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Abstract
The Kronecker coefficients are the structure constants for the restriction of irre-
ducible representations of the general linear group GL(nm) into irreducibles for
the subgroup GL(n) × GL(m). In this work we study the quasipolynomial nature
of the Kronecker function using elementary tools from polyhedral geometry. We
write the Kronecker function in terms of coefficients of a vector partition func-
tion. This allows us to define a new family of coefficients, the atomic Kronecker
coefficients. Our derivation is explicit and self-contained, and gives a new exact
formula and an upper bound for the Kronecker coefficients in the first nontrivial
case.

Keywords: Kronecker coefficients, vector partition functions, subgroup restric-
tion problem

(Some figures may appear in colour only in the online journal)

1. Introduction

The subgroup restriction or branching problem investigates how an irreducible representation
of a group G decomposes into irreducibles when restricted to a subgroup H. In this article,
we study this branching for GL(n) × GL(m) viewed as a subgroup of GL(nm) via the tensor
product of matrices. The Kronecker coefficients are the structure constants for this branching.
They are also important from a physicist’s point of view. Christandl, Harrow and Graeme
have shown the relevance of Kronecker coefficients in the study of the spectra of bipartite
quantum states with two fixed marginal states, and studied the implications of their findings
in quantum information theory [CDW12, CHM07, CG06, Chr06]. The restriction of GL(4) to
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GL(2) × GL(2) is of interest in nuclear physics where it is called Wigner supermultiplet theory
[W37].

Irreducible representations of GL(n) are indexed by partitions of length at most n. Therefore,
the Kronecker coefficients are indexed by triples of partitions of the same weight, and bounded
lengths. We denote by gμ,ν,λ the Kronecker coefficient indexed by μ, ν,λ. Alternatively, the
Kronecker coefficients gμ,ν,λ can be defined by the expression:

sλ[XY] = sλ(x1y1, x1y2, . . . , xnym) =
∑
μ,ν

gμ,ν,λ sμ[X]sν[Y], (1)

where all partitions appearing in the equation have the same weight, and lengths bounded by
n, m and nm respectively, and the sλ’s denote the Schur polynomials.

The Kronecker function κm,n,l is a function defined on triples of partitions (μ, ν,λ) of lengths
bounded by n, m and l respectively, by

κn,m,l(μ, ν,λ) = κn,m,l(μ1, . . . ,μn, ν1, . . . , νm,λ1, . . . ,λl) := gμ,ν,λ. (2)

In this work, we use the restriction of the Gl(nm)-irreducible indexed by λ to the subgroup
Gl(n) × Gl(m) described by equation (1) to compute of κn,m,l. We introduce a new family of
coefficients (also indexed by triples of partitions) that we call the atomic Kronecker coefficients.
They are defined by a single vector partition function. As a result, they count integer points in
polytopes, satisfy the saturation hypothesis [BOR09b, Kir04], and are described by a piecewise
quasipolynomial. We then show how to compute the actual Kronecker coefficients from these
atomic coefficients. We also show that, for partitions of lengths 2, 2 and 4, the atomic Kronecker
coefficients are an upper bound for the Kronecker coefficients.

The atomic Kronecker coefficients share many properties with the reduced Kronecker coef-
ficients (a family of coefficients lying between the Littlewood–Richardson coefficients and
the Kronecker coefficients, defined in section 3.8): they contain enough information to com-
pute from them the value of any Kronecker coefficient as an alternating sum. Sometimes, the
atomic Kronecker coefficients coincide with the Kronecker coefficients. However, the atomic
Kronecker coefficients have a major advantage over the reduced Kronecker coefficients (that
they share with the Littlewood–Richardson coefficients): they satisfy the saturation hypothesis,
whereas the reduced Kronecker coefficients do not [PP20].

In this paper we provide the theory and framework for computingκn,m,nm, although we focus
mainly on the Kronecker function κ2,2,4. In subsequent work (with Stefan Trandafir) we will
report on an explicit implementation of the techniques developed in this paper to compute the
Kronecker function κ2,3,6.

The structure of the paper is the following. We begin in section 2 with a basic survey on
polytopes and quasipolynomials. This is sufficient to understand the mechanics of our strategy.
Our key idea is to use equation (1) in conjunction with Cauchy’s definition for Schur functions
as a quotient of alternants (equivalently, the Weyl character formula for the root system An) to
make explicit the relation between Kronecker coefficients and points in a polytope.

In section 3, we study the smallest nontrivial example, in which two of the partitions have
length � 2. We provide concrete visualizations of the Kronecker functions κ2,2,2 and κ2,2,4.
This can be made really explicit because the corresponding polyhedra are of dimension 1 and
2 respectively. We give a new explicit closed form (theorem 7) for the Kronecker coefficients
in terms of coefficients of a vector partition function F2,2, as well as in terms of vector partition
functions. Our formula identifies seven terms (out of a possible total of 24) in the numerator
of the Weyl character formula for the Weyl group S4, as the only terms contributing to the
Kronecker coefficient. The number of chambers is large, even in the case 2–2–4, where it was
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determined to be 74 in [BOR09a, BOR09b]. We show that, in the case of Kronecker coefficients
indexed by triples of partitions of length at most 2, 2, and 4, the atomic Kronecker coeffi-
cients give an upper bound for the value of the Kronecker coefficients (theorem 17). We study
the relative positions of the nonzero Littlewood–Richardson coefficients, reduced Kronecker
coefficients, and atomic Kronecker coefficients inside the Kronecker cone (the polyhedral cone
generated by the nonzero Kronecker coefficients). We study the dilated Kronecker coefficients,
gkλ,kμ,kν , defined for fixed λ, μ, and ν, and k ∈ N. We express these as a subseries of vector
partition generating functions which implies that these are given by quasipolynomials in k. We
show how to use theorem 7 to compute the dilated Kronecker coefficients gkμ,kν,kλ in the 2–2–4
case.

In section 4 we consider the general situation. Theorem 26 presents an elementary but non-
trivial change of variables which converts the quotient of alternants into a form recognizable
as a vector partition function, which we call Fn,m. This facilitates our analysis since it returns
us to the realm of Taylor series. The function Fn,m is the generating function of the atomic
Kronecker coefficients.

The piecewise quasipolynomial nature of the Kronecker function has been the focus of
much interest. The piecewise quasipolynomiality follows from the work of Meinrenken and
Sjamaar [MS99]. Both Christandl, Doran, and Walter [CDW12] and Baldoni, Vergne, and Wal-
ter [BVW16] describe and implement algorithms to compute the Kronecker coefficients. Pak
and Panova obtained an interesting upper bound for the complexity of the calculation of the
Kronecker coefficients, see the proof of lemma 5.4 in [PP17b].

2. Polytopes and quasipolynomials

This section is a primer on polytope point enumeration and quasipolynomiality. It can be
skipped by those familiar with the topic. However, the examples we have chosen for this section
are directly relevant in our study of the Kronecker coefficients.

A polyhedron P is the set of solutions of a (finite) system and inequalities:

P = {x ∈ Rd : Ax � b},

for a fixed matrix A and vector b, where the ‘�’ sign is to be understood componentwise. A
polyhedron is said to be rational if both A and b have integer entries. A polytope is a bounded
polyhedron. Note that any dilation of a polytope contains only a finite number of integer points.

The dimension of a polytope is the dimension of the affine space spanned by its vertices. A
k-simplex is a k-dimensional polytope which is the convex hull of k + 1 vertices.

A function φ : N→Q is a (one-variable) quasipolynomial if there exist polynomials
p0, p1, . . . , pk−1 in Q[t] and a natural number m > 0, a period of φ, such that

φ(t) = pi(t), for t ≡ i mod m.

The polynomials pi are the constituents of φ. The degree of a quasipolynomial is the maximum
of the degrees of its components.

Example 1. Let P be the one-dimensional polytope [0, 1/2], and consider its integer dila-
tions kP = [0, k/2], as illustrated in figure 1. We want to count the number of integer points
in the dilation of P :

φP (k) := |Z ∩ kP|.
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Figure 1. The one dimensional polytope P = [0, 1/2] and its first four integer dilations.
The volume of the kth dilation is

⌊
k
2

⌋
+ 1, a quasipolynomial in k.

Equivalently, we are interested in counting the number of nonnegative integer solutions to the
inequality 0 � s1 � k/2. Then

φP (k) =

⌊
k
2

⌋
+ 1 =

⎧⎪⎨
⎪⎩

k + 2
2

if k ≡ 0 mod 2

k + 1
2

if k ≡ 1 mod 2

is a linear quasipolynomial of period 2.
A vector partition of b ∈ Nd is a way of decomposing b as a sum of nonzero vectors in Nd .

The order of the summands is irrelevant. We are interested in partitions whose parts (nonzero
summands) belong to a fixed finite sub-multiset S of Nd . The vector partition function pS :
Nd → N is the function that evaluated at b gives the number of vector partitions of b with parts
in S.

Computing the value of the vector partition function pS is equivalent to finding the number
of nonnegative integer solution x for the system of linear equation Ax = b, where A is the
d × |S| matrix whose columns are the vectors in S. It turns out that the matrices that appear in
our work always contains a copy of the n × n identity matrix In.

Let A be a d × n matrix with column vectors a1, a2, . . . , an. Let pos(A) be the polyhedral
cone generated by the columns of A. Given σ ⊆ {1, 2, . . . , n}, let Aσ be the submatrix of A con-
sisting of those columns ai with i ∈ σ. Let ZAσ be the integral lattice spanned by the columns
of Aσ. A subset σ is a basis if rank(A) = rank(Aσ).

The chamber complex is the polyhedral subdivision of the cone pos(A) which is defined as
the common refinement of the cones pos(Aσ), where σ runs over all bases.

A function g : Zn →Q is a (multivariate) quasipolynomial if there exists an n-dimensional
lattice Λ ⊆ Zn, a set {λi} of coset representatives of Zn/Λ, and polynomials pi ∈ Q[t] such
that g(t) = pi(t), for t ∈ λi + Λ.

