manifold, and then not a topological (n−1)-manifold.
In the sequel, we will use the notations described in Table 1
and progressively detailed along this section.

4.1 Properties of the Continuous Analog Operator

We define the round operator round(·) for any value v ∈
R \ (Z2 \ Z

)
as round(v) = w where w is the integer such

that v ∈ ]w − 1
2 , w + 1

2 [.
Notations 1 From now on, we will write for z ∈ R

n and for
ε > 0:

B∞(z, ε) := {x ∈ R
n ; ‖x − z‖∞ < ε}.

Notations 2 Let z be an element ofRn.We define (see Fig. 6):

ξ(z) := {q ∈ Z
n ; z ∈ CA(q)

}

Remarkably, ξ(z) is also the intersection of the closed ball
B∞(z, 1/2) with Z

n.

For a given z ∈ R
n , the following notation is an alternative

way to determine which points of Z
n are the centers of the

continuous analogs which contain z. Due to its definition
based on the Cartesian product, it will be easier to manage it
in our n-dimensional proofs.
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Table 1 Summary of the main
notations of Sect. 4.1 Xc

R
n \ X X ⊂ R

n

Xc
Z
n \ X X ⊂ Z

n

CA(p) The continuous analog of p p ∈ Z
n

CA(X) The continuous analog of the set X X ⊂ Z
n

bdCA(X) Boundary of the continuous analog of the set X X ⊂ Z
n

B∞(z, ε) {x ∈ R
n ; ‖x − z‖∞ < ε} Notation 1 z ∈ R

n, ε > 0

ξ(z) {q ∈ Z
n ; z ∈ CA(q)} Notation 2 z ∈ R

n

ξ alt(z) ×i∈�1,n�ξ
alt
i Notation 3 z ∈ R

n

ε(v) ε-operator Notation 4 v ∈ R

CA1D(v) [v − 1
2 , v + 1

2 ] Notation 5 v ∈ R

CA1D(T ) ∪v∈TCA1D(v) Notation 5 T ⊂ Z

Notations 3 Let z be an element of R
n. We define:

ξ alt(z) := ×i∈�1,n�ξ
alt
i ,

where for any i ∈ �1, n�,

ξ alti :=
{{

zi − 1
2 , zi + 1

2

}
when zi ∈ Z

2 \ Z,

{round(zi )} otherwise.

Proposition 5 For any z ∈ R, we have the following prop-
erty:

ξ(z) = ξ alt(z).

Proof Let z be an element ofR
n . Let us remark that q ∈ ξ(z)

is equivalent to say that q ∈ Z
n such that z ∈ CA(q), that is,

‖z − q‖∞ ≤ 1
2 .

Now let q be an element of ξ alt(z). Then, for any i ∈ �1, n�,
qi ∈ ξ alti , which implies that we have 3 possible cases:

– when zi /∈ Z

2 \Z, qi = round(zi ) ∈ Z and then |zi −qi | ≤
1
2 ,

– when zi ∈ Z

2 \Z andqi = zi− 1
2 ,qi ∈ Z and |qi−zi | ≤ 1

2 ,
– when zi ∈ Z

2 \Z andqi = zi+ 1
2 ,qi ∈ Z and |qi−zi | ≤ 1

2 ,

then ‖q − z‖∞ ≤ 1
2 and q ∈ Z

n , then q ∈ ξ(z).
Now let q be an element of ξ(z). Then, q ∈ Z

n such that
‖z − q‖∞ ≤ 1

2 . Then, for any i ∈ �1, n�, |zi − qi | ≤ 1
2 . The

consequence is that for any i ∈ �1, n�, − 1
2 ≤ qi − zi ≤ 1

2 ,
that is:

zi − 1

2
≤ qi ≤ zi + 1

2
. (1)

When zi ∈ Z

2 \ Z, we obtain that qi ∈ �zi − 1
2 , zi + 1

2 � since
qi ∈ Z, then qi ∈ {zi − 1

2 , zi + 1
2 }. When zi /∈ Z

2 \ Z, we

Fig. 7 When the interior of the continuous analog of p intersects the
continuous analog of some set X , then p belongs to X

obtain that there exists a unique qi that satisfies (1), and this
value is round(zi ), then qi ∈ {round(zi )}. The proof is done.

��
The goal of this section is to prove Theorem 4 (see

page 15). As the readerwill understand easily, before proving
such a theorem, we need to understand how the continuous
analog relates the points ofZ

n and the unitary cubes centered
at points of Z

n .

Proposition 6 Let X be a subset ofZn and let p be an element
of Z

n. Then,

{Int(CA(p)) ∩ CA(X) �= ∅} ⇒ {p ∈ X} .

Proof This proposition is depicted in Fig. 7. Let us assume
that z ∈ Int(CA(p)) ∩ CA(X). Since z ∈ Int(CA(p)), then
‖z − p‖∞ < 1

2 . In addition, since z ∈ CA(X), there exists
some q ∈ X such that ‖z − q‖∞ ≤ 1

2 . Since ‖q − p‖∞ =
‖q− z+ z− p‖∞ ≤ ‖q− z‖∞ +‖z− p‖∞ < 1, then q = p,
and then p ∈ X . ��

As we can see in the next proposition, the continuous ana-
log is also strongly related to ξ .
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Fig. 8 When a point z (each non-encircled colored disk) belongs to the
interior of the continuous analog of some set X (see the gray dashed
component), then ξ(z) (depicted by the encircled disks of the same
color) is included in X (Color figure online)

Proposition 7 Let X be a subset ofZn, and let z be an element
of R

n. Then,

z ∈ Int(CA(X)) ⇒ ξ(z) ⊆ X .

