
International Journal of Mechanical Sciences 268 (2024) 109036

A
0
n

Contents lists available at ScienceDirect

International Journal of Mechanical Sciences

journal homepage: www.elsevier.com/locate/ijmecsci

The dependent coordinates in the linearization of constrained multibody
systems: Handling and elimination
A.G. Agúndez a,∗, D. García-Vallejo a, E. Freire b, A. Mikkola c

a Department of Mechanical Engineering and Manufacturing, Universidad de Sevilla, Seville, Spain
b Department of Applied Mathematics II, Universidad de Sevilla, Seville, Spain
c Department of Mechanical Engineering, Lappeenranta University of Technology, Lappeenranta, Finland

A R T I C L E I N F O

Keywords:
Constrained multibody system
Linear stability analysis
Dependent coordinate elimination
Linearization approaches overview
Bicycle
e-scooter

A B S T R A C T

In this paper, the handling of the dependent coordinates in the linearization of constrained multibody systems
is clarified. To this end, a brief but comprehensive overview of linearization approaches used in the field of
Multibody System Dynamics is presented. These procedures are illustrated by using a common notation and
classified into four groups, depending on the initial form of the nonlinear equations of motion and the selection
of the generalized coordinates (a redundant or a minimal set). The handling of the dependent coordinates in
each of the procedures is discussed. The linearized equations of motion of constrained multibody systems are
of great importance in several applications, such as linear stability and modal analyses, the design of linear
state feedback controllers or the building of state and input estimators, like Kalman filters. When modeling
a constrained multibody system, a number of coordinates greater than the number of degrees of freedom of
the system is usually used. While some linearization approaches make use of the complete set of coordinates,
several procedures are based on a coordinate partition in terms of independent and dependent coordinates
to reduce the number of linearized equations of motion. In this latter scenario, the role of the dependent
coordinates in the linearization is important and, in a general case, these dependent coordinates cannot be
ignored to obtain the correct linearized equations of motion. This aspect, which may seem obvious, is not
straightforward and is addressed in this work. The importance of considering the set of dependent coordinates
in the linearization is demonstrated with a well-acknowledged bicycle benchmark multibody model and an
electric kickscooter multibody model with rear and front suspensions. To this end, the Jacobian matrix and
the linear stability results of these case studies are computed by considering different choices of independent
and dependent coordinates.
1. Introduction

The equations of motion of constrained multibody systems are usu-
ally given by nonlinear Differential-Algebraic Equations (DAE) systems,
whose correct linearization poses a challenge when the multibody
system model consists of a large number of coordinates and constraints.
The DAE system can be reduced to a system of Ordinary Differential
Equations (ODE) by resorting to a coordinate partition in terms of inde-
pendent and dependent coordinates [1–3]. In this case, the linearization
must be conducted carefully and, in general, the dependent coordinates
cannot be ignored in the computation of the correct linearized equa-
tions. In the field of Multibody System Dynamics, the number of works
devoted to the linearization of the equations of motion has increased in
recent years, due to its importance, for example, in the design of con-
trollers and state observers. These linearization approaches differ from
each other depending on the initial form of the nonlinear equations
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of motion, the selection of the generalized coordinates that they use (a
redundant or a minimal set) or the structure of the linearized equations
of motion, which is highly dependent on the selection of coordinates.

A first group of works intends to linearize the index-3 DAE equations
of motion. The work of Negrut et al. [4] presents a linearization
approach suitable for heterogeneous systems, that include nonholo-
nomic constraints, friction, flexible bodies or user-defined differential
equations. In this procedure, the governing equations are augmented
and a set of sensitivities that provide the linearization of interest are
computed. The approach was numerically tested with a nonuniform
helicopter blade, a washing machine, an all terrain vehicle and a
rotor-stator multibody models. Escalona et al. [5,6] also linearized the
index-3 DAE equations of motion. In [5], the stability analysis of the
steady curving of vehicles is addressed. An alternative stability analysis
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to the use of Floquet’s theory, based on two coordinate projections,
is presented. In particular, the linear stability of the circular steady
motion of a simple wheeled mechanism is analyzed. The same approach
is used in [6] to linearize the equations of motion of railroad vehicles
moving on curved tracks. Another procedure devoted to the lineariza-
tion of the index-3 DAE system is described by González et al. [7].
This approach, known as Redundant Coordinate Set (RCS) Formulation
in [7], leads to the same structure of the linearized equations motion
obtained in [5,6]. The properties of the approach are shown with
the linearization of two numerical examples in static equilibrium: a
multiple loop four-bar linkage and a flexible double pendulum. The
work of González et al. [7] presents two other linearization procedures,
whose properties are also assessed with these numerical examples.
Recently, Pappalardo et al. [8] presented an approach to linearize the
index-3 DAE form of the equations of motion of multibody systems with
holonomic and nonholonomic constraints. The use of the procedure is
illustrated with different numerical examples of multibody systems: a
two-dimensional physical pendulum and wheeled inverted pendulum, a
spinning top, a disk rolling without slipping on a horizontal plane and a
Watt centrifugal governor model. The approach is also revisited in [9]
and applied to study the stability of a bicycle multibody model [10].
Moreover, Xiong et al. [11] linearized the index-3 DAE equations of
motion of the Whipple bicycle, moving on a revolution surface, along
its circular steady motion. The resulting linearized equations of motion
present the same structure obtained with the RCS approach of González
et al. [7] and the approach of Escalona et al. [5,6]. Nevertheless,
since these approaches result in a structure of the linearized system
of equations that hinders the performance of a standard eigenvalue
analysis, a reduced system of first-order ODEs is derived in [11]. All
the linearization procedures of this group make use of a redundant set
of coordinates.

