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14 Abstract
15 Purpose The study’s objective was to develop diagnostic
16 predictive models using data from two commonly used
17 [123I]FP-CIT SPECT assessment methods: region-of-interest
18 (ROI) analysis and whole-brain voxel-based analysis.
19 Methods We included retrospectively 80 patients with vascu-
20 lar parkinsonism (VP) and 164 patients with Parkinson’s
21 disease (PD) who underwent [123I]FP-CIT SPECT. Nuclear-
22 medicine specialists evaluated the scans and calculated bilat-
23 eral caudate and putamen [123I]FP-CIT uptake and asymmetry
24 indices using BRASS software. Statistical parametric map-
25 ping (SPM) was used to compare the radioligand uptake
26 between the two regionsQ1 at the voxel level. Quantitative data
27 from these two methods, together with potential confounding
28 factors for dopamine transporter availability (sex, age, disease
29 duration and severity), were used to build predictive models
30 following a tenfold cross-validation scheme. The performance
31 of logistic regression (LR), linear discriminant analysis and
32 support vector machine (SVM) algorithms for ROI data, and
33 their penalized versions for SPM data (penalized LR,

34penalized discriminant analysis and penalized SVM), were
35assessed.
36Results Significant differences were found in the ROI analy-
37sis after covariate correction between VP and PD patients in
38[123I]FP-CIT uptake in the more affected side of the putamen
39and the ipsilateral caudate. Age, disease duration and severity
40were also found to be informative in feeding the statistical
41model. SPM localized significant reductions in [123I]FP-CIT
42uptake in PD with respect to VP in two specular clusters
43comprising areas corresponding to the left and right striatum.
44The diagnostic predictive accuracy of the LR model using
45ROI data was 90.3 % and of the SVM model using SPM data
46was 90.4 %.
47Conclusion The predictive models built with ROI data and
48SPM data from [123I]FP-CIT SPECT provide great discrimi-
49nation accuracy between VP and PD. External validation of
50these methods is necessary to confirm their applicability
51across centres.

52Keywords Vascular parkinsonism . Parkinson’s disease .

53[123I]FP-CIT SPECT . Statistical parametric mapping .

54Predictive models

55Introduction

56Vascular parkinsonism (VP) is a parkinsonian syndrome
57resulting from cerebrovascular lesions and is characterized
58by the presence of gait difficulties, symmetrically lower body
59bradykinesia and postural instability, and the absence of rest-
60ing tremor [1–3]. Although recent neuropathology and epide-
61miological studies have identified hallmarks distinguishing
62VP from idiopathic Parkinson’s disease (PD), overlap in
63symptom presentation is not rare and their differentiation is
64still a clinical challenge, especially in early stages [4–8].
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65 Visualization of the dopamine transporter (DAT) through the
66 use of [123I]FP-CIT SPECT is a commonly used tool that may
67 help in differentiating VP and PD. However, the status of the
68 striatal DAT in VP patients is controversial due to its heteroge-
69 neity, and accuracy in the differential diagnosis is still poor [6,
70 9–14]. This heterogeneity was reflected in a recent study involv-
71 ing a large cohort of patients with VP in which the [123I]FP-CIT
72 SPECT scans in about one-third of the patients were normal,
73 while the scans in the other two-thirds were abnormal, and the
74 imaging pattern in a small percentage of patients overlapped the
75 typical pattern seen in PD [14]. Furthermore, it has been sug-
76 gested that a normal scan in patients with VPmay be associated
77 with negative responsiveness to levodopa treatment [14], al-
78 though this association was not seen in another study [9].
79 The majority of studies including patients with VP have
80 evaluated [123I]FP-CIT SPECT imaging through visual as-
81 sessment according to standardized scales [15] or
82 semiquantification of striatal ligand uptake involving region-
83 of-interest (ROI) analysis. Such methods may be suboptimal
84 mainly because of first a certain degree of subjectivity in
85 visual interpretation and in manual ROI delineation and sec-
86 ond the focus primarily on DAT uptake in the striatum, thus
87 missing the extent of radioligand binding to the DAT, seroto-
88 nin and noradrenergic transporters in other brain regions. In
89 contrast, voxel-based analysis has proven to be a reliable and
90 unbiased tool for the analysis of whole-brain imaging. Statis-
91 tical parametric mapping (SPM) is one of the most popular
92 tools for whole-brain voxel-based analysis and some studies
93 have used it with success in the differentiation of PD from
94 other neurodegenerative diseases [16–19]. However, voxel-
95 based studies including VP patient series are still lacking.
96 We have recently reported the results of a detailed clinical
97 study in a large cohort of VP and PD patients [20]. We
98 presented a newly developed visual scoring system with an
99 accuracy in the differentiation of VP and PD greater than 94%
100 and a clustering method using ROI data with an accuracy of
101 82 %. The first objective of the present study was to build a
102 diagnostic predictive model using the ROI data from the same
103 dataset with improved performance and applying a more
104 suitable methodology for the problems of classification from
105 the machine learning theory. The second objective was to
106 conduct a whole-brain voxel-based comparison of imaging
107 data between VP and PD patients using SPM and following
108 the same strategy as for the ROI data to build a predictive
109 model with the voxel data.