Proof This proposition is depicted in Fig. 8. Let us assume
that z belongs to Int(CA(X)), then there exists some neigh-
borhood Vz of z such that Vz ⊆ CA(X). Then, there exists
some small value ε > 0 such that B∞(z, ε) ⊆ Vz ⊆ CA(X).
Now, two cases are possible:

– either z ∈ Z
n , then ξ(z) = {z}, and z ∈ Int(CA(z)), thus

z ∈ Int(CA(z))∩CA(X), which implies by Proposition 6
that z ∈ X , then ξ(z) ⊆ X .

– or z /∈ Z
n , then for every q ∈ ξ(z), there exists a point

qε defined such as:

qε := z + ε

2
(q − z),

which belongs to B∞(z, ε) ⊆ CA(X). Also, we can
reformulate:

qε :=
(
1 − ε

2

)
z + ε

2
q,

which leads easily to qε ∈ Int(CA(q)), thus it satisfies:

qε ∈ Int(CA(q)) ∩ CA(X),

and then q ∈ X by Proposition 6. We can conclude with
ξ(z) ⊆ X .

This concludes the proof. ��
Since in Theorem 4, we will use the boundary operator

used on the continuous analog, we can assume that we will
need the following proposition relating the continuous analog
of a set and the one of its complementary.

Fig. 9 Let X be the set of three points of Z
2 pictured as dashed circles.

The interior of the continuous analog of a set X (in light gray) does
not intersect the continuous analog of the complementary of X (in dark
gray)

Proposition 8 Let X be a subset of Z
n. Then,

Int(CA(X)) ∩ CA(Xc) = ∅.

Proof This proposition is depicted in Fig. 9. Let us assume
that there exists some z ∈ Int(CA(X)) ∩ CA(Xc). Because
z ∈ Int(CA(X)), by Proposition 7, the set ξ(z) satisfies
ξ(z) ⊆ X . Let us denote by #(.) the cardinality operator.
Then,

– either #(ξ(z)) = 1, and we are in the case where there
exists a unique p ∈ X such that ‖p − z‖∞ ≤ 1

2 , then for
all q ∈ Z

n \ {p} (containing Xc), ‖q − z‖∞ > 1
2 , and

then z /∈ CA(Xc): we obtain a contradiction.
– or #(ξ(z)) ≥ 2, then for all p ∈ ξ(z), ‖p − z‖∞ = 1

2 ,
when for every q ∈ Z

n \ ξ(z), ‖q − z‖∞ > 1
2 . Because

ξ(z) ⊆ X , q ⊆ Z
n \ ξ(z), and then for any q ∈ Xc,

‖q − z‖∞ > 1
2 . This way, z /∈ CA(Xc); one more time,

we obtain a contradiction.

The proof is done. ��
Now let us recall and prove an elementary property of the

continuous analog relative to the continuous analog of the
complementary, it will be used in the next proposition.

Proposition 9 Let X be a subset of Z
n, then:

Int(CA(Xc)) = (CA(X))c.

Proof Let z be an element of Int(CA(X)). Then, there exists
some neighborhood Vz of z which is included in CA(X).
Then, Vz ∩ (CA(X))c = ∅. Let us assume that:

z ∈ CA(Xc) (2)

then there exists y ∈ Xc such that ‖z − y‖∞ ≤ 1
2 . Because

CA(y) is closed, then Vz ∩ CA(y) �= ∅. However by (2),
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z ∈ CA(Xc), then z /∈ Int(CA(X)) by Proposition 9. The
proof is done. ��

In the sequel, we are going to show that the center of a
critical configuration belongs to the boundary of the contin-
uous analog of this critical configuration, but before we have
to prove this elementary property.

Proposition 11 The center m of a block S in Z
n satisfies the

following relation:

∀p ∈ S, m ∈ CA(p).

Proof Let S be a block which can be written S(q,F) with
F = ∪i∈I{ei } and with I ⊆ �1, n�. Then, by definition, any
p ∈ S can be written as:

p := q +
∑
i∈I

λi e
i ,

with λi ∈ {0, 1}. Then, the value ‖p − m‖∞ is equal to
maxi∈�1,n� |pi −mi |. When i ∈ �1, n� does not belong to I,
thenmi = pi . Then, ‖p−m‖∞ is equal to maxi∈I |pi −mi |.
When i belongs to I, we have two possible cases: either
λi = 0 and |pi − mi | = |qi − (qi + 1

2 )| = 1
2 , or λi = 1 and

|pi − mi | = |(qi + 1) − (qi + 1
2 )| = 1

2 . The conclusion is
that when I is empty, that is, when S is a block of one point,
we have that p ∈ S is equal to m and then m ∈ CA(p), and
that, when dim(S) ≥ 1, for any p ∈ S, ‖p − m‖∞ = 1

2 and
then we obtain one more time that m ∈ CA(p). ��

Now, we can assert and prove the property that the center
of a critical configuration belongs to the boundary of the
continuous analog of this critical configuration; the aimbeing
to show in the sequel that we can easily find elements of the
boundary of the continuous analogs where the continuous
analog of a not DWC set is not a homological manifold.

Lemma 1 Let X be a digital subset of Z
n. When X contains

a critical configuration in the block S, then the center m of
S belongs to bdCA(X).

Fig. 11 Adigital set X containing a critical configuration in some block
S (see the dashed circles in the squares), then the centerm (in red at the
center of the figure) belongs to the boundary of the continuous analog
of X . [This picture is better viewed in color.] (Color figure online)

Fig. 10 The boundary of the continuous analog of a digital set X (see 
the red closed curve between the set of the dark points and the set of the 
dashed points) can be computed as the intersection of the continuous 
analog of X and the one of its complementary in Zn . [This picture is 
better viewed in color.] (Color figure online)

Vz ⊂ CA(X), which is equivalent to Vz ⊆ Int(CA(X)), and 
by Proposition 8,

Int(CA(X)) ∩ CA(X c) = ∅,

then Vz ∩ CA(X c) = ∅. We obtain a contradiction. Then, (2) 
is false, that is, z ∈ (CA(X c))c.
Let us prove the converse inclusion. Let z be an element of 
(CA(X))c. Since CA(X) is closed, (CA(X))c is open, and 
then there exists an open neighborhood Vz of z such that 
Vz ⊆ (CA(X))c. It means that Vz is included into CA(X c) 
since CA(X) ∪ CA(X c) = R

n . However, the fact that Vz 
is included in CA(X c) means that z belong to Int(CA(X c)). 
The proof is done. ��

As said before, we need properties relative to the boundary 
of the continuous, analog; here we are going to show that we 
can reformulate its topological boundary as an intersection 
of two continuous analogs, which will make the proofs easier 
in the sequel.

