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Abstract—This paper presents a parameter estimation tech-
nique for a variable-speed wind turbine with permanent magnet
synchronous generator and back-to-back voltage source con-
verter. The proposed technique applies the cubature Kalman
filter for the joint estimation of the system dynamic state and
a modified set of parameters from which the original model
parameters can be algebraically recovered. To the authors knowl-
edge, this work is the first attempt to apply such an innovative
technique to a PMSM detailed estimation model including the
control parameters of the voltage source converter.

Index Terms—Cubature Kalman filter, variable-speed wind
turbine, direct-drive synchronous generator, back-to-back voltage
source converter, parameter estimation.

I. INTRODUCTION

In a decarbonized and more electrified future, power sys-
tems must be able to cope with increasing amounts of inter-
mittent renewable energy. Excluding hydro, wind energy is so
far the dominant renewable source worldwide, both in terms of
production share (5.6%) and cumulative installed power (550
GW), of which only about 20 GW (less than 4%) correspond
to offshore farms. This means that there exists a huge growth
potential for offshore wind technology, still in its infancy,
while the best places for onshore farms are being quickly
occupied. The average offshore turbine size in Europe (5.9
MW) has nearly doubled in the last decade and some vendors
are already announcing machine designs of over 12 MW
rated power [1]. The most promising topology for offshore
wind energy is the direct-driven, multi-pole Permanent Magnet
Synchronous Machine (PMSM) with fully-rated back-to-back
Voltage Source Converters (VSC), a turbine concept which
lacks the gearbox.

Among the upcoming technical challenges raised by the
massive integration of renewables, the need for wind and PV
sources to contribute to ancillary services stands out. These
include voltage and frequency regulation, according to increas-
ingly demanding grid codes, provision of synthetic inertia to
keep current stability margins, fast response (flexibility) in the
presence of more frequent and deeper net demand gradients,
etc.

In this context, it is most important for grid operators to
adopt accurate enough PMSG-based wind turbine models, in-
cluding the fast acting VSC, in order to evaluate their dynamic
behavior. This involves a detailed knowledge of the asso-
ciated components and their defining equations. Ultimately,
the system state evolution is determined by the parameters
involved in those equations, which are therefore crucial for
the correct operation and control of a power system with a
high penetration of wind power plants.

System parameters are customarily considered constant,
even under changing operating conditions. However, when
this assumption is not accurate enough, or when the control
parameters provided by the manufacturer are suspected to
be inaccurate or outdated, a model validation is needed to
obtain their values considering the actual operating point. This
need has been recognized, for instance, in the US, where
the NERC has released reliability guidelines [2] regarding
the validation of generator models, including synchronous
machines and other inverter-based ones exceeding a certain
rated power. NERC suggests two ways for generator model
validation and calibration: 1) taking the generator out of
service and performing specific tests; 2) measurement-based
methods based on disturbance recordings from synchrophasors
(PMUs), data loggers, fault recorders, etc. This work lies in
the second category.

Dynamic state estimators (DSEs) based on Kalman filters
(KFs) have been used for state estimation of power systems
with nonlinear dynamics, as proposed in [3], which includes
a comparison study. A particular formulation of KF, the so-
called unscented KF (UKF) has proven to be reliable and
accurate for this particular application [4]. For instance, in [5]
a method to deal with disturbances in the system is proposed,
whereas [6] includes the system parameters in the estimation
process.

The UKF technique has also been applied in state estimation
of synchronous generators, [7], and joint state and parameter
estimation of these machines, [8]. Regarding wind turbines, [9]
studies the application of UKF in fault diagnosis. For this type
of machines, [10] uses extended KF (EKF) in the estimation
of the electrical parameters of doubly-fed induction generators
(DFIGs), while [11] proves that the performance of the UKF
is superior to that of the EKF in the parameter estimation of
DFIGs.

EKF is also used in different studies on permanent magnets
synchronous motors. Rotor initial position is estimated in
[12] for a sensorless direct torque controlled machine. Flux-
linkage is included in the estimation process in [13] for a
vector control and in [14] when demagnetization situations are
considered. On these machines, fault detection is necessary for
a correct operation of the power system. A method using EKF
is established in [15] and [16] for stator winding inter-turn
short circuit identification.