110 Materials and methods

111 Patients

112 We included a total of 80 patients with VP and a control group
113 of 164 patients with PD seen at our centre from 2006 to 2011.

114This is the subset of patients with [123I]FP-CIT SPECT
115scans available from our previous work, and detailed
116clinical information for the whole population of patients
117was given in the reort of that study [20]. For this study,
118the features sex, age, disease duration and severity mea-
119sured according to the Hoehn & Yahr (H&Y) scale were
120reviewed when carrying out SPECT (Table 1). The
121diagnosis of VP was made according to the diagnostic
122criteria proposed by Zijlmans et al. [5] and the diagno-
123sis of PD was made according to the UK Parkinson’s
124Disease Society Brain Bank clinical diagnostic criteria
125[4]. Patients gave written informed consent for the
126[123I]FP-CIT SPECT scan after a full discussion of
127possible risks and benefits as is the general practice in
128our hospital. This study was approved by the local
129ethics committee and conducted in accordance with the
130Declaration of Helsinki.

131SPECT imaging

132Patients underwent a brain SPECT scan with a dual-head
133rotating gamma camera (Philips Axis) fitted with LEHR fan-
134beam collimators. In order to block the thyroid uptake of free
135radioactive iodide, patients were given potassium perchlorate
136500 mg orally 30 min before intravenous injection of
137185 MBq of [123I]FP-CIT (Ioflupane, Datscan®; GE
138Healthcare). Image acquisition was started between 3 and
1394 h after radioligand injection. A total of 120 projections of
14030 s each over a 360° circular orbit were acquired on a 128×
141128 matrix (zoom 1.5). Reconstruction was performed by
142filtered back-projection using a Butterworth filter without
143attenuation or scatter correction and further reorientation to
144obtain transaxial slices.

145ROI analysis

146An automated semiquantitative analysis was performed to
147evaluate specific-to-nondisplaceable [123I]FP-CIT binding
148potential (BPND) using HERMES-BRASS software (version
1493.5). ROIs were constructed around the left and right
150striatum, the striatal subregions caudate and putamen, and
151in the background brain (occipital cortex). The automated
152method in HERMES-BRASS first normalized the patient
153scans to a [123I]FP-CIT mean template and then delineated
154the regions using the standardized 3-D volume-of-interest
155(VOI) maps. Further details of the procedure and creation
156of the [123I]FP-CIT mean template and standardized 3-D
157VOI maps have been provided by Koch et al. [21].
158[123I]FP-CIT BPND for the left and right putamen and
159caudate were calculated by normalizing the subregional
160radioactivity counts by the background counts (for each
161striatal subregion: BPND=[(striatal subregion counts−occip-
162ital counts)/occipital counts]). We defined the more affected
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163 side as the hemisphere with the lower putamen BPND, and
164 the ROI variables were defined as those from the putamen
165 and caudate ipsilateral to the more affected side (Put_I,
166 Cau_I), and the putamen and caudate contralateral to the
167 more affected side (Put_C, Cau_C). The asymmetry index
168 (AI) was calculated using the following formula [9]:
169 AI=[(contralateral striatum binding− ipsilateral striatum
170 binding)/(contralateral striatum binding+ipsilateral striatum
171 binding)]×2×100.