A second group of approaches is based on the linearization of the
index-1 form of the DAE system. The index-1 form is obtained by com-
puting the constraints at acceleration level and assembling them with
the dynamic equilibrium equations. A straightforward way to carry
out the linearization of these nonlinear equations of motion is based
on the isolation of the acceleration vector. Once the accelerations are
obtained, a linear ODE system can be built. Nevertheless, this approach
is impractical for complex multibody systems with large number of
bodies, coordinates and constraints, due to the high computational cost
required. Van Khang et al. [12] proposed a symbolic linearization pro-
cedure using redundant coordinates. The correctness of the approach
is verified with a four-bar mechanism with an elastic connecting link.
Agúndez et al. [13] developed three general procedures to linearize
the equations of motion of constrained multibody systems. Among the
procedures presented in [13], a direct linearization of the index-1 form
of the DAE system of equations was presented. This procedure was
validated with the stability results of the bicycle benchmark of Meijaard
et al. [14].

The reduction of the DAE system to an ODE system, by using a
coordinate partition in terms of independent and dependent coordi-
nates, gives rise to a third group of linearization approaches. Some
works describing the transformation of the nonlinear equations of
motion of a constrained dynamical system in DAE form into an ODE
system, expressed in terms of the independent coordinates, are the
works of Wehage and Haug [1] and García de Jalón and Bayo [3]. The
linearization of this ODE system of equations is performed by Cuadrado
et al. [15,16] to compute the state-space Jacobian matrix, required
for building continuous extended Kalman filters (CEKF). In [15,16],
the derivatives of the independent accelerations with respect to the
independent coordinates and velocities are required, and the size of
the state-space Jacobian matrix is twice the number of degrees of
freedom of the multibody system. These derivatives are also necessary
in the construction of the state-transition matrix of discrete extended
Kalman filters (DEKF) [17–19] and error-state extended Kalman fil-
2

ters [17,18,20–22]. A similar result to that of [15,16] is obtained by
González et al. [7] with the procedure known as Minimal Coordinate
Set (MCS) Formulation. In this work, a further development of the
derivatives of the independent accelerations with respect to the in-
dependent positions and velocities are presented. In all these works,
the state-space Jacobian matrix includes only the partial derivatives
with respect to the independent positions and velocities. Neverthe-
less, some explanatory comments regarding the role of the dependent
coordinates in these linearization approaches are required to com-
pute the correct linearized equations of motion. As stated by Peterson
et al. [23], where a linearization procedure is developed for equations
of motion generated by Kane’s method [24], the dependent coordinates
and dependent velocities are functions of the independent coordinates
and independent velocities. Therefore, the dependent states cannot
be eliminated in general without considering this dependency with
the independent ones. To the best of the authors’ knowledge, no
previous author makes this explicitly clear when presenting procedures
for symbolically linearizing the equations of motion of constrained
dynamical systems [23]. In some particular cases, one can intuitively
find a set of independent coordinates that allows for eliminating the
derivatives with respect to the dependent ones in the linearization. For
example, Escalona et al. [25] analyzed the linear stability of the steady
forward motion of a bicycle multibody model by resorting to a similar
procedure to those of [15,16], considering only the derivatives with
respect to the independent coordinates in the linearization. In [25], it
is specified that the dependent coordinates are considered as null in
the linearization, since, in the particular case of the bicycle multibody
model, they do not have influence on the linear stability. Agúndez
et al. [13] also performed the linearization of this ODE system. In
this case, it is explicitly stated that the dependent coordinates are not
ignored in the linearization and the resulting Jacobian matrix includes
the derivatives with respect to the dependent coordinates. Moreover,
a counterpart approach, which significantly reduces the computational
cost for the computation of the Jacobian matrix, was presented in [13].
This counterpart approach also included the blocks associated with the
dependent coordinates in the Jacobian matrix. While the approaches
found in [7,15–17,25] transform the original nonlinear DAE system into
a nonlinear ODE system of equations by using the coordinate partition,
and subsequently perform the linearization, the counterpart approaches
presented in [13] first linearize the DAE system and then carry out the
reduction to a linear ODE system. The correctness of this procedure was
validated with the linear stability results of the bicycle benchmark of
Meijaard et al. [14].