A real implementation of the studied estimation techniques
requires noninvasive measurements taken from the system con-
sidered. In this respect, [17] proposes a temperature estimation
for PMSMs using noninvasive Kalman filters.

PMSGs are considered in a number of studies dealing with
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EKF. For instance, in [18] an estimation of the rotor speed is
performed within a sensorless maximum power point tracker.
Control systems without encoder are also considered in [19],
where EKF is used to estimate the state variables of a back-
to-back converter. Measurements obtained from PMUs are
introduced in the EKF algorithm in [20].

A recent formulation of KFs, the so-called cubature Kalman
filter (CKF), has shown good performance in problems such
as state estimation of synchronous generators [21]. Theoretical
aspects of this formulation are addressed in [22], where some
limitations of other KF schemes, such as UKF, which are
not suffered by the CKF, are highlighted. Joint state and
parameter estimation using CKF is studied in [23], applied
to a vehicle model, and in [24], with permanent magnet
synchronous motors.

This work considers a variable-speed PMSM wind turbine,
connected to the grid through a back-to-back pair of VSCs,
which is capable of controlling its active and reactive power
within specified limits. Based on measurement snapshots taken
at the point of connection, the state and parameters of the wind
turbine and the VSC are jointly estimated using CKF.

This work is organized as follows. Section 2 formulates
the equations used in the proposed CKF algorithm. Section 3
analyzes the modeling system under study, with the wind tur-
bine, the synchronous generator and the back-to-back voltage
source converter (VSC). The implementation of the CKF is
described in Section 4. Section 5 presents simulation results
corresponding to the base case and several scenarios facing
different disturbances. Section 6 includes a comparison of the
performance presented by the CKF estimation technique when
increasing measurement and model errors are considered.
Finally, the conclusions obtained are presented in Section 7.

II. CUBATURE KALMAN FILTER

Kalman Filter implementations require a set of state equa-
tions, including the dynamic and the measurement equations.
In the case of continuous-time, discrete-measurement non-
linear systems, these equations can be expressed as

ẋ(t) = f(x(t), u(t)) + w(t) (1)

z(tk) = g(x(tk), u(tk)) + v(tk) (2)

where x(t) is the state vector, u(t) the system input, and
z(tk) the available measurements at instant tk. The model
and measurement noises, w(t) and v(tk), are assumed to
be Gaussian processes with covariance matrices Q and R,
respectively.

Considering a time step ∆t, the above equations have the
following discrete counterparts:

xk = xk−1 + ∆t · f(xk−1, uk−1) + wk (3)

zk = g(xk, uk) + vk (4)

which are more appropriate for non-linear Kalman filtering
techniques, such as the CKF. This involves an iterative process
composed of two different stages, as follows [25].

A. Time Update

At each time k, an estimated state vector x̂k−1 of size L,
along with the covariance matrix associated to its estimation
error, Pk−1, are available from the previous step. On the basis
of these values, a set of 2L cubature points are calculated as
follows:

Sk−1S
T
k−1 = Pk−1 (5)

xik−1 = Sk−1ξi
√
L+ x̂k−1 i = 1, ..., 2L (6)

where S is a positive-definite square root of matrix P (in this
paper the Cholesky factorization of matrix P will be used),
and ξi is the ith cubature node, obtained as the intersection
of the unit sphere and the RL axis. Compared to other KF
formulations, the cubature points are less prone than the σ-
points calculated in the UKF to numerical inaccuracy or filter
instability, [22]. This issue is further discussed in section V.

The state function f(·) in (3) is evaluated at these cubature
points, yielding a set of 2L vectors xi−k , from which an a priori
estimation of x̂−k and P−

k is in turn computed as follows:

x̂−k =
1

2L

2L∑
i=1

xi−k (7)

P−
k =

1

2L

2L∑
i=1

xi−k xi−Tk − x̂−k x̂
−T
k +Qk (8)

B. Measurement Update

Once the a priori estimation is obtained, the covariance
matrix P−

k is factorized in order to calculate the matrix S−
k ,

S−
k S

−T
k−1 = P−

k (9)

and a new set of 2L cubature points,

xi−k = S−
k ξi
√
L+ x̂−k i = 1, ..., 2L (10)

at which function g(·) in (4) is evaluated, yielding:

γi−k = g(xi−k , uk) i = 1, ..., 2L (11)

Then the measurement estimation, ẑ−k , its covariance matrix,
P−
zk, and the cross-covariance matrix of state and measure-

ments, P−
xzk, are calculated as follows:

ẑ−k =
1

2L

2L∑
i=1

γi−k (12)

P−
zk =

1

2L

2L∑
i=1

γi−k γi−Tk − ẑ−k ẑ
−T
k +Rk (13)

P−
xzk =

1

2L

2L∑
i=1

xi−k γi−Tk − x̂−k ẑ
−T
k (14)

allowing the cubature Kalman gain to be obtained from,

Kk = P−
xzk(P−

zk)−1 (15)

Finally, the a posteriori predictions of the state vector, x̂k,
and the covariance Pk are obtained as

x̂k = x̂−k +Kk(zk − ẑk) (16)
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Pk = P−
k −KkP

−
zkK

T
k (17)

which enter the next iteration of the algorithm.

III. SYSTEM MODELING

This section presents the equations describing the dynamics
of the system under study, composed of the wind turbine with
pitch angle control, the synchronous generator and the back-
to-back VSC (Figure 1).

A. Wind Turbine

The mechanical power produced by the turbine at wind
speed vw is given by, [26]:

pw =
1

2Sn
cp(λ)πR2v3w (18)

where R is the rotor radius, Sn the system rated power and
cp(λ) the performance coefficient. For a turbine model with
control of the pitch angle, θp, and a given tip speed ratio, λ,
this coefficient is obtained from,

cp(λ) = 0.22

(
116

λi
− 0.04θp − 5

)
e
− 12.5

λi (19)

where
1

λi
=

1

λ+ 0.08θp
− 0.035

θ3p + 1
(20)

λ =
2ωR

npolevw
(21)

ω is the shaft angular speed and npole is the number of poles
of the generator.

The pitch angle control is aimed at maximizing the power
production for a specified angular speed. In this work, the
following optimal power, poptw , characteristic for each wind
turbine, is considered,

poptw =

 0 if ω < 0
2ω − 1 if 0 ≤ ω ≤ 1
1 if ω > 1

(22)

while the control of θp is represented with first order dynamics:

θ̇p =
1

Tp

(
Kp(ω − ωref )− θp

)
(23)

ωref being the reference angular speed.
To connect the turbine and the generator, a rigid shaft is

considered, so that the equation describing the angular speed
dynamics can be expressed as follows:

ω̇ =
1

2Htm

(
pm − pe

ω

)
(24)

where pe is the electric power comsumption.
Equations (23)-(24) include a set of dynamic parameters,

listed in Table I, whose values are unknown. The goal of this
work is to estimate those parameters using a CKF.

Table I
WIND TURBINE PARAMETERS

Symbol Parameter
Tp Pitch angle control Time Constant
Kp Pitch angle control Gain
Htm Turbine-rotor inertia constant

B. Synchronous Generator

In this work, a permanent magnet synchronous generator
is considered, where the voltage (vs), and current (is), at
the machine terminals are related through the electromagnetic
equations in dq axis, [26],

vsd = ωLqisq (25)

vsq = −ω(Ldisd − ψp) (26)

Ld and Lq being the generator inductances in dq axis, and ψp
the rotor permanent field flux.

These magnitudes are used to calculate the active and
reactive power delivered by the synchronous generator,

ps = vsdisd + vsqisq (27)

qs = vsqisd − vsdisq (28)

As the machine is supposed to be rigidly connected to the
turbine, ps replaces pe in equation (24).

In this work, the value of the generator inductances, Ld
and Lq , which can be obtained with different factory tests,
are assumed to be known and therefore are not included in
the parameter estimation problem.

C. Back-to-back VSC

The converter allows controlling the active power and either
the reactive power produced by the generator or the voltage at
the VSC external bus. The control variables are the currents
on the VSC generator and grid sides, is and ic, respectively, in
d− q axis. The dynamic equations are represented as follows
[26]:

disq
dt

=
1

Tqs

(
poptw

ω(ψp − Ldisd)
− isq

)
(29)

disd
dt

=
1

Tds
(Kds(qs0 − qs)− isd) (30)

dicq
dt

= Kqc(ps − pc) (31)

dicd
dt

=
1

Tdc

(
Kdc(v

ref − vh)− icd
)

(32)

Table II collects the parameters of the converter to be
estimated using CKF.