172 SPM analysis

173 A semiquantitative whole-brain voxel-based analysis was per-
174 formed using SPM8 (Wellcome Department of Cognitive
175 Neurology, London, UK; http://www.fil.ion.ucl.ac.uk/spm/
176 software/spm8/) running under a Matlab environment
177 (MathWorks, Sherborn, MA).
178 SPECT images were first manually reoriented, setting
179 the anterior commissure as the origin of the coordinates.
180 Each scan was then spatially normalized into the standard
181 stereotactic MNI (Montreal Neurological Institute) space
182 using a [123I]FP-CIT template developed by our group
183 (available atQ2 http://www.nitrc.org/projects/spmtemplate)
184 [22]. Next, spatially normalized images were smoothed
185 using an isotropic 8-mm full-width at half-maximum iso-
186 tropic gaussian kernel (FWHM). For further details about
187 processing underlying the normalization and smoothing
188 steps, the reader is referred to the SPM manual (http://
189 www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf). For the
190 analysis stage, to account for the interindividual variability
191 of [123I]FP-CIT uptake, the option “proportional scaling”
192 was enabled to intensity-normalize each scan. Also, since
193 DAT densities are known to be low in the occipital lobe
194 and the cerebellum, a general brain mask for those areas
195 was created using an automated anatomical labelling atlas
196 and applied to all images for statistical comparison. A total
197 of 152,673 voxels were analysed. Clusters of a minimum
198 of 16 (twice FWHM of the gaussian filter) 3-D contiguous
199 voxels with a threshold of PFWE<0.05 corrected for multi-
200 ple comparisons based on family-wise error (FWE) were
201 considered to be statistically significant.

202Data analysis

203Statistical analyses were performed using IBMSPSS Statistics
20420.0 software and the free software environment R (http://
205www.r-project.org/). Descriptive statistics are reported with
206percentages, means and standard deviations and medians and
207interquartile ranges when appropiate. Univariate analyses
208were first performed to compare the demographic and
209clinical features, and the ROI variables between VP and PD
210patients. Sex distribution was compared using the chi-squared
211test. Scale variables (i.e. age, disease duration, H&Y stage and
212ROI variables) were compared using the t-test (parametric) or
213theMann–Whitney test (nonparametric). To decide whether to
214use parametric or nonparametric tests with the scale variables,
215we assessed the assumptions for a normal distribution using
216the Shapiro-Wilk test and the homogeneity of the variance
217(homoscedasticity) using the Levene test. To assess differ-
218ences in the ROI variables between the VP and PD patients
219taking into account the effects of the demographic and clinical
220features, we further performed multivariate analysis using
221logistic regression (LR) introducing the ROI variables as
222factors and sex, age, disease duration and H&Y stage as
223covariates. Additionally, since these covariates are known to
224influence radioligand uptake [23, 24], interaction terms were
225included to check their role as effect modifiers. In the SPM
226analysis, the [123I]FP-CIT uptake was compared between VP
227and PD patients with a two-sample t-test contrast (VP>PD).
228Moreover, due to its clinical relevance and in order to
229clarify the inconsistencies apparent in the literature [9, 14],
230subanalyses of VP patients comparing levodopa responders
231and nonresponders were performed using LR for ROI data,
232and again using a two-sample t-test contrast in SPM (VP
233nonresponder>VP responder).

234Predictive models

235Predictive models using the quantitative data from the ROI
236and SPM analyses were built for diagnosis classification. The
237clinical diagnosis, as defined in the section Patients, was
238considered the gold standard in this study and was used as
239the dependent variable in building the models. For the models

t1:1 Table 1 Demographic and main clinical features of VP and PD patients

t1:2 VP patients (n=80) PD patients (n=164) P value (intergroup comparison)

t1:3t test Mann–Whitney test Logistic regression

t1:4 Sex (M/F), n 57/23 101/68

t1:5 Age (years), mean±SD 75.11±6.70 60.26±10.84 <0.001 <0.001

t1:6 Disease duration (years), median
(interquartile range)

