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Abstract
The SU(3) tensor multiplicities are piecewise polynomial of degree 1 in their
labels. The pieces are the chambers of a complex of cones. We describe in
detail this chamber complex and determine the group of all linear symmetries
(of order 144) for these tensor multiplicities. We represent the cells by dia-
grams showing clearly the inclusions as well as the actions of the group of
symmetries and of its remarkable subgroups.

Keywords: tensor multiplicities, Lie groups, SU(3), chamber complex

1. Introduction

The tensor multiplicities for SU(k) appear in several different contexts in nuclear and particle
physics, as well as quantum interferometry, [1–6]. For instance, in the classification of orbital
states of particles in the nuclear shell model, the SU(k) tensor multiplicities represent total
angular momentum [1]. In quantum interferometry, the SU(k) tensor multiplicities appear in
the decomposition of input states into a direct sum of input states in distinct, finite irredu-
cible representations [7]. They also appear in elementary particle physics in the Eightfold way
pioneered by Gell–mann and Ne’eman [2, 3].

The SU(k) tensor multiplicities also govern the decomposition into irreducibles of some
restrictions of representations of the symmetric group, describe the structure constants for
the multiplication in the cohomology ring of the Grassmannian, give a basis for the Schubert
cycles, and are the structure constants for the multiplication of symmetric functions under the
Schur basis, see [8].
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The SU(k) tensor multiplicities afford a number of symmetries. One of these symmetries
is obvious: the multiplicity of Vn in Vℓ ⊗Vm is the same as in Vm⊗Vℓ. Here Vℓ, Vm … are the
irreducible representations of SU(k). The SU(k) tensor multiplicities define a function on the
lattice of the triples (`,m,n) of weights for SU(k). The aforementioned symmetry, `↔ m, is
linear since it is given by a linear function on this lattice. There is actually a well-known group
of 12 linear symmetries for the SU(k) tensor multiplicities (comprising `↔ m), for any k.

In this paper, we focus on the case k= 3. Our main result is the determination, in an ele-
mentary way, of the full group of all linear symmetries for the SU(3) tensor multiplicities. We
find it has order 144, surprisingly bigger than the group of 12 general symmetries that hold for
SU(k) for any k. We determine the structure of this group: it is isomorphic to S2 × (S3 oS2)
where Sn are the symmetric groups.

It is known that, for any fixed k, the SU(k) tensor multiplicities are given by piecewise
polynomial formulas. The pieces (domains of validity of the polynomial formulas) are the
chambers (maximal cells) of a complex of polyhedral cones (the chamber complex). In the
case k= 3, we get a full, explicit description of the chamber complex from the combinatorial
description (BZ triangles) given by Berenstein and Zelevinsky of these tensor multiplicities
[9]. We get as well the action of the linear symmetries on the chamber complex. We associate
to each cell of the chamber complex a diagram, in such a way that the action of the linear
symmetries on the cells can be read easily from their diagrams.

Following Berenstein and Zelevinsky, we actually work with the triple multiplicities of
SU(3) rather than with the SU(3) tensor multiplicities themselves. The triple multiplicities are
an avatar of the tensor multiplicities, defined as the dimensions of the subspaces of invariants
(Vℓ ⊗Vm⊗Vn)SU(3). The advantage of this model is the straightforward description of the
group of the 12 general symmetries: is generated by the 6 permutations of the factors Vℓ, Vm,
Vn, and the duality involution. Also the combinatorial description given by Berenstein and
Zelevinsky is given in the setting of the triple multiplicities.

The tensor multiplicities for SU(k) are essentially the same as the tensor multiplicities for
GLk. We translate our results to the GL3-setting, obtaining for the corresponding Littlewood–
Richardson coefficients the full group of linear symmetries (it has order 288) and the descrip-
tion of the chamber complex.

1.1. Relation with other works

Computing tensor multiplicities is a classical problem that has been widely considered. Some
formulas, due to Steinberg [10], Racah [11], Klimyk [12, 13] apply for the very general case
of tensor multiplicities for any Lie Group. In the case of SU(k), there are combinatorial rules
(Littlewood–Richardson rules and its avatars). In the specific case of SU(3), extremely explicit
formulas can be given. See [4, 14, 15] for early attempts. A very concise presentation is as the
minimum of 18 linear forms [16]: see section 9.4. Rassart [17] studied the properties of the
formulas for the SU(k) tensor multiplicities and worked out explicitly the case of SU(3) by
means of some computer calculations. The present paper derives again Rassart’s description
for SU(3), but avoiding the computer calculation. In addition, it unveils an extra structure
(group action) on these formulas.

The full group of linear symmetries for the SU(3) tensor multiplicities was first derived in
[18], which is an earlier version of the present work. There, some computer calculations were
involved. The present paper obtains the same results without computer calculations. Simple,

2



J. Phys. A: Math. Theor. 57 (2024) 015205 E Briand et al

clear proofs are used instead. The recent paper [19] derives again, by other means, the existence
of 144 symmetries, and provides alternative descriptions of them, that are of interest.

1.2. Structure of the paper

Section 2 provides a presentation of the general framework. Section 3 introduces the BZ tri-
angles for SU(3). Section 4 contains the main result of this work: the determination of all linear
symmetries of the triplemultiplicities of SU(3). In section 5, the full description of the chamber
complex for the SU(3) tensor multiplicities is derived, as well as the action of the linear sym-
metries on it. Section 6 is devoted to translating the previous results (symmetries and chamber
complex) into theGL3 tensor multiplicities setting. Section 7 presents a determinantal formula
for the SU(3) tensor multiplicities. Section 8 uses the description of the SU(3) chamber com-
plex to illustrate concretely known general stability properties of the Littlewood–Richardson
coefficients. Finally, section 9 concludes with a discussion of some topics not contemplated in
the main bulk of the paper.

2. Preliminaries

2.1. Representations of SU (3) and their labels

The irreducible Lie group representations of SU(3) are naturally labeled by their highest
weights. These are vectors in an abstract vector space (the dual of the complexified Lie algebra
of SU(3)). We will use as numeric labels the vectors of coordinates (`1, `2) of the highest
weights in the basis of fundamental weights (Dynkin labels). We will denote with Vℓ the irre-
ducible representation of SU(3) with Dynkin label `= (`1, `2). The Dynkin labels of the irre-
ducible representations of SU(3) are the pairs of nonnegative integers.

The Dynkin label of the dual of the representation of Vℓ with Dynkin label `= (`1, `2) is `
read backwards, i.e. (`2, `1). We denote this by `∗.

2.2. Triple multiplicities and tensor multiplicities

Consider Dynkin labels `= (`1, `2), m= (m1,m2) and n= (n1,n2). After [9], the multiplicity
of Vn in the tensor product Vℓ ⊗Vm is equal to the dimension of the space of invariants

(Vℓ ⊗Vm⊗V∗
n)
SU(3)

.

We set

c(`;m;n) = dim(Vℓ ⊗Vm⊗Vn)
SU(3)

. (1)

These integers are called triple multiplicities for SU(3). The multiplicity of Vn in Vℓ ⊗Vm is
thus c(`;m;n∗).
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The support of the triple multiplicities (the set of all triples (`,m,n) of Dynkin labels such
that c(`;m;n) 6= 0) generate a sublattice ΛTM of Z6, which is defined by the condition:

`1 +m1 + n1 ≡ `2 +m2 + n2 mod 3. (2)

2.3. Linear symmetries

A linear symmetry of the triple multiplicities is a linear automorphism θ of the lattice ΛTM

that leaves the triple multiplicities unaffected. That is, such that the identity c(θ(`,m,n)) =
c(`;m;n) holds.

The definition (1) of the triple multiplicities makes obvious that the six permutations of the
three labels `, m, n are linear symmetries for the triple multiplicities. Another linear symmetry
is the ‘duality’ symmetry, corresponding to changing each irreducible representation with its
dual:

(`,m,n)↔ (`∗,m∗,n∗) .

The duality symmetry and the six label permutations generate a group of 12 linear symmet-
ries isomorphic to S2 ×S3. We denote this group Gg and call it the group of general linear
symmetries for SU(3), because this group appears also as group of linear symmetries for the
triple multiplicities of SU(k) for any k.

2.4. Polyhedral description of the triple multiplicities

In a finite–dimensional real vector space L endowed with a full–rank lattice Λ, (a subgroup
generated by a basis of L), a convex rational polyhedral cone is the set of all linear combina-
tions, with nonnegative real coefficients, of some fixed finite set of vectors. These cones can
also be described as the solution sets of systems of finitely many linear equations fi(x)⩾ 0,
where the fi take integer values on the lattice points. In the sequel, conemeans convex rational
polyhedral cone.

A pointed cone C in L (cone not containing any line) and a linear projection pr : L →L ′,
sending the lattice Λ onto a lattice Λ ′ and the cone C to a cone C′, defines a fiber-counting
function on Λ ′: its value at t is the number of lattice points in C with image t. See figure 1.

It follows from [9] that the function that associates to three irreducible representations of
SU(3) (and, more generally, of SU(k)) the corresponding triple multiplicity (or tensor multi-
plicity) is such a fiber-counting function. In this case, the lattice points in C are combinatorial
objects called Berenstein–Zelevinsky triangles.