Proposition 10 Let us define the non-empty digital strict sub-
set X of Zn , then, the topological boundary bdCA(X) := 
CA(X) \ Int(CA(X)) of the continuous analog of X is equal 
to:

CA(X) ∩ CA(X c).

Proof This proposition is depicted in Fig. 10.
Let us assume that X �= ∅ �= X c. Let us prove the dou-
ble inclusion. Let z be an element of bdCA(X). Then, 
z ∈ CA(X), and z ∈/ Int(CA(X)). This last property means 
that for any neighborhood Vz of z, Vz ∩ CA(X)c �= ∅. How-
ever, CA(X) ∪ CA(X c) = R

n , then CA(X)c ⊆ CA(X c), 
and then Vz ∩ CA(X c) �= ∅. Since CA(X c) is closed in 
R
n and since any neighborhood of z intersects CA(X c), z 

belongs to CA(X c). Then, we have proven that bdCA(X) ⊆ 
CA(X) ∩ CA(X c).
Let us now prove the converse inclusion. Let z be an element 
of CA(X) ∩ CA(X c). By hypothesis, z ∈ CA(X). Since
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Fig. 12 The graph of the mapping v → ε(v)

Proof This lemma is depicted in Fig. 11. When X contains a
critical configuration, there exists some block S of dimension
k ≥ 2 such that X∩S = {p, p′} (or such that S\X = {p, p′})
with p′ = antagS(p). Let q ∈ S be a 2n-neighbor of p (then
q �= p′ since they are (k − 1)-antagonists). Now let m be
the center of S. Two cases are possible: in the primary case,
p ∈ X , and then q ∈ Xc. By Proposition 11, m belongs then
to CA(p)∩CA(q) ⊆ CA(X)∩CA(Xc), and thenm belongs
to bdCA(X) by Proposition 10. The secondary case follows
a similar reasoning. ��

The following notation represents the maximal radius of
the open ball which fits in Int(CA(ξ(z))) (1D and n-D cases).

Notations 4 Let us define the operator ε : R → [0, 1] such
that for any v ∈ R:

ε(v) :=

⎧⎪⎪⎨
⎪⎪⎩

1 when v ∈ Z

2 \ Z, (I)
1
2 when v ∈ Z, (II)
v − (�v� − 1

2

)
when �v� − v < v − �v�, (III)

�v� + 1
2 − v when �v� − v > v − �v�, (IV)

(see Fig. 12). When we are in cases (I I ), (I I I ) or (I V ), we
obtain:

∅ �= ]v − ε(v), v + ε(v)[

⊆
]
round(v) − 1

2
, round(v) + 1

2

[
.

Based on ε defined for real values, we define by extension:

∀z ∈ R
n, ε(z) := min

i∈�1,n�
ε(zi ).

To be able to switch between the 1D and the n-D contin-
uous analogs (needed in Proposition 16 seen at page 13), we
introduce a simplified definition of the 1D version here.

Notations 5 For v ∈ R, let us denote by CA1D(v) := [v −
1
2 , v + 1

2 ]. For any p ∈ Z
n, we have that

×i∈�1,n�CA1D(pi ) = CA(p).

Now, for R ⊆ Z, let us denote:

CA1D(R) := ∪v∈RCA1D(v).

Property 1 For any family {Ei }i∈�1,n� of subsets of Z, we
have the following property:

×i∈�1,n�CA1D(Ei ) = CA(×i∈�1,n�Ei ).

Proof Let us prove the case n = 2:

CA1D(E1) × CA1D(E2)

=
⎛
⎝ ⋃

p1∈E1

CA1D(p1)

⎞
⎠×

⎛
⎝ ⋃

p2∈E2

CA1D(p2)

⎞
⎠ ,

=
⋃

p1∈E1

⋃
p2∈E2

CA1D(p1) × CA1D(p2),

=
⋃

p1∈E1

⋃
p2∈E2

CA((p1, p2)),

=
⋃

p∈E1×E2

CA(p),

= CA(E1 × E2).

The case n ≥ 2, n finite, follows the same reasoning. ��

In the following proposition, we show that a little
open ball centered at a given z ∈ R

n is included in the con-
tinuous analog of ξ(z), which shows how ε(z) and ξ(z) are
related.

Proposition 12 For any z ∈ R
n, we have the following prop-

erty:

B∞(z, ε(z)) ⊆ Int (CA(ξ(z))) .

Proof The intuition of this proof is depicted in Fig. 13. Let us
define I 1

2
(z) := {i ∈ �1, n� zi ∈ Z

2 \ Z}. Now let us observe
that:

Fig. 13 The set B∞(z, ε(z)) (see each white square) is always included
in Int (CA(ξ(z))) (see the union of the squares in light gray centered at
the elements of ξ(z)). Furthermore, the intersection of CA(Zn \ ξ(z))
and B(z, ε(z)) is equal to the empty set
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B∞(z, ε(z)) = ×i∈�1,n�B∞(zi , ε(z)),

⊆ ×i∈�1,n�B∞(zi , ε(zi )),

⊆ ×i∈�1,n� ]zi − ε(zi ), zi + ε(zi )[ .

Now, let i be an element of I 1
2
(z), then ξ(zi ) = {zi − 1

2 , zi +
1
2 }, which implies that Int(CA1D(ξ(zi )) =]zi − 1, zi + 1[,
and then:

]zi − ε(zi ), zi + ε(zi )[ ⊆ Int(CA1D(ξ(zi )).