Lastly, a fourth group of linearization approaches can be considered.
As in the third group, these procedures make use of a coordinate
partition in terms of independent and dependent coordinates. Never-
theless, these approaches achieve a linear ODE system of equations
that is only expressed in terms of the independent coordinates. In this
case, the influence of the dependent coordinates on the linearization
is considered by resorting to the linearized constraints, which allows
for obtaining an expression of the dependent coordinates in terms of
the independent ones. In the case of a multibody system constrained
only by holonomic constraints, the Jacobian matrix only includes the
derivatives with respect to the independent variables, without ignoring
the dependent ones, and presents a size twice the number of degrees
of freedom of the multibody system (as in [15–17]). Bae [26] presents
a linearization procedure in which the perturbed constraint equations
are solved for variations of all the variables in terms of the inde-
pendent ones. Subsequently, these relations are substituted into the
variational dynamic equations to obtain the linearized equations of
motion in terms of the independent variations. Agúndez et al. [13]
proposed two linearization approaches that fall within this group. The
first procedure transforms the original nonlinear DAE system into a
nonlinear ODE system of equations by using a coordinate partition.
Next, the linearization of the ODE system is carried out, including the
dependency of the dependent coordinates with the independent ones by

using the linearized holonomic constraints. A counterpart approach is
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developed in [13], where the DAE system is first linearized, and then
a reduction to a linear ODE system is performed with the coordinate
partition, greatly reducing the computational cost. This strategy is also
followed by Cossalter et al. [27], where a procedure for evaluating the
stability of steady state solutions in straight running and on a curve
of sports motorcycles is presented. The linearization approaches of this
group achieve the maximum possible reduction of the Jacobian matrix.

In addition to the approaches already mentioned, there exist alter-
native procedures to linearize the equations of motion of multibody
systems. An example is the third procedure presented by González et al.
in [7], so-called Unconstrained Coordinate Set (UCS) Formulation. This
approach is based on the Penalty method, in which a penalty-based
relaxation of the constraints allows for transforming a DAE system
into a set of ODEs [28]. Moreover, González et al. [29] identified two
types of linearization problems: heavily constrained multibody systems,
with a number of degrees of freedom much lower than the number of
kinematic variables, and systems in which both numbers are similar.
Other works are based on the linearization of the equations of motion
of constrained multibody systems without Lagrange multipliers. Xiong
et al. [30] derived the Gibbs–Appell equations [31,32] for the dynamic
analysis of the Whipple bicycle, obtaining a minimal set of equations
of motion without Lagrange multipliers. These equations are linearized
and the stability analyses of the steady straight-line motion and the
circular steady solution are performed. Xiong et al. [33] also applied
Voronets equations [34] to the Whipple bicycle moving on a revolution
surface, to obtain a seven-dimensional reduced dynamic system on the
reduced constraint space. Two types of relative equilibria (static and
dynamic) were studied and the stability of the bicycle was discussed.
As previously mentioned, a linearization approach based on Kane’s
equations of motion [24] is presented by Peterson et al. [23]. More-
over, Saccon et al. [35] proposed, from the standpoint of Geometric
Mechanics, a recursive and singularity-free linearization procedure for
moving-based robot systems.

The linearized equations of multibody systems are also computed
in other works devoted to the development of Kalman filters [36–
38] and order reduction methods [39], where the system is modeled
by using the nonlinear finite elements of absolute nodal coordinate
formulation and then locally linearized at a series of quasi-static equi-
librium configurations. The stability of complex multibody systems is
addressed by Bauchau et al. [40,41], and Floquet theory [42,43] is
the preferred methodology for assessing the linear stability of systems
with periodic coefficients [44,45]. This kind of analysis requires the
evaluation of the so-called Floquet multipliers, based on a monodromy
matrix which follows by numerical integration of a linearized set of
equations. Additional works include stability analyses of multibody
systems as motorcycles [27,46–53], the waveboard [54,55] and other
vehicles [56–59]. The stability analysis of nonlinear multibody sys-
tems, as rotorcraft systems, can be found in several works of Masarati
et al. [60–66], which make use of Lyapunov characteristic exponents.

In a context of boom in electric single-person vehicles, bicycles and
electric kickscooters play a major role in urban microbility. A review
of history, development, design, research and rules for utilization of
electric bicycles in some world areas was addressed by Hung et al. [67].
Ventura et al. [68] proposed a novel framework to assess the vibra-
tional behavior of electric bicycles and kickscooters when driven by
different users and exposed to the pavement irregularities. Eccarius
et al. [69] presented a review of consumer adoption of electric motorcy-
cles, and Manrique et al. [70] reviewed the main aspects concerning the
kinematics, dynamics and control of two-wheeled vehicles, described
within the multibody formulation. Several works in the literature are
devoted to the stability of bicycles [14,71–78], the study of safety and
injuries resulting from the use of electric kickscooters [79–86] and the
stability of electric kickscooters [87–89]. As case studies to illustrate
the role of the dependent coordinates in the linearization procedures
outlined in this work, the linear stability results of a bicycle and an
3

