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Application of nonlinear Kalman filters to the identification of customer phase
connection in distribution grids
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Abstract

This paper presents a state estimation approach to address the problem of identifying the phase to which single-phase
customers are connected in three-phase distribution grids. The proposed method performs Kalman filtering on the
information provided simultaneously by the smart meter of every customer and the aggregated energy consumption
measured at each phase of the secondary substation feeding the set of customers. Different nonlinear formulations of
the Kalman filter are tested and their performance compared, showing that the ensemble Kalman filter provides better
estimation results when the system size increases. The accuracy, robustness and limitations of the estimator are also
tested when measurement errors are considered.

Keywords: Ensemble Kalman filter, Cubature Kalman Filter, Unscented Kalman Filter, phase identification, state
estimation.

1. Introduction

Correct operation monitoring and control in distribu-
tion systems are essential in order to assure a good quality
of the service provided to the customers. In this context,
it is most important for grid operators to unambiguously
know which loads are connected to each of the three phases
of the system (the European feeder topology is assumed in
this work). An accurate connectivity information is a pre-
requisite to promote the correct phase balance of LV con-
sumers, alleviating in this way the problems derived from
feeder unbalances, such as sharper voltage drops, which
can even violate the grid codes, and increasing power losses
which also affect the lifespan of the equipment due to tem-
perature rise. Moreover, the penetration of renewable en-
ergy resources at the distribution level also benefits from
the phase identification, since it helps to establish a bet-
ter production-consumption balance for each phase of the
grid.

In this regard, despite the efforts undertaken by dis-
tribution companies, they frequently lack enough infor-
mation about the phase connection of their single-phase
customers, owing for instance to network reconfiguration
after faults, phase switching derived from improper main-
tenance, or inaccurate recording of the true load-to-phase
connectivity. In these circumstances, a method must be
developed to estimate as accurately as possible the ac-
tual phase to which a customer is connected in LV feeders,
which is known as the customer-phase identification (CPI)
problem.

The CPI problem has been approached in several ways
by previous works. In [1], a signal processing perspec-
tive is applied to voltage observations, which are also used

both in [2], for a correlation-based methodology, and in
[3], where a spectral clustering technique is proposed. The
connecting phase of underground distribution transform-
ers is determined in [4] through phase voltage measure-
ments. Smart meters have improved the communication
between the loads and the substations and can be also used
for the CPI problem, [5], [6]. A method based on Least
Absolute Shrinkage and Selection Operator (LASSO) is
proposed in [7], also using smart meter data from a LV
distribution network. In [8], a novel approach for phase
identification using graph theory and principal component
analysis (PCA) is tested. The possible missing informa-
tion in smart meter data is dealt with in [9] through a
correlation analysis.

In this work, the CPI is addressed by applying a Kalman
filtering (KF) state estimation technique to a set of hourly
consumption curves obtained from real loads, along with
hourly energy measurements taken at each phase of the
secondary substation. The proposed method conserva-
tively assumes that other electrical magnitudes potentially
provided by smart meters, such as voltage readings or re-
active power consumed by each load, are not available.
Moreover, a simplified loss model is adopted, allowing the
impact of each load on the energy delivered by each phase
of the transformer to be estimated for a given topology.

The KF is a dynamic state estimator (DSE) widely
used in electric power systems in any of its diverse forms,
[10]-[12]. Particularly, the application of KF to parameter
estimation in power systems has been successfully tested,
e.g. in [13]-[15], providing evidence of the DSE potential
for the CPI problem.

In this work, three nonlinear KF schemes are tested
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and compared, namely the so-called unscented Kalman
filter (UKF), the cubature Kalman filter (CKF), and the
ensemble Kalman filter (EnKF). The proposed technique
takes advantage of the hourly information provided by
smart meters to sequentially assign customers to the most
likely phase. The proposed KF implementation does not
explicitly enforce, beforehand, binary constraints for the
state variables, but rather adopts a novel, statistically-
based inference logic successively rounding state variables
to their nearest binary value. As the input information
considered in this work is similar to that assumed in [7]
and [8], the KF-based estimation is also compared to those
competing techniques for different scenarios.