Equations (29) - (32) represent the VSC model as imple-
mented by the CKF algorithm, which constitutes a simplifi-
cation of the simulation model adopted for the sole purpose
of obtaining measured magnitudes, [28]. This latter model
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Figure 1. Components of the simplified system under study.

includes other components which are present in real wind
power plants, such as the AC filter and the DC-link voltage
controller, so that the measurements used in the estimation
process are as close as possible to those that would be captured
from the actual system.

Table II
BACK-TO-BACK VSC PARAMETERS

Symbol Parameter
Tqs Generator side q-axis Time Constant
Kds Generator side d-axis Gain
Tds Generator side d-axis Time Constant
Kqc Grid side q-axis Gain
Kdc Grid side d-axis Gain
Tdc Grid side d-axis Time Constant

IV. IMPLEMENTATION OF THE CKF

In the previous section, the parameters involved in the
dynamic model (18)-(32) have been presented. As most of
those parameters are not precisely known, or are simply
unknown, they should be included in an augmented state
vector for a joint state-parameter estimation using CKF.

An initial attempt to estimate the original raw parameters
was unsuccessful, owing to convergence problems. Therefore,
a parameter modification technique is proposed, similar to
the one adopted in [27] for synchronous machine parameter
estimation. With this technique, the augmented state vector
becomes xTa = [xT , ψT ], where the state vector, x, contains
the following state variables,

xT = [isd, isq, ω, θp, icd, icq]

and ψ is the modified parameter vector, as proposed in this
work,

ψT = [
10

Htm
,
Kqc

10
,

1

Tdc
,Kdc,

1

Tds
,

1

Tqs
,Kds,

1

Tp
,Kp]

Therefore, the size of the augmented vector is L = 15.
Equations (3) and (4) can be rewritten in terms of xa and

an augmented-model noise vector, wk, involving the state and
parameter components, yielding:

[
xk
ψk

]
=

[
xk−1 + ∆t · f(xk−1, uk−1)

ψk−1

]
+ wk (33)

zk = g(xak, uk) + vk (34)

Regarding the measurement update stage in the CKF algo-
rithm, seven easily measurable magnitudes are considered: the
magnitude and phase angle of the voltage (V, θV ) and current
(I, θI ) at the VSC external bus, which can be provided by
a PMU unit, the shaft angular speed ω, the pitch angle θp
and the wind speed vw. In turn, it is customary to divide
this set into inputs, uT = [vw, V, θV ], and measurements,
zT = [ω, I, θI , θp], [29].

Then, the function g(xak, uk) in (34) reduces in this case
to,

I =
√
i2cd + i2cq (35)

θI = arctan

(
icd
icq

)
(36)

Note that ω and θp lead to trivial expressions, as they are
state variables.

V. CASE STUDIES

In this section, the results of three performance tests are
presented to confirm the accuracy and robustness of the
proposed estimation method, when the reduced power system
shown in Figure 1 faces different disturbances. The magnitudes
defining the steady-state starting point (vref and ωref ) are
obtained by assuming an initial complex power injection at the
connection point (Sc = 0.7 + j0.5pu), the base power being
equal to the rated power of the wind turbine (SB = 2MW ).
The simulations have been carried out using Matlab Simulink.
Note that the simulation model considered for the generation
of exact magnitudes, [26], is more detailed and accurate than
that adopted by the CKF algorithm. Specifically, the stator
resistance and a set of control parameters involved in the
VSC and the pitch angle control, are neglected in the CKF
system model described in section III. This is intentionally
done in order to consider the more realistic situation in which
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the model assumed by the CKF does not necessarily reflect
the exact model, but a simplified one.

The exact parameter values adopted in the simulation are
listed in Table III, excluding those that are not considered in
the estimation process, such as the stator resistance. The time
step for the simulations and the CKF process is ∆t = 0.01s.