Besides, when i is an element of �1, n� \ I 1
2
(z), ξ(zi ) =

{round(zi )}, then

Int(CA1D(ξ(zi ))) =]round(zi ) − 1

2
, round(zi ) + 1

2
[,

and since we are in cases (I I ), (I I I ) or (I V ), we obtain:

]zi − ε(zi ), zi + ε(zi )[⊆ Int(CA1D(ξ(zi ))).

Finally,

B∞(z, ε(z)) ⊆ ×i∈�1,n� ]zi − ε(zi ), zi + ε(zi )[ ,

⊆ ×i∈�1,n�Int(CA1D(ξ(zi ))),

⊆ Int(×i∈�1,n�CA1D(ξ(zi ))),

⊆ Int(CA(×i∈�1,n�ξ(zi ))),

⊆ Int(CA(ξ(z))).

This concludes the proof. ��

Fig. 14 At z (depicted by a small black disk), only the topology of
Int(CA(X∩ξ(z)))∩B∞(z, ε(z))matters when we look at Int(CA(X)).
The same reasoning applies for the continuous analog and for its bound-
ary. [This picture is better viewed in color.] (Color figure online)

Proposition 14 For any z ∈ R
n and for any X ⊂ Z

n,

Int(CA(X)) ∩ B∞(z, ε(z))

= Int(CA(X ∩ ξ(z))) ∩ B∞(z, ε(z)).

Proof The intuition of this proof is depicted in Fig. 14.
The converse inclusion is immediate. Now, for the direct
inclusion, let us assume that x belongs to Int(CA(X)) ∩
B∞(z, ε(z)). This is equivalent to say that there exists some
neighborhood Vx of x which is included in CA(X) and
in B∞(z, ε(z)). However, Vx ⊆ B∞(z, ε(z)). Since Vx ⊆
CA(X),

Vx ⊆ CA(X) ∩ B∞(z, ε(z)),

which is included in:

CA(X ∩ ξ(z)) ∩ B∞(z, ε(z))⋃
CA(X \ ξ(z)) ∩ B∞(z, ε(z)),

where the second term is included in CA(Zn \ ξ(z)) ∩
B∞(z, ε(z)) which is equal to the empty set by Proposi-
tion 13. Then, Vx ⊆ CA(X ∩ ξ(z)) ∩ B∞(z, ε(z)), which
means that x ∈ Int(CA(X ∩ ξ(z)) ∩ B∞(z, ε(z))), which is
equal to Int(CA(X ∩ ξ(z))) ∩ B∞(z, ε(z)). This concludes
the proof. ��

The following proposition is the complementary part of
the previous proposition, since it concerns the continuous
analog and not its interior.

Proposition 15 Let X be a digital subset of Z
n and let z be

an element of R
n. Then,

CA(X) ∩ B∞(z, ε(z)) = CA(X ∩ ξ(z)) ∩ B∞(z, ε(z)).

Proof The intuition of this proof is depicted in Fig. 14. For
any digital set X ⊂ Z

n and for any z ∈ R
n , we have:

In the following proposition, we show the complementary 
of the previous proposition.

Proposition 13 For any z ∈ Rn ,

CA(Zn \ ξ(z)) ∩ B∞(z, ε(z)) = ∅.

Proof The intuition of this proposition is depicted in Fig. 13. 
By Proposition 12,

B∞(z, ε(z)) ⊆ Int(CA(ξ(z))),

then B∞(z, ε(z)) ∩ (Int(CA(ξ(z))))c = ∅, so by Proposi-
tion 9, B∞(z, ε(z)) ∩ CA(Zn \ ξ(z)) = ∅. ��

The following proposition is very important, since it is 
the first to show that we can restrict the set X to X ∩ ξ(z) 
when we compute its intersection with the neighborhood of 
B∞(z, ε(z)). This is one of the keys of Theorem 4.
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Fig. 15 Points z are depicted by colored disks surrounded by a dark gray
solid rectangle corresponding to the ball B∞(z, ε). The balls intersect
always the interior of the continuous analog CA(p) of each point p
belonging to ξ(z) (depicted by encircled disks of the same color as z)
(Color figure online)

CA(X) ∩ B∞(z, ε(z))

=
⋃
p∈X

CA(p) ∩ B∞(z, ε(z)),

=
⎛
⎝ ⋃

p∈X∩ξ(z)

CA(p) ∩ B∞(z, ε(z))

⎞
⎠

⋃
⎛
⎝ ⋃

p′∈X\ξ(z)

CA(p′) ∩ B∞(z, ε(z))

⎞
⎠ .

However we can remark that the second term in the union is
included in

⋃
p′∈Zn\ξ(z) CA(p′) ∩ B∞(z, ε(z)) by Proposi-

tion 13, which is equal to the empty set. This concludes the
proof. ��

Grouping together the two previous propositions, we can
assert in the following lemma that shows that even for the
boundary of the continuous analog, only the set X ∩ ξ(z)
counts.

Lemma 2 Let X be a digital subset of Z
n and let z be an

element of R
n. Then,

bdCA(X) ∩ B∞(z, ε(z)) = bdCA(X ∩ ξ(z)) ∩ B∞(z, ε(z)).

In other words, the boundary of X in the neighborhood of z
depends only on X ∩ ξ(z).

Proof It follows directly from Propositions 14 and 15. The
intuition of this proof is depicted in Fig. 14. ��

4.2 Properties of antagonists and blocks

There comes an additional property of the neighborhood of
z ∈ R

n relatively to the interior of the continuous analog of
ξ(z). This proposition will be used in Lemma 3 at page 14 to
show that we have some remarkable properties when we use
the continuous analog on antagonists.