The analogous statement holds for the GL3 tensor multiplicities.
A cone C⊂ L and a projection pr : L →L ′, mapping C to C′, also define a complex of

cones subdividing C′ (a collection of cones, with union C′, such that the intersection of any
two of them is a face of each; and the faces of any cone in this collection also belong to the
collection.). This complex, called the chamber complex, has as open cells the sets of points
belonging to the projections of exactly the same faces of C. Its maximal closed cells are called
the chamber of the chamber complex. The fiber-counting function associated to C and pr is
piecewise quasipolynomial, with the chambers as the domains of validity of the quasipolyno-
mial formulas.

In the cases of the SU(k) triple multiplicities, or of the SU(k) or GLk tensor multiplicities,
the formulas are actually polynomials (see [17]).
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Figure 1. A cone projection and its fiber-counting function. Here a 3-dimensional cone
(top) is projected to a 2.dimensional space, with two chambers. The associated fiber-
counting function, defined on the lattice points of the 2-dimensional space, counts the
lattice points in the corresponding fiber. One such fiber is represented (vertical segment
in the top cone). The ‘triple multiplicities’ function for SU(3) is such a fiber-counting
function, where the lattice points in the top cone (7-dimensional) are the BZ triangles,
and the projection is to a 6-dimensional space (the space of the (ℓ1, ℓ2;m1,m2;n1,n2)).

3. Berenstein–Zelevinsky triangles for SU(3)

The Littlewood–Richardson coefficients and the SU(k) triple multiplicities can be calculated
by means of the Littlewood–Richardson rule and its many avatars, see [20]. One of these
avatars, introduced in [9], describes the SU(k) triple multiplicities as counting combinatorial
objects called Berenstein-Zelevinsky triangles (‘BZ triangles’ in the sequel). These are our
main tools in this paper.

In this section, we review the definition of the BZ triangles for the SU(3) triple multipli-
cities. (For the general description of the BZ triangles for SU(k), for any k, see [9] or [20]).
These are points in a 7-dimensional subspace LBZ of a 9-dimensional space. We calculate a
parameterization for the subspace LBZ that will be used in the calculations of the next sections.

3.1. BZ triangles for SU (3)

Consider the BZ graph Γ, shown in figure 2: its vertices are the 9 points (i, j,k) with non-
negative integer coordinates fulfilling i+ j+ k= 3, different from (1,1,1). There is an edge
between any two vertices with difference (1,−1,0), (1,0,−1) or (0,1,−1). The 9 vertices
of the BZ graph are the 3 vertices of an equilateral triangle and the 6 vertices of a regular
hexagon inscribed in the triangle. We will refer to the vertices of the BZ graph as Y1,Y2,Y3
and Z1, . . . ,Z6 as shown in figure 2.
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Figure 2. The BZ Graph Γ (left) and the coordinates of the BZ labelings (right).

Table 1. The objects in polyhedral geometric description of the SU(3) Triple
Multiplicities.

LTM 6D vector space of the (ℓ1, ℓ2;m1,m2;n1,n2).
ΛTM Lattice of the integer points in LTM fulfilling

ℓ1 +m1 + n1 ≡ ℓ2 +m2 + n2 mod 3.
TM Cone in LTM.
lat(TM) Lattice points in TM. Support of the triple multiplicities.
KTM Chamber complex for the triple multiplicities. Subdivides

TM.
LBZ 7D vector space of all BZ Graph labelings fulfilling (3).

Endowed with a projection onto LTM.
ΛBZ Lattice of all integer labelings in LBZ. Projects onto ΛTM.
BZ Cone of all nonnegative labelings in LBZ. Projects onto TM.
lat(BZ) Set of all Berenstein–Zelevinsky Triangles. (All lattice

points in BZ).

For any labeling of the BZ graph, we will denote y1,y2,y3 and z1, . . . ,z6 the labels of the
vertices Y1,Y2,Y3 and Z1, . . . ,Z6 (see figure 2). In the 9–dimensional space RΓ of all BZ graph
labelings, let LBZ be the 7–dimensional subspace defined by the equations:

z1 − z4 = z5 − z2 = z3 − z6. (3)

(See table 1 for a summary of the notations introduced in this section). The points of LBZ are
the BZ graph labelings such that any side of the hexagon sums as much as the opposite side.
Let BZ be the cone of all points in LBZ with nonnegative labels. Let lat(BZ) be the set of all
integer points in the cone BZ. The Berenstein–Zelevinsky triangle (BZ triangle in the sequel)
are the elements of lat(BZ); otherwise said, the BZ triangles are the labelings of the BZ graphs
with nonnegative integer labels, fulfilling (3).

Let us introduce also the linear map pr : LBZ → R6 that sends a BZ graph labeling in LBZ to
the tuple (`1, `2;m1,m2;n1,n2) defined by

`1 = y2 + z4, m1 = y3 + z6, n1 = y1 + z2,
`2 = y3 + z5, m2 = y1 + z1, n2 = y2 + z3.

(4)

These are the sums of the labels at some vertex Yi and at one of the two neighboring ver-
tices (see again figure 2). The linear map pr maps the integer points in LBZ onto the lattice
ΛTM ⊂ Z6 of all points (`1, `2,m1,m2,n1,n2) fulfilling (2). Then the triple multiplicity for the

6
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weights `= (`1, `2), m= (m1,m2) and n= (n1,n2) counts the BZ triangles in the fiber over
t= (`1, `2;m1,m2;n1,n2) of the projection pr:

c(`;m;n) = #
(
pr−1 (`;m;n)∩ lat(BZ)

)
.

3.2. A parameterization of the BZ triangles

We now parameterize the space LBZ. We use as parameters the values of `1, `2, m1, m2, n1, n2
and the label x=−y1 of vertex Y1.

From (4) we get

z4 = `1 − y2, z6 = m1 − y3, z2 = n1 − y1,
z5 = `2 − y3, z1 = m2 − y1, z3 = n2 − y2.

(5)

We set ω = z4 − z1. After (3), there is also ω = z6 − z3 = z2 − z5. Averaging these three
expressions for ω gives

ω =
1
3
(z2 + z4 + z6 − z1 − z3 − z5) . (6)

Replacing in (6) each zi with its expression in terms of t= (`1, `2;m1,m2;n1,n2) and the yj
from (5) yields

ω =
1
3
(`1 +m1 + n1 − `2 −m2 − n2)

(the yi cancel out).
Replacing in (3) each zi with its expression in (5) yields three relations yi = y1 + fi(t), with

the linear forms fi(t) displayed in table 2, where

ω (t) =
1
3
(`1 +m1 + n1 − `2 −m2 − n2) .

Replacing yi with y1 + fi(t) in (5) yields six relations zj =−y1 − gj(t), with the forms gj(t)
also shown in table 2.

We finally set x=−y1. For any t= (`1, `2;m1,m2;n1,n2) and x, let BZ(t,x) be the labeled
BZ graph shown in figure 3. Then the linear map (t,x) 7→ BZ(t,x) establishes an isomorphism
fromR6 ×R to the linear span LBZ of the BZ triangles. This isomorphism of real vector spaces
restricts to an isomorphism of lattices fromΛ×Z to the latticeΛBZ of the integer points ofLBZ.

Since yi = y1 + fi(t) and x=−y1, the inequality yi ⩾ 0 is equivalent to fi(t)⩾ x. Similarly,
since zj =−y1 − gj(t), the inequality zj ⩾ 0 is equivalent to gj(t)⩽ x. Therefore, under the
parameterization considered here, the cone BZ is the set of solutions of{

∀i,x⩽ fi (t) ,

∀j,x⩾ gj (t) .

4. Linear symmetries

In this section, we determine all linear symmetries for the triple multiplicities. As a first step,
in 4.1, we find the group GBZ of all linear symmetries for the set lat(BZ) of all BZ triangles.
These are all automorphisms of ΛBZ that stabilize the set lat(BZ). Then, in 4.2, we check that
each element θ of GBZ induces a linear symmetry θ ′ of the triple multiplicities. In such a

7
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Table 2. The linear forms fi and gi.

f1 (t) = 0, f2 (t) = ℓ1 −m2 −ω (t) , f3 (t) = ℓ2 − n1 +ω (t) ,
g1 (t) =−m2, g3 (t) = ℓ1 −m2 − n2 −ω (t) , g5 (t) =−n1 +ω (t) ,
g2 (t) =−n1, g4 (t) =−m2 −ω (t) , g6 (t) = ℓ2 −m1 − n1 +ω (t)

with ω (t) = 1
3 (ℓ1 +m1 + n1 − ℓ2 −m2 − n2) .

Figure 3. The labeled BZ graph BZ(t,x). The linear forms fi(t) and gj(t) are those
defined in table 2.

situation, we say that θ ′ lifts to θ, or that θ ′ admits θ as a lifting.We obtain this way a group
of symmetries Gl of the triple multiplicities, isomorphic to GBZ, of order 72: the group of
symmetries ‘that admit a lifting’. But not all symmetries of the triple multiplicities admit a
lifting: the duality symmetry does not. The group of all linear symmetries, G, is thus bigger
than Gl. In 4.3, we embed G into a permutation group (the group of permutations of all rays
of the cone TM) that is found to have order 144. This is enough to conclude that G has exactly
144 elements, and is generated by Gl and the duality symmetry. In the course of the proof, we
determine all rays of the cones BZ and TM.