4 (2, 8) 2 (1, 4) <0.001 <0.01

t1:7 H&Y stage, median (interquartile range) 2.5 (2.5, 3) 2 (2, 2.5) <0.001 <0.05
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240 using ROI data, the independent variables were the significant
241 factors from the LR, while for the models using SPM data, the
242 independent variables were the intensity values of the voxels
243 (after normalization and smoothing) contained in the signifi-
244 cant clusters from the SPM contrasts. Significant covariates
245 were also included in the models.
246 Since the number of independent variables for the models
247 using SPM data was large (a few hundred voxels), regularized
248 algorithms were used. These algorithms weight the indepen-
249 dent variables according to their information content,
250 priorizing some and penalizing others through tunable shrink-
251 age functions. We opted for comparing three algorithms rec-
252 ommended elsewhere [25]: penalized LR (PLR), penalized
253 discriminant analysis and penalized support vector machine
254 (SVM). The ROI data were analysed using equivalent
255 methods: LR, linear discriminant analysis (LDA) and SVM.
256 Tuning parameters for the algorithms were chosen based on
257 the package default grid of iterations.
258 The models were assessed using a tenfold cross-validation
259 scheme, which randomly split the dataset into ten parts (K=
260 10), 90% used for training and the remaining 10% for testing,
261 for every kth=1, 2,…, 10. This strategy prevented overfitting
262 the model with our dataset, thus allowing model generaliza-
263 tion of data from other centres. The final model and perfor-
264 mance results were obtained from averaging the ten runs,
265 which were given in terms of area under the receiver operating
266 characteristic curve, accuracy, sensitivity and specificity. All
267 calculations were done using the R package “caret” (http://
268 caret.r-forge.r-project.org/).
269

270 Results

271 Demographic and clinical features

272 Age and disease duration fulfilled normality and homoscedas-
273 ticity assumptions and were compared in the univariate anal-
274 ysis using a t-test. The H&Y stage did not fulfil the assump-
275 tions and was compared using the Mann–Whitney test. There

276were significant differences between VP and PD patients in
277terms of age, disease duration and H&Y stage (P<0.001; see
278Table 1). These associations were consistent in the regression
279analysis. As already described in our previous work [20], our
280VP patients were older, with longer disease duration and
281higher H&Y stage than our PD patients.

282Discrimination between VP and PD patients using ROI
283analysis

284Regional [123I]FP-CIT uptake and AI values of the VP and PD
285patients and intergroup statistics are shown in Table 2. The
286variables Put_I, Cau_I, Put_C and Cau_C uptake values ful-
287filled normality and homoscedasticity assumptions and were
288compared in the univariate analysis using a t-test. AI did not
289fulfil the assumptions and was compared using the Mann–
290Whitney test. Univariate analyses showed significantly lower
291[123I]FP-CIT BPND values for all four regions along with a
292higher AI in PD patients than in VP patients (P<0.001).
293Regression analysis indicated that these findings were consis-
294tent after covariate correction for the more affected

t2:1 Table 2 Mean regional putamen and caudate [123I]FP-CIT BPND in VP and PD patients

t2:2 VP patients (n=80) PD patients (n=164) P value (intergroup comparison)

t2:3t test Mann–Whitney
test

Logistic regression

t2:4 [123I]FP-CIT BPND, mean±SD Cau_I 1.54±0.54 1.06±0.46 <0.001 <0.001

t2:5 Cau_C 1.64±0.49 1.23±0.50 <0.001

t2:6 Put_I 1.20±0.52 0.53±0.30 <0.001 <0.001

t2:7 Put_C 1.43±0.52 0.78±0.37 <0.001

t2:8 Asymmetry index, median
(interquartile range)