The paper is organized as follows: Section 2 provides a
brief background on the different KF schemes considered.
Next, the feeder used for testing and the simplified loss
model adopted are presented in section 3. The implemen-
tation details of the KF based estimation techniques, as
applied to the CPI problem, are given in section 4. In
section 5, the results obtained in two different scenarios
are presented and discussed, while the proposed KF tech-
nique is compared in section 6 with other published works
dealing with CPI. The conclusions derived from the case
studies considered are drawn in section 7.

2. Kalman filter background

In this section, three different Kalman filter formula-
tions are succinctly reviewed, as applied to continuous-
time, discrete-measurement nonlinear systems. In the discrete-
time framework, the associated equations may be expressed
as follows,

xk = f(xk−1, uk−1) + wk (1)

zk = g(xk, uk) + vk (2)

where xk is the state vector at instant k, uk the system
input, and zk the vector of available measurements. Gaus-
sian processes are considered for the model and measure-
ment noises, wk and vk, with covariance matrices Q and
R, respectively.

The iterative processes of the Kalman filter schemes
considered in this work, all of them involving prediction
and correction stages, are described below.

2.1. Unscented Kalman Filter

At instant k, a cloud of 2L + 1 vectors, the so-called
σ-points, is obtained from the previously estimated state
vector, x̂k−1 (dimension L), and the covariance matrix of
the state estimation error, Pk−1, as follows, [16]:

x0k−1 = x̂k−1
xik−1 = x̂k−1 + [

√
(L+ λ)Pk−1]i

xi+Lk−1 = x̂k−1 − [
√

(L+ λ)Pk−1]i+L
i = 1, ..., L

(3)

[
√

(L+ λ)Pk−1]i being the ith column of the correspond-
ing matrix, and λ a scaling factor calculated as follows:

λ = α2(L+ κ)− L (4)

where α and κ are two filter parameters to be tuned.
These σ-points are evaluated through equation (1), yield-

ing 2L+1 vectors, xi−k , from which the a priori estimations
x̂−k and P−k are obtained:

x̂−k =

2L∑
i=0

Wmix
i−
k (5)

P−k =

2L∑
i=0

Wci(x
i−
k − x̂

−
k )(xi−k − x̂

−
k )T +Qk (6)

where the weighting vectors Wm and Wc are calculated
from: 

Wm0 = λ
L+λ

Wc0 = λ
L+λ + 1− α2 + β

Wmi = Wci = 1
2(L+λ) i = 1, ..., 2L

(7)

β being another tunable parameter.
On the basis of the a priori information, the correction

stage starts with the calculation of a new cloud of vectors,
x−k , which are evaluated with the measurement function
g(·) in equation (2), and weighted with the vectors Wm,
yielding

γi−k = g(xi−k , uk) i = 0, ..., 2L (8)

ẑ−k =

2L∑
i=0

Wmiγ
i−
k (9)

Then, the covariance matrix of the measurement esti-
mation error, P−zk, and the cross-covariance matrix of state
and measurements, P−xzk, are obtained using the vector Wc

as follows:

P−zk =

2L∑
i=0

Wci(γ
i−
k − ẑ

−
k )(γi−k − ẑ

−
k )T +Rk (10)

P−xzk =

2L∑
i=0

Wci(x
i−
k − x̂

−
k )(γi−k − ẑ

−
k )T (11)

The correction stage concludes with the a posteriori
predictions,

x̂k = x̂−k +Kk(zk − ẑ−k )T (12)

Pk = P−k −KkP
−
zkK

T
k (13)

which are based on the a priori predictions at instant k
and the so-called Kalman gain, Kk, calculated from

Kk = P−xzk(P−zk)−1 (14)

2



2.2. Cubature Kalman Filter

This KF formulation uses a set of 2L cubature points
calculated from x̂k−1 and Pk−1 through the following ex-
pressions, [17]:

Sk−1S
T
k−1 = Pk−1 (15)

xik−1 = Sk−1ξi
√
L+ x̂k−1 i = 1, ..., 2L (16)

where S is a positive-definite square root of matrix P (the
Cholesky factorization of matrix P is customarily used),
and ξi is the ith cubature node, obtained as the intersection
of the unit sphere and the RL axis.