As subgroup of interest, we also consider, besidesGg (group of general symmetries, see 2.3)
the intersection Glg = Gg ∩Gl. The embedding of G into a group of permutations allows to
elucidate the structure of the groups. The results are detailed in 4.4 and summarized in figure 4.

4.1. Symmetries for the BZ triangles of SU(3)

4.1.1. General symmetries for the BZ triangles. The BZ triangles have been introduced in [9]
to make obvious some of the general symmetries of the SU(3) tensor multiplicities. Namely,
the 6 linear symmetries of the triangle Y1Y2Y3 preserve the whole BZ graph, and permute
the coordinates yi and zj of the BZ graph labelings, in such a way that the relations (3) are
preserved. These six symmetries induce therefore symmetries of lat(BZ). They also induce
symmetries of the triple multiplicities (since these are obtained as sums of the labels yi and
some neighboring zj) forming a group Glg. The group of the six linear symmetries of the tri-
angle is generated by the reflections s1 and s2 with respect to the bisectors through Y1 and Y3.
The effect on these generators on the BZ triangles and on the triple multiplicities is easily read
on figure 5. The groups of the symmetries of the triangle, of the induced symmetries of the
BZ triangles, and Glg (induced symmetries of the triple multiplicities) are all isomorphic, and
isomorphic to the symmetric group S3.

Remember that the 12 general linear symmetries of the triple multiplicities for SU(3) form
a group Gg isomorphic toS2 ×S3, where the factorS2 is generated by the duality involution

8
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Figure 4. Groups of linear symmetries for the triple multiplicities.

Figure 5. Action of the simple transpositions s1 and s2 on the BZ triangles and on the
triple multiplicities.

(`;m;n)↔ (`∗;m∗;n∗), and the elements of the factor S3 are the permutations of the triple
(`;m;n). The elements of Glg are the 3 even permutations of (`;m;n), together with the 3
transpositions composed with the duality involution. Otherwise stated, Glg is generated by
(`;m;n)↔ (m∗;`∗;n∗) and by (`;m;n)↔ (`∗;n∗;m∗). This subgroup Glg is isomorphic to
S3, but distinct from the group of the permutations of (`;m;n).

Note that all of the above holds not only for the SU(3) case considered here, but also for
SU(k) for any k (see [9, remark (a) p10]).

4.1.2. All symmetries of the BZ triangles of SU(3). As already mentioned, the BZ triangles
generate a cone BZ in the subspace LBZ of RΓ defined by the equations z1 − z4 = z3 − z6 =
z5 − z2. We will determine its rays.

For any T ∈ Λ whose triple multiplicity is 1, i.e. which is the projection of a unique BZ
triangle. Denote this BZ triangle by ∆T. We contend that the rays of BZ are generated by the
eight BZ triangles ∆−→

C1
,∆−→

C2
,∆−→

C3
,∆−→

D3
,∆−→

D5
,∆−→

D1
,∆−→◁ and∆−→▷ shown in table 3. Following

[16], we call them the fundamental BZ triangles.
Indeed, given a point T in BZ, with labels yi and zj (as in figure 2), set (as in 3.2)

ω = z4 − z1 = z6 − z3 = z2 − z5. If ω ⩾ 0, then T decomposes as

T= y1 ·∆−→
C1
+ y2 ·∆−→

C2
+ y3 ·∆−→

C3
+ z1 ·∆−→

D1
+ z3 ·∆−→

D3
+ z5 ·∆−→

D5
+ω ·∆−→▷ (7)

with nonnegative coefficients; and if ω ⩽ 0,

T= y1 ·∆−→
C1
+ y2 ·∆−→

C2
+ y3 ·∆−→

C3
+ z4 ·∆−→

D1
+ z6 ·∆−→

D3
+ z2 ·∆−→

D5
+(−ω) ·∆−→◁ . (8)

9
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Table 3. The eight fundamental BZ triangles ∆−→
Ci
, ∆−→

Di
, ∆−→◁ and ∆−→▷ of the cone BZ,

with their projections
−→
Ci ,

−→
Di ,

−→◁ and −→▷ .

This shows that the fundamental BZ triangles generate BZ. These are 8 vectors spanning the
7-dimensional space LBZ. There is therefore a single linear relation between them, which is

∆−→
D1

+∆−→
D3

+∆−→
D5

=∆−→◁ +∆−→▷ . (9)

Therefore, none of the fundamental BZ triangles is a positive linear combination of the other.
This completes the checking of the fact that the fundamental triangles are generators of the
rays of BZ.

Note that the fundamental BZ triangles do not generate only the vector space LBZ, but the
lattice of the integer points of LBZ, since any point T in this lattice admits a decomposition (7)
with integer coefficients.

The linear symmetries of lat(BZ) (the linear automorphisms of ΛBZ that stabilize lat(BZ))
form a group GBZ. Any element θ of GBZ permutes the fundamental BZ triangles, since they
are the minimal ray generators of the cone BZ. Taking into account the relation (9) between
the fundamental BZ triangles, θ stabilizes the set {∆−→

D3
,∆−→

D5
,∆−→

D1
} (the only set of 3 funda-

mental BZ triangles whose sum is the sum of two other fundamental BZ triangles). Similarly,
θ stabilizes {∆−→◁ ,∆−→▷ } (the only set of two fundamental BZ triangles whose sum is the sum
of three other fundamental BZ triangles). Finally, θ also stabilizes the set of the 3 remaining
rays {∆−→

C1
,∆−→

C2
,∆−→

C3
}. Reciprocally, any permutation of the 8 fundamental BZ triangles that

10
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stabilizes each of {∆−→
C1
,∆−→

C2
,∆−→

C3
}, {∆−→

D3
,∆−→

D5
,∆−→

D1
} and {∆−→◁ ,∆−→▷ } lifts to a unique element

of GBZ, since it leaves the relation (9) unchanged. This shows that GBZ is isomorphic to

S{
∆−→

C1
,∆−→

C2
,∆−→

C3

} ×S{
∆−→

D3
,∆−→

D5
,∆−→

D1

} ×S{∆−→◁ ,∆−→▷ }.

In particular, GBZ has order 3!× 3!× 2! = 72.
The elements of GBZ can be described as linear symmetries of parts of the BZ graphs.

The permutations of {∆−→
C1
,∆−→

C2
,∆−→

C3
} are obtained by applying the linear symmetries of the

triangle Y1Y2Y3, only to Y1, Y2, Y3 (leaving unaffected the vertices Zj). The elements of
S{∆−→

D3
,∆−→

D5
,∆−→

D1
} ×S{∆−→◁ ,∆−→▷ } are the linear symmetries of the hexagon Z1Z2Z3Z4Z5Z6 (dihed-

ral group of order 12) applied to its vertices (leaving unaffected the vertices Yi).
Alternatively, GBZ is generated by the 6 linear symmetries of the BZ graph (the linear sym-

metries of the triangle Y1Y2Y3, applied to all 9 vertices of the BZ graph) and the 12 linear
symmetries of the hexagon Z1Z2Z3Z4Z5Z6 applied only to the vertices of this hexagon.

4.2. The linear symmetries of the triple multiplicities that lift to linear symmetries of the set of
all BZ triangles

Any element θ of GBZ is, a priori, of the form BZ(t,x) 7→ BZ(t ′,x ′). The symmetry θ ∈ GBZ

induces a linear symmetry of the triple multiplicities if and only if t′ is independent of x. Let
us show that this is always the case. Let yi and zj be the coordinates of BZ(t,x), and let y ′i
and z ′j be the coordinates of BZ(t

′,x ′). Then θ permutes the coordinates yi, and also permutes
the coordinates zj. After the relations (4), the coordinates of t′ are all of the form y ′i + z ′j .
Each of them is thus yp+ zq for some p and q. But yp+ zq = ( fp(t)− x)+ (x− gq(t)), which
is independent on x. This proves that t′ is independent on x, as announced. As a conclusion,
any element θ of GBZ induces a linear symmetry of the triple multiplicities.

A direct calculation shows that the 8 fundamental BZ triangles have 8 distinct projections
−→
Ci ,

−→
Di,

−→/ and −→. (given in table 3). As a consequence, the symmetries of the triple multi-
plicities induced by the 72 elements of GBZ are all distinct. They form a subgroup Gl of the
group of all symmetries of the triple multiplicities. The subgroup Gl is isomorphic to GBZ,
and thus to S2 ×S3 ×S3, and has order 72. It can be characterized as the group of all linear
automorphisms of the lattice Λ that stabilizes each of the sets {−→C1,

−→
C2,

−→
C3}, {

−→
D1,

−→
D3,

−→
D5} and

{−→/ ,−→. }.
The group Gl contains the group Glg of the six ‘general’ symmetries that admit a lifting,

which are easily recognized by their effect on the projections
−→
Ci ,

−→
Di,

−→/ and −→. . Namely, Glg

is the subgroup of the elements that permute the pairs (
−→
C1,

−→
D5), (

−→
C2,

−→
D3), (

−→
C3,

−→
D1), and, only

for the elements of order 2, swap −→/ with −→. .
The duality involution (`1, `2;m1,m2;n1,n2)↔ (`2, `1;m2,m1;n2,n1), and the odd permuta-

tions of (`;m;n) do not lift, since they do not stabilize {−→C1,
−→
C2,

−→
C3}. See the final remark 9.1

for a more straightforward argument for this fact.