Blakley [Bla64] and Sturmfels [Stu95] have shown that there exists a finite decomposition of
pos(A) (a chamber complex) into rational polyhedral cones (chambers) such that in each cham-
ber σ the vector partition function pA(b) is given by a single multivariable quasipolynomial of
degree n − rank(A).

Moreover, the quasipolynomial pσ corresponding to chamber σ counts the number of inte-
gral points in a (n − rank(A)) dimensional polytope Kσ . The leading term of pσ is always a
polynomial. It gives the volume of Kσ .

Example 2. Let pS(n, m) count the number of vector partitions of b = (n, m) with parts
in S = {(1, 0), (0, 1), (1, 1), (1, 2)}. Equivalently, this is the number of nonnegative integer
solutions x to the system Ax = b, where

A =

[
1 0 1 1
0 1 1 2

]
b =

[
n
m

]
.
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Figure 2. The chambers giving the value of pS(n, m), the number of vector partitions of
(n, m) with parts in S = {(1, 0), (0, 1), (1, 1), (1, 2)}.

To determine one such partition, it suffices to determine the number of parts equal to (1, 1)
and (1, 2) in it. The standard basis vectors serve as slack variables here, consequently, the
multiplicities of (1, 1) and (1, 2) should fulfill the inequalities:{

x3 + x4 � n

x3 + 2x4 � m
. (3)

Therefore, the vector partition function pS counts nonnegative integer points in the polytope
defined by the inequalities (3).

(a) If m � n the first equation is redundant. We are counting integer points in the two-simplex
defined by x3 � 0, x4 � 0, and x3 + 2x4 � m.

(b) If n � m
2 , it is the second equation that is redundant. We are counting integer points in the

standard two-simplex defined by x3 � 0, x4 � 0, and x3 + x4 � n.
(c) Finally, if m

2 < n < m, both inequalities are relevant. We are counting the number of points
in the polytope with vertices (0, 0), (n, 0), (0, m

2 ), (2n − m, m − n). We need to multiply by
2 to get integer vertices, so the resulting quasipolynomial has period 2 for m.

The resulting piecewise quasipolynomial is then:

Region pS(n, m)

I m � n m2

4 + m + 7
8 + (−1)m

8

II 2n � m n2

2 + 3n
2 + 1

III n � m � 2n nm − n2

2 − m2

4 + n+m
2 + 7

8 + (−1)m

8

where the three different regions are illustrated in figure 2.

A function pA(b) that satisfies the conclusions of the theorem of Blakley and Sturmfels
is known as a piecewise quasipolynomial function. Vector partition functions are piecewise
quasipolynomials. However, a piecewise quasipolynomial need not count integral points in
polytopes.

3. A vector partition function for Kronecker coefficients

Let λ = (λ1,λ2, . . . ,λn) be a partition, and let δn = (n − 1, . . . , 1, 0). The alternant aλ is

defined as aλ(x1, x2, . . . , xn) = det (x
λ j
i )n

i, j=1. Cauchy defined Schur polynomials in terms of
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the alternant as follows

sλ[X] =
aλ+δ(x1, x2, . . . , xn)

aδ(x1, x2, . . . , xn)
=

det (x
λ j+n− j
i )n

i, j=1∏
1�i< j�n

(xi − x j)
.

Let μ, ν, and λ be three partitions of the same weight satisfying that �(μ) � n, �(ν) � m
and �(λ) � nm.

Given X = {x1, . . . , xn}, Y = {y1, . . . , ym}, define sλ[XY] as sλ(x1y1, x1y2, . . . , xnym). This
is a symmetric function in the x’s and the y’s separately. Since Schur functions form an integral
basis for the algebra of symmetric functions, we can write

sλ[XY] =
∑
μ,ν

gμ,ν,λsμ[X]sν[Y]. (4)

The coefficients gμ,ν ,λ are the Kronecker coefficients. Formula (4) ishows that if �(μ) � n,
�(ν) � m, then gμ,ν,λ is nonzero only if �(λ) � nm.

Combining Cauchy’s definition of a Schur polynomial with the comultiplication formula
(4), we obtain the following identity

aδn[X]aδm[Y]
aδnm [XY]

aλ+δnm [XY] =
∑
μ,ν

gμ,ν,λaμ+δn[X]aν+δm[Y]. (5)

In the preceding formula, the right-hand side is finite: the alternant aδnm[XY] is a polynomial
consisting of (nm)! nonzero monomials. The factor aδn [X]aδm [Y]

aδnm [XY] on the left is a rational function.
The numerator divides the denominator, and the left-hand side simplifies to an expression of
the form aλ+δnm [XY] divided by a polynomial. We will take a closer look at this in the next
section.

3.1. Kronecker coefficients for triples of lengths at most 2, 2, 4

Our approach is best illustrated in the simplest nontrivial case of three partitions μ, ν,λ with
lengths at most 2, 2, and 4, respectively. We dedicate the rest of section 3 to this particular case.

Let λ be a fixed partition of length � 4. Since Schur functions are homogeneous polyno-
mials, without loss of information, we can set X = {1, x}, Y = {1, y}, XY = {1, x, y, xy} in
equation (5). We obtain

aδ2 [X]aδ2[Y]
aδ4 [XY]

aλ+δ4 [XY] =
∑
μ,ν

gμ,ν,λ xμ2yν2 + lex. gr, (6)

where ‘lex. gr.’ stands for ‘lexicographically greater terms’. The form arises since ν, μ and λ
are partitions of the same integer N, and furthermore μ2, ν2 � N/2.

The quotient on the left simplifies drastically, into a simple rational function:

aδ2 [X]aδ2[Y]
aδ4 [XY]

=
1

x2y(1 − y/x)(1 − xy)(1 − x)(1 − y)
.

We set

F̄2,2(x, y) :=
1

(1 − y/x)(1 − xy)(1 − x)(1 − y)
, (7)

6
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and note that we can determine an iterated Laurent series expansion of this rational function
by first developing a series expansion in y, and then in x:

F̄2,2(x, y) = 1 + x + x2 + · · ·+ y(x−1 + 2 + . . .) + y2(x−2 + 2x−1 + . . .) + O(y3), (8)

valid in a nonempty polydisc defined by 0 < |xy| < |y| < |x| < 1. This expansion is funda-
mental to our next step.

This reduces the computation of Kronecker coefficients to straightforward series manip-
ulations since aλ+δ4 [XY] is just a polynomial. Restating equation (6), we can use the series
F̄2,2(x, y) to compute the Kronecker coefficients:

∑
μ,ν

gμ,ν,λxμ2yν2 + lex. gr. =
aλ+δ4 [XY]

(1 − y/x)(1 − xy)(1 − x)(1 − y)x2y

= aλ+δ4 [XY]
F̄2,2(x, y)

x2y
. (9)

We can approximate the Kronecker coefficients via the following modification: we replace
aλ+δ4 [XY] with a single term. The resulting rational function no longer has a finite series expan-
sion, but we can manipulate its iterated Laurent series expansion. Specifically, we replace the
alternant aδ4+λ[XY] by its lexicographically least monomial, which we denote by S(aλ+δ4 [XY]).
This is explicitly computable by analysis of the determinant computation, as it is the product
of the terms along the main diagonal:

S(aλ+δ4[XY]) = (xy)λ4 · yλ3+1 · xλ2+2 = x2y · xλ4+λ2 yλ4+λ3 .

We name the coefficients in the resulting Laurent series expansion as follows:

aδ2 [X]aδ2[Y]
aδ4 [XY]

S(aλ+δ4[XY]) =
∑

b>λ4+λ3+1
b�−a+2+λ3+λ4

g̃(|λ|−a,a),(|λ|−b,b),λxayb.

The coefficients indexed by actual partitions turn out to have the feature that they are easy
to compute, and in some circumstances are reasonable approximations their actual Kronecker
coefficient analogues. However, before we study them further, we use a change of basis to
make the problem more combinatorial.

Lemma 3. After the change of basis x = s1 and y = s0s1, F̄2,2(x, y) becomes a vector
partition function:

F2,2(s0, s1) =
∑

g̃μ,ν,λsν2−λ3−λ4
0 sμ2+ν2−λ2−λ3−2λ4

1

=
1

(1 − s0)(1 − s1)(1 − s0s1)(1 − s0s2
1)
. (10)

This change of variables is desirable as it returns us to the realm of Taylor series. Note that
the assumptions 0 < |xy| < |y| < |x| < 1, that define the domain of convergence of this series
translate to 0 < |s0|, |s1| < 1. This is the vector partition function of example 2.

The following observation is useful in the present discussion. We respect our coefficient
ordering by noting that when we say the coefficient of xiyj in F̄2,2(x, y), denoted [xiy j]F̄2,2(x, y)
we mean [y j][xi]F̄2,2(x, y) since our series expansion prioritizes x. The order is interchangeable
in extractions of F2,2(s0, s1), since it is a finite product of Taylor (geometric) series. In our
analysis of the coefficients, we choose between the original series F̄2,2(x, y) in the variables

7
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x, y, and the vector partition function F2,2(s0, s1) depending upon which is more convenient.
More precisely, we use equation (10) to apply techniques from the theory of vector partition
functions and polyhedral geometry. However equation (9) is the more natural choice to analyse
the alternant aλ+δ4 [XY].

Proposition 4. The coefficient of xiyj in F̄2,2(x, y), which is also the coefficient of s j
0si+ j

1 in
the Taylor expansion of F2,2(s0, s1), is nonzero if and only if j � 0 and i + j � 0.

It follows immediately from this or from equation (7) and section 2, that

Proposition 5. The atomic Kronecker coefficient g̃μ,ν,λ is nonzero if and only if{
λ2 + λ3 + 2λ4 � μ2 + ν2

λ3 + λ4 � ν2.
(11)

Moreover, the value of g̃μ,ν,λ is given by a quadratic quasipolynomial:

g̃μ,ν,λ = pS(ν2 − (λ3 + λ4),μ2 + ν2 − (λ2 + λ4) − (λ3 + λ4)),

where pS is the vector partition function of example 2.