e-scooter multibody model have been utilized.
The novelty of this work lies in clarifying the handling of the
dependent coordinates in the linearization of the equations of motion
of multibody systems with holonomic and nonholonomic constraints.
Despite the dependent coordinates can be ignored in some particular
cases, they should generally be considered to compute the correct
linearized equations of motion. To this end, a first contribution of this
study is the presentation of a brief but comprehensive overview with
some of the most notable linearization approaches developed in the
field of Multibody System Dynamics, for constrained multibody systems
with Lagrange multipliers. To the best knowledge of the authors, this
has not been done in any previous work of the literature and constitutes
an useful contribution for the MBS community, since the linearization
approaches of previous works are summarized and illustrated by using
a common notation. The role of the dependent coordinates in each of
these procedures is discussed. The linearization procedures are clas-
sified into four groups: procedures based on the linearization of the
index-3 DAE system, using a redundant set of coordinates; procedures
based on the linearization of the index-1 DAE system, considering a re-
dundant set of coordinates; procedures based on a coordinate partition
in terms of independent and dependent coordinates, which lead to a
reduced linear ODE system; and procedures that lead to the linearized
equations of motion in ODE form, only expressed in terms of the
independent coordinates, by means of the elimination of the holonomic
constraints. It is important to highlight that this work is not intended
to present a survey with all the existing linearization approaches that
can be found in the literature of Multibody System Dynamics and
a comparison between them. Another important contribution of this
study is the detailed demonstration of the importance of considering
the dependent coordinates in those linearization procedures that rely
on a coordinate partition in terms of independent and dependent
coordinates. This is illustrated through the linear stability results of a
well-acknowledged bicycle benchmark multibody model and an electric
kickscooter multibody model with rear and front suspensions. In this
regard, different choices of independent and dependent coordinates are
considered when computing the Jacobian matrices for both the bicycle
and e-scooter.

The paper is organized as follows. Following the Introduction, Sec-
tion 2 presents different forms of the nonlinear equations of motion of
multibody systems, which give rise to the classification of the lineariza-
tion procedures presented in Section 3. The main steps and the handling
of the dependent coordinates in each approach are summarized in Sec-
tion 3. Section 4 shows the importance of considering the derivatives
with respect to the dependent coordinates in the linearization with the
linear stability results of the bicycle and e-scooter multibody models.
Finally, the main conclusions drawn from this work are summarized in
Section 5.

2. Forms of the equations of motion

In this section, different forms of the nonlinear equations of motion
of constrained multibody systems are summarized. These forms of
the equations of motion lead to the classification of the linearization
procedures presented in Section 3. First, the index-3 DAE form of
the equations of motion of a multibody system with holonomic and
nonholonomic constraints is presented. Next, the index-1 DAE form,
given by the dynamic equations and the constraints at acceleration
level, is shown. Subsequently, the DAE system is transformed into an
ODE system of equations by using a coordinate partition in terms of
independent and dependent coordinates. Lastly, this coordinate parti-
tion is also used to obtain a DAE system of equations without Lagrange

multipliers.
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2.1. Index-3 DAE form

The equations of motion of a multibody system, modeled with 𝑛
coordinates, 𝑚 holonomic and 𝑙 nonholonomic constraints, are given
by the following nonlinear index-3 DAE system:

𝑴 (𝒙) �̈� +𝑫T (𝒙)𝜦 = 𝑸 (𝒙, �̇�) , (1)

𝑪 (𝒙) = 𝟎, (2)

𝑪𝑛ℎ (𝒙, �̇�) = 𝑩 (𝒙) �̇� = 𝟎, (3)

where 𝒙 ∈ R𝑛 is the 𝑛×1 vector of coordinates; 𝜦 ∈ R𝑚+𝑙 is the (𝑚+𝑙)×1
vector of Lagrange multipliers; 𝑴 (𝒙) is the 𝑛 × 𝑛 mass matrix; 𝑸 (𝒙, �̇�)
is the 𝑛 × 1 vector of generalized forces; 𝑪 (𝒙) is the 𝑚 × 1 vector of
holonomic constraints; and 𝑪𝑛ℎ (𝒙, �̇�) is the 𝑙×1 vector of nonholonomic
constraints, which are assumed to be linearly dependent on velocities
in this work. In this study, it is assumed that the constraints are
scleronomic and do not explicitly depend on time. The matrices 𝑩 (𝒙)
and 𝑫 (𝒙) are 𝑙 × 𝑛 and (𝑚 + 𝑙) × 𝑛, respectively, and can be computed
as:

𝑩 (𝒙) =
𝜕𝑪𝑛ℎ (𝒙, �̇�)

𝜕�̇�
, 𝑫 (𝒙) =

(

𝑪𝒙 (𝒙)
𝑩 (𝒙)

)

, (4)

where 𝑪𝒙 = 𝜕𝑪
𝜕𝒙 .