The state function f(·) in (1) is evaluated for the set
of cubature points, yielding a set of 2L vectors xi−k , from
which the a priori estimation is computed,

x̂−k =
1

2L

2L∑
i=1

xi−k (17)

P−k =
1

2L

2L∑
i=1

xi−k xi−Tk − x̂−k x̂
−T
k +Qk (18)

For the correction stage, the covariance matrix P−k is
factorized in order to calculate both the matrix S−k ,

S−k S
−T
k = P−k (19)

and a new set of 2L cubature points, x−k , at which function
g(·) in (2) is evaluated to obtain γ−k .

Then the measurement estimation, ẑ−k , its covariance
matrix, P−zk, and the cross-covariance matrix of state and
measurements, P−xzk, are calculated as follows:

ẑ−k =
1

2L

2L∑
i=1

γi−k (20)

P−zk =
1

2L

2L∑
i=1

γi−k γi−Tk − ẑ−k ẑ
−T
k +Rk (21)

P−xzk =
1

2L

2L∑
i=1

xi−k γi−Tk − x̂−k ẑ
−T
k (22)

The a posteriori predictions of the state vector, x̂k, and
the covariance Pk are calculated with the Kalman gain us-
ing the same equations (14)-(13) as in the UKF algorithm.

2.3. Ensemble Kalman Filter

The EnKF, [18], is a Monte Carlo approximation of
the original KF which has proven accurate enough in high-
dimensional state-space problems. The ensemble is repre-
sented by an LxN matrix, N being the number of samples
considered.

The ensemble is first propagated through the state and
measurement functions,

 xi−k = f(xik−1, uk−1)

zi−k = g(xik, uk)
i = 1, ..., N

(23)

and then the mean values are calculated:

x−k =
1

N

N∑
i=1

xi−k (24)

zk =
1

N

N∑
i=1

zi−k (25)

The EnKF correction stage is based on the calculation
of the intermediate matrices

PkH
T
k =

1

N

N∑
i=1

(xi−k − x
−
k )(zi−k − zk)T (26)

HkPkH
T
k =

1

N

N∑
i=1

(zi−k − zk)(zi−k − zk)T (27)

which allow the Kalman gain and the updated values of
each sample in the ensemble to be obtained:

Kk = PkH
T
k (HkPkH

T
k +R)−1 (28)

xik = xi−k +Kk(zk − zi−k ) i = 1, ..., N (29)

Finally, the corrected covariance matrix, Pk, is calcu-
lated as follows:

xk =
1

N

N∑
i=1

xik (30)

Pk =
1

N

N∑
i=1

(xik − xk)(xik − xk)T (31)

3. Problem statement and modeling

In order to assess the ability of the KF-based methodol-
ogy to address the CPI problem, a typical distribution grid
is considered comprising Ns single-phase and Nt three-
phase customers, not necessarily balanced, resulting in
Nc = Ns + 3Nt total consumption curves in the network.
In this work, it is assumed that the number of three-phase
customers is 20% of the total. The proposed methodol-
ogy, as presented in section 4, is easily extensible to other
load connection arrangements, such as two-phase loads,
still found in some areas. Figure 1 shows an example of a
distribution network with 100 loads, used in the sequel to
test the estimation techniques.

The energy consumption of each load i at a certain
hour k, denoted by Ei,k, is obtained from [19], where real
hourly data from a European distribution company, com-
prising smart meters readings for 20 days, are provided,
leading to a total of 480 energy measurements for each
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customer. In case of three-phase loads, a single-phase con-
sumption is assigned to each phase. As customers with
null consumption cannot be identified (they provide no
information), the corresponding curves are removed from
the raw data.

Figure 1: Single-line diagram of one of the test networks

To fully characterize the energy consumption of the
customers, the reactive energy is also obtained from the
raw data in [19]. Finally, the resulting hourly curves are
randomly associated to a certain phase (a, b or c).

Along with the previous customer information, a typ-
ical distribution feeder topology is considered, each cus-
tomer being associated to one of the grid nodes. Then, a
load flow can be solved at each hour k in order to obtain
the energy delivered by each phase of the MV/LV sec-
ondary substation, EaSS,k, EbSS,k and EcSS,k, which is used
by the proposed KF-based estimation technique as a mea-
surement. This fully defines the distribution grid model
involved in the estimation process.