Proposition 16 For any z ∈ R
n, any ε > 0, and any p ∈

ξ(z),

B∞(z, ε) ∩ Int(CA(p)) �= ∅. (3)

Proof The intuition of this proposition is depicted in Fig. 15.
Let ε be a real value greater than 1

2 . In this case, B∞(z, ε)
contains ξ(z) thus for any p ∈ ξ(z), (3) is true.
Now, let us assume ε ∈ ]

0, 1
2

]
. Then, for any coordinate

i ∈ �1, n�, we have two possibilities. When zi belongs to

(
(
Z

2

)n \ Z
n): ξ(zi ) = {zi − 1

2 , zi + 1
2 }; otherwise, ξ(zi ) =

round(zi ). In both cases, for any pi ∈ ξ(zi ):

B∞(zi , ε) ∩ Int(CA1D(pi )) �= ∅.

Using this property, we obtain that for any p ∈ ξ(z) and for
any i ∈ �1, n�, pi ∈ ξ(zi ), thus:

]zi − ε, zi + ε[ ∩
]
pi − 1

2
, pi + 1

2

[
�= ∅,

which means that by using the n-D Cartesian product, we
obtain that (3) is true. This concludes the proof. ��

The intuition of the following proposition is the following:
a block is defined using its lexicographically lowest vertex
(with all coordinatesminimal),when ξ is definedwith respect
to its center (using the alternative definition of ξ(z) as the
intersection of Z

n with the ball centered at z and of radius
1
2 ). One translation transforms the block to ξ . It is the same
translation that transforms elementary cubes to closed unit
cubes.

Proposition 17 Let m be an element of
(
Z

2

)n
, and let S be

the block centered at m. Then,

S = ξ(m).

Fig. 16 For m a center of some block S, we can compute this same
block just by applying the operator ξ to m: the cardinality of ξ(m) is
equal to 4 (on the left side), 2 (on the right top side) and 1 (on the right
down side) in the pink, red and purple cases, respectively. [This picture
is better viewed in color.] (Color figure online)



144

Proof This proposition is depicted in Fig. 16. Letm be an ele-

ment of
(
Z

2

)n
. Let (q,F) ∈ Z

n × B such that S = S(q,F),

we can write F = { f i }i∈�1,k� where k := dim(S). By defi-

nition of m, we have m = q +∑i∈�1,k�
f i

2 .

For any p ∈ S, there exist (λi )i∈�1,k� ∈ {0, 1}k such that

p = q +∑i∈�1,k� λi f i . Then,

‖p − m‖∞ =
∥∥∥∥∥∥
∑

i∈�1,k�

λ′
i f

i

∥∥∥∥∥∥
∞

where (λ′
i )i∈�1,k� ∈ {− 1

2 ,
1
2 }k , which implies that ‖p −

m‖∞ ≤ 1
2 , and then m ∈ CA(p), leading to p ∈ ξ(m).

Conversely, for any p ∈ ξ(m), p ∈ Z
n and ‖p − m‖∞ ≤ 1

2 ,
which means that for any i ∈ �1, n�, |pi − mi | ≤ 1

2 , or
equivalently:

mi − 1

2
≤ pi ≤ mi + 1

2
. (4)

When mi ∈ Z, (4) is equivalent to pi = mi since pi ∈ Z,
and when mi ∈ Z

2 \ Z, (4) is equivalent to pi ∈ {mi −
1
2 , pi + 1

2 }; we call this property (R1). Let us define I :=
{i ∈ �1, n� ; mi ∈ Z

2 \ Z}, then F = {ei }i∈I . Also we can
remark that for any i ∈ �1, n�,

qi =
{
mi if mi ∈ Z,

mi − 1
2 otherwise.

Then, we can rewrite S in the following manner:

S = S(q,F),

= {q +∑i∈I λi ei ; λi ∈ {0, 1},∀i ∈ I},
= {m +∑i∈I λ′

i e
i ; λ′

i ∈ {− 1
2 ,

1
2 },∀i ∈ I}.

Besides, by (R1), p can be rewritten as m +∑i∈I λ′
i e

i with
λ′
i ∈ {− 1

2 ,
1
2 } for each i ∈ I, then p ∈ S. ��

The next lemma shows that when we use k-antagonists,
with k ≥ 2, the interior and the union operators commute.

This assertion will be used in Lemma 4, showing that bdCA
and the union operators also commute in this same configu-
ration.

Lemma 3 Let p, p′ be two k-antagonists in a block S, with
k ≥ 2. Then, we have the following relation:

Int(CA(p)) ∪ Int(CA(p′)) = Int(CA({p, p′})).

Proof The intuition of this lemma is depicted in Fig. 17. The
fact that

Int(CA(p)) ∪ Int(CA(p′)) ⊆ Int(CA({p, p′}))

is obvious since for any two subsets A, B of a topological
space, Int(A) ∪ Int(B) ⊆ Int(A ∪ B).
Now let us prove that if p does not belong to Int(CA(p))
∪Int(CA(p′)), then p does not belong to Int(CA({p, p′})).
Obviously, when p does not belong to CA(p)∪CA(p′), then
p cannot belong to Int(CA({p, p′})). Then, let us prove that
if p belongs to:

CA(p) ∪ CA(p′) \ (Int(CA(p)) ∪ Int(CA(p′)))
⊆ bdCA(p) ∪ bdCA(p′),

then it does not belong to Int(CA({p, p′})).
Let m be the center of S, then by Proposition 17, S = ξ(m).
Then,

CA(p) ∪ CA(p′) = CA({p, p′}) ⊆ CA(S) = CA(ξ(m)).

It means that two cases are possible when z ∈ CA(ξ(m)):

– Either z ∈ Int(CA(ξ(m))), then by Proposition 16, for
any ε > 0, and for any q ∈ ξ(z), B∞(z, ε)∩CA(q) �= ∅.
Then, the smallest set E ⊆ Z

n verifying that B∞(z, ε) ⊆
CA(E) contains ξ(z). In other words, if a set F ⊆ Z

n

does not contain ξ(z), then B∞(z, ε) � CA(F). Two
subcases are then possible:

– If z = m, then by Proposition 17, ξ(z) = ξ(m) =
S. Then, for F := {p, p′} ⊂ Z

n , F � ξ(z) = S
because dim(S) ≥ 2, and then B∞(z, ε) � CA(F),
and finally z /∈ Int(CA({p, p′})).