These two inequalities have been previously derived by Bravyi in the context of quantum
physics [Bra04]. We will refer to them as the first and second inequalities of Bravyi.

Corollary 6. The value of the atomic Kronecker coefficient depends only on the values of
the two linear forms ν2 − (λ3 + λ4) and μ2 + ν2 − (λ2 + λ4) − (λ3 + λ4). Furthermore, when
either one is equal to zero (and the other nonnegative), the corresponding atomic Kronecker
coefficient is equal to 1.

3.2. From F̄2,2 to an exact expression for Kronecker coefficients

The rational series F2,2 is not directly the generating series for the Kronecker coefficients
because we truncated some polynomials in its construction. The main result of this section,
theorem 7, is an exact formula for the Kronecker coefficients in the n = m = 2 case.

Since �(λ) � 4, the number of terms in the expansion of the alternant aλ+δ4 [XY] is 4! =
24. However, it turns out that only seven terms contribute to the Kronecker coefficient. The
following theorem explicitly identifies which terms of the alternant contribute to the Kronecker
coefficient. The polynomial in theorem 7 is minimal: example 8 exhibits a combination in
which all seven terms contribute nontrivially to the Kronecker coefficient, with NO cancellation
between any pairs of terms.

Theorem 7. Assume �(λ) � 4, and �(μ), �(ν) � 2. Also assumeμ2 � ν2. Then the Kronecker
coefficient gμ,ν ,λ is equal to each of the following:

(a) The coefficient of xμ2yν2 in Pλ(x, y)F̄2,2(x, y), where Pλ(x, y) is the polynomial consisting
of the following seven terms:

yλ3+λ4 (xλ2+λ4 − xλ2+λ3+1 − xλ1+λ4+1 + xλ1+λ3+2)

+ yλ2+λ4+1(−xλ3+λ4−1 + xλ2+λ3+1 + xλ1+λ4+1). (12)

A monomial ybxa in Pλ makes a nonzero contribution to gμ,ν ,λ if and only if b � ν2 and b +
a � μ2 + ν2.

8
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(b) The following seven-term linear combination of vector partition functions pS(n, m):

gμ,ν,λ = pS(ν2 − (λ3 + λ4), ν2 − (λ3 + λ4) + μ2 − (λ2 + λ4))

− pS(ν2 − (λ3 + λ4), ν2 − (λ3 + λ4) + μ2 − (λ2 + λ3 + 1))

− pS(ν2 − (λ3 + λ4), ν2 − (λ3 + λ4) + μ2 − (λ1 + λ4 + 1))

+ pS(ν2 − (λ3 + λ4), ν2 − (λ3 + λ4) + μ2 − (λ1 + λ3 + 2))

− pS(ν2 − (λ2 + λ4 + 1), ν2 − (λ2 + λ4 + 1) + μ2 − (λ3 + λ4 − 1))

+ pS(ν2 − (λ2 + λ4 + 1), ν2 − (λ2 + λ4 + 1) + μ2 − (λ2 + λ3 + 1))

+ pS(ν2 − (λ2 + λ4 + 1), ν2 − (λ2 + λ4 + 1) + μ2 − (λ1 + λ4 + 1)) (13)

.

Example 8 (Minimality of the polynomial in theorem 7). Let λ = (12, 7, 4, 1), μ =
ν = (12, 12). From theorem 7, the Kronecker coefficient gμ,ν ,λ is the coefficient of x12y12 in
the product PλF̄2,2(x, y), where

Pλ = y5(x8 − x12 − x14 + x18) + y9(−x4 + x12 + x14).

Using equation (13), we have gμ,ν,λ is equal to

pS(7, 11) − pS(7, 7) − pS(7, 5) + pS(7, 1) − pS(3, 11) + pS(3, 3) + pS(3, 1)

= 32 − 20 − 12 + 2 − 10 + 6 + 2 = 0.

This example is noteworthy because the Kronecker coefficient vanishes, but there is no
cancellation between pairs of the seven coefficients above. By definition, the atomic coefficient
is the contribution from the first monomial y5x8 in the expansion of Pλ above, (it is also the
lexicographically least monomial), hence g̃μ,ν,λ = pS(7, 11) = 32.

A similar example where λ has only three parts follows.

Example 9. Let λ = (11, 5, 2, 0), μ = ν = (9, 9). Using equation (13), we again have that
gμ,ν,λ equals

pS(7, 11) − pS(7, 8) − pS(7, 4) + pS(7, 1) − pS(3, 11) + pS(3, 4) + pS(3, 0)

= 32 − 24 − 9 + 2 − 10 + 8 + 1 = 0.

When λ has two parts, at most the first six terms in (13) can contribute to the Kronecker
coefficient, since the seventh term is necessarily zero. This follows because the second argu-
ment to the seventh (and last) vector partition function in (13) is negative, using the fact that
ν2 � μ2 � μ1:

ν2 + μ2 − (λ2 + λ1 + 2) � μ1 + μ2 − (|λ|+ 2) = −2.

Proof of Theorem 7. The statement about which monomials ybxa in Pλ can make a
nonzero contribution is a direct consequence of proposition 4. Equation (13) follows from
the polynomial Pλ because of the following observation: if xayb is a monomial in Pλ making a
nonzero contribution to gμ,ν ,λ, that value is

±[sν2−b
0 sμ2+ν2−a−b

1 ]F2,2 = ±pS(ν2 − b,μ2 + ν2 − a − b).

This follows from the substitution x �→ s1 and y �→ s0s1, proposition 4 and section 2.

9
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To prove the assertion in (12), we manipulate the alternant directly. The first part of the proof
consists of a judicious choice in expanding the determinant, followed by a careful analysis of
the resulting monomials. Twelve of these are easily shown to make a contribution of zero. The
final reduction to seven terms is more delicate; it will be useful to consult figure 2 in section 2,
since the precise formula for the quasipolynomial pS(n, m) in one specific chamber will play a
crucial role in the proof.

We start by expanding the alternant aλ+δ4 by the fourth column. Writing Ai, j for the minor
of the entry in row i and column j, this gives

(xy)λ4A4,4 − (xy)λ3+1A3,4 + (xy)λ2+2A2,4 − (xy)λ1+3A1,4.

Each of these 3 by 3 minors will give six terms. It follows from equation (9) that the con-
tributions to the Kronecker coefficient are obtained by extracting the coefficient of xμ2yν2 in
the product of these monomials with (x−2y−1)F̄2,2. The four tables below, listed in the same
order as the minors above, show the resulting monomials, with sign, with the exponent of x
diminished by 2 and the exponent of y diminished by 1. For ease of reading we list only the
exponents of x and y.

If xayb is a monomial in the tables, then by proposition 4, we must have ν2 � b and μ2 +
ν2 � a + b. The latter condition immediately eliminates all six monomials in table 1(d), since
the sum of exponents there clearly (strictly) exceeds

∑4
i=1λi, whereas ν2, μ2 � |λ|/2. For the

same reason the monomials in the first two lines of table 1(c), as well as the two monomials in
the first row of table 1(b), are also eliminated. We are left with the following 12 monomials,
from which we will eliminate the five underlined terms, leaving the seven monomials in the
expression (12).

(14)

Examining the term we see that this monomial cannot contribute to the
Kronecker coefficient, since we must have ν2 � λ1 + λ3 + 3. But this is impossible because
it implies

4∑
i=1

λi = ν1 + ν2 � 2ν2 � 2(λ1 + λ3 + 3), i.e.λ2 + λ4 � λ1 + λ3 + 6.

We can also eliminate the remaining four underlined terms in (14). First note the following
crucial fact: every monomial in the third and fourth lines of (14) is of the form xayb where
a < b.

The coefficient of xμ2yν2 in the product of each monomial xayb in the above polynomial with
F̄2,2(x, y) is equal to the coefficient of xμ2−ayν2−b in F̄2,2(x, y). From section 2 and proposition
4, this coefficient equals pS(nb, mb,a) where nb = ν2 − b, mb,a = (ν2 − b) + (μ2 − a). Note that
a < b implies μ2 − a > μ2 − b � (ν2 − b), and hence mb,a > 2nb. It follows from (II) in
figure 2 that pS(nb, mb,a) =

( nb+2
2

)
is independent of a, the exponent of x. This holds for every

term in lines 3 and 4 of (14).

10
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Table 1. Terms appearing in the co-factor expansions.

(a) Expansion of (xy)λ4 A4,4x−2y−1

Power of x Power of y Power of x Power of y

(+) λ4 + λ1 + 3 − 2 λ4 + λ2 + 2 − 1 (−) λ4 + λ2 + 2 − 2 λ4 + λ1 + 3 − 1
(−) λ4 + λ1 + 3 − 2 λ4 + λ3 + 1 − 1 (+) λ4 + λ3 + 1 − 2 λ4 + λ1 + 3 − 1
(+) λ4 + λ2 + 2 − 2 λ4 + λ3 + 1 − 1 (−) λ4 + λ3 + 1 − 2 λ4 + λ2 + 2 − 1

(b) Expansion of −(xy)λ3+1A3,4x−2y−1

Power of x Power of y Power of x Power of y

(−) λ3 + λ1 + 4 − 2 λ3 + λ2 + 3 − 1 (+) λ3 + λ2 + 3 − 2 λ3 + λ1 + 4 − 1
(+) λ3 + λ1 + 4 − 2 λ4 + λ3 + 1 − 1 (−) λ4 + λ3 + 1 − 2 λ3 + λ1 + 4 − 1
(−) λ3 + λ2 + 3 − 2 λ4 + λ3 + 1 − 1 (+) λ4 + λ3 + 1 − 2 λ3 + λ2 + 3 − 1

(c) Expansion of (xy)λ2+2A2,4x−2y−1

Power of x Power of y Power of x Power of y

(+) λ2 + λ1 + 5 − 2 λ2 + λ3 + 3 − 1 (−) λ2 + λ3 + 3 − 2 λ2 + λ1 + 5 − 1
(−) λ2 + λ1 + 5 − 2 λ2 + λ4 + 2 − 1 (+) λ2 + λ4 + 2 − 2 λ2 + λ1 + 5 − 1
(+) λ2 + λ3 + 3 − 2 λ2 + λ4 + 2 − 1 (−) λ2 + λ4 + 2 − 2 λ2 + λ3 + 3 − 1

(d) Expansion of −(xy)λ1+3A1,4x−2y−1

Power of x Power of y Power of x Power of y

(−) λ1 + λ2 + 5 − 2 λ1 + λ3 + 4 − 1 (+) λ1 + λ3 + 4 − 2 λ1 + λ2 + 5 − 1
(+) λ1 + λ2 + 5 − 2 λ1 + λ4 + 3 − 1 (−) λ1 + λ4 + 3 − 2 λ1 + λ2 + 5 − 1
(−) λ1 + λ3 + 4 − 2 λ1 + λ4 + 3 − 1 (+) λ1 + λ4 + 3 − 2 λ1 + λ3 + 4 − 1

Examining the two underlined middle terms of the third line, we see that each of the terms
can be matched up with a monomial with the same y exponent in the fourth line, to give
xa1yb − xa2yb. These correspond to extracting from F̄2,2, the coefficients of xμ2−a1yν2−b and
xμ2−a2yν2−b.