Table III
EXACT PARAMETER VALUES

Parameter Unit Exact Value
Htm s 4
Kqc pu 35
Tdc s 0.5
Kdc pu 1.5
Tds s 0.5
Tqs s 0.5
Kds pu 1.5
Tp s 3
Kp pu 2

The CKF estimator requires an initial state for xa. For the
state variables, x, an initialization process is used, based on
the steady-state point [30], leading to the initial values shown
in Table IV.

Table IV
INITIAL VALUES FOR THE STATE VARIABLES

Variable Initial Value
isd 1
isq 1.07
ω 0.7
θp 0
icd 0.4
icd 0.75

In order to test worst case conditions, regarding the accuracy
of the available parameter values (from manufacturer data,
similar machines or other sources), the proposed modified
parameter vector, ψ, is initialized with a random value in
the range ±30% ÷ ±50% of their real values. This way,
the proposed estimation technique becomes a method for the
validation of the parameter values.

The initial covariance of the state estimation error is defined
as a diagonal matrix,

P0 = diag([PTx0, P
T
ψ0])

where

PTx0 = [10−4, 10−4, 10−4, 10−4, 10−4, 10−4]

corresponds to the state variables, and

PTψ0 = [1, 1, 1, 1, 1, 1, 1, 1, 1]

to the modified parameters.
The covariance matrix Q has been assumed as a diagonal

matrix with Qii = 10−8, while the covariance matrix R
has been taken as a diagonal matrix with Rii = 10−4,
corresponding to an error with 1% s.d. (lower accuracy than
that typically provided by PMUs).

A. Base case: smooth operating point variations

In this scenario, the impedance of the line connecting the
PMSM generator to the infinite busbar is zL = 0.01 + j0.1
pu. The magnitude and angle of the busbar voltage evolve as
Gaussian random walks with standard deviation Rw = 10−4,
as represented in Figure 2.
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Figure 2. Gaussian random walks applied to the connection point bus voltage

The system under study is supposed to be in normal
operating conditions. The evolution considered for the wind
speed, vw, is taken at a mean value of 16 m/s with a standard
deviation of 10−2 simulating the real variability, [31]. This
signal (Figure 3), is used as an input for the CKF algorithm.
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Figure 3. Wind speed evolution for the base case scenario

The estimation technique proposed in this work has proven
to be accurate when small and random variations of the
operating point are considered. Figure 4 shows the results of
the CKF estimation process throughout 60s for the modified
parameter representing the turbine-motor inertia constant Htm,
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while the VSC and the pitch angle control parameters are
represented in Figure 5. For each parameter, the estimated
value, x̂i, is represented along with the x̂i ± 3Sii bounds.
Note that the covariances tend to Qii, showing the accuracy
of the converged estimation.
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3

1
0
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Figure 4. Estimation result for the turbine-motor inertia constant

As can be seen, the method eventually converges to the
neighborhood of the correct modified parameters, from which
the original parameters can be recovered, as per equations
(18)-(32). The estimated value of the original parameters and
the relative estimation error are summarized in Table V. Note
that the largest relative error is 2.1%.

Table V
RELATIVE ERROR IN PARAMETER ESTIMATION WITH SMOOTH VARIATIONS

Parameter Estimated Value Relative Error (%)
Htm 4.012 0.300
Kqc 34.426 1.640
Tdc 0.503 0.600
Kdc 1.513 0.867
Tds 0.504 0.800
Tqs 0.511 2.100
Kds 1.510 0.667
Tp 2.991 0.300
Kp 2.023 1.150

The performance of the proposed estimation technique,
based on CKF, has been compared with that shown by other
KF filter schemes, such as UKF and EKF, as illustrated in
Figure 6, where the estimation of the shaft inertia under soft
variations in the system is shown. Note that the EKF provides
an unacceptable estimated value for the modified parameter
and that the UKF presents convergence problems in the long
term.

Once the accuracy of the parameter estimation process has
been shown under mild operating conditions, the robustness
of the proposed estimation technique is tested with three large
disturbances separately arising in the system under study.

B. Disturbance 1: wind gust

This test considers an abrupt change in the wind speed,
which is modeled as a Mexican Hat Wavelet [31], as shown
in Figure 7.

The evolution of the voltage at the point of connection is
the same as in the base case.

In this case, the parameters are initialized with their es-
timated values, as provided by the base case. As the initial
estimation is more accurate, the elements of Pψ0 are reduced
to 10−4. The value of Qii has also been modified to 10−6.