– If z �= m, then ξ(z) is a �-D block with � ∈ �1, k−1�.
This way, F := {p, p′} ⊂ Z

n does not contain
ξ(z). Indeed, if F contains ξ(z), then F = ξ(z)
(since ξ(z) contains at least two points and F con-
tains exactly two points), which implies that ξ(z) is a
1D block made of two 2n-neighbors. It would imply
that p and p′ are 2n-neighbors, which is impossi-
ble since k ≥ 2. Then, F does not contain ξ(z), and

Fig. 17 When p and p′ are 2-antagonists (see the black disks), the inte-
rior of the union of the continuous analog of { p, p′} is equal to the union 
of the interiors of the continuous analogs of p and p′. Furthermore, the 
intersection of the two interiors is equal to the empty set
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Fig. 18 When p and p′ are 2-antagonists, the boundary (in red all
around the two squares) of the continuous analog of {p, p′} is equal to
the union of the boundaries of the continuous analogs of p and p′. [This
picture is better viewed in color.] (Color figure online)

then B∞(z, ε) � CA(F) = CA({p, p′}) and then
z /∈ Int(CA({p, p′})).

– Or z ∈ bdCA(ξ(m)). Then, let us assume that z belongs to
Int(CA({p, p′})). Then, there exists a neighborhood Vz
of z such that Vz ⊆ CA({p, p′}). However, ξ(m) = S ⊇
{p, p′} and then CA({p, p′}) ⊆ CA(ξ(m)), then Vz ⊆
CA(ξ(m)), then z belongs to Int(CA(ξ(m))), which leads
to a contradiction. Then, z /∈ Int(CA({p, p′})).

The proof is done. ��
The following results show one property of the continuous

analog when we use antagonists.

Proposition 18 Let p and p′ be two k-antagonists in a block
of Z

n with k ≥ 1. Then,

Int(CA(p)) ∩ CA(p′) = ∅ = Int(CA(p′)) ∩ CA(p).

Proof The intuition of this proof is depicted in Fig. 17. Let us
prove that Int(CA(p)) ∩ CA(p′) = ∅: Int(CA(p)) = {z ∈
R
n ; ‖z − p‖∞ < 1

2 }, and CA(p′) = {z ∈ R
n ; ‖z −

p′‖∞ ≤ 1
2 }. If the intersection Int(CA(p)) ∩ CA(p′) is not

empty, there exists an element z ∈ Int(CA(p))∩CA(p′) and
then:

‖p − p′‖∞ ≤ ‖p − z‖∞ + ‖z − p′‖∞ < 1,

which is impossible because k ≥ 1. ��
The following lemma is the second key of Theorem 4

(operators bdCA and union commute when we use k-
antagonists with k ≥ 2).

Lemma 4 Let p and p′ be two k-antagonists in a block of Zn

with k ≥ 2. Then, we have:

bdCA({p, p′}) = bdCA(p) ∪ bdCA(p′).

Fig. 19 When X contains a critical configuration {p, p′} of center m,
the boundary of CA(X) behaves like the union of the boundaries of the
continuous analogs of p and p′ in the neighborhood of m (see the part
of the red self-crossing curve included in the blue circle). [This picture
is better viewed in color.] (Color figure online)

Proof The intuition of this proof is depicted in Fig. 18. The
term bdCA(p) ∪ bdCA(p′) is equal to:

CA(p) \ Int(CA(p)) ∪ CA(p′) \ Int(CA(p′)),

since CA(p) and CA(p′) are closed sets. By Proposition 18,

Int(CA(p)) ∩ CA(p′) = ∅ = Int(CA(p′)) ∩ CA(p),

then bdCA(p) ∪ bdCA(p′) is equal to:

(CA(p) ∪ CA(p′)) \ Int(CA(p)) \ Int(CA(p′)).

This term is equal by Lemma 3 to:

(CA(p) ∪ CA(p′)) \ Int(CA(p) ∪ CA(p′)),

which is in fact bdCA({p, p′}). ��

Theorem 4 Let X be a digital subset ofZn. When X contains
a critical configuration (of order k ∈ �2, n�) at some block
S of center m, then for all ε ∈ ]0, ε(m)]:

bdCA(X) ∩ B∞(m, ε)

= (bdCA(p) ∪ bdCA(p′)) ∩ B∞(m, ε).

In other words, the boundary of CA(X) behaves like the
union of the boundaries of the continuous analogs of p and
p′ in the neighborhood of m.

Proof This theorem is depicted in Fig. 19. Let us treat first
the primary case: X ∩ S = {p, p′}. Then, by Lemma 2, and
by choosing z := m, we obtain that:

bdCA(X) ∩ B∞(m, ε(m))

= bdCA(X ∩ ξ(m)) ∩ B∞(m, ε(m)),
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and since m ∈
(
Z

2

)n
, by Proposition 17, then ξ(m) = S,

then:

bdCA(X) ∩ B∞(m, ε(m))

= bdCA({p, p′}) ∩ B∞(m, ε(m)).

Since p and p′ are k-antagonists with k ≥ 2, by Lemma 4,
we obtain:

bdCA(X) ∩ B∞(m, ε(m))

= (bdCA(p) ∪ bdCA(p′)) ∩ B∞(m, ε(m)).