4. Kalman Filter Implementation

The application of the different KF schemes described
in Section 2 to the CPI problem is illustrated in the flowchart
represented in Figure 2, as summarized in the sequel.

4.1. Parallel filtering

For every iteration of each tested technique, three in-
dependent KF-based estimators run in parallel, one for
each phase p of the distribution grid, being the state vec-
tor composed of Nc variables, xpi , with p = a, b, c, so that
L = Nc. Any three-phase customer is characterized by
a set of three consecutive state variables, {xpi , x

p
i+1, x

p
i+2},
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Figure 2: Flowchart of the CPI methodology

for each phase. Those variables indicate if the consump-
tion i is associated to the corresponding phase p. For these
static variables, the state function, f(·), in equation (1), is
taken as a random walk, independent of the system input,
uk, yielding the following expression:

xpk = xpk−1 + wpk (32)

where the model noise, wpk, is considered to have the same
covariance matrix, Q, for each phase.

The system input, uk, used in the measurement func-
tion g(·) in equation (2), is determined by the hourly en-
ergy consumption of each customer, uTk =E1, E2, ..., ENck.
Regarding the network losses, as no measurements about
the voltage and power factor of each load are available, a
simplified loss model is adopted by the KF estimators, for
which a given rated voltage and power factor cosϕi,k = 1
are assumed for all loads points. With these assumptions,
an average hourly current, Ii,k is calculated for each con-
sumer i from the corresponding hourly energy consump-
tion, Ei,k:

Ii,k =
Ei,k
T · U

(33)

where U is the voltage magnitude, and T is the energy
integration period. In this work, as the energy measure-
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ments are supposed to be obtained hourly, T = 1h.
Accordingly, the energy loss attributable to customer i

is given by:

Elossi,k = I2i,k · T · r · li (34)

where r is the conductor resistance per unit length and
li is the electrical distance from each consumer to the
secondary substation, both assumed to be known (r =
0.223Ω/km, has been adopted in this paper).

The vector uk also includes the variables xpi corre-
sponding to customers which have been previously assigned
to a phase, as described below.

The measurement of each filter, zpk, is taken as the en-
ergy delivered at each hour by the corresponding phase of
the secondary substation, zpk =EpSS,k, so the measurement
function g(·) in equation (2) reduces to:

zpk =

Nc∑
i=1

xpi,k · (Ei,k + Elossi,k ) + vpk (35)

where the measurement noise, vpk, is considered to have
the same covariance matrix, R, for each phase.

4.2. Initialization and tuning

As explained formerly, before the KFs are applied, a
set of input data are gathered, including the hourly con-
sumption of each customer and the energy delivered by
the MV/LV transformer for the time window available. A
separation is made between single-phase and three-phase
loads. For the last ones, it is assumed that three energy
measurements are available, one per phase, but the phase
labels (a, b or c) are unknown. At the end of the estima-
tion processes, the actual distribution of customers among
the three phases is used to evaluate the performance of
each estimation procedure.

The KF formulations require that an initial estimation
is adopted, which is determined by the state vector x̂0
and the covariance matrix of the initial estimation error,
P0. For the UKF and CKF implementations, all state
variables in the three phases are initialized as 0, assuming a
complete lack of knowledge about their real values. In the
case of EnKF, the samples are given random binary values
as initial estimation, which enhances the convergence of
the estimation algorithm. The covariance matrix, P0 is
considered as a diagonal matrix with Pii = 10 in the three
KF schemes.

The covariance matrices Q and R are defined as diago-
nal matrices, considering typical values of Qii = 10−4 and
Rii = 9 · 10−4 respectively, the last one being equivalent
to assuming a s.d. of 3% for the measurement errors.

For the estimation based on UKF, it is necessary to
define the tunable parameters of the filters introduced in
equations (4) and (7). A study is made in [20] over the
influence of these parameters in the estimation process,
concluding that α = 10−4, β = 2 and κ = 3 − Nc, are
reasonable values for good estimation results.

Regarding the EnKF, the number of samples in the
ensemble is taken as N = 10 · Nc so that it can suit the
different sizes of the state vector.

4.3. Candidate selection and assignment

Once the three parallel estimators have provided a cus-
tomer distribution for their corresponding phase, a single
consumption is assigned and removed from the subsequent
estimation processes. The candidate selection at each it-
eration of the CPI procedure is based on the estimated
values of the state variables, x̂pi , and the covariance of
their estimation error, Pii.