4.3. All linear symmetries of the SU (3) triple multiplicities

Remember thatG is the group of all linear symmetries of the triple multiplicities. Any element
of G stabilizes the cone TM; therefore it permutes the rays of TM, and also their minimal ray
generators. These minimal ray generators are among the elements of

R=
{−→
C1,

−→
C2,

−→
C3,

−→
D1,

−→
D3,

−→
D5,

−→/ ,−→.
}
.

11
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These vectors span not only the vector space LTM = R6, but also the lattice ΛTM, since they are
the projections of the fundamental BZ triangles that span the lattice ΛBZ of the integer points
in LBZ.

The following relations between the vectors in R hold:
−→
C1 +

−→
C2 +

−→
C3 =

−→
D1 +

−→
D3 +

−→
D5 =

−→/ +−→. . (10)

Both can be checked straightforwardly. (Actually the second relation is obtained from (9)
by projecting. For the fact that the other relation is not obtained by such a projection, see
section 9.1). Since R is a set of 8 vectors spanning R6, there exist two independent relations
between the elements of R, which are just (10). In particular, there cannot be any relation
expressing one vector from R as a positive linear relation of others. This shows that R is exactly
the set of all minimal ray generators of TM.

We can thus embed G into the group of permutations of R. Moreover, any element of G
stabilizes the subset {−→/ ,−→. } (the only pair of vectors of R whose sum is sum of three other
vectors of R). Similarly, any element of G stabilizes each of {−→C1,

−→
C2,

−→
C3} and {

−→
D1,

−→
D3,

−→
D5}, or

swaps them. Indeed, these two sets are the only sets of three vectors of R whose sums are also
sums of two vectors of R.

As a conclusion, the embedding of G into the group of permutations of R takes its
value in the subgroup H of the group of all permutations of R, that stabilizes {−→/ ,−→. } and
{{−→C1,

−→
C2,

−→
C3},{

−→
D1,

−→
D3,

−→
D5}}. This subgroup is isomorphic toS2 × (S3 oS2), where o denotes

the wreath product of groups (see for example [21, p 187]). The subgroup H thus has order
2× (2× (3!)2), which is 144. On the other hand, G contains the subgroup Gl of order 72 con-
sisting of the symmetries that admit a lifting. Therefore, G has order some multiple of 72. The
group G also contains some elements not in Gl, such as the duality automorphism. Therefore
G has order at least 144. This proves that G has order 144 exactly, and is isomorphic to H.

4.4. The subgroups of symmetries as permutation groups

Let us summarize and complete the results in this section. Firstly, the group G of all lin-
ear symmetries of the triple multiplicities of SU(3) has order 144 and is isomorphic to
S2 × (S3 oS2). It embeds into the group SR of the permutations of R as the stabilizer of
{{−→C1,

−→
C2,

−→
C3},{

−→
D1,

−→
D3,

−→
D5}}.

The subgroup Gl of all symmetries that lift to linear symmetries of lat(BZ) has order 72
and embeds into SR as

S{−→
C1,

−→
C2,

−→
C3

} ×S{−→D1,
−→
D3,

−→
D5} ×S{−→◁ ,−→▷ }.

Each element of Gl lifts uniquely to a linear symmetry of lat(BZ), and therefore Gl
∼= GBZ.

Let us consider the groupGg of the 12 ‘general symmetries’, generated by the permutations
of (`;m;n) and the duality involution (`;m;n)↔ (`∗;m∗;n∗). The permutations of (`;m;n)
permute the pairs (C1,D3), (C2,D5) and (C3,D1), while the duality involution swaps the terms
of each of these pairs (i.e. swaps (C1,C2,C3) with (D3,D5,D1)), and additionally swaps −→.
with −→/ .

Finally, the subgroup Glg = Gl ∩Gg, made of the 6 ‘general symmetries with a lifting’,
is generated by the two involutions s1 swapping (`;m;n) with (m∗;`∗;n∗), and s2 swapping
(`;m;n) with (`∗;n∗;m∗). The involution s1 swaps

−→
D3 with

−→
D5,

−→
C1 with

−→
C2 and

−→. with −→/ .
The other generator s2 of Glg swaps

−→
D5 with

−→
D1,

−→
C2 with

−→
C3 and

−→. with −→/

12
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5. The chamber complex for the triple multiplicities for SU(3)

In this section. we show that the support of the triple multiplicities is the set of all lattice points
of a cone TM, covered by 18 smaller cones C(i, j), that are the domains for linear formulas for
the triple multiplicities. The cones C(i, j) generate a chamber complex KTM subdividing TM.
We check that the C(i, j) are full-dimensional, and thus that they are the chambers of KTM. We
also show that all C(i, j) are simplicial (i.e. have exactly as many facets as the dimension of the
ambient space, which is 6). Then we encode combinatorially all cells of the chamber complex.
As an aside, we are able to count the cells of each dimension. Finally, we associate to each
cell a diagram that makes clear the action of the group G of linear symmetries of the triple
multiplicities, and its subgroups, on the cells.

5.1. The chamber complex KTM

Wehave seen at the end of section 3.2 that the coneBZ is defined by a system of 18 inequalities:{
∀i ∈ {1,2,3} , x⩽ fi (t) ,

∀j ∈ {1,2,3,4,5,6} , x⩾ gj (t) ,

with the 3 forms fi and the 6 forms gj defined in table 2. This system can be summarized by
the condition:

max
q
gq (t)⩽ x⩽min

p
fp (t) . (11)

As a consequence, the labels t= (`;m;n) of the non-zero triple multiplicities all belong to the
subset TM of LTM defined by

max
q
gq (t)⩽min

p
fp (t) .

The above inequality summarizes the system of 18 linear inequalities:

∀i ∈ {1,2,3} , ∀j ∈ {1,2,3,4,5,6} , gj (t)⩽ fi (t) .

This is why TM is a cone.
For any fixed t= (`;m;n) ∈ lat(TM), the triple multiplicity c(t) counts the integers x that

fulfill (11). Therefore

c(t) = 1+max

(
0,min

p
fp (t)−max

q
gq (t)

)
.

This shows that the triple multiplicity function is piecewise polynomial of degree 1 (i.e. piece-
wise linear with constant term). For each i ∈ {1,2,3} and each j ∈ {1,2, . . . ,6}, the linear
formula

c(t) = 1+ fi (t)− gj (t)

holds for all lattices points t in the set C(i, j) defined by

min
p
fp (t) = fi (t)⩾ gj (t) =max

q
gq (t) .

13
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The C(i, j) are 18 cones covering TM, and, clearly, the intersection of any two of them is a
face of each. Therefore the conesC(i, j), together with all their faces, are the cells of a complex
of (convex rational polyhedral) cones subdividing TM. This complex is the chamber complex
of the SU(3) triple multiplicities (see section 2.4). We denote this complex KTM.

5.2. All 18 cones C(i, j) are full-dimensional

We prove this now.
For each of the conesC(i, j), let Ĉ(i, j) be its inverse image under the projection p : BZ→ R6

that sends BZ(t,x) (the BZ triangle defined in figure 3) to t. Then Ĉ(i, j) is the set of points
BZ(t,x) fulfilling: ‘fi(t) =minp fp(t); gj(t) =maxq gq(t); and fi(t)⩾ gj(t)’. Rewrite the condi-
tion ‘fi(t) =minp fp(t)’ as ‘fi(t)− x=minp( fp(t)− x)’. In terms of the coordinates yi and zj
of the space LBZ, this is ‘yi =minp yp’. Likewise, rewrite ‘gj(t) =maxq gq(t)’ as ‘x− gj(t) =
minq(x− gq(t))’; this is ‘zj =minq zq’. Finally, rewrite ‘fi(t)⩾ gj(t)’ as ‘fi(t)− x⩾−(x−
gj(t))’, which is ‘yi ⩾−zj’, a condition that always holds in BZ. As a conclusion, Ĉ(i, j) is the
set of points of BZ that fulfill: ‘yi =minp yp and zj =minq zq’. Now, the group GBZ, that per-
mutes the coordinates of the BZ triangles, acts transitively on the pairs of coordinates (yi,zj).
As a consequence,GBZ permutes transitively the cones Ĉ(i, j). Accordingly,Gl permutes trans-
itively the cones C(i, j). The cones C(i, j) are thus either all full-dimensional, or all degener-
ated. But these cones cannot be all degenerated, because their union TM is full-dimensional.
We conclude that the cones C(i, j) are all full-dimensional.

5.3. All cells of the chamber complex are simplicial

This is what we prove now. Since any cell of the chamber complex is a face of some chamber,
and any face of any simplicial cone is simplicial, it is enough to prove that all chambers are
simplicial.

Consider a chamberC(i, j). It is defined by the conditions: fi =minp fp; gj =minq gq; fi ⩾ gj.
These conditions translate into the system of inequalities:


∀p 6= i, fp ⩾ fi (2 inequalities)

∀q 6= j, gp ⩽ gj (5 inequalities)

fi ⩾ gq (1 inequality)

.

Two of these inequalities are actually consequences of the other six. Indeed, from the equations
z1 − z4 = z3 − z6 = z5 − z2 that hold on the linear span of the BZ triangles, and the equations
zi = x− gi(t), follow the relations:

g1 (t)− g4 (t) = g5 (t)− g2 (t) = g3 (t)− g6 (t) . (12)

Using these relations, one gets that, for all j,

gj+1 − gj = gj+1 − gj+4 + gj+4 − gj = gj+3 − gj+ gj+4 − gj,

14
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Table 4. The conditions whose conjunctions define the cells of the chamber complex
KTM.