Now let us treat the secondary case: S \ X = {p, p′}.
Then, the fact that X contains a secondary critical configu-
ration is equivalent to say that Xc contains a primary critical
configuration: Xc ∩ S = {p, p′}. Then, by Proposition 1,
bdCA(X) = bdCA(Xc), and then by following the same
reasoning as for the primary case:

bdCA(X) ∩ B∞(m, ε(m))

= bdCA(Xc) ∩ B∞(m, ε(m)),

= bdCA(Xc ∩ ξ(m)) ∩ B∞(m, ε(m)),

= bdCA({p, p′}) ∩ B∞(m, ε(m)),

= (bdCA(p) ∪ bdCA(p′)) ∩ B∞(m, ε).

This concludes the proof. ��
Corollary 2 Let us assume that a digital set X ⊂ Z

n contains
a critical configuration in some block S of center m such that
X ∩ S = {p, p′} or S \ X = {p, p′}. If bdCA(p)∪bdCA(p′)
is not locally Euclidean of dimension (n−1), then bdCA(X)

is not locally Euclidean of dimension (n−1) neither. In other
words, it is sufficient to show that the set {p, p′} of X is not
CWC to show that X is not CWC.

4.3 The n-D Proof

From now on, in this subsection, we assume that we have
a digital set X ⊂ Z

n which contains some primary critical

configuration at the block S of center m ∈
(
Z

2

)n
and such

that X ∩ S = {p, p′}. In addition, we define:

Xp,p′ := bdCA(p) ∪ bdCA(p′).

The notations of Sect. 4.3 are summarized in Table 2.
Thanks to Lemma 1, we know that m belongs to Xp,p′ , and
thanks to Corollary 2, we know that if Xp,p′ is not locally
homeomorphic to ]0, 1[n−1 at m, then {p, p′} is not CWC,
and then X is not CWC neither.

To prove that {p, p′} is not CWC, we are going to use
homology. Indeed, if we can prove that:

Hn−1(Xp,p′ ,Xp,p′ \ {m}) �= Z,

then Xp,p′ is not a homological manifold at m, and then it is
not a topological manifold. For this aim, we will use the first
isomorphism theorem.

Since Xp,p′ is the union of two (n − 1)-spheres sharing a
(n − k)-cube, we can deduce its homology groups:

Property 2 The homology groups ofXp,p′ are the following:

⎧
⎨
⎩

H0(Xp,p′) = Z,

Hn−1(Xp,p′) = Z ⊕ Z,

Hk∈Z\{0,n−1}(Xp,p′) = 0.

Now let us define:

A = Xp,p′ \ {m},

then we obtain the following values of the homology groups
of A (theywill be used to prove next that the homology group
Hn−1(Xp,p′ , A) is not equal to Z).

Property 3 Let Z
∗ = Z \ {0}. Let A = Xp,p′ \ {m}, then:

– When k = n = 2, we have:

{
H0(A) = Z

2,

Hk∈Z∗(A) = 0,

– When k = 2 and n = 3, we have:

⎧
⎨
⎩

H0(A) = Z,

H1(A) = Z,

Hk∈Z\{0,1}(A) = 0,

– When k = 2 and n ≥ 4, we have:

{
Hn−1(A) = 0,
Hn−2(A) = Z,

– When k = n ≥ 3, we have:

{
H0(A) = Z

2,

Hn∈Z∗(A) = 0,

– When k = n − 1 and n ≥ 4, we have:

⎧⎨
⎩

Hn(A) = 0,
Hn−1(A) = 0,
Hn−2(A) = 0,

– When k ∈ �3, n − 2� and n ≥ 5, we have:

⎧⎨
⎩

Hn(A) = 0,
Hn−1(A) = 0,
Hn−2(A) = 0,
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Table 2 Summary of the main
notations of Sect. 4.3 n ≥ 2 The dimension of the ambient space

X A digital subset of Z
n which is not DWC

S One of the blocks where a critical configuration occurs in X

k ≥ 2 The antagonism order of S relatively to X

p, p′ The two k-antagonists in S

X ∩ S = {p, p′} The studied primary critical configuration of X

m = p+p′
2 The center of S

Xp,p′ bdCA(p) ∪ bdCA(p′)

Proof Let us decompose A this way for the sequel:

⎧⎪⎪⎨
⎪⎪⎩

K0 = bdCA(p) \ {m},
K1 = bdCA(p′) \ {m},
I = K0 ∩ K1,

A = K0 ∪ K1.

Now let us treat each case separately.

– When k = n = 2, A is homotopy equivalent to a 0-
sphere since it is a set of two empty 2-cubes minus their
intersection.

– When k = 2 and n = 3:

– A is made of two 3-cubes sharing a 1-cube minus its
center, then it is connected and H0(A) = Z.

– I is homotopy equivalent to a 0-sphere and then:

{
H0(I) = Z

2,

Hi∈Z∗(I) = 0,

we obtain then theMayer–Vietoris sequence depicted
below:

H3(I) = 0
H3(K0) ⊕

H3(K1) = 0
H3(A) = 0

H2(I) = 0
H2(K0) ⊕

H2(K1) = 0
H2(A) = 0

H1(I) = 0
H1(K0) ⊕

H1(K1) = 0
H1(A) = Z

H0(I) = Z
2 H0(K0) ⊕

H0(K1) = Z
2 H0(A) = Z

H−1(I) = 0

ι3 π3

∂3

ι2 π2

∂2

ι1 π1

∂1

ι0 π0

∂0

thus H1(A) = Z.

– When k = 2 and n ≥ 4, I is a (n − k − 1)-sphere
with (n − k − 1) = (n − 3) ≥ 1 and then H0(I) = Z,
Hn−3(I) = Z, and Hi∈Z\{0,n−3} = 0. At the same time,
K0 and K1 are contractile and thenH0(K0) = H0(K1) =
Z and Hi∈Z∗(K0) = Hi∈Z∗(K1) = 0. Then, we obtain
the Mayer–Vietoris sequence depicted below:

Hn−2(K0) ⊕
Hn−2(K1) = 0

Hn−2(A) = Z

Hn−3(I) = Z
Hn−3(K0) ⊕

Hn−3(K1) = 0

ψn−2

∂n−2

φn−3

thus Hn−2(A) = Z.
– When k = n ≥ 3, A is a set of two empty n-cubes
minus their intersection (a vertex), and then it is homo-
topy equivalent to a 0-sphere.