Forcing the state variables to be only 0 or 1, as required
by the nature of the problem in hand, would involve equal-
ity constraints of the form x̂ · (x̂ − 1) = 0. However, the
application of the KF estimation algorithms to such non-
convex model is prone to convergence problems. For this
reason, the approach proposed in this work to enforce the
binary character of the state variables relies on the con-
fidence level of a given consumption being associated to
a certain phase and not to the others. This is quantified
through the so-called phase confidence factors, Cpi , calcu-
lated with the probability density function (PDF) of the
state variables, as follows.

First, the cumulative density function for x̂pi > 0.5,
denoted as Mp

i , is calculated as follows:
Mp
i = 1√

2·π·Pii

∫∞
0.5
e
−

(x−x̂
p
i
)2

2·Pii dx

p = a, b, c
i = 1, ..., Nc

Since Mp
i provides information on the discrete value

associated to the corresponding state variable, this coeffi-
cient is called phase discretization factor. Figure 3 includes
a graphic representation of this factor, corresponding with
the shaded area in the Gaussian density function, consid-
ering 0.5 as lower limit.

Then, for each energy consumption curve i, the phase
confidence factor combine the information derived from
the three phases of the corresponding load through the
following expression:

Cai = Ma
i · (1−M b

i ) · (1−M c
i )

Cbi = M b
i · (1−M c

i ) · (1−Ma
i )

Cci = M c
i · (1−Ma

i ) · (1−M b
i )

i = 1, ..., Nc

The maximum value of the phase confidence factors Cpi
is selected, which determines the consumption i with the
highest probability of being associated to the phase p and
not associated to the other phases.

Finally, once a consumption is selected using the previ-
ously defined phase confidence factors, the three variables
associated with that customer are assigned integer values
as follows:
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Figure 3: Representation of Mp
i

• If the consumption is related to a single-phase client,
x̂pi = 1 for the phase the client is connected to, and
x̂pi = 0 for the other two phases.

• For three-phase clients, assume without loss of gen-
erality that the consumption i is related to the phase
a. Then, x̂ai = 1, x̂bi = 0 and x̂ci = 0, as in the case of
single-phase customers. Additionally, as two energy
consumptions from a certain three-phase load can-
not be associated to the same phase, the variables
x̂ai+1 and x̂ai+2 are set to 0.

4.4. Update results

If all the loads have been assigned, then the estima-
tion process ends. Otherwise, the state variables and the
system input are updated.

For each filter, the state variables of the assigned con-
sumptions are extracted from the state vector x and in-
troduced as part of the system input, so that the number
of unassigned consumers Nc is reduced accordingly. The
estimation process is then repeated with the remaining
consumers until Nc = 0, meaning that the final estimation
result has been achieved.

5. Case studies

In this section, the proposed KF formulations are com-
pared on several case studies, which can be grouped into
four different scenarios.

By performing a series of preliminary tests in which the
percentages of three-phase loads range from 10 to 30%, no
significant differences have been observed in the perfor-
mance of the proposed methodology. For this reason, as
stated above, 20% of three-phase customers has been as-
sumed in all scenarios.

5.1. Scenario I: Original measurements

In this scenario, the actual consumption is used for the
KF-based estimation, assuming that all the measurements
are correctly obtained.

The performance of UKF and CKF with increasing
number of loads is shown in Tables 1 and 2, respectively.
Note that, while both estimators correctly assign 100% of
customers for Nc = 50, the behavior of the UKF deterio-
rates faster as the number of loads increases.

Consumption Correct Wrong Percentage
curves assignments assignments

50 50 0 100%
100 95 5 95%
200 181 19 90.5%
300 216 84 72%
400 233 167 58.25%

Table 1: Estimation results for the UKF. Scenario I

Consumption Correct Wrong Percentage
curves assignments assignments

50 50 0 100%
100 100 0 100%
200 195 5 97.5%
300 262 38 87.33%
400 313 87 78.25%

Table 2: Estimation results for the CKF. Scenario I

Consumption Correct Wrong Percentage
curves assignments assignments

50 50 0 100%
100 100 0 100%
200 200 0 100%
300 283 17 94.33%
400 346 54 86.5%

Table 3: Estimation results for the EnKF. Scenario I

As shown in Table 3, the EnKF response to increasing
system sizes is better than that of the other formulations,
which confirms the expected behavior of this KF scheme
for high-dimensional problems.