.2. Index-1 DAE system

By differentiating the holonomic constraints in Eq. (2) with respect
o time, and assembling them with the nonholonomic constraints of
q. (3), the following index-2 DAE system is obtained:

(𝒙) �̈� +𝑫T (𝒙)𝜦 = 𝑸 (𝒙, �̇�) , (5)

(𝒙) �̇� = 𝟎. (6)

he velocity constraints in Eq. (6) can be differentiated once with
espect to time, leading to the index-1 DAE system:

(𝒙) �̈� +𝑫T (𝒙)𝜦 = 𝑸 (𝒙, �̇�) ,

(𝒙) �̈� = 𝑸𝑑 (𝒙, �̇�) , (7)

here 𝑸𝑑 (𝒙, �̇�) = −
𝜕 (𝑫 (𝒙) �̇�)

𝜕𝒙
�̇�.

Alternately, Eqs. (7) can be written as:

𝑴 (𝒙) 𝑫T (𝒙)
𝑫 (𝒙) 𝟎(𝑚+𝑙)

)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑨(𝒙)

(

�̈�
𝜦

)

=
(

𝑸 (𝒙, �̇�)
𝑸𝑑 (𝒙, �̇�)

)

, (8)

here 𝟎(𝑚+𝑙) is a null square matrix of size 𝑚 + 𝑙.

.3. ODE system with coordinate partition in terms of independent and
ependent coordinates

The equations of motion given by Eqs. (1)–(3) can be reduced by
eans of a coordinate partition at velocity level, based on 𝑛 − 𝑚 − 𝑙

ndependent velocities �̇�𝑎𝑖 and 𝑚 + 𝑙 dependent velocities �̇�𝑑𝑑 :

̇ =
(

�̇�𝑎𝑖 �̇�𝑑𝑑
)T . (9)

imilarly, the corresponding partition at position level is defined:

=
(

𝒙𝑎𝑖 𝒙𝑑𝑑
)T . (10)

y using this coordinate partition in the velocity constraints of Eq. (6),
he following velocity transformation is obtained:

̇ = 𝑻 (𝒙) �̇�𝑎𝑖, (11)

here 𝑻 is a transformation matrix, given by:

(𝒙) =

(

𝑰 (𝑛−𝑚−𝑙)
( )−1

)

. (12)
4

− 𝑫𝑑𝑑 (𝒙) 𝑫𝑎𝑖 (𝒙)
n Eq. (12), 𝑰 (𝑛−𝑚−𝑙) is the identity matrix of size 𝑛 − 𝑚 − 𝑙; 𝑫𝑑𝑑 (𝒙)
s a (𝑚 + 𝑙)-square matrix, formed by the columns of matrix 𝑫 (𝒙)
orresponding to the dependent coordinates; and 𝑫𝑎𝑖 (𝒙) is a (𝑚 + 𝑙) ×
𝑛 − 𝑚 − 𝑙) matrix, defined by the columns of 𝑫 (𝒙) associated with
he independent coordinates. The selection of independent coordinates
an be obtained, in practice, using Gaussian elimination with column
ivoting. Note that 𝑻 (𝒙) is the null-space of 𝑫 (𝒙), and therefore:
T (𝒙)𝑫T (𝒙) = 𝟎. (13)

ifferentiating with respect to time the velocity transformation of
q. (11), the following acceleration transformation is obtained:

̈ = 𝑻 (𝒙) �̈�𝑎𝑖 + �̇� (𝒙) �̇�𝑎𝑖, (14)

ith �̇� (𝒙) �̇�𝑎𝑖 =
𝜕(𝑻 �̇�𝑎𝑖)
𝜕𝒙 �̇�.

Premultiplying the dynamic Eqs. (5) by 𝑻 T (𝒙), and using the veloc-
ty and acceleration transformations of Eqs. (11) and (14), respectively,
n the dynamic Eqs. (5), the following reduced equations of motion in
DE form are obtained:
(

𝒙𝑎𝑖,𝒙𝑑𝑑
)

�̈�𝑎𝑖 = 𝒇
(

𝒙𝑎𝑖,𝒙𝑑𝑑 , �̇�𝑎𝑖
)

, (15)

̇ 𝑑𝑑 = 𝑯
(

𝒙𝑎𝑖,𝒙𝑑𝑑
)

�̇�𝑎𝑖, (16)

ith
(

𝒙𝑎𝑖,𝒙𝑑𝑑
)

= 𝑻 T𝑴𝑻 ,

𝒇
(

𝒙𝑎𝑖,𝒙𝑑𝑑 , �̇�𝑎𝑖
)

= 𝑻 T (𝑸 −𝑴�̇� �̇�𝑎𝑖
)

,

𝑯
(

𝒙𝑎𝑖,𝒙𝑑𝑑
)

= −
(

𝑫𝑑𝑑
)−1 𝑫𝑎𝑖.

(17)

Note that the Lagrange multipliers 𝜦 of Eq. (5) are eliminated in
Eq. (15) by virtue of Eq. (13).