C1 minp fp(t) = f1(t)
C2 minp fp(t) = f2(t)
C3 minp fp(t) = f3(t)
D1 maxq gq(t) =max(g1(t),g4(t))
D3 maxq gq(t) =max(g3(t),g6(t))
D5 maxq gq(t) =max(g5(t),g2(t))
◁ maxq gq(t) =max(g1(t),g3(t),g5(t))
▷ maxq gq(t) =max(g2(t),g4(t),g6(t))
⋆ minp fp(t) =maxq gq(t)

where the indices are considered modulo 6 (e.g. if j= 3 then j+ 4= 1). Therefore gj+1 ⩽ gj
follows from gj+3 ⩽ gj and gj+4 ⩽ gj. Similarly, gj−1 ⩽ gj follows from gj+3 ⩽ gj and gj+2 ⩽
gj. As a consequence, C(i, j) is defined by the smaller system:

fi+1 ⩾ fi
fi+2 ⩾ fi
gj+2 ⩽ gj
gj+3 ⩽ gj
gj+4 ⩽ gj
fi ⩾ gj

. (13)

Since C(i, j) is a 6-dimensional pointed cone, defined by a system of only 6 linear inequalities,
it is simplicial and all 6 inequalities are essential, i.e. the corresponding equations define the
facets of C(i, j).

5.4. Combinatorial encoding of the cells

Let

Ω= {C1,C2,C3,D1,D3,D5,/,.,?}

be the set of nine conditions defined in table 4.
As a subset of TM (i.e. assuming that all inequalities fp(t)⩾ gq(t) are fulfilled), the chamber

C(i, j) is defined by
‘minp fp(t) = fi(t) and maxq gq(t) = gj(t)’.
The first of the two conditions in this conjunction is exactly Ci. The second one is easily

seen to be equivalent to ‘Dj ′ and ωj’, where j ′ = j and ωj = . if j is odd, and j ′ = j+ 3 and
ωj = / if j is even.

Therefore, the chamber C(i, j) is defined in TM by ‘Ci and Dj ′ and ωj’.
Because C(i, j) is simplicial, there is a one-to-one correspondence between the faces σ of

C(i, j) and the sets X of equations obtained from the defining inequalities (13), which are:

fi+1 = fi, fi+2 = fi, gj+2 = gj, gj+3 = gj, gj+4 = gj, fi = gj. (14)

In this correspondence, σ corresponds to X when σ is defined, as a subset of C(i, j), by the
system of all equations in X; and then X is the set of all equations from the list that hold
everywhere on σ.
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The equations in (14) can be restated in terms of conditions in Ω \ {Ci,Dj ′ ,ωj}. Indeed, the
first two equations in (14) are Ci+1 and Ci+2 (taking into account the assumption fi =minp fp).
The last one is ?. One checks easily that the other three conditions (gj+2 = gj, gj+3 = gj, gj+4 =
gj) are equivalent to Dj ′+2, ω ′

j and Dj ′+4 respectively, where ω ′
j is the element of {/,.} that is

not ωj. The above one-to-one correspondence becomes a one-to-one correspondence between
the faces σ of C(i, j) and the subsets X of Ω \ {Ci,Dj ′ ,ωj}.

Note that, when σ corresponds to X, then σ is defined in TM by X∪{Ci,Dj ′ ,ωj}; and X∪
{Ci,Dj ′ ,ωj} is the set of all conditions in Ω that hold on σ. We define two mapsΨ and Sol: for
any cell σ of the chamber complex, Ψσ is the set of all conditions in Ω that hold everywhere
in σ; for any subset X⊂ Ω, SOLX is the set of points t in TM that fulfill all conditions in X.
From what precedes, we get that for any chamber C(i, j), Ψ and Sol induce bijections, inverse
of each other, between the set of all faces of C(i, j) and the subsets X of Ω containing each of
Ci, Dj ′ and ωj.

Together with the fact that each cell of KTM is the face of some chamber, this is enough to
deduce thatΨ and Sol induce bijections, inverse of each other, between the set of all faces of the
chamber complex, and the set S of all subsets of Ωmeeting each of {C1,C2,C3}, {D1,D3,D5}
and {/,.}.

Rather than dealing with Ψ, which reverses inclusions, let us introduce, for any cell σ, the
complement Ψ(σ) of Ψ(σ) in Ω (the set of all conditions that fail to hold everywhere on σ).
Then Ψ is an inclusion–preserving bijection from the set of all cells of KTM, to the set S of all
parts of Ω that contain none of {C1,C2,C3}, {D1,D3,D5} and {/,.}. The minimum element
of S is the empty set, that corresponds to the {0} cell. The minimal non-empty elements of S
are the one-element subsets from Ω, naturally in bijection with Ω; they correspond to the rays
of the chamber complex. Since each cell is simplicial, its dimension is the number of rays it
contains. Therefore, the dimension of any cell σ is the cardinality of Ψ(σ).

Given any set E, denote by SubsetsE (resp. PSubsetsE) the set of all subsets E (resp. of all
proper subsets of E, i.e. all subsets of E distinct from E). The ranked poset of the cells of the
chamber complex (ordered by inclusion) is isomorphic to the poset of the elements of S, which
is itself isomorphic to

PSubsets{C1,C2,C3}×PSubsets{D1,D3,D5}
×PSubsets{/,.}× Subsets{?} .

The generating series of a ranked poset is the polynomial
∑

i ai q
i where q is a variable and ai

is the number of elements of rank i. When N is the cardinality of E, the generating series of
SubsetsE is (1+ q)N, and the generating series for PSubsetsE is (1+ q)N− qN, which gives
1+ 3q+ 3q2 for N= 3, and (1+ 2q) when N= 2.

Therefore, S is a ranked poset with rank generating series(
1+ 3q+ 3q2

)2
(1+ 2q)(1+ q) .

This expands as

1+ 9q+ 35q2 + 75q3 + 93q4 + 63q5 + 18q6.

The coefficients in this expansion are thus the numbers of faces of each dimension in the
chamber complex of SU(3) (‘f -vector’). In particular, we recover that the chamber complex
has 18 chambers, and observe that it has nine rays. Eight of them have already been obtained,
as the eight rays of the cone TM. The group G of linear symmetries of the chamber complex
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Figure 6. The items associated to the rays of the chamber complex.

permutes the nine rays of the chamber complex. On the other hand, we know that G stabilizes
the eight rays of the cone TM. Therefore, G fixes the ninth ray. In particular, this ray must
be fixed by the six permutations of (`;m;n) and by the duality involution. It follows that this
ninth ray is generated by (11|11|11). We denote the generator by −→? and refer to its ray as the
internal ray, since it is the only one not on the border of TM.

Each ray generator must fulfill all conditions fromΩ but one. One checks (using the expres-
sions in coordinates in table 3) that, for each X ∈ Ω, the condition not fulfilled by the ray
generator

−→
X is X. This justifies a posteriori the coincidence of notations.

Let us observe finally that the nine ray generators obtained here are related by
−→
C1 +

−→
C2 +

−→
C3 =

−→
D1 +

−→
D3 +

−→
D5 =

−→/ +−→. =−→? . (15)

Indeed, these relations are those in (10), except for −→/ +−→. =−→? , which is, in coordinates,

(01|01|01)+ (10|10|10) = (11|11|11) .

Since these are 9 vectors spanning a 6–dimensional vector space, and since (15) already
gives 3 independent relations, there are no more independent relations.

5.5. Cell diagrams and actions of the groups on the cells.

There is a convenient pictorial way to describe the action of G and its subgroups on the cells.
Draw a regular hexagon with vertices labeled with

−→
C1,

−→
D1,

−→
C2,

−→
D3,

−→
C3 and

−→
D5, in this order.

Draw also the triangle whose vertices are the midpoints of the sides
−→
C2

−→
D1,

−→
C3

−→
D3 and

−→
D5

−→
C1 of

the hexagon (‘left–pointing triangle’) and the triangle whose vertices are the midpoints of the
three remaining sides (‘right–pointing triangle’). Label accordingly these two triangles with
−→/ and −→. .

Label finally the center of this hexagon with −→? ,
We call the six vertices of the hexagon, its center and the two triangles the items of the cell

diagrams. See figure 6.
Given any cell of the chamber complex, its diagram is obtained by superposing the items

of the ray it contains. Table 5 displays the diagrams of the nine rays, and figure 7 shows the
diagrams of some other cells.

The missing items in the diagram of a cell σ provide the conditions defining σ, i.e. the set
Ψ(σ). For instance, the diagram of the chamber C(1,1) has all items except those of C1, D1
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Table 5. The diagrams of the nine rays of the chamber complex, with the coordinates
(ℓ1, ℓ2|m1,m2|n1,n2) of their minimal generator.

Figure 7. Diagrams of some cells of the chamber complex. From left to right: the dia-
gram of the chamber C(1,1), defined by the conditions (C1), (D1) and ◁; the diagram
of the external facet of C(1,1), defined in C(1,1) by f1 = g1; the diagram of the 2–
dimensional face of C(1,1) defined by the equations f1 = f2 = g1 = g4 = g5; the dia-
gram of the {0} cell.

and / (see figure 7). This corresponds to the fact that C(1,1) is defined by the conditions (C1),
(D1) and (/).