The convergence of the estimation processes is not only
determined by the value of x̂pi , but also by the covariance
of the estimation error for each state variable, Pii. An il-
lustrative example is shown in Figure 4, representing the
PDFs obtained for the three state variables of a certain
single-phase consumer, given the values of x̂pi and Pii from
the KF-based estimation process. The phase discretiza-
tion factors, Mp

i , corresponding to the shaded areas in
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the graphics, and their numeric values are included in the
respective legends. In this particular case the computed
values of the phase confidence factors are Cai = 0.014,
Cbi = 0.711 and Cci = 0.001, meaning a confidence of 0.711
that the consumer is associated to phase b. This value
would be compared with those of the rest of the clients in
order to obtain the selected candidate in the corresponding
iteration of the proposed methodology.

Finally, in order to illustrate the evolution of the phase
confidence factor, Cpi , Figure 5 represents this coefficient
in descending order at different stages of the estimation
process for 100 loads (i.e., 300 Cpi factors), using the EnKF
formulation. It can be noticed that the maximum of the
confidence factors, used to select the next candidate at the
corresponding iteration, is close to 1 in all cases.

In the top graph of Figure 5, when the whole set of
100 loads is still unassigned, a large number of phase con-
fidence factors remain with a small value (Cpi = 0.125), in
accordance to the common initial value Mp

i = 0.5 adopted
for the three-phase discretization factors, which means a
complete lack of information, at this early stage of the it-
erative process, on the phase to which those consumption
curves should be associated. Then, as more loads are as-
signed, the coefficients of the remaining loads more clearly
show a trend towards 1 or 0 (about one third tends to 1
whereas the remaining two thirds tend to 0).
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Figure 4: Probability density functions for a sample consumer

5.2. Scenario II: Analysis of the required amount of data

For the results shown above, hourly smart meter read-
ings for 20 days are used, leading to 480 total energy mea-
surements for each consumer. This section analyzes the
quality of the estimation as the number of available mea-
surements decreases. Table 4 summarizes the performance
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Figure 5: Evolution of the phase confidence factor at different stages

of the three estimators for the case in which Nc = 200
consumption curves (Ns = 116 single-phase and Nt = 28
three-phase customers).

Available UKF CKF EnKF
data Hit Rate (%) Hit Rate (%) Hit Rate (%)

480 90.5 97.5 100
400 90.5 97.5 100
300 90 96 100
200 85 90 95
100 67 70 72

Table 4: Estimation results for different KF formulations. Scenario II

Those results suggest a deterioration of the perfor-
mance of the KF-based estimation techniques when the
number of available measurements is lower than 200 (around
8 days) in this particular scenario. Further tests with feed-
ers comprising different numbers of customers show that
the required number of measurement snapshots increases
with the number of loads, as intuitively expected. For in-
stance, for Nc = 100 (one half of that shown in Table 4),
the success rate of the three estimators does not deteri-
orate substantially, even when only 100 energy measure-
ments (around 4 days) are considered for each load.

5.3. Scenario III: Noisy measurements

The performance of the different KF formulations is
evaluated in a realistic scenario where errors in the mea-
surements are considered. As the objective of these case
studies is to determine the robustness of the KF schemes
against measurement errors, a relatively low number of
loads is considered, namely Ns = 58 single-phase and
Nt = 14 three-phase clients, which leads to a total of
Nc = 100 consumption curves.
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Gaussian noise is artificially added to each measure-
ment after the load flow is computed. The rates of cor-
rect phase-to-customer assignments for increasing mea-
surement errors are summarized in Table 5 for the three
estimators.

Noise UKF CKF EnKF
level Hit Rate (%) Hit Rate (%) Hit Rate (%)

1% 95 100 100
2% 92 96 100
3% 89 93 98
5% 83 89 92

Table 5: Estimation results for different KF formulations. Scenario III

In light of those results, it can be concluded, also as ex-
pected, that the number of correct assignments decreases
with increasing measurement noise, for every KF formula-
tion, being the robustness of the CKF and EnKF similar,
superior in any case to that of the UKF formulation. Nev-
ertheless, all formulations show acceptable results when
typical noise levels are considered in the measurements.