The estimated parameters showed no significant variations
during the wind gust, reaching the same values as in the base
case after a small transient, once the disturbance vanishes. As
an example, the evolution of 10/Htm is provided in Figure 8,
where a zoomed view is added to better visualize the transient
behavior.

C. Disturbance 2: Voltage dip

The second disturbance considered is a 70% voltage dip at
the point of connection that elapses for 1s (Figure 9). The
tie-line impedance and the standard deviation of the Gaussian
random walks are the same as in the previous case. The wind
speed is assumed to remain as in the base case.

The initial estimation for the parameters and the elements
of Pψ0 and Q remain the same as in the previous case
(Disturbance 1).

Except for a small transient arising during the disturbance,
the modified parameters showed no significant variations in
the presence of the voltage dip, reaching the same estimated
values as in the base case. As an example, the evolution of
1/Tdc in shown in Figure 10, where the transient behavior can
be noticed in the zoomed view.

D. Disturbance 3: Topological change

In the last case study considered in this work, an abrupt
variation in the tie-line impedance is assumed, representing
a sudden topological change in the external system. For this
purpose, at instant t = 20s, the value of zL is modified to
zL = 0.01 + j0.5pu permanently. The value of the voltage at
the connection point and the wind speed remain the same as
in the base case.

The initial estimation for the parameters and the elements of
the matrices Pψ0 and Q remain the same as in the disturbances
1 and 2.

As the disturbance considered in this case is permanent,
the estimated values are slightly different to those prior to
the disturbance. See the evolution of 1/Tp in Figure 11 as an
example, where the scale of the transient period is augmented.
Note that the accuracy of the estimated parameter in this case
has improved minimally.

VI. MEASUREMENT AND MODEL ERROR IMPACT

Once the accuracy of the proposed estimation technique
has been proved, the influence of the measurement error
on the CKF performance is tested. For this purpose, the
smooth system perturbations considered in the base case are
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Figure 5. Estimated parameters for VSC and pitch angle control with smooth variations
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repeated by gradually increasing the s.d. of the measurement
errors. Table VI summarizes the results obtained in terms
of maximum relative error in the parameter estimation. As
expected, the lower the measurement accuracy the poorer the
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Figure 9. Voltage dip at the point of connection
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estimation results. Note that, if PMUs are used as the source
of measurements, with errors typically lower than 1%, then
the maximum parameter error will be less than 2%.

On the other hand, the synchronous generator model pre-
sented in section III, as given by (25) and (26), includes
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Table VI
MAXIMUM RELATIVE PARAMETER ERROR FOR INCREASING

MEASUREMENT ERRORS

Measurement error |Emax
r |(%)

1% 2.100
3% 2.854
5% 5.926
7% 10.800

the generator inductances in dq axis, Ld and Lq , which are
considered to be known for the CKF implementation. The
performance of the estimator with increasing error in those
parameters is compared in Table VII, where the variation of
the maximum relative error is shown.

Table VII
MAXIMUM RELATIVE PARAMETER ERROR FOR INCREASING ERRORS IN

Ld AND Lq VALUES

Model error |Emax
r |(%)

2% 2.107
5% 3.011
10% 6.667
15% 12.002

Note that, while low model errors lead to sufficiently
accurate estimation results, when the errors in the known
system parameters are large enough, the CKF-based estimator
performance deteriorates, in proportion to those errors.

VII. CONCLUSIONS

In this paper, a CKF is used to perform a joint estimation
of the state variables and parameters of a variable-speed wind
turbine with a direct-drive synchronous generator and a back-
to-back VSC.

The proposed method includes a set of modified parameters,
providing accurate estimation results (2.1% maximum relative
error) under normal small variations in the operating point. A
comparison of three KF schemes (CKF, UKF and EKF) has
shown that the CKF is the most suitable for the parameter
estimation of the system under study.

The robustness of the technique has been successfully
proven with three different performance tests, simulating typ-
ical large disturbances that can occur in real life. Finally,
the results provided by the CKF, for increasing values of
measurement errors, show that the estimator performance is
acceptable as long as the quality of the measurements remains
within a range typically achieved by existing synchrophasors.
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