Since μ2 � ν2, we have μ2 − ai � ν2 − ai > ν2 − b (recall that ai < b). A necessary con-
dition for either monomial to make a nonzero contribution is for the exponent ν2 − b of y to be
nonnegative. In the present situation, this forces the exponent μ2 − ai of x to be nonnegative
as well. Hence either both monomials xμ2−aiyν2−b, i = 1, 2, contribute to the Kronecker coeffi-
cient, or neither does. Since (from the preceding paragraph), the contributions are independent
of the ai and equal (to

(
ν2−b+2

2

)
), and the monomials come with opposite sign, their combined

contribution is zero. �

We shall see in theorem 17 that the monomials in the polynomial Pλ have some rather
remarkable properties.

Remark 10. Calculations of κ2,2,4 were previously explicitly worked out in [BOR09a] using
an identity describing the Kronecker coefficient as a linear combination of reduced Kronecker
coefficients (see section 3.9) [BOR09a, theorem 4]. Their approach differs from ours, but does
permit determination that the number of chambers in the corresponding chamber complex is

11
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74. This approach can also be compared with [Ros01] where a combinatorial interpretation for
κ2,2,4 was found as the difference of the number of integer points in two rectangles (mod 2).

3.3. Examples

We illustrate these results with some examples. Since we invoke the computation of the coef-
ficients pS(n, m) of sn

0sm
1 in F2,2(s0, s1) from section 2 extensively, we record the values of the

following special coefficients:

pS(n, 0)=1= pS(0, m); pS(n, 1) = 2, n > 0; pS(1, m) = 3, m � 2.

Example 11. Let λ = (6, 5, 4, 1), μ = ν = (9, 7). Note that λ3 + λ4 = 5, μ2 + ν2 = 14,
and thus, by checking the inequalities (19) and (20), we see that only three of the seven terms
from the polynomial Pλ contribute to gμ,ν ,λ, specifically those in the expansion of

y5(x6 − x8) + y7(−x4).

We obtain the value gμ,ν ,λ = pS(2, 3) − pS(2, 1) − pS(0, 3) = 2.

Example 12. Our format is well suited to compute dilated Kronecker coefficients (see
section 3.4). Assume k is a positive integer, and let kλ = (6k, 3k, 2k), kμ = (7k, 4k) and kν =
(8k, 3k). These are the dilations of the triple ((6, 3, 2), (7, 4), (8, 3)). The Kronecker coefficients
are all atomic and given by the quasipolynomial pS(k, 2k) = (k + 1)(k + 2)/2, which counts
integer points in dilations of the two-simplex generated by {(0, 0), (1, 0), (0, 1)}.

3.4. Dilated Kronecker coefficients

Fix μ, ν and λ. The family of Kronecker coefficients given by the image of the function k �→
gkμ,kν ,kλ, for k = 1, 2, . . . is a set of dilated Kronecker coefficients, and has been the center of a
lot of attention. When the lengths of the partitions μ, ν,λ are bounded by 2, 2, and 4, we can
compute them using theorem 7, and we can also write them as subseries of F2,2 in a way that
directly connects to vector partition functions.

Example 13 (The Kronecker function does not count integer points in polytopes).
Consider the dilated Kronecker coefficient g(k,k),(k,k),(k,k), for any positive integer k.

By direct computation we see that only the first four monomials of Pλ in theorem 7
contribute to the Kronecker coefficient. The formula of section 2 for pS(n, m) gives:

g(k,k),(k,k),(k,k) = [xkyk](xk − 2xk+1 + xk+2)F̄2,2(x, y)

= [sk
0sk

1](1 − 2s1 + s2
1)F2,2(s0, s1)

= pS(k, k) − 2pS(k, k − 1) + pS(k, k − 2) (15)

=

{
1, k even

0, k odd,
(16)

In striking contrast with the Littlewood–Richardson coefficients, the Kronecker coefficients
do not satisfy the saturation property: There are holes in the Kronecker cone. Counterexamples
and related conjectures can be found in [BOR09b, Chr06, Kin09]. Figure 3 illustrates their
location in a small, visualizable case.

The sequence g(k,k),(k,k),(k,k), for k � 0 illustrates that the Kronecker coefficients cannot possi-
bly count points in the dilations of a polytope because such sequences are necessarily weakly

12
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Figure 3. Holes in the Kronecker cone when all three partitions are of length 2. The
point at (i, j, k) is black if g(24−i,i)(24− j, j)(24−k,k) is nonzero (assuming, j � i � k � 24/2).
The points with red crosses, or no dots are 0. Note that the top face has both zero and
nonzero values. These are the holes in the polytope.

increasing. That is, the Kronecker function does not count integer points in polytopes. See
[BOR09b, Kin09] for related results and conjectures.

Remark 14 (The holes of the Kronecker cone). Example 13 illustrates the origin of
the holes in the Kronecker cone in figure 3. Note that the holes are all in the face of the Kro-
necker cone defined by equations μ1 = μ2, ν1 = ν2, λ1 = λ2, λ3 = λ4 = 0. It is always the
case that the zeros of the Kronecker cone are on its walls (facets) [Man15].

This can also be seen for the example in figure 3 where the holes are all inside the face
defined by λ1 = λ2.

Example 15. Consider an example of Baldoni and Vergne [BVW16, section 5.1.1],
whose methods are quite different from ours. Let λ = (132, 38, 19, 11), μ = (110, 90), and
ν = (120, 80). We will compute an expression for the dilated Kronecker coefficient gkμ,kν ,kλ.

We have k(μ2 + ν2) = 170k, k(λ3 + λ4) = 30k, k(λ2 + λ4) = 49k, k min(λ2 + λ3,λ1 +
λ4) = k min(57, 143) = 57k. Equation (13) of theorem 7 says that gkμ,kν,kλ is equal to

pS(50k, 91k) − pS(50k, 83k − 1) − pS(31k − 1, 91k − 2)

+ pS(31k − 1, 64k − 2).

From section 2, the last two terms cancel each other because both correspond to region II in
figure 2, and hence depend only on the first argument n of pS(n, m). The two remaining terms
correspond to region III. The reader can check that using the formula for region III gives

gkμ,kν,kλ = 52k2 +
25
2

k +
3
4
+

(−1)k

4
,

in agreement with the result in [BVW16, section 5.1.1].

13
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3.5. Inequalities implying that a Kronecker coefficient is atomic

Analysing the order relations in the exponents appearing in equation (12) yields the following
result.

Corollary 16. Assume μ2 � ν2. The atomic coefficient equals the Kronecker coefficient if

(a) ν2 < λ3 + λ4; or
(b) (1) λ3 + λ4 � ν2 � λ2 + λ4 and

(2) (λ3 + λ4) + (λ2 + λ4) � μ2 + ν2 � (λ3 + λ4) + min(λ2 + λ3,λ1 + λ4),
or

(c) λ2 + λ3 + 2λ4 = μ2 + ν2.

Proof. We examine the exponents in (12). Recall that a monomial ybxa will make a nonzero
contribution to gμ,ν ,λ if and only if b � ν2 and b + a � μ2 + ν2.

In the first case both the atomic and Kronecker coefficient vanish.
We consider the second case. The two exponents of y in (12) are ordered as follows:

λ3 + λ4 < λ2 + λ4 + 1. (17)

The five distinct exponents of x occurring in (12) satisfy

λ3 + λ4 − 1 < λ2 + λ4 < min(λ2 + λ3 + 1,λ1 + λ4 + 1)

� max(λ2 + λ3 + 1,λ1 + λ4 + 1) < λ1 + λ3 + 2. (18)

Compare with [Ros01]. By considering the sequences of total degree of the seven monomials
in each of the two lines of (12), we have the following two chains of inequalities:

λ2 + λ3 + 2λ4 < (λ3 + λ4) + min(λ2 + λ3 + 1,λ1 + λ4 + 1)

� (λ3 + λ4) + max(λ2 + λ3 + 1,λ1 + λ4 + 1)

< (λ3 + λ4) + (λ1 + λ3 + 2); (19)

λ2 + λ3 + 2λ4 < (λ2 + λ4 + 1) + min(λ2 + λ3 + 1,λ1 + λ4 + 1)

� (λ2 + λ4 + 1) + max(λ2 + λ3 + 1,λ1 + λ4 + 1). (20)

A monomial ybxa will make a nonzero contribution to gμ,ν ,λ if and only if b � ν2 and b +
a � μ2 + ν2. In view of equation (17), the condition on ν2 eliminates the possibility of any
contribution to the Kronecker coefficient from the monomials in the second line of (12). Hence
the subset of the remaining four monomials in equation (12) contributing to the Kronecker
coefficient gμ,ν,λ is determined by where the number μ2 + ν2 falls in the consecutive intervals
determined by each of the inequalities equation (19). The bounds on μ2 + ν2 clearly eliminate
all but the first monomial, the atomic coefficient, in the first line of (12).