5.4. Scenario IV: Model errors

In the proposed implementation of the KF for the CPI
problem, a simplified loss model is considered for which
the value of the conductor resistance per unit length, r, is
required as per equation (34). In this scenario, the perfor-
mance of the different KF formulations is evaluated when
errors in r are considered.

For the same number of customers as in Scenario III,
Table 6 summarizes the rates of correct phase-to-customer
assignments for errors in r ranging from 5 to 20%.

Error UKF CKF EnKF
in r Hit Rate (%) Hit Rate (%) Hit Rate (%)

5% 95 100 100
10% 91 95 98
15% 86 91 95
20% 80 84 89

Table 6: Estimation results for different KF formulations. Scenario IV

It can be concluded that the results remain acceptable,
at least for the EnKF, when the assumed resistance error
does not exceed 10%.

6. Comparison with existing methods

Considering the nature of the information on which
the proposed KF methods are based, a comparison can be
easily made with the performance of the methods proposed
in [7], where a LASSO-based technique is applied to the
CPI problem using exclusively energy consumption curves
obtained from smart meters, and in [8], where PCA is
considered for the same purpose. Different scenarios are
considered for the comparison, with increasing number of

consumers and 1% s.d. in the measurement errors for all
cases.

The rate of correct assignments for each method in the
different cases studied are summarized in Table 7, where
it is observed that:

• The performance of the PCA method is similar to
that of the UKF in all the studied scenarios.

• The LASSO-based method has proven to be more
sensitive to the number of loads than the CKF and
the EnKF formulations, being the success rates of
the three techniques very close for Nc ≤ 200.

• The results obtained by the CKF and the EnKF
schemes are substantially better when the number
of loads increases, as can be noticed particularly for
Nc = 400.

Number of
clients PCA LASSO UKF CKF EnKF

50 100 100 100 100 100
100 100 100 95 100 100
200 92 100 90.5 97 100
300 72.67 87.67 71 86.33 94
400 60.25 71.75 57.75 78.25 86.5

Table 7: Rate of correct assignments for the PCA, the LASSO-based
and the proposed KF-based methods

7. Conclusions

In this paper, a technique based on Kalman filtering
and smart meters information is presented to identify the
electrical phase which individual loads are connected to in
distribution grids. For this purpose, the performance of
three KF schemes, UKF, CKF and EnKF, is tested and
compared.

The proposed estimation algorithm iteratively selects
the customer with the highest probability to be connected
to a certain phase, based on the estimated value of the
corresponding state variable and the covariance of the es-
timation error. This way of handling binary variables pre-
vents the computational problems potentially arising by
the enforcement of the customary equality constraints, and
might find application in other binary-constrained prob-
lems.

Four separate scenarios have been considered to test
the accuracy and robustness of the KF formulation for
feeders with increasing number of loads and increasing
measurement and model errors. The amount of measure-
ments required for a good performance of the algorithm
is also analyzed. From the results obtained, the following
conclusions are drawn:
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• The UKF shows a poor behavior as the number of
loads increases, achieving unacceptable success rates
(< 60%) when 400 customers are considered. Ad-
ditionally, the robustness of this formulation in the
presence of wrong measurements is weak.

• The performance of the CKF is better than that of
the UKF, showing a lower sensitivity to the state
vector size and wrong data.

• The EnKF has proven to be the best of the three
KF schemes considered for the CPI problem, both in
terms of success rates and sensitivity to noisy mea-
surements.

• As expected, the performance of the KF-based schemes
is affected by the number of energy measurements
available, relative to the number of loads. The more
loads in the same feeder, the more measurements are
needed to correctly ascertain the phase connection.

A comparison of the CKF and EnKF with published
methods, based on PCA and LASSO, has shown that the
latter provide similar results to those of the KF only when
a reduced number of loads is considered.

Further research efforts will be devoted to redesign the
proposed KF-based procedure, so that it can take advan-
tage of additional electrical quantities, such as P , Q and
V , potentially available in the context of advanced DMS.
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