7.04 (3.00, 18.94) 20.69 (8.82, 39.00) <0.001
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Fig. 1 Ipsilateral caudate [123I]FP-CIT BPND as function of ipsilateral
putamen [123I]FP-CIT BPND (red circles VP patients, blue circles PD
patients)
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295 hemisphere regions (Cau_I, P<0.001; Put_I, P<0.001). None
296 of the interaction terms reached significance.
297 These significant variables, along with the covariates age,
298 disease duration and H&Y stage, were further used to build
299 the predictive models. Figure 1 displays the scatter plot of the
300 two input factors, where Cau_I [123I]FP-CIT BPND is plotted
301 as a function of Put_I [123I]FP-CIT BPND. Most of the VP
302 patients grouped separately from most of the PD patients, and
303 the decision boundaries between the two entities could be
304 fitted with linear algorithms. Hence, LR, LDA and SVM fed
305 by the first-order terms of the input factors were adequate
306 approaches. The cross-validation results for the three methods
307 are shown in Table 3. LR demonstrated slightly better dis-
308 crimination accuracy than SVM and LDA (accuracy 0.903,
309 0.899 and 0.898, respectively), and its equation is given by the
310 following formula:

logit diagnosisð Þ ¼ �14:55� 3:92� Cau Iþ 7:29� Put I

þ 0:18� ageþ 0:75� H&Y� 0:28

� DisDur
311312

313 where logit represents the logarithm of p/(1−p) and p is the
314 probability of being a VP patient, and DisDur is disease
315 duration.
316 These results indicate that, despite being a very good
317 model, a small percentage of scans were misdiagnosed. To
318 improve the discrimination accuracy, we established a cut-off
319 of 80% for the class probability. In other words, we assigned a
320 diagnosis only if the probability of belonging to that class
321 applying the formula was above 80 %. We tested the LR
322 model in the whole dataset and the accuracy was increased
323 to 95 %, although the data from 17 % of the patients were

324under the threshold and their diagnosis remained tagged as
325“doubtful” (Fig. 2).

326Discrimination between VP and PD patients using SPM
327analysis

328Voxel-based analysis of [123I]FP-CIT SPECT scans supported
329the results of the striatal ROI analysis. SPM contrasts revealed
330decreased intensity values in PD patients compared with VP
331patients in two specular clusters (1,113 and 1,320 voxels) that
332comprised areas corresponding to, respectively, the left and
333right striatum (Table 4).
334The predictive models were built using all intensity values
335of voxels contained in the significant clusters as independent
336variables, and the same covariates as in the ROI analysis (age,
337disease duration and H&Y stage). The cross-validation results
338from the penalized methods are summarized in Table 5. SVM
339showed slightly better accuracy in discriminating between VP
340and PD than PLR and LDA (accuracy 0.904, 0.887 and 0.884,
341respectively).

342Comparison between levodopa responders and nonresponders

343Neither LR with ROI data nor SPM analysis revealed an
344association between [123I]FP-CIT uptake and levodopa re-
345sponsiveness in VP patients.
346

347Discussion

348In this study, we investigated the accuracy of methods for
349distinguishing between VP and PD using [123I]FP-CIT
350SPECT. We developed predictive models using the

t3:1 Table 3 Average tenfold cross-validation performance results (mean±
standard deviation) for the diagnostic predictive models built with ROI
data, given as area under the ROC curve (AUC), accuracy, sensitivity and

specificity . The methods tested were logistic regression (LR), linear
discriminant analysis (LDA) and support vector machine (SVM)