An important clarification regarding the ODE equations of motion
given by Eqs. (15)–(16) must be made. Note that, despite expressing
the complete set of velocities and accelerations as a function of the
independent velocities and accelerations by means of Eqs. (11) and
(14), the equations of motion (15)–(16) are still a function of the depen-
dent coordinates 𝒙𝑑𝑑 . In general, this dependency at position level with
the dependent coordinates cannot be eliminated, since the holonomic
constraints are nonlinear algebraic equations that hinder obtaining
an explicit expression of the dependent coordinates as a function of
the independent ones. Moreover, the nonholonomic constraints are
non-integrable first-order differential equations, which also impedes
obtaining the dependent coordinates as a function of the independent
ones. Therefore, the first-order differential Eqs. (16) are required.

2.4. Equations of motion in DAE form without Lagrange multipliers

Due to the 𝑚 nonlinear holonomic constraints of Eq. (2) in the DAE
system given by Eqs. (1)–(3), the 𝑛-coordinates vector can be parti-
tioned in 𝑛−𝑚 admissible coordinates 𝒙𝑎 and 𝑚 dependent coordinates
𝒙𝑑 , and therefore 𝒙 =

(

𝒙𝑎 𝒙𝑑
)T. Moreover, the 𝑙 nonholonomic

constraints in Eq. (3) allow the partition of the admissible velocities �̇�𝑎
in 𝑙 dependent admissible velocities �̇�𝑎𝑑 and 𝑛 − 𝑚 − 𝑙 independent ad-
missible velocities �̇�𝑎𝑖, and thus �̇�𝑎 =

(

�̇�𝑎𝑖 �̇�𝑎𝑑
)T. The consideration

of the same partition at position level leads to:

𝒙 =
(

𝒙𝑎𝑖 𝒙𝑎𝑑 𝒙𝑑
)T . (18)

The admissible dependent coordinates 𝒙𝑎𝑑 and the dependent coordi-
nates 𝒙𝑑 constitute the set 𝒙𝑑𝑑 =

(

𝒙𝑎𝑑 𝒙𝑑
)T, which was defined in

Eq. (10).
The time derivative of the holonomic constraints in Eq. (2) leads to

the following transformation at velocity level:

𝑪𝒙𝑑 (𝒙) �̇�𝑑 + 𝑪𝒙𝑎 (𝒙) �̇�𝑎 = 𝟎 → �̇�𝑑 = −
(

𝑪𝒙𝑑 (𝒙)
)−1

𝑪𝒙𝑎 (𝒙) �̇�𝑎, (19)

nd, therefore:

̇ = 𝑻 ℎ (𝒙) �̇�𝑎, with 𝑻 ℎ (𝒙) =

(

𝑰 (𝑛−𝑚)

−
(

𝑪 (𝒙)
)−1

𝑪 (𝒙)

)

. (20)

𝒙𝑑 𝒙𝑎
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Furthermore, the use of Eq. (20) in the nonholonomic constraints (3)
leads to:

𝑩 (𝒙) �̇� = 𝟎 → 𝑩 (𝒙)𝑻 ℎ (𝒙) �̇�𝑎 = 𝟎. (21)

Defining �̄� (𝒙) = 𝑩 (𝒙)𝑻 ℎ (𝒙), the following transformation is found:

�̄�𝑎𝑑 (𝒙) �̇�𝑎𝑑 + �̄�𝑎𝑖 (𝒙) �̇�𝑎𝑖 = 𝟎 → �̇�𝑎𝑑 = −
(

�̄�𝑎𝑑 (𝒙)
)−1 �̄�𝑎𝑖 (𝒙) �̇�𝑎𝑖. (22)

Therefore, the equations of motion of the multibody system can be
written as:

𝒎
(

𝒙𝑎𝑖,𝒙𝑎𝑑 ,𝒙𝑑
)

�̈�𝑎𝑖 = 𝒇
(

𝒙𝑎𝑖,𝒙𝑎𝑑 ,𝒙𝑑 , �̇�𝑎𝑖
)

, (23)

𝑪
(

𝒙𝑎𝑖,𝒙𝑎𝑑 ,𝒙𝑑
)

= 𝟎, (24)

�̇�𝑎𝑑 = 𝑮
(

𝒙𝑎𝑖,𝒙𝑎𝑑 ,𝒙𝑑
)

�̇�𝑎𝑖, (25)

where 𝒎 and 𝒇 were defined in Eqs. (17), and 𝑮
(

𝒙𝑎𝑖,𝒙𝑎𝑑 ,𝒙𝑑
)

=
−
(

�̄�𝑎𝑑
)−1 �̄�𝑎𝑖.

In the DAE system given by Eqs. (23)–(25), Eq. (23) corresponds
to the 𝑛 − 𝑚 − 𝑙 reduced dynamic equations in ODE form presented
in Eq. (15). These dynamic Eqs. (23) are not only a function of the
independent coordinates 𝒙𝑎𝑖 and their time derivatives, but also depend
on the coordinates 𝒙𝑎𝑑 and 𝒙𝑑 . The holonomic constraints (24) take
into account the dependency at position level of the dependent coordi-
nates 𝒙𝑑 with 𝒙𝑎𝑖 and 𝒙𝑎𝑑 . Eq. (25) corresponds to the nonholonomic
constraints, which are non-integrable, and consider the dependency of
the admissible dependent coordinates 𝒙𝑎𝑑 with the independent and
dependent coordinates 𝒙𝑎𝑖 and 𝒙𝑑 .