– When k = n−1 andn ≥ 4, thenI is homotopy equivalent
to a 0-sphere and K0 and K1 are contractile, thenwe have:

{
H0(I) = Z

2,

Hi∈Z∗(I) = 0,

{
H0(K0) = Z,

Hi∈Z∗(K0) = 0,

and:

{
H0(K1) = Z,

Hi∈Z∗(K1) = 0,
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which leads to the results depicted below:

Hn−1(K0) ⊕
Hn−1(K1) = 0

Hn−1(A) = 0

Hn−2(I) = 0
Hn−2(K0) ⊕

Hn−2(K1) = 0
Hn−2(A) = 0

Hn−3(I) = 0

ψn−1

∂n−1

φn−2 ψn−2

∂n−2

then Hn−1(A) = Hn−2(A) = 0.
– When k ∈ �3, n − 2� and n ≥ 5, then I is homotopy

equivalent to a (n − k − 1)-sphere since it is equal to a
(n−k)-ball minus its center, and because (n−k−1) ≥ 1,
we have:

⎧⎨
⎩

H0(I) = Z,

Hn−k−1(I) = Z,

Hi∈Z\{0,n−k−1}(I) = 0,

Also, K0 and K1 are contractile, and then:

{
H0(K0) = Z,

Hi∈Z∗(K0) = 0,

and:

{
H0(K1) = Z,

Hi∈Z∗(K1) = 0,

We obtain then the results depicted below:

Hn−1(K0) ⊕
Hn−1(K1) = 0

Hn−1(A) = 0

Hn−2(I) = 0
Hn−2(K0) ⊕

Hn−2(K1) = 0
Hn−2(A) = 0

Hn−3(I) = 0

ψn−1

∂n−1

φn−2 ψn−2

∂n−2

then Hn−1(A) = Hn−2(A) = 0.

This concludes the proof. ��

Property 4 When we have n ≥ 2 and k = 2, then:

Hn−1(Xp,p′ , A) = Z
3,

and when we have n ≥ 3 and k ∈ �3, n�, then:

Hn−1(Xp,p′ , A) = Z
2.

In other words, for any n ≥ 2 and any k ∈ �2, n�, we have
Hn−1(Xp,p′ , A) �= Z.

Proof These results follow from the six following computa-
tions:

Step 1 : Hn−1(Xp,p′ , A) when k = n = 2

H1(A) = 0 H1(Xp,p′) =
Z
2

H1(Xp,p′ , A) =
Z
3

H0(A) = Z
2 H0(Xp,p′) = Z

H0(Xp,p′ , A) =
0

ι1 π1

∂1
ι0 π0

Step 2: Hn−1(Xp,p′ , A) when k = 2 and n = 3

H2(A) = 0 H2(Xp,p′) =
Z
2

H2(Xp,p′ , A) =
Z
3

H1(A) = Z H1(Xp,p′) = 0

ι2 π2

∂2
ι1

Step 3: Hn−1(Xp,p′ , A) when k = 2 and n ≥ 4

Hn−1(A) = 0 Hn−1(Xp,p′) =
Z
2

Hn−1(Xp,p′ , A) =
Z
3

Hn−2(A) = Z
Hn−2(Xp,p′) =

0

ιn−1 πn−1

∂n−1
ιn−2

Step 4: Hn−1(Xp,p′ , A) when k = n ≥ 3

Hn−1(A) = 0 Hn−1(Xp,p′) =
Z
2

Hn−1(Xp,p′ , A) =
Z
2

Hn−2(A) = 0

ιn−1 πn−1

∂n−1

Now that we know the important values of the homology 
groups of A, let us prove the following property induced by 
Property 3.
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Step 5: Hn−1(Xp,p′ , A) when k = n − 1 and n ≥ 4

Hn−1(A) = 0 Hn−1(Xp,p′) =
Z
2

Hn−1(Xp,p′ , A) =
Z
2

Hn−2(A) = 0

ιn−1 πn−1

∂n−1

Step 6: Hn−1(Xp,p′ , A) when n ≥ 5 and k ∈ �3, n − 2�

Hn−1(A) = 0 Hn−1(Xp,p′) =
Z
2

Hn−1(Xp,p′ , A) =
Z
2

Hn−2(A) = 0

ιn−1 πn−1

∂n−1

The proof is done. ��
Based on Property 4, it follows that Xp,p′ is not locally

a homological manifold at m, and then Xp,p′ is not locally
Euclidean of dimension (n−1) atm. From this, we can con-
clude thatXp,p′ is not locally a topological (n−1)-manifold
atm. SinceXp,p′ behaves like bdCA(X) in the neighborhood
of m by Theorem 4, then X is not CWC. When X contains
a secondary critical configuration, the reasoning is the same,
as explained in Corollary 2.

Theorem 5 For any digital set X ⊂ Z
n, n ≥ 2, X is DWC

when X is CWC. In other words, CWCness implies DWCness
in n-D, n ≥ 2.

5 Conclusion

We have shown in this paper that CWCness implies DWC-
ness in n-D, which can be summarized by saying that when
we do not have any topological issue in the boundary of the
continuous analog of a digital subset of Z

n , then this last set
does not contain any critical configuration, which implies
that its connectivities are equivalent.

By gathering the properties relative towell-composedness
coming from [7] and from the current paper, we can see that
we obtain:

CWC ⇒ HWC ⇒ DWC,

where we call homology-well-composedness (HWCness)
the property of a cubical set to have a homology manifold as

boundary. Conversely, we know that:

DWC � HWC,

but we do not know if HWCness implies CWCness. We pro-
pose to study this last point in future works:

HWC
?⇒ CWC .
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