The action of the group G and its subgroups on the cells is easily read from the diagrams.
Consider first the subgroup Glg: it acts on the items as the group of symmetries of the

triangle
−→
C1

−→
C2

−→
C3 (since s1 acts as the reflection with respect to the axis

−→
D1

−→
C3, and s2 as the

reflection with respect to the axis
−→
D3

−→
C1).

The duality involution acts on the items as the central symmetry (with respect to the center
of the hexagon). Therefore, Gg (being generated by Glg and the duality involution) acts on the
items as the group of the symmetries of the hexagon.

In what regards Gl, recall that it permutes the rays as

S{−→
C1,

−→
C2,

−→
C3

} ×S{−→D1,
−→
D3,

−→
D5} ×S{−→◁ ,−→▷ }.
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Each factor of this decomposition acts as the group of symmetries of the triangle C1C2C3

acting only on part of the diagram (leaving unaffected the other parts): S{−→C1,
−→
C2,

−→
C3}

on the tri-

angle
−→
C1

−→
C2

−→
C3;S{−→D1,

−→
D3,

−→
D5}

on the triangle
−→
D1

−→
D3

−→
D5; andS{−→◁ ,−→▷ } on the left and right pointing

triangles.
This describes the action of all elements of the group G, since G is generated by Gl and the

duality involution.

Example. We consider the 3-dimensional cell represented by the following diagram and its
orbits under the groups of symmetries:

The elements of its orbit under Glg, obtained by applying alternatively s1 and s2, are the
cells with the following diagrams: This set of diagrams is stabilized by the central symmetry

(duality involution for the cells). Therefore, the orbit under Gg coincide with this orbit under
Glg.

The orbit under Gl and the orbit under G also coincide, and correspond to the following set
of diagrams, obtained by applying the hexagon symmetries only to the C-vertex, only to the
D-vertex, or only to the triangles:
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6. Linear symmetries and chamber complex for the Littlewood–Richardson
coefficients of GL3

In this section, we translate the results obtained for the SU(3) triple multiplicities into the
setting of the Littlewood–Richardson coefficients (tensor multiplicities for the general linear
groups GLk, here for GL3).

6.1. From SU (3) to GL3

For any weakly decreasing sequence of integers λ= (λ1,λ2,λ3), let Wλ be the irreducible
representation of GL3 whose highest weight sends the diagonal matrix with entries x1,x2,x3 to
λ1x2 +λ2x2 +λ3x3. All irreducible finite-dimensional representations ofGL3 are of this form.
The representationWλ is polynomial when λ3 ⩾ 0, and then the label λ is an integer partition.

The irreducible representations Vℓ of SU(3) are exactly the restrictions of the irreducible
representations ofWλ of GL3. Precisely, for `= (`1, `2) and λ= (λ1,λ2,λ3), Vℓ is the restric-
tion of Wλ when{

`1 = λ1 −λ2,

`2 = λ2 −λ3.
(16)

Note that all GL3 irreducible representationsWλ1+k,λ2+k,λ3+k, for k integer (positive or negat-
ive), restrict to the same representation of SU(3).

A necessary condition for the GL3 tensor multiplicity mult(Wν ;Wλ ⊗Wµ) (multiplicity of
Wλ in the tensor productWµ ⊗Wν) to be non-zero is that |λ|+ |µ|= |ν| (where |λ| stands for
the sum of the coordinates of λ). If λ,µ and ν are partitions (i.e. all three representations are
polynomial), this tensor multiplicity is called a Littlewood–Richardson coefficient and denoted
cνλ;µ.

The relation

mult(Wν ;Wλ ⊗Wν) = mult(Vn∗ ;Vℓ ⊗Vm) = c(`;m;n)

holds when Vℓ, Vm and Vn∗ are the restrictions ofWλ,Wµ andWν respectively, that is when:{
`1 = λ1 −λ2, m1 = µ1 −µ2, n2 = ν1 − ν2,
`2 = λ2 −λ3, m2 = µ2 −µ3, n1 = ν2 − ν3.

(17)

(We prefer to denote as Vn∗ the restriction ofWν , rather than as Vn, to get indices as simple as
possible for the triple multiplicities).

6.2. The chamber complex for the Littlewood–Richardson coefficients

We now describe the Littlewood–Richardson coefficients and, more generally, the GL3 tensor
multiplicities, in the geometric language of cones.

The support of the GL3 tensor multiplicities (the set of triples of labels (λ;µ;ν) such that
the corresponding tensor multiplicity is nonzero) is a set of integer points in R3 ×R3 ×R3.
This support is contained in the 8-dimensional subspace LLRC defined by the linear equation
|λ|+ |µ|= |ν|. Let ΛLRC = Z9 ∩LLRC be the lattice of all integer points in LLRC.

Formulas (17) define a projection π : LLRC →LTM. The space LLRC decomposes as

LLRC = L0
LRC ⊕ kerπ (18)
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where L0
LRC is the 6-dimensional subspace defined by the equations λ3 = µ3 = 0, and kerπ is

the kernel of the projection π. This kernel is a 2-dimensional subspace, with basis (
−→
λ ,−→µ )

where

−→
λ = (1,1,1;0,0,0;1,1,1) , −→µ = (0,0,0;1,1,1;1,1,1) .

The projection π maps isomorphically L0
LRC onto LTM; its inverse defines an embedding ι :

LTM ↪→LLRC with image L0
LRC. The decomposition (18) together with the isomorphism L0

LRC
∼=

LTM, define an isomorphism

LTM ×R2 ∼= LLRC. (19)

Under this isomorphism: ΛTM ×Z2 corresponds to ΛLRC; the cone TM×R2 corresponds to
a cone H (known as the Horn cone); and lat(TM)×Z2 corresponds to lat(H) (the set of lattice
points of the Horn cone), and this is the support of the GL3 tensor multiplicities. The Horn
cone is better known as the set of spectra of triples of Hermitian matrices (A,B,C) that fulfill
A+B= C, see [22, 23].

Under the isomorphism (19) we have also that: the cone TM× (R+)2 corresponds to a cone
H+ (known as the positive Horn cone), intersection of H with the subset defined by λ3 ⩾ 0
and µ3 ⩾ 0; and the set lat(TM)× (Z+)2 corresponds to lat(H+) (lattice points of the positive
Horn cone). This is the support of the Littlewood–Richardson coefficients.

The polynomial formula 1+Li,j, that holds for the triple multiplicities in a chamber C(i, j)
of the chamber complex KTM, gives (by plugging the expressions (17) of `, m, n in terms of
λ, µ, ν) a formula for the GL3 tensor multiplicities that holds in the cone that corresponds to
C(i, j)×R2. These cones are the chambers of a chamber complex subdividing H. Each of its
chamber is isomorphic to some C(i, j)×R2.

The same formulas apply, of course, to the Littlewood–Richardson coefficients. These are
defined only for λ3,µ3,ν3 nonnegative. The domains for these formulas correspond thus to the
productsC(i, j)× (R+)2 and are the chambers of a chamber complexKLRC subdividingH

+. We
will denote with C•(i, j) the chamber obtained from C(i, j). Precisely, it is the cone generated

by ι(C(i, j)) and the vectors
−→
λ , −→µ .

The rays of KLRC are generated by the vectors
−→
λ , −→µ and the images under the embedding

ι of the ray generators for KTM. These are given in table 6.
The chambers of KLRC are 8–dimensional and generated by 8 rays (the embeddings of the

6 rays of the corresponding chamber from KTM, plus
−→
λ and −→µ ). As a consequence, they are

all simplicial. The cells of KLRC are in order–preserving bijection with the Cartesian product
of the set of all chambers of KTM with Subsets{−→

λ ,−→µ}. Its rank generating function is thus the
rank generating function of KTM, multiplied with (1+ q)2, which gives(

1+ 3q+ 3q2
)2
(1+ 2q)(1+ q)3 .

6.3. Linear symmetries of the Littlewood–Richardson coefficients.

Recall the decomposition (18):LLRC = L0
LRC ⊕ kerπ. Among the 11 ray generators of the cham-

ber complex KLRC (table 6), the vectors
−→
λ and −→µ form a basis of kerπ, while the other nine

generators belong to L0
LRC. Therefore,

−→
λ and−→µ are not involved in any linear relation between

these 11 vectors. As what regards the other nine generators, they are related by

−→
C•
1 +

−→
C•
2 +

−→
C•
3 =

−→
D•

1 +
−→
D•

3 +
−→
D•

5 =
−→
/• +

−→
.• =

−→
?•.
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Table 6. The ray generators u= (ℓ1ℓ2|m1m2|n1n2) for KTM, and the corresponding
ray generators v= (λ1λ2λ3|µ1µ2µ3|ν1ν2ν3) for KLRC. They are determined from each
other by the conditions: u= π(v) with v ∈ L0

LRC; and v= ι(u).

ray generator u of KTM ray generator v of KLRC Name of v in [17]

−→
D 1 = (10|01|00) −→

D •
1 = (100|110|111) d2−→

D 3 = (00|10|01) −→
D •

3 = (000|100|100) g2−→
D 5 = (01|00|10) −→

D •
5 = (110|000|110) e1−→

C 1 = (00|01|10) −→
C •

1 = (000|110|110) e2−→
C 2 = (10|00|01) −→

C •
2 = (100|000|100) g1−→

C 3 = (01|10|00) −→
C •

3 = (110|100|111) d1−→▷ = (01|01|01) −→▷ • = (110|110|211) c
−→⋆ = (11|11|11) −→⋆ • = (210|210|321) b
−→◁ = (10|10|10) −→◁ • = (100|100|110) f

−→
λ = (111|000|111) a1−→µ = (000|111|111) a2

that come from (15) by applying the embedding of LTM into LLRC.
As a consequence, the group of linear automorphisms of the ‘Littlewood–Richardson func-

tion’ (λ;µ;ν) 7→ cνλ;µ decomposes as the product G1 ×G2, where G1 is the subgroup of the

linear automorphisms fixing L0
LRC, and G2 is the subgroup of the automorphisms fixing

−→
λ and

−→µ . The subgroup G2 is isomorphic to the group G of all symmetries of the triple multiplicit-
ies. The subgroup G1 is not trivial: it contains the involution swapping

−→
λ and −→µ . It is thus

isomorphic to S2.
As a conclusion, the group of all linear symmetries of the function (λ;µ;ν) 7→ cνλ;µ has

order 288, and is isomorphic to S2 ×G, and thus to S2 ×S2 × (S3 oS2).