In absence of nonholonomic constraints, the coordinates 𝒙𝑎𝑑 are not
required and the coordinate partition of Eq. (18) becomes:

𝒙 =
(

𝒙𝑎𝑖 𝒙𝑑
)T . (26)

In this case, the equations of motion (23)–(24) are expressed as:

𝒎
(

𝒙𝑎𝑖,𝒙𝑑
)

�̈�𝑎𝑖 = 𝒇
(

𝒙𝑎𝑖,𝒙𝑑 , �̇�𝑎𝑖
)

, (27)

𝑪
(

𝒙𝑎𝑖,𝒙𝑑
)

= 𝟎. (28)

3. An overview of linearization approaches in multibody system
dynamics

This section provides an overview of linearization approaches in
Multibody System Dynamics. The approaches considered in this work
are summarized in the chart of Fig. 1, which illustrates a classification
into four groups. Group 1 encompasses procedures based on the lin-
earization of the index-3 DAE, given by Eqs. (1)–(3), using a redundant
set of coordinates. The linearization approaches considered in Group 1
are the procedure by Escalona et al. [5,6], the Redundant Coordinate
Set (RCS) approach by González et al. [7], the procedure by Negrut
et al. [4] and the linearization approach by Pappalardo et al. [8,9].
Group 2 comprises approaches based on the linearization of the index-
1 DAE (Eq. (8)), using a redundant set of coordinates. The symbolic
linearization of the index-1 DAE system, the approach by Van Khang
et al. [12] and the first numerical procedure by Agúndez et al. [13] are
considered in Group 2. Next, Group 3 includes linearization procedures
based on the use of a coordinate partition in terms of independent
and dependent coordinates. The procedures by Cuadrado et al. [15,16],
the Minimal Coordinate Set (MCS) approach by González et al. [7],
and the first symbolic and second numerical procedures by Agúndez
et al. [13] are illustrated. Finally, Group 4 consists of procedures based
on coordinate partitioning in terms of independent and dependent co-
ordinates, with holonomic constraints elimination, resulting in a linear
ODE system expressed solely in terms of the independent coordinates.
The procedure by Bae et al. [26], the approach by Cossalter et al. [27]
and the second symbolic and third numerical approaches by Agúndez
et al. [13] are included in Group 4.
5

e

Consider a known reference solution of the DAE system given by
Eqs. (1)–(3), defined by 𝒙0(𝑡), �̇�0(𝑡), �̈�0(𝑡) and 𝜦0(𝑡). Therefore, the
ollowing holds:
(

𝒙0
)

�̈�0 +𝑫T (𝒙0
)

𝜦0 = 𝑸
(

𝒙0, �̇�0
)

,

𝑪
(

𝒙0
)

= 𝟎, (29)
𝑪𝑛ℎ

(

𝒙0, �̇�0
)

= 𝑩
(

𝒙0
)

�̇�0 = 𝟎,

here the time dependence has been omitted for simplicity. The follow-
ng variations with respect to the reference solution are introduced:

̃ = 𝒙 − 𝒙0, ̇̃𝒙 = �̇� − �̇�0,

̈̃ = �̈� − �̈�0, �̃� = 𝜦 −𝜦0. (30)

The linearization approaches presented in this section provide the
inearized equations of motion along this reference solution.

.1. Group 1: procedures based on the linearization of the index-3 DAE
ystem, using a redundant set of coordinates

The first group of linearization approaches is based on the direct lin-
arization of the index-3 DAE system. First, the procedures by Escalona
t al. [5,6] and González et al. [7], under the name of Redundant Co-
rdinate Set (RCS) Formulation in [7], are shown. Since [5–7] develop
he approach for multibody systems with only holonomic constraints,
he linearization procedure is described in this work without including
onholonomic constraints.
Procedure by Escalona et al. [5,6] and González et al. [7] (RCS

ormulation)
Performing the Taylor expansion of Eqs. (1)–(2) with respect to the

eference solution, retaining up to first-order terms and using Eq. (29),
he following linear DAE system is obtained:

(

𝒙0
) ̈̃𝒙 +

𝜕
(

𝑴 (𝒙) �̈�0
)

𝜕𝒙

|

|

|

|

|0
�̃� + 𝑪T

𝒙
(

𝒙0
)

�̃� +
𝜕
(

𝑪T
𝒙 (𝒙)𝜦

0)

𝜕𝒙

|

|

|

|

|0
�̃� =

𝜕𝑸 (𝒙, �̇�)
𝜕𝒙

|

|

|

|0
�̃� +

𝜕𝑸 (𝒙, �̇�)
𝜕�̇�

|

|

|

|0
̇̃𝒙, (31)

𝑪𝒙
(

𝒙0
)

�̃� = 𝟎, (32)

where (⋅)|0 is henceforth used to indicate that the partial derivatives are
valuated for the reference solution. In Eqs. (31) and (32), 𝑪𝒙

(

𝒙0
)

=
𝜕𝑪 (𝒙)
𝜕𝒙

|

|

|

|0
.