Finally consider the third case, λ2 + λ3 + 2λ4 = μ2 + ν2. Note that ν2 � λ2 + λ4 + 1 is
impossible because it would force

μ2 = (λ2 + λ4 − ν2) + (λ3 + λ4) � (λ3 + λ4) − 1 < λ2 + λ4 < ν2.

Hence ν2 � λ2 + λ4, and we are reduced to the first two cases. This finishes the proof. �
From this we can easily deduce some conditions on the parts which ensure that the atomic

Kronecker coefficients are an upper bound for the Kronecker coefficients. In fact theorem 17

14
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below states that NO restrictions on the parts of λ are needed, as we will show in the next
section.

3.6. The atomic Kronecker coefficient is an upper bound for the Kronecker coefficient for
the case 2–2–4

In this section we show that for a triple of partitions λ, μ, ν of the same integer, such that
�(λ) � 4, �(μ), �(ν) � 2, and μ2 � ν2, the atomic Kronecker coefficient g̃μ,ν,λ is always greater
than or equal to the actual Kronecker coefficient gμ,ν,λ.

We use our polyhedral geometry approach to prove this result. Theorem 7 and its applica-
tions showed how the Kronecker coefficient is completely determined by the functions pS(n, m).
Our proof, depending heavily on the fact that the pS(n, m) are vector partition functions, con-
sists of a careful analysis of the contributions of each term in the polynomial Pλ in the proof
of theorem 7.

Our arguments will reveal a remarkable relationship between the seven monomials in Pλ.
For brevity we will label the exponents of y and x appearing in equation (12) as follows:

b = λ3 + λ4, a0 = λ2 + λ4, a1 = λ2 + λ3 + 1, a2 = λ1 + λ4 + 1, a3 = λ1 + λ3 + 2.

Combining equations (17) and (18), we have the inequalities

b � a0 < {a1, a2} < a3. (21)

The polynomial Pλ is then Pλ = yb(xa0 − xa1 − xa2 + xa3) + ya0+1(−xb−1 + xa1 + xa2).
Recall that the first monomial, ybxa0 , is the one that determines the atomic Kronecker coeffi-

cient. We will call this the atomic monomial. The dependency digraph of figure 4 for the signed
monomials in Pλ is a consequence of theorem 7 and the inequalities (21), (19) and (20). If M1,
M2 are signed monomials, a directed edge from node M1 to node M2 in the digraph signifies
that if M1 makes a nonzero contribution to the Kronecker coefficient (as described by theorem
7), then so must the monomial M2.

We will examine the contribution to gμ,ν,λ of each of the three non-atomic monomials in Pλ

with positive coefficient. By equation (13) from theorem 7, this in turn will necessarily entail a
detailed analysis of the vector partition function pS(n, m) of section 2. The final result exhibits
the following surprising phenomenon in the monomials of Pλ. We will show that in fact, every
non-atomic monomial with positive coefficient can be matched with a monomial with negative
coefficient to yield a net nonpositive value (see the colored arrows in figure 4). For clarity of
exposition, the technical lemmas have been relegated to the appendix at the end of the paper.

Theorem 17. The atomic coefficient is an upper bound for the Kronecker coefficient in the
case 2–2–4.

Proof. The atomic Kronecker coefficient is determined by only the first monomial ybxa0 . In
order to prove that the result of the corresponding coefficient extraction from F2,2 is never
less than the actual Kronecker coefficient, it suffices to show that the contribution of the
three remaining (non-atomic) positively signed monomials, viz +ya0+1xa1 ,+ya0+1xa2 ,+ybxa3

is offset by that of the three negative ones, −ybxa1 ,−ybxa2 ,−ya0+1xb−1.
More precisely, we say that a positive monomial+M1 is offset by a negative monomial−M2

if the contribution of M1 − M2 to the Kronecker coefficient is nonpositive.
Lemmas 30–36 in the appendix will establish that one of the following two scenarios,

corresponding respectively to the blue arrows and the red arrows in figure 4, must occur.
The contribution of
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Figure 4. Dependency digraph for the monomials in Pλ (the atomic monomial is in
bold). The blue and red arrows correspond to the two scenarios described in the proof
of theorem 17.

(a) +ya0+1xa1 is offset by −ybxa1 and
(b) +ya0+1xa2 is offset by −ya0+1xb−1 and
(c) +ybxa3 is offset by −ybxa2 ;

OR the contribution of

(a) +ya0+1xa1 is offset by −ya0+1xb−1 and
(b) +ya0+1xa2 is offset by−ybxa2 and
(c) +ybxa3 is offset by −ybxa1 .

The above two scenarios show that, apart from the monomial ybxa0 , whenever there is a
contribution from a positively signed monomial in Pλ to the Kronecker coefficient, there is an
offsetting negatively signed monomial which also contributes, resulting in a net nonpositive
contribution.

This completes the proof that the monomial ybxa0 gives the maximal contribution to the
Kronecker coefficient, i.e. that g̃μ,ν,λ is an upper bound. �

3.7. Bravyi’s vanishing conditions

Given a partition λ, denote by λ̄ the partition obtained from λ after deleting its first part. Mur-
naghan discovered a necessary condition for the Kronecker coefficient gλ,μ,ν to be nonzero. He
showed that the following inequality has to hold:

|λ̄| � |μ̄|+ |ν̄|, (22)
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Note that since the Kronecker coefficients are symmetric under permutations of the index, there
are really three inequalities.

The following stronger result (due to Bravyi) follows from our methods. The reader may
want to compare with proposition 5 .

Proposition 18 (Bravyi [Bra04, Kir04]). Assume �(λ) � 4, �(μ), �(ν) � 2. The Kronecker
coefficient is zero if ν2 < λ3 + λ4 or μ2 + ν2 < λ2 + λ3 + 2λ4. Equivalently, if the Kronecker
coefficient gμ,ν ,λ is nonzero then Bravyi’s inequalities (11) are satisfied.

Proof. We assume without loss of generality that μ2 � ν2. We will use the polynomial Pλ

of theorem 7.
First suppose ν2 < λ3 + λ4. Then we have ν2 < λ3 + λ4 � λ2 + λ4. Examining the poly-

nomial Pλ in (12), we see that none of the monomials ybxa makes a contribution since the
condition b � ν2 is violated for both exponents b of y in Pλ.

Now suppose μ2 + ν2 < λ2 + λ3 + 2λ4. Observe that λ2 + λ3 + 2λ4 is precisely the sum
of the exponents for the first monomials ybxa in each of the first two lines of the polynomial in
(12). Hence the condition b + a � μ2 + ν2 is violated for these two monomials. But the sum
of exponents b + a for each of the other monomials in (12) is strictly greater than the sum for
the first monomial in each line, so the condition is violated for all the monomials in Pλ. �

3.8. A closed formula for the reduced Kronecker coefficients

Murnaghan also observed that the sequences of Kronecker coefficients
(g(λ+ (k),μ+ (k), ν + (k)))k�0 always stabilize. Their stable value is known as the
reduced Kronecker coefficient and denoted by ḡλ̄,μ̄,ν̄ , where, given a partition λ, we denote by
λ̄ the partition obtained from λ deleting its first part.

Proposition 19. Let λ2 � μ2 � ν2. Assume λ has at most two parts. Then gμ,ν,λ is inde-
pendent of λ1 as soon as λ1 � μ2 + ν2. Moreover, the stable value is pS(ν2, ν2 + μ2 − λ2) −
pS(ν2, ν2 + μ2 − λ2 − 1). Explicitly, let � = ν2 + μ2 − λ2. Then:

ḡ(λ2),(μ2),(ν2) =

⎧⎨
⎩

�

2
+

3 + (−1)�

4
=

⌊
�

2

⌋
+ 1 if μ2 + ν2 � λ2

0 if μ2 + ν2 < λ2

. (23)

Proof. We have λ3 = λ4 = 0. For any statement S, we write δ(S) to mean 1 if S is true and
0 otherwise. From equation (13) of theorem 7, the Kronecker coefficient is

pS(ν2, ν2 + μ2 − λ2) − pS(ν2, ν2 + μ2 − (λ2 + 1))

− pS(ν2, ν2 + μ2 − (λ1 + 1)) · δ(μ2 + ν2 � λ1 + 1)

+ pS(ν2, ν2 + μ2 − (λ1 + 2)) · δ(μ2 + ν2 � λ1 + 2)

− pS(ν2 − (λ2 + 1), ν2 − (λ2 + 1) + μ2 + 1)

+ pS(ν2 − (λ2 + 1), ν2 − (λ2 + 1) + μ2 − (λ2 + 1))

+ 0 · pS(ν2 − (λ2 + 1), ν2 − (λ2 + 1) + μ2 − (λ1 + 1))

.
The zero coefficient in the last line is explained by the fact that (λ1 + λ2)/2 � μ2 � ν2, and
thus we always have μ2 + ν2 � λ1 + λ2.

17



J. Phys. A: Math. Theor. 54 (2021) 205204 M Mishna et al

Figure 5. The chamber complex for the reduced Kronecker coefficients indexed by three
one-row shapes. The reduced coefficients are zero outside the tetrahedra, one on all the
boundaries, and grow linearly as we move toward the center of one of the chambers. The
interior of the cone is divided into three chambers.

The hypothesis that λ1 � μ2 + ν2 eliminates the two terms with λ1 in their arguments,
establishing a stable value. The reduced Kronecker coefficient is thus given by

pS(ν2, ν2 + μ2 − λ2) − pS(ν2, ν2 + μ2 − (λ2 + 1))

− pS(ν2 − (λ2 + 1), ν2 + μ2 − λ2)

+ pS(ν2 − (λ2 + 1), ν2 + μ2 − 2(λ2 + 1)). (24)

Of these four terms, since λ2 � μ2 � ν2, the third and fourth terms are immediately
eliminated because the first argument is negative: ν2 − λ2 − 1 � −1.