The generator of G1, swapping
−→
λ and −→µ , is easily interpreted, and holds for GLk for any

k: the representation W(1k) of GLk is the one dimensional representation where g ∈ GLk acts
by multiplication by det(g)k; for any λ,

Wλ+(1k)
∼=Wλ ⊗W(1k)

and therefore, for any λ and µ,

Wλ+(1k) ⊗Wµ
∼=Wλ ⊗W(1k) ⊗Wµ

∼=Wλ ⊗Wµ+(1k)

which gives that for any λ, µ and ν,

cνλ+(1k);µ = cνλ;µ+(1k).

7. Triple multiplicities and Littlewood–Richardson coefficients as volumes

In this section, we observe that the linear part of the SU(3) triple multiplicity c(`;m;n) for
can be interpreted as the volume of a parallelotope (higher–dimensional parallelepiped), or,
equivalently, as a determinant.

Remember that any chamber C(i, j) of KTM has 6 rays: one of them is interior (not on the
border of TM), with generator −→? ; the other 5 are exterior.
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We contend that when t= (`;m;n) lies in the chamber C(i, j), we have

c(t) = 1+VolΛTM (Π(t1, . . . , t5, t)) (20)

where t1, …, t5 are the minimal generators of the 5 exterior rays of C(i, j),Π(t1, . . . , t5, t) is the
parallelotope generated by them and t (the set of all combinations x1t1 + . . .+ x5t5 + x6t such
that all xi fulfill 0⩽ xi ⩽ 1); and VolΛTM is the volume with respect to the lattice ΛTM, i.e. the
volume normalized in such a way that the fundamental domains of the lattice have volume 1.

Let us check this. On C(i, j), we have c(t) = 1+Li,j(t), with Li,j linear. We should prove
that Li,j coincides with the volume of the parallelotope.

OnC(i, j), both Li,j(t) and VolΛTM (Π(t1, . . . , t5, t)) are linear in t; both vanish on the external
facet of C(i, j) (generated by t1, …, t5). It is enough to check that both evaluate equally at −→?
to conclude that they are equal. We have c(−→? ) = 2. Therefore Li,j(

−→? ) = 1.
We will show that VolΛTM (Π(t1, . . . , t5, t)) = 1 as well, that is that Π(t1, . . . , t5,?) is a fun-

damental domain for Λ. This amounts in showing that the set B= {t1, . . . , t5,−→? } is a basis
for Λ.

The 9 minimal generators for the rays of KTM (table 5) span the lattice ΛTM (section 4.3).
Between them hold the relations (15).

The set B contains all minimal generators for the rays of KTM, with the exception of: one of
the

−→
Ci , one of the

−→
Dj, and one of −→/ and −→. . This follows from the fact that the chambers are

the maximal elements of the poset of cells ofKTM, and from the description of this poset given
in section 5.4

But then, by (15), the set B also spans ΛTM. Since B has 6 elements and ΛTM has rank 6, we
conclude that B is a basis of ΛTM, which was what was to be demonstrated.

Formula (20) can be written using a determinant. Let M(t1, t2, . . .) be the matrix whose
columns give the coordinates (`1, `2;m1,m2;n1,n2) of the vectors t1, t2, . . . Then

|detM(t1, . . . , t5, t)|= VolZ6 (Π(t1, . . . , t5, t)) .

But because ΛTM has index 3 in Z6 (since ΛTM is defined by (2)), there is the relation VolΛTM =
3 VolZ6 . As a consequence, for t= (`,m,n) ∈ C(i, j),

c(`;m;n) = 1+
1
3
|detM(t1, . . . , t5, t)| . (21)

For example: Chamber C(1,1) is generated by
−→
C2,

−→
C3,

−→
D3,

−→
D5,

−→. and −→? . Since

det
(−→
C2,

−→
C3,

−→
D3,

−→
D5,

−→. ,−→?
)
> 0,

we have that for any t= (`1, `2;m1,m2;n1,n2) in chamber C(1,1):

det
(−→
C2,

−→
C3,

−→
D3,

−→
D5,

−→. , t
)
⩾ 0,

and

c(`1, `2;m1,m2;n1,n2) = 1+
1
3
det

(−→
C2,

−→
C3,

−→
D3,

−→
D5,

−→. , t
)
,

= 1+
1
3
det


1 0 0 0 0 `1
0 1 0 1 1 `2
0 1 1 0 0 m1

0 0 0 0 1 m2

0 0 0 1 0 n1
1 0 1 0 1 n2

 .
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There one such formula for each chamber. If the chamber t belongs to is unknown, we can eval-
uate all 18 formulas. If all results are negative, then c(t) = 0; otherwise, c(t) is the minimum
of the 18 number obtained (see 9.4).

Formulas analogous to (20), proved with similar arguments, hold for the Littlewood–
Richardson coefficients ofGL3. Any chamber C•(i, j) ofKLRC has as minimal generators for its

rays
−→
?•,

−→
λ ,−→µ and 5 other vectors v1, …, v5 from table 6. For any vectors w1, w2, … inLLRC let

M•(w1,w2, . . .) be the matrix whose columns give the coordinates (λ1,λ2,λ3;µ1,µ2,µ3;ν1,ν2)
(the component ν3 is dropped) ofw1,w2, … Then, for any lattice pointw= (λ;µ;ν) ∈ C•(i, j),
there is

cνλ;µ = 1+VolΛLRC

(
Π
(
v1, . . . ,v5,

−→
λ ,−→µ ,w

))
= 1+

∣∣∣detM•
(
v1, . . . ,v5,

−→
λ ,−→µ ,w

)∣∣∣ .
Formulas (20) and (21) do not aim at improving implemented calculations of SU(3) triple

multiplicities (the more explicit formulas in 9.4 are better suited for this). Rather, they give
qualitative information on the nature and properties of the triple multiplicities function. For
instance, the interpretation of (20) (except for the constant 1) as the continuous volume of
a parallelotope provides an interesting visual explanation for the following fact: if any of
`1, `2,m1,m2,n1,n2 are 0, then the corresponding triple multiplicity is 1. Namely, whenever
one of the Dynkin labels vanishes, we see that the parallelotope has volume 0 since the dimen-
sion drops. The case when `2 = 0 is given by Pieri’s rule.

8. Stability

Stability in representation theory refers to the following property exhibited by functions F
defining structural constants in terms of their labels: for any fixed label u and any ‘well-chosen’
label v, the sequence with general term F(u+ kv) (depending on the integer k) is eventually
constant. This property was observed first in some instances byMurnaghan [24] for Kronecker
coefficients (tensor multiplicities for the symmetric groups), then in greater generality in [25,
26], and widely generalized for other families of representation–theoretic settings [26, 27].
For triple multiplicities and Littlewood–Richardson coefficients, the stability property is easily
explained thanks to the combinatorial models.

The case under consideration in this paper, of the triples multiplicities for SU(3), provides
an even simpler ‘toy example’.

Claim: Let u ∈ lat(TM) such that c(u) = 1. Then, for any t ∈ lat(TM), there exists a positive
integer k0 such that

∀k⩾ k0, c(t+ ku) = 1+min
i,j

{Li,j (t) : u ∈ C(i, j)}

is independent of k.

Proof. Set L(`,m,n) = c(`,m,n)− 1.
The key is to observe that there exists some chamber C(i0, j0) and some index k0 such that

t+ ku ∈ C(i0, j0) for all k⩾ k0. Indeed, ‘t+ ku ∈ C(i0, j0) for k big enough’ is equivalent to
‘u+ εt ∈ C(i0, j0) for ε> 0 small enough’, since C(i0, j0) is defined by linear inequalities (set
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ε= 1/k). Then u lies in the same chamber C(i0, j0). Since c(u) = 1, we have L(u) = 0. Since
u ∈ C(i0, j0), this yields Li0,j0(u) = 0. On the other hand, for all k⩾ k0,

L(t+ ku) = Li0,j0 (t+ ku) = Li0,j0 (t)+ kLi0,j0 (u) = Li0,j0 (t) .