t3:2 Method AUC Accuracy Sensitivity Specificity Parameters

t3:3 LR 0.951±0.046 0.903±0.058 0.944±0.062 0.794±0.142 –

t3:4 LDA 0.940±0.042 0.898±0.065 0.963±0.049 0.775±0.138 –

t3:5 SVM 0.950±0.045 0.899±0.049 0.947±0.061 0.784±0.145 C=1

Fig. 2 Voxel clusters
representing significant decreases
in [123I]FP-CIT uptake in PD
patients with respect to VP
patients. The areas include the
putamen and caudate nucleus, and
are represented in MNI-
normalized MRI scans
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351 semiquantitative data from the SPECT evaluations of a large
352 cohort of patients using two widely differing methods: striatal
353 ROI analysis and whole-brain voxel-based analysis. Our pre-
354 vious study [20], as well as a similar multicentre study per-
355 formed in Italy [14], confirmed what previous studies have
356 indicate: VP is a different and distinguishable entity from PD,
357 but clinical manifestations and imaging patterns are heteroge-
358 neous. [123I]FP-CIT SPECT is a widely available tool helping
359 the physician in the diagnosis of VP, and numerous studies
360 have investigated visual assessment and ROI quantification
361 using [123I]FP-CIT SPECT [6, 26]. Some authors have found
362 significant differences in the AI in PD patients [9, 12], but
363 these studies had small sample sizes and their sensitivity was
364 as low as 50 % [12]. These results have led to questioning the
365 accuracy of [123I]FP-CIT SPECT in the diagnosis of VP, and
366 indeed, a very recent study considered the inclusion of cardiac
367 [123I]MIBG SPECT and the use of the smell identification
368 UPSIT test in the differential diagnosis [13].
369 In our previous study we used the [123I]FP-CIT BPND
370 values of the more affected side of the putamen and the
371 ipsilateral caudate and the AI in a clustering method, and
372 achieved an accuracy of 82 %. However, this approach did
373 not exploit all the information available from the patient and
374 contained in the image, nor did it provide a generalizable
375 mathematical formula for use by other groups. In contrast,
376 other studies have successfully applied elegant methods for
377 distinguishing atypical parkinsonisms and other diseases from
378 PD using DAT SPECT imaging [16–19]. Scherfler et al. used
379 ROI analysis and SPM to extract mean voxel cluster values
380 and introduced their parameters into a stepwise discriminant
381 analysis [17]. Some years later, the same group elaborated a

382computer-assisted image algorithm (CAIA) using voxel data
383that outperformed a multinomial regression using ROI data
384[18]. In this study, we investigated images from VP patients
385using these types of approaches. In the ROI analysis, in
386agreement with the findings of previous studies [10, 12], we
387found that in PD patients, in comparison with VP patients, the
388striatal DAT availability is markedly reduced and the AI is
389significantly higher. LR revealed that the more affected
390side of the putamen and the ipsilateral caudate, along with
391the covariates age, disease duration and H&Y stage, were
392informative in feeding the predictive model. Cross-
393validation procedures demonstrated that the algorithms
394LR, LDA and SVM were excellent classifiers using these
395variables. In the case of LR, the model achieved a diag-
396nostic accuracy of 90.3 %. Moreover, the results could be
397improved to 95 % accuracy by thresholding the class
398probability and creating a pool of patients with a doubtful
399diagnosis. For these patients, we assumed that the ROI
400analysis of the [123I]FP-CIT SPECT scans was inconclu-
401sive and that it would be necessary to evaluate their
402clinical profile and structural neuroimaging to determine
403a more reliable diagnosis.
404Despite the diagnostic accuracy for the newly developed
405visual scoring system in our previous work that reached above
40694 %, we acknowledge that the application of this system
407requires highly trained nuclear medicine specialists, and that
408the intraobserver and interobserver rates are not perfect. Al-
409though we strongly encourage specialists to learn and apply
410the new visual scoring system, we believe that the application
411of the LR formula could be used more easily to achieve
412diagnostic accuracies above 90 %.

t4:1 Table 4 Significant findings of
the SPM comparison of VP and
PD patients (VP>PD)

t4:2 Cluster localization Cluster size MNI coordinates T value Z value pFWE value

t4:3x y z

t4:4 Left striatum 1,113 −26 −10 2 8.31 7.77 <0.001

t4:5−20 14 2 5.59 5.42 <0.001

t4:6−22 −18 4 5.46 5.29 <0.001

t4:7 Right striatum 1,320 28 −6 2 8.08 7.59 <0.001

t4:822 −16 0 5.32 5.17 0.001

t4:920 10 12 5.27 5.12 0.001

t5:1 Table 5 Average tenfold cross-validation performance results (mean±
standard deviation) for the diagnostic predictive models built with SPM
data, given as area under the ROC curve (AUC), accuracy, sensitivity and

specificity. The methods tested were penalized logistic regression (PLR),
penalized discriminant analysis (PDA) and support vector machine
(SVM)