If μ2 + ν2 < λ2, both first and second terms are identically zero.
If μ2 + ν2 = λ2, only the first term appears, but it must be 1 from the boundary values

pS(n, 0) = 1 = pS(0, m) recorded in section 3.3.
If μ2 + ν2 > λ2, the first two vector partition functions both appear. Since λ2 − μ2 � 0

implies ν2 � � = ν2 + μ2 − λ2, both are computed using the quasipolynomial corresponding
to region I in figure 2, and consequently the reduced Kronecker coefficient is

pS(ν2, �) − pS(ν2, �− 1) =
�

2
+

3 + (−1)�

4
.

The proof is now complete. �
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Using the symmetry of the Kronecker coefficients with respect to the three partitions, we
immediately have (figure 5):

Corollary 20. Fix λ2, μ2, and ν2. Let a = max(λ2, μ2, ν2) � b � c = min(λ2, μ2, ν2) be
a total ordering of λ2, μ2, ν2. Set � = b + c − a. Then

ḡ(λ2),(μ2),(ν2) = ḡ(a),(b),(c) =

⎧⎨
⎩

�

2
+

3 + (−1)�

4
=

⌊
�

2

⌋
+ 1 if � � 0

0 if � < 0.
(25)

The chamber complex for this quasipolynomial is illustrated in figure 5. The walls are
the hyperplanes I ) : μ2 + ν2 = λ2, II ) : μ2 + λ2 = ν2, III ) : λ2 + ν2 = μ2. The reduced Kro-
necker coefficient indexed by points on any of these walls always has value equal to
one.

We have obtained the counting function for the number of integer points in the one-
dimensional polytope of figure 1, which was studied in example 1.

3.9. The relative positions of the cones associated to the Kronecker, the reduced Kronecker
and the Littlewood–Richardson coefficients

Identify a triple of partitions of lengths � a, b, c (respectively) with a point in Qa+b+c. The
set of triples of partitions whose corresponding Kronecker coefficient is nonzero is known to
have the structure of a finitely generated semigroup [Chr06, Kly04, Man15]. This semigroup
generates a rational polyhedral cone, called the Kronecker cone and denoted by PKrona,b,c. Its
walls (i.e. facets) are described by a finite set of inequalities. Can we find these inequalities?
Is this cone saturated, or do there exist holes, that is, points where the Kronecker coefficient is
zero, inside it? If so, where are the holes located? What is the relation between the Kronecker
coefficients and other important families of coefficients such as the Littlewood–Richardson
coefficients or the reduced Kronecker coefficients.

We will use an unexpected discovery of Murnaghan to explore these issues: in the par-
ticular case where λ̄ = μ̄+ ν̄ (that is, when equation (22) is an equality), and when the first
parts of the partitions are ‘big enough’, the Kronecker coefficient gλ,μ,ν coincides with the

Littlewood–Richardson coefficient cλ̄μ̄,ν̄ . Equivalently, Murnaghan’s result can be expressed in
terms of the reduced Kronecker coefficients, ḡλ̄,μ̄,ν̄ = cλ̄,μ̄,ν̄ .

Given a family of coefficients indexed by triples of partitions, we define a cone (with the
same name) as the polyhedral cone generated by its nonzero values. We ask for the relation
between the positions of these different cones (the Kronecker, the reduced Kronecker, and the
Littlewood–Richardson coefficients) inside of the atomic cone.

The atomic Kronecker coefficients attain their minimum nonzero value (one) at its bound-
ary:μ2 + ν2 − λ2 − λ3 − 2λ4 = 0 or ν2 − λ3 − λ4 = 0 (compare with inequality (11)). Being
the solution of a vector partition function problem, it follows that when we dilate the three
indexing partitions, the values of the atomic Kronecker coefficients inside the cone are always
increasing.

Remark 21. On the face defined by μ2 + ν2 − λ2 − λ3 − 2λ4 = 0, the atomic Kronecker
coefficient coincides with the Kronecker coefficient; see corollary 16. Furthermore, they are
always equal to one. A triple of partitions (λ, μ, ν) of the same weight is stable if g(kλ,kμ,kν)
equals 1 for all k. We have shown that all Kronecker coefficients corresponding to triples in
this face are stable triples. Stable triples are relevant because the sequences gα+nλ,β+nμ,γ+ν

stabilize for n sufficiently large, see [2014].
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Theorem 22. The Littlewood–Richardson cone coincides with the intersection of the hyper-
plane λ4 = 0 and the face of the Kronecker cone defined by the first Bravyi inequality,
λ2 + λ3 + 2λ4 = μ2 + ν2.

Proof. Let cγα,β = ḡγ
α,β = gλ,μ,ν with α = μ̄, β = ν̄ and γ = λ̄. We want to see where

(λ, μ, ν) sits in relation with the Kronecker cone.
Suppose that cγα,β > 0. Since α and β have just one part, Pieri’s rule tells us that the length

of γ can be at most two, and hence λ4 = 0, and λ2 + λ3 = μ2 + ν2. On the other hand, using
the inequalities described in corollary 16 we easily see that all atomic Kronecker coefficients
in this wall are indeed Kronecker coefficients.

Let N be any number such that the triple of sequences (N − λ2,λ2,λ3), (N − μ2, μ2), (N −
ν2, ν2) are partitions. It remains to see whether g(N−λ2,λ2,λ3),(N−μ2,μ2),(N−ν2,ν2) is reduced. For
this, we will use the bound described in theorem 1.5 of [BOR11]. It says that such a Kro-

necker coefficient is stable as soon as N � λ2 + μ2 + ν2 +
⌊
λ3
2

⌋
= 2λ2 +

⌊
λ3
2

⌋
. But since

(N − λ2,λ2,λ3) has to be a partition, the smallest possible value for N will be that one that

corresponds to partition (λ2,λ2,λ3). That is, 2λ2 + λ3 � 2λ2 +
⌊
λ3
2

⌋
. �

We ask for the position of those nonzero Littlewood–Richardson coefficients (inside
the Kronecker cone) coming from the identities: gμ,ν,λ = ḡμ̄,ν̄,λ̄ = cλ̄μ̄,ν̄ . Now the Little-

wood–Richardson coefficient c(λ2,λ3)
(μ2),(ν2) is nonzero iff the skew-shapes (λ2,λ3)/(μ2) and

(λ2,λ3)/(ν2) are horizontal strips, or equivalently iff λ2 � μ2 � λ3 and λ2 � ν2 � λ3, which
in turn is equivalent to saying μ2 and ν2 lie in the interval [λ3,λ2]. Hence, when the LR
coefficient is nonzero, we must have (since λ1 � λ2 � λ3 � λ4),

|μ2 − ν2| � λ2 − λ3 � min(λ1 − λ3,λ2 − λ4).

We have recovered another result of Bravyi, his third, and last, inequality.

Remark 23. We have the following implications. If a Kronecker coefficient is atomic then
it is reduced, the reason being that the value of g̃ does not depend on the first part of λ. On the
other hand, if a Kronecker coefficient satisfies the equality of Murnaghan’s condition, then it
is reduced. This is theorem 22.

4. The vector partition function Fn,m

Having completed our analysis of the n = m = 2 case, we examine the extent to which these
results generalize. First we show that we can make a variable substitution to convert aδn [X]aδm [Y]

aδnm [XY]

into a vector partition function. This is the result of theorem 26.
Let S(p) denote the smallest monomial in p with respect to the lexicographic order. Repeat-

ing the reasoning given for the case n = m = 2 in section 3, we obtain for the general situation
the following identity:

aδn[X]aδm[Y]
aδnm [XY]

S(aλ+δnm[XY]) =
∑
μ,ν

g̃μ,ν,λS(aμ+δn[X])S(aν+δm[Y]) + lex. gr.

(26)

We proceed by first expanding all the Vandermonde determinants involved as a product of
linear binomial factors. We want to factor the binomial terms so that we obtain a product of
terms of the form (1 − M) where M is a Laurent monomial. We can do this in such a way
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that the resulting Laurent series converges in a nonzero domain if we follow the lexicographic
ordering, and always factor the smallest monomial in each binomial. The argument is similar
to the one for F2,2, see the discussion following (8).

We consider the special alphabets X = {1, x1, x2, . . . , xn−1}, Y = {1, y1, y2, . . . , ym−1},
n, m � 2. Then XY = {1, xi, y j, xiy j : 1 � i � n − 1, 1 � j � m − 1}. The set XY is ordered
as follows:

1 > xi > xi+1, y j > y j+1, xi > y j, xiy j > xky� if i < k, or i = k and j < l.

(27)

The following claim is clear.

Lemma 24. The smallest term in S(aλ+δnm[XY]), with respect to the lexicographic ordering,
is the product of the monomials in the main diagonal of the matrix of the alternant aλ+δnm [XY].

Similarly, to compute the smallest term, with respect to the lex ordering, in each of the two
remaining alternants S(aμ+δn[X]) and S(aν+δm[Y]), we take the product of the monomials in
the main diagonal of the corresponding matrices. We obtain a Laurent series

∑
μ,ν

gμ,ν,λxl1(μ,ν,λ)yl2(μ,ν,λ),

where l1(μ, ν,λ) and l2(μ, ν,λ) are linear combinations of the parts of μ, ν and λ. It is a product
of binomial terms of the form 1 minus a Laurent monomial. Finally, we perform a change
of basis which we describe in detail below, to ensure that we get a convergent Taylor series
expansion.

For example, for n = m = 3, the substitution is x1 = s1t1, x2 = s1s2t2
1, y1 = s0s1s2t2

1, and
y2 = s0s1s2t3

1 More precisely, in order to guarantee convergence of our series, we assume
in equation (27) that 1 > |x1| > |x2| > · · · > |xn−1| > |y1| > |y2| > · · · > |ym−1| > |x1y1| >
|x1y2| > · · · > |x1ym−1| · · · > |xn−1y1| > |xn−1y2| > · · · > |xn−1ym−1|.