Further, we note that since t+ ku ∈ C(i0, j0), we have that Li0,j0(t+ ku) =mini,jLi,j(t+ ku).
Let C(i, j) be any chamber. We have thus

Li0,j0 (t) = Li0,j0 (t+ ku)⩽ Li0,j0 (t+ ku) = Li0,j0 (t)+ kLi0,j0 (u) .

Consider now any the chamber C(i, j) containing u. Then Li,j(u) = L(u) = 0. Therefore
Li0,j0(t)⩽ Li,j(t).

This shows that Li0,j0(t) is the minimum of all Li,j(t) over all chambers C(i, j) containing u.

The result not only tells us that the sequence stabilizes, but also yields its stable value: this
is 1+Li,j(t), where C(i, j) is any of the chambers containing u+ εt for small positive ε.

9. Final remarks

9.1. Symmetries that cannot be lifted

We have seen in section 4.2 that, among the 12 general symmetries for the SU(3) triple mul-
tiplicities, only 6 of them can be lifted to symmetries of the cone of the BZ triangles. This
followed from the calculation of the full group of symmetries of lat(BZ). Let us give here
instead a short argument of this fact. We will show that `↔ m does not lift to a symmetry of
lat(BZ).

Consider the eight vectors
−→
Ci ,

−→
Dj,

−→/ and−→. , all defined in table 3. Each is the projection of
a unique BZ triangle ∆−→

Ci
, ∆−→

Dj
, ∆−→◁ and ∆−→▷ (the ‘fundamental’ BZ triangles), also defined

in table 3.
Remember the following relation:

∆−→
D1

+∆−→
D3

+∆−→
D5

=∆−→◁ +∆−→▷ . (9)

On the other hand, the involution `↔ m fixes −→/ and −→. , and swaps
−→
D1,

−→
D3 and

−→
D5 with

−→
C3,−→

C2 and
−→
C1 respectively. But, last, as one can check:

∆−→
C3
+∆−→

C2
+∆−→

C1
6=∆−→◁ +∆−→▷ . (22)

A would–be lifting of `↔ mwould fix∆−→◁ and∆−→▷ , and map∆−→
D1
,∆−→

D3
,∆−→

D5
to∆−→

C3
,∆−→

C2
and

∆−→
C1
. Then applying this lifting to (9) would give in (22) an equality. Therefore (9) together

with (22) provide a clear obstruction for the existence of a lifting of `↔ m.
This argument adapts straightforwardly for the Littlewood–Richardson coefficients, using

for instance the hive model (see [20]): replace in the above formulas each ray generator
−→
X of

KTM with the corresponding ray generator
−→
X• of KLRC (see table 6), and the unique BZ triangle

∆−→
X above

−→
X , with the unique hive above

−→
X•.

The impossibility of lifting λ↔ µ in the GL4 case was already pointed out in [20]. The
above calculation shows this already happens for GL3.
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9.2. The SU (2) case

In the SU(2) case, each of `, m and n has only one coordinates. In this case, it follows from
the Pieri rule that c(`,m,n) counts the integer solutions x of

2x= `+m+ nand x⩽ `and x⩽ mand x⩾ 0.

As a consequence, c(`,m,n) = 1 when

`+m+ n≡ 0 mod 2and `⩽ m+ nand m⩽ `+ nand n⩽ m+ n,

and otherwise c(`,m,n) = 0.

9.3. About the SU (4) case

In contrast to the SU(3) case where the chamber complex for the triple multiplicities has 18
chambers, in the SU(4) case, we have calculated that there are 67769 chambers. In this case, the
group of linear symmetries has order 12, i.e. there are only the 12 general linear symmetries.
Indeed, any symmetry of the triple multiplicities is also a symmetry of the corresponding cone
TM, but the cone TM for SU(4) affords only the 12 general linear symmetries.

9.4. Formulas with minima and maxima

The two following formulas for the triple multiplicities hold on ΛTM:

c(t) =max

(
0,1+min

i
fi (t)−max

j
gj (t)

)
(23)

and

c(t) =max

(
0,1+min

i,j
( fi (t)− gj (t))

)
. (24)

Both formulas appear in [16, formulas (16) and (17)]. Both interpret as counting lattice points
in the fibers of a projection (x, t) ∈ R×R6 7→ t restricted to a cone. The two formulas cor-
respond to two different cones: for (23), the cone is defined by the inequalities fi(t)⩾ x and
x⩾ gj(t) (as in our presentation); for (24), the cone is defined by the inequalities 0⩽ x and
x⩽ fi(t)− gj(t), which is the region ‘below the graph’ of the piecewise linear concave func-
tion mini,j( fi(t)− gj(t)) . It is interesting to observe that the transformation mapping the first
cone to the second, corresponds to a simple ‘justification’ (to use the term from typography)
of the fibers, i.e. pushing each fiber until its bottom is at level 0, see figure 8. The parameters
α used in [16, section 3.7] are precisely the x–coordinates in the second description.

9.5. Concise tensor product rule for SU (3)

General procedures and formulas for tensor multiplicities have been widely considered, with
powerful procedures or formulas holding for SU(k) for all k, or for Lie groups in general [10–
12]. But in the particular case of SU(3), they cannot compete with the very explicit form of
the ad hoc formula (24).

Using our study of the symmetries of the SU(3) tensor multiplicities, we propose a slight
improvement of the presentation of (24). Let us first recall that the group G of all linear sym-
metries acts transitively on the chambers. Under the subgroup Glg, there are 3 orbits of 6
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Figure 8. Top: a transversal section of a cone defined by a system of inequalities gj(t)⩽
x⩽ fi(t). Bottom: the corresponding transversal version of its justification, defined by
the inequalities 0⩽ x⩽ fi(t)− gj(t).

chambers each. For each orbit, all chambers have the same diagram up to a symmetry of the
hexagon. The classes of diagrams corresponding to the three Glg-orbits are:

Let θ be the symmetry of order 3 that permutes cyclically
−→
C1,

−→
C2 and

−→
C3, while fixing each

of the other 5 ray generators of TM. Then θ maps any chamber to a chamber in another Glg-
orbit. Therefore, the transformations g ◦ θi , for i ∈ {0,1,2} and g ∈ Glg, permute transitively
the 18 chambers. Each chamber contains a unique facet of the cone TM, and each facet of TM
is contained in a unique chamber. Therefore the transformations g ◦ θi permute transitively
the facets of TM, as well their primitive inner normals. These inner normals are precisely the
linear forms fi− gj. Note also that f1 − g1 is the coordinatem2 (see table 2). After its description
in 4.1.1, the groupGlg permutes transitively the coordinates `1, `2,m1,m2, n1 and n2. Therefore,
the forms fi− gj are the six coordinate functions `1, `2, m1, m2, n1, n2, and their compositions
with θ and θ2.

We obtain the following concise presentation of (24):

c(t) =max(0,1+min(mincoord(t),mincoord(θ(t)),mincoord(θ2(t)))
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where mincoord means ‘minimum coordinate’.
The transformation θ admits the following description:

θ (`1, `2,m1,m2,n1,n2) = (ω+ ` ′1,ω+ ` ′2,ω+m ′
1,ω+m ′

2,ω+ n ′
1,ω+ n ′

2)

where ω = (`1 +m1 + n1 − `2 −m2 − n2)/3, and (` ′1, `
′
2,m

′
1,m

′
2,n

′
1,n

′
2) is the image of

(`1, `2,m1,m2,n1,n2) under the linear map with matrixP Q P
P P Q
Q P P

 where P=

[
0 0
0 1

]
, Q=

[
0 1
−1 0

]
.

In order to get the multiplicity of the SU(3) irreducible representation Vn1,n2 in Vℓ1,ℓ2 ⊗
Vm1,m2 , one should apply this rule with t= (`1, `2,m1,m2,n2,n1) i.e. with n1 and n2 swapped.

10. Conclusion

We have determined the full group of linear symmetries of the SU(3) tensor multiplicities.
This amounts to two results. The first result is the discovery of additional symmetries, proper
to the SU(3) case, with respect to the known 12 symmetries that hold in general for the SU(k)
tensor multiplicities. The second result is that the list is complete, and thus there is no point in
looking for more symmetries of the same kind. Using the action of these symmetries, we have
obtained a more structured description for the piecewise linear formulas for the SU(3) tensor
multiplicities. We obtained that there is ‘essentially one formula’ since the group permutes
transitively the domains of the formulas.

We believe that the knowledge of the SU(3) tensor symmetries contributes to the under-
standing of finer analysis of SU(3) tensor products and the unveiling of unexpected connec-
tions with other objects. For instance, the paper [19] solves the missing label problem for the
tensor products of SU(3) representations, by introducing operators decomposing univocally
each isotypic component. There, the relevance of the choice of these operators is underlined
by the fact that they fulfill the same 144 symmetries as the corresponding tensor multiplicities.
A similarity with the ‘magic square’ symmetries of the SU(2) Clebsch–Gordan coefficients is
observed [19, section 2.3].

Our study does not cover non-linear symmetries, for instance piecewise linear symmetries
such as the one discovered by Coquereaux and Zuber [16], and extended partially for SU(k)
for k> 3 in [28, 29]. It would be interesting to study systematically such symmetries.

Another possible generalization is for the fusion multiplicities for the affine algebra ŝu(3)k
at level k, that deform the SU(3) tensor multiplicities [30]. It is natural to ask in what extent the
results obtained here (symmetries and formulas) can be extended to these fusion coefficients,
specially in view of the remarks in [16, section 5].
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