t5:2 Method AUC Accuracy Sensitivity Specificity Parameters

t5:3 PLR 0.960±0.039 0.887±0.049 0.981±0.034 0.704±0.144 α=0.1, λ=0.1

t5:4 PDA 0.878±0.073 0.884±0.069 0.944±0.058 0.769±0.135 λ=3

t5:5 SVM 0.954±0.057 0.904±0.059 0.954±0.056 0.801±0.172 C=1
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413 Regarding SPM, the comparison gave significant differ-
414 ences in [123I]FP-CITuptake in two specular clusters of voxels
415 including areas of the striatum.We took advantage of this high
416 level of information by introducing all voxel values together
417 with the covariates into a penalized classification algorithm,
418 and found that SVM was able to achieve 90.4 % accuracy.
419 Furthermore, as for the ROI data, it would also be possible to
420 raise this accuracy by restricting the allocation to high class
421 probabilities. This method demonstrated that the use of whole-
422 brain voxel data is a powerful alternative with two great
423 advantages with respect to the previousmethod, i.e. no a priori
424 assumptions about the location of the ligand uptake and more
425 importantly, the method is conducted in an unbiased and
426 automated fashion.
427 It is also important to note that our models made use of
428 basic clinical information, namely age, disease duration and
429 H&Y stage. Differences in these factors are not uncommon
430 between VP and PD cohorts. Antonini et al. obtained differ-
431 ences in H&Y stage in a large cohort of patients [14]. Other
432 studies have also shown differences in age [9, 10, 12, 13] and
433 disease duration [13]. These differences give these factors
434 predictive ability to differentiate VP from PD, and they are
435 also potential confounders for determining differences in
436 [123I]FP-CIT uptake. For these reasons, it is necessary to
437 incorporate these variables in the discriminative models using
438 [123I]FP-CIT SPECT that seek to be applicable to the general
439 populations of VP and PD patients. However, previous studies
440 using [123I]FP-CIT SPECT for differentiating VP from PD did
441 not fully take into account this information. Age, disease
442 duration and H&Y stage were not quantitatively included in
443 the studies that used visual assessment [13, 14], and other
444 studies that used ROI semiquantification have shown differ-
445 ences in the ROI variables between these groups of patients
446 without accounting for them [9–12]. In this study we observed
447 that these factors, apart from directly influencing radioligand
448 uptake per se, were simple, accessible and very informative
449 for differentiating VP from PD. Hence, we recommend their
450 inclusion in the models.
451 We also sought to determine if there was higher striatal
452 ligand uptake in VP patients with a negative response to
453 levodopa treatment than in positive responders, as found by
454 Antonini et al. [14]. Our results were all negative for this
455 association indicating that the [123I]FP-CIT uptake is not a
456 good predictor of responsiveness to dopamine replacement
457 therapy.
458 Finally, it is interesting to speculate as to why these models
459 did not reach 100 % accuracy. In our opinion, a major limita-
460 tion influencing the accuracy might have been that our gold
461 standard was based on clinical criteria that did not take into
462 account the SPECT findings, and perhaps a few patients were
463 wrongly diagnosed. Some of the patients who were diagnosed
464 as having VP, even though they fulfilled the criteria for VP
465 when included in the study, had a PD-like scan pattern. It is

466possible that some of these patients truly had VP with a
467[123I]FP-CIT SPECT scan pattern indistinguishable from that
468in PD, while others had in reality underlying PD accompanied
469by cerebrovascular damage. In this case, updating our models
470would have resulted in an increase in the accuracy and there-
471fore a boost in the credibility of the SPECT-aided diagnosis.
472Nevertheless, to confirm this hypothesis it would be necessary
473to perform a long-term follow-up to verify how these patients
474evolve clinically, or preferably, an MRI scan or an
475anatomopathological examination in the most misleading
476cases.
477In conclusion, this study provided accuracies above 90 %
478in discriminating between VP and PD using two common
479methods for SPECT scan evaluation: ROI analysis and SPM.
480We provide a mathematical formula for the ROI analysis
481model for evaluation by other groups. We also introduce a
482method for processing voxel-based data: the use of penalized
483algorithms implemented in R packages. This approach pro-
484vides an automated and therefore objective, fast and efficient
485solution that would be very beneficial for decision-making in
486nuclear medicine. Future work will investigate the method
487including more types of parkinsonism and its implementation
488in a distributable application for external evaluation.
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