We define the rational function Gn,m by Gn,m =
aδn [X]aδm [Y]

aδnm [XY] . Observe that we have the
Vandermonde expansion

aδn[X] =
n−1∏
i=1

(1 − xi)
∏

1�i< j�n−1

(xi − x j),

and similarly for the second alternant aδm [Y]. For the alternant in the denominator we have
aδnm [XY] = aδn[X] · aδm[Y] · A · B · C · D · E · F, where

A =

m−1∏
j=1

n−1∏
i=1

(xi − y j), B =

n−1∏
i=1

m−1∏
j=1

(1 − xiy j)

and C =

n−1∏
i=1

m−1∏
j=1

(xi − xiy j) ·
m−1∏
j=1

n−1∏
i=1

(y j − xiy j)

=

⎛
⎝m−1∏

j=1

(1 − y j)

⎞
⎠

n−1 (
n−1∏
i=1

xm−1
i

)
·
(

n−1∏
i=1

(1 − xi)

)m−1
⎛
⎝m−1∏

j=1

yn−1
j

⎞
⎠ ,
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D =

n−1∏
k=1
k 	=i

n−1∏
i=1

m−1∏
j=1

(xk − xiy j) ·
m−1∏
k=1
k 	= j

m−1∏
j=1

n−1∏
i=1

(yk − xiy j),

E =
m−1∏

j	=�=1

∏
1�i<k�n−1

(xiy j − xky�),

F =
m−1∏
j=1

∏
1�i<k�n−1

(xiy j − xky j) ·
n−1∏
i=1

∏
1� j<��m−1

(xiy j − xiy�)

=

m−1∏
j=1

y

(
n−1

2

)

j

∏
1�i<k�n−1

(xi − xk)m−1 ·
n−1∏
i=1

x

(
m−1

2

)

i

∏
1� j<��m−1

(y j − y�)
n−1.

It follows that the quotient of alternants Gn,m simplifies to 1
ABCDEF .

Note that each factor in A, C, D, E, F can be rewritten in the form (1 − M) where M is a
Laurent monomial in the xi and the yj. The factors of B are already in this form. For instance,
in E we can rewrite each factor as xiy j − xky� = xiy j(1 − xky�x−1

i y−1
j ).

Thus, the following definition for F̄n,m(X, Y) makes sense.

Definition 25 (F̄n,m(X, Y)). There are positive integers ai, bj such that in the product

Gn,m

n−1∏
i=1

xai
i

m−1∏
i= j

y
b j
j ,

all factors are of the form (1 − M)−1 where M is a Laurent monomial in the xi and the y j. We
define F̄n,m(X, Y) to be this product, i.e. we have

Gn,m

n−1∏
i=1

xai
i

m−1∏
i= j

y
b j
j = F̄n,m. (28)

We now show that there is a different set of (n + m − 2) variables si, i = 0, . . . , n − 1, t j, j =
1, . . . , m − 2, such that by effecting a judicious (and non-obvious) change of variables,
F̄n,m(X, Y) becomes a product of factors of the form (1 − M)−1 where each Laurent mono-
mial M in X, Y is a monomial with nonnegative exponents in the new variables S, T. In other
words, Fn,m(S, T) is a vector partition function in the new variables.

We claim that the quotients of consecutive terms in the sequence (27) become monomials
(and not Laurent monomials), after setting, for each 1 � i � n − 1 and 1 � j � m − 1,{

xi = s1s2 . . . si(t1t2 . . . tm−2)i

y j = (s0s1 . . . sn−1)(t1t2 . . . tm−2)n−1t1t2 . . . t j−1

. (29)

Note when n = m = 2, there are no ti variables, and we recover the substitution for F2,2 in
section 2. We have

xi+1

xi
= si+1t1t2 . . . tm−2,

y j+1

y j
= t j, 1 � j � m − 2,

y1

xn−1
= s0,

x1y1

ym−1
= s1,

xiy1

xi−1ym−1
= si, 2 � i � n − 1.

(30)
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This establishes our claim. Hence we have proved:

Theorem 26. Let Fn,m(S, T) be the series obtained after performing the previous substitu-
tions in the series (28); its domain of convergence is {|si| < 1, |tj| < 1 : 0 � i � n − 1, 1 �
j � m − 2}. Then Fn,m is a vector partition function.

From the preceding discussion we can also conclude:

Corollary 27. Let An,m be the matrix associated to the vector partition function Fn,m, as in
section 2. Then

(a) The largest entry is 2n − 1;
(b) The number of columns is

( nm
2

)
−
( n

2

)
−
(m

2

)
;

(c) The number of rows is m + n − 2;
(d) All the basis vectors appear in the columns of An,m;
(e) The rank of the matrix is m + n − 2.

Proof. The largest entry is obtained by examining the largest possible exponent of the vari-
ables si or t j in the monomials M occurring in the factors (1 − M) of Fn,m. We have, from the
product B of the preceding proof, for i � n − 2, j � m − 1, the monomial

xiy j = (s1 . . . si)(t1t2 . . . tm−2)i · (s0s1 . . . sn−1)(t1t2 . . . tm−2)n−1

× (t1t2 . . . t j−1)

and clearly the largest exponent here occurs for each of t1, . . . , t j−1, and it equals i + (n − 1) +
1 = n + i � 2n − 1. The maximum exponent 2n − 1 occurs in the monomial xn−1y j. Examin-
ing the products other than B, we see that all other monomials involve dividing by xi or y j or
both, so it is clear that they cannot yield a larger exponent.

The number of columns in the matrix An,m equals the number of linear factors in aδnm [XY]
minus the number of linear factors in aδn[X] minus the number of linear factors in aδm[Y]; since
these are all Vandermonde determinants, the second result follows. For the third result, observe
that the number of rows is simply the number of variables in the set {si, 0 � i � n − 1, t j, 1 �
j � m − 2}.

For the last two statements, observe that equation (30) in the preceding proof establishes
that all the basis vectors appear as columns of the matrix An,m, since all the variables si and t j

occur as quotients when converting the factors of the Vandermonde in the products A −F into
the form (1 − M) in equation (30). Hence the rank is the number of rows of the matrix. �

4.1. The degree of the Kronecker quasipolynomial

We have shown that the Kronecker function κn,m,nm is a quasipolynomial on affine domains.
However, a deep theorem of Meinrenken and Sjamaar [MS99] says that κn,m,nm is in fact a
piecewise quasipolynomial. This result seems to be unattainable by our methods. However,
we immediately obtain information about the degree of the Kronecker quasipolynomialκn,m,nm.
Let X be an alphabet of size n, and Y an alphabet of size m, and let

d =
n2m2

2
− n2

2
− m2

2
− nm

2
− n

2
− m

2
+ 2.

Theorem 28. The degree of the piecewise quasipolynomial Kronecker function κn,m,nm is
always � d.

23



J. Phys. A: Math. Theor. 54 (2021) 205204 M Mishna et al

Proof. The degree of κn,m,nm is bounded by the dimension of the null space of An,m. It is thus
equal to the number of columns minus the rank. By corollary 27, this is just d.

Since Kronecker coefficients are linear combinations of different shifts of this vector
partition function, these bounds apply in general. �

The degree of κn,m,nm has been obtained by Baldoni, Vergne, and Walter [BVW16, VW17]
using the language of moment maps.

In addition to being completely elementary, another advantage of our approach is that the
dimension of the polyhedral cones and their ambient spaces involved in the calculation are the
minimal possible ones, as they coincide with the degree of the quasipolynomial.

Example 29. The domain of convergence of the vector partition function F2,3 is |x1y2| <
|x1y1| < |y2| < |y1| < |x1| < 1. F2,3 counts nonnegative integer solutions to A2,3x = n, with
A2,3 equal to ⎛

⎝1 0 0 1 0 0 1 0 1 1 1
0 1 0 0 1 1 1 1 1 2 2
0 0 1 1 1 1 1 2 2 2 3

⎞
⎠ .

The dimension of the solution space is rather large. The polytopes involved have dimension
8, making them very hard to visualize. However, some interesting phenomena can be observed
by looking at the restriction of this system of equations to the positive orthant. Recall that we
are looking for nonnegative solutions to A2,3x = n. Let n = (n1, n2, n3).

If n3 = 0, since we are only considering nonnegative linear combinations of the columns
of the matrix, none of the columns other than the first two can appear. We obtain the restricted

matrix A3 =

(
1 0
0 1

)
, and pA3 (n1, n2) = 1 is a constant polynomial. Here we use the notation

of section 2 for the quasipolynomial pA(b) associated to the polytope defined by the solution
space of the matrix equation Ax = b.

On the other hand, if n2 = 0, we can discard any column where the second entry is not zero.

In this case the restricted matrix is A2 =

(
1 0 1
0 1 1

)
, and pA2 (n1, n3) is a linear polynomial: we

need to solve the system of inequalities x3 � n1, x3 � n3. Hence pA2 (n1, n3) = 1 + min(n1, n3).

Finally, if n1 = 0, the restricted matrix is A1 =

(
1 0 1 1 1
0 1 1 1 2

)
, and pA1 (n2, n3) is a

cubic quasipolynomial.
Note that the atomic Kronecker coefficients are identically one only on the facet defined by

n3 = 0. Contrast this with the situation for F2,2, where the coefficients are identically one on
both facets: from figure 2, we see that pA2,2 (n, m) = 1 if n = 0 or m = 0.
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Appendix. Lemmas for the proof of theorem 17

We now establish the technical lemmas needed on the monotonic behavior of the function
pS(n, m), in order to prove theorem 17. For brevity, throughout these arguments, we will write
c(m) for the expression 7

8 + (−1)m

8 . Note that c(m) � 1 for all m.

Lemma 30. The partition function pS(n, m) satisfies

pS(n, m) � pS(n, m′) =

(
n + 2

2

)
whenever m′ � 2n.

Proof. We have three cases.
Case 1: suppose n ∈ [0, m

2 ]. Then we claim that pS(n, m) =
( n+2

2

)
= pS(n, m′) for all

m′ � 2n. This is just a consequence of the definition.
Case 2: suppose n ∈ ( m

2 , m). We must show that pS(n, m) � pS(n, m′) for all m′ � 2n.
From figure 2, when m

2 � n < m, pS(n, m) is given by the formula for region III, while
pS(n, m′) is given by the binomial coefficient

( n+2
2

)
. Inspecting the third figure in figure 6, and

using the fact that the pS(n, m) count lattice points in the appropriate regions, it is immediate
that the difference pS(n, m′) − pS(n, m) is nonnegative for n in this interval and m′ � 2n.

Case 3: suppose n � m � 0. We must show that pS(n, m) �
( n+2

2

)
= pS(n, m′) for all

m′ � 2n. Again this is immediate by the same geometric argument, inspecting the first and
third figures in figure 6. �
Lemma 31. Suppose m

2 < M
2 < n < m < M. Then pS(n, M) − pS(n, m) � 0.

Proof. Both partition functions are computed according to the formula for region III in
figure 2, and hence count lattice points in a convex polytope (see figure 6). They are therefore
increasing functions in each argument. �

Lemma 32. Fix k � 0. Then pS(n, n + k), for 0 � k � n, is an increasing function of n.

Proof. From section 2, we see that the conditions on k, n, imply that pS(n, n + k) corresponds
to region III in figure 2. As before, since the function pS(n, n + k) counts lattice points in a
convex polytope (see the third figure in figure 6), it is an increasing function of n. �

Consider first the monomial +ya0+1xai , i = 1, 2. Note the crucial fact that from the depen-
dency relations, if either of these monomials contributes a nonzero coefficient, so does the
preceding negative monomial −ya0+1xb−1.

Lemma 33. Let i = 1, 2. Then the net contribution of the monomials ya0+1(−xb−1 + xai) to
gμ,ν,λ is negative or zero.
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Figure 6. Three possibilities for the polytope defined by the inequalities in equation (3).

Proof. The value contributed to gμ,ν,λ by the monomial +ya0+1xai , i = 1, 2, is the coefficient
[xμ2yν2 ] in the product +ya0+1xai F̄2,2, which in turn is given by the vector partition function

pS(ν2 − (a0 + 1), ν2 − (a0 + 1) + (μ2 − ai)). (31)

On the other hand, the contribution from the negative monomial −ya0+1xb−1 was shown in the
proof of theorem 7 to be coming from region II in figure 2. It therefore contributes the value

−pS(ν2 − (a0 + 1), ν2 − (a0 + 1) + (μ2 − b + 1)) = −
(
ν2 − (a0 + 1)

2

)
.

(32)

But now lemma 30 says the net contribution of these two monomials is negative or zero, as
claimed. �

However, this is of course not sufficient to establish our theorem, because both positive
monomials +ya0+1xai , i = 1, 2 can make a nonzero contribution. Appealing to the dependency
relations, we see that a positive contribution from +ya0+1xai forces a negative contribution
from the monomial −ybxai , for each i = 1, 2.

Lemma 34. If μ2 − ai � 0, then the net contribution of +ya0+1xai and −ybxai is negative
or zero.

Proof. The contribution of +ya0+1xai is given by the vector partition function equation (31),
while that of −ybxai is given by

−pS(ν2 − b, ν2 − b + (μ2 − ai)). (33)

Because μ2 − ai � 0, in each case we have a vector partition function of the form pS(n, m)
where m < n. Hence each vector partition function corresponds to region I in figure 2. But that
function is clearly an increasing function of its second argument, m. Also, we know from the
inequalities (21) above that ν2 − (a0 + 1) + (μ2 − ai) < ν2 − b + (μ2 − ai). Hence the claim
follows. �
Lemma 35. If μ2 − ai > 0, then the net contribution of +ya0+1xai and −ybxai is negative
or zero.

Proof. We must again carefully examine the respective contributions of these two monomi-
als, which are

pS(ν2 − (a0 + 1), ν2 − (a0 + 1) + (μ2 − ai)). (34)
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and

−pS (ν2 − b, ν2 − b + (μ2 − ai). (35)

Each function above is of the form pS(n, m) where n < m, so it is evaluated according to the
formula for region II or region III in figure 2. We know ν2 − (a0 + 1) < ν2 − b. We have three
cases to consider:

Case 1: assume ν2 − (a0 + 1) < ν2 − b < μ2 − ai. Then each vector partition function
above corresponds to region II in figure 2, given by a binomial coefficient so the net contribu-
tion is a difference of two binomial coefficients

(
ν2−(a0+1)+2

2

)
−
(
ν2−b+2

2

)
, and this is clearly

negative in view of the inequality (21).
Case 2: assume 0 � ν2 − (a0 + 1) < μ2 − ai < ν2 − b. Set μ2 − ai = k, n1 = ν2 − (a0 +

1), n2 = ν2 − b. Thus we have 0 � n1 < k < n2. In particular, n1 − n2 � −2.
Since 2n1 < n1 + k, we know that pS(n1, n1 + k), which is the value of the contribution

from the monomial ya0+1xai , is specified by region II in figure 2, and is therefore given by the
binomial coefficient

( n1+2
2

)
.

Since n2 ∈ ( n2+k
2 , n2 + k), we conclude similarly that the contribution from the monomial

ybxai is given by computing pS(n2, n2 + k) using the formula for region III in figure 2.
Hence, using the expression for pS(n, n + k) for region III in figure 2, the net contribution

of −ybxai + ya0+1xai is given by

pS(n1, n1 + k) − pS(n2, n2 + k)

=
n2

1 + 3n1 + 2
2

−
(

n2
2

4
+ n2

(
k
2
+ 1

)
− k2

4
+

k
2
+ c(n2 + k)

)
.

Consider the function f (k) = n2
1+3n1+2

2 −
(

n2
2

4 + n2( k
2 + 1) − k2

4 + k
2

)
, a polynomial in k.

It is easy to check that f ′(k) = 1
2 (k − 1 − n2) � −1 when k < n2, and hence this is a

decreasing function of k with maximum value f(n1) in the interval [n1, n2 − 1]. But

f (n1) =
n2

1

2
− n2

2

4
+

3n1

2
− n1n2

2
− n2 + 1 +

n2
1

4
− n1

2

=
n2

1 − n2
2

4
+ (n1 − n2) +

n2
1

2
− n1n2

2
+ 1

= (n1 − n2)

[
n1 + n2

4
+ 1 +

n1

2

]
+ 1.

Since n1 − n2 � −2, and the expression in square brackets is at least 5
4 , we see that f (k) �

f (n1 + 1) < f (n1) < − 3
2 . To find the net contribution of the two monomials, we need to add

the value of c(n2 + k). But this is at most 1. It follows that the net contribution is negative.
Case 3: assume 0 < μ2 − ai � ν2 − (a0 + 1) < ν2 − b. Again set μ2 − ai = k, n1 = ν2 −

(a0 + 1), n2 = ν2 − b. The contribution of the monomial +ya0+1xai is pS(n1, n1 + k) while
that of the monomial −ybxai is −pS(n2, n2 + k). The inequalities imply that the function
pS corresponds to region III in figure 2 in both cases. Hence lemma 32 applies (because
0 < k � n1 < n2), showing that the net contribution, pS(n1, n1 + k) − pS(n2, n2 + k), is indeed
negative or zero. �

It remains to consider what happens when the last monomial with positive coefficient in the
first line of Pλ, ybxa3 , contributes to the Kronecker coefficient. From the dependency relations,
we know that then all the monomials ybxai must contribute nonzero terms as well, and possibly
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also one or both monomials ya0+1xai . In the latter case there is also necessarily a negative
contribution from −ya0+1xb.

Lemma 36. For each of i = 1, 2, the net contribution of the two monomials −ybxai + ybxa3

is always negative or zero.

Proof. Set n = ν2 − b, mi = n + (μ2 − ai), i = 1, 2, 3. The contribution of ybxa3 is pS(n, m3),
and that of −ybxai , i = 1, 2, is −pS(n, mi). Note that m3 < mi, i = 1, 2, in view of (21).

We will examine the behavior of the function pS(n, m) according to where n falls in each of
the intervals below. Although there are two categories:

0 < m3
2 < m3 � mi

2 < mi, or 0 < m3
2 < mi

2 < m3 < mi,
both can be treated by the same arguments, because the same difference of vector partition
functions pS(n, m) comes into play in each case.

Case 1: if n � m3
2 , then in either category, both pS(n, m3) and pS(n, mi) are computed by the

formula for region II in figure 2, and hence both equal the binomial coefficient
( n+2

2

)
. The net

contribution of −ybxai + ybxa3 here is zero.
Case 2: if n > mi, then in either category, both pS(n, m3) and pS(n, mi) are computed by the

formula for region I in figure 2. But the quasipolynomial for region I is clearly an increasing
function of the second argument of pS, and hence, (since m3 < mi), −pS(n, mi) + pS(n, m3) is
negative or zero.

Case 3: suppose mi
2 � n � m3. Then both functions pS correspond to region III in figure 2,

and lemma 31 applies directly to show that −pS(n, mi) + pS(n, m3) is negative or zero.
Case 4: suppose m3 � n � mi

2 . Then the monomial −ybxai contributes pS(n, mi) which is
now a binomial coefficient since n � mi

2 . By lemma 30, the net contribution here is negative or
zero.

Case 5: suppose 0 < m3
2 < m3 � mi

2 < n < mi.
We need to examine the difference pS(n, m3) − pS(n, mi), where the first function corre-

sponds to region I and the second to region II, in figure 2. We will consider the function
f(n) = pS(n, m3) − pS(n, mi) on the interval [mi/2, mi]. We have

f (n) =
m2

3

4
+ m3 + c(m3) − (nmi −

n2

2
− m2

i

4
+

n + mi

2
+ c(mi)).

One checks that f ′(n) = −(mi − n + 1/2) � − 3
2 , and hence the function is decreasing with

maximum at mi
2 . This value is checked to be

f
(mi

2

)
=

1
4

(
m2

3 −
m2

i

2

)
+

(
m3 −

3mi

4

)
+ c(m3) − c(mi).

But c(m3) − c(mi) � 1
4 as before, and we have m3 < mi. Hence f ( mi

2 ) < − 1
2 is negative, and

so is f(n).
Case 6: suppose 0 < m3

2 < mi
2 < m3 < n < mi. Exactly the same argument applies to this

case, since we still have m3 < n < mi, which was the only inequality we used in the preceding
argument. This completes the proof of the lemma. �
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