Defining �̃� =
(

�̃� ̇̃𝒙 �̃�
)T, the linear DAE system of Eqs. (31)–

32) can be expressed as the first-order ODE system:

0
̇̃𝑿 = 0�̃�, (33)

where 0 and 0 are (2𝑛 + 𝑚) × (2𝑛 + 𝑚) matrices, whose detailed
xpressions can be found in Eqs. (136) and (137) of Appendix A.

As can be seen from the structure of matrix 0 in Eq. (136), this
atrix is singular, since the last 𝑚 rows are null. Therefore, as stated

y Escalona et al. [5,6] and González et al. [7], the system of Eqs. (33)
annot be solved with a standard eigenvalue analysis. Considering a
olution of the form �̃� (𝑡) = 𝑿0𝑒𝜆𝑡, where 𝑿0 is a constant vector, the
eneralized eigenvalue problem associated with the matrices 0 and
0 is:

0 − 𝜆0
)

𝑿0 = 𝟎. (34)

he generalized eigenvalue analysis of the 2𝑛 + 𝑚 linearized Eqs. (33)
eads to 3𝑚 spurious eigenvalues [5–7], among which 2𝑚 are related to
he 𝑚 constrained dependent variables, and 𝑚 are associated with the 𝑚
agrange multipliers. The resulting 2 (𝑛 − 𝑚) eigenvalues correspond to
he spectrum of the constrained problem. In the particular case that the
ultibody system includes 𝑙 nonholonomic constraints, a total of 2𝑛 +
+ 𝑙 eigenvalues are obtained, among which 2 (𝑛 − 𝑚 − 𝑙) correspond

o the spectrum of the constrained problem and 3 (𝑚 + 𝑙) are spurious
igenvalues.
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Fig. 1. Linearization approaches in multibody dynamics considered in this work, classified into four groups. Group 1 (Section 3.1) encompasses the procedures based on the
linearization of the index-3 DAE system, using a redundant set of coordinates. The linearization approaches considered in Group 1 are the procedure by Escalona et al. [5,6],
the Redundant Coordinate Set (RCS) approach by González et al. [7], the procedure by Negrut et al. [4] and the linearization approach by Pappalardo et al. [8,9]. Group 2
(Section 3.2) includes those procedures based on the linearization of the index-1 DAE system, using a redundant set of coordinates. The symbolic linearization of the index-1 DAE
system, the approach by Van Khang et al. [12] and the first numerical procedure by Agúndez et al. [13] are considered in Group 2. Group 3 (Section 3.3) comprises linearization
procedures based on coordinate partitioning in terms of independent and dependent coordinates. The procedures by Cuadrado et al. [15,16], the Minimal Coordinate Set (MCS)
approach by González et al. [7], and the first symbolic and second numerical procedures by Agúndez et al. [13] are included. Lastly, Group 4 (Section 3.4) includes linearization
procedures, based on a coordinate partition in terms of independent and dependent coordinates, with holonomic constraints elimination. The procedure by Bae et al. [26], the
approach by Cossalter et al. [27] and the second symbolic and third numerical approaches by Agúndez et al. [13] are considered in Group 4.
This linearization approach is based on the use of the redundant set
of coordinates. As can be seen in Eq. (33), the variations of the complete
set of coordinates �̃� and their time derivatives ̇̃𝒙, ̈̃𝒙 appear. In this
case, no coordinate partition in terms of independent and dependent
coordinates is made. Therefore, there is no ambiguity in the handling
of the dependent coordinates in this approach.

Xiong et al. [11] follow a similar approach to linearize the index-
3 DAE equations of motion of a Whipple bicycle multibody model,
moving on a revolution surface, along its circular steady motion. The
resulting linearized equations of motion present the same structure
obtained with the RCS approach of González et al. [7] and Escalona
et al. [5,6]. Nevertheless, since these linearized system of equations do
not allow the performance of a standard eigenvalue analysis, a reduced
system of first-order ODEs is derived in [11].
6

Procedure by Pappalardo et al. [8,9]
The procedure presented by Pappalardo et al. [8,9] performs the

linearization of multibody systems with holonomic and nonholonomic
constraints.

Computing the Taylor expansion of the nonlinear index-3 DAE
system of Eqs. (1)–(3), retaining up to first-order terms and using
Eq. (29), yields:

𝑴
(

𝒙0
) ̈̃𝒙 +

𝜕
(

𝑴 (𝒙) �̈�0
)

𝜕𝒙

|

|

|

|

|0
�̃� +𝑫T (𝒙0

)

�̃� +
𝜕
(

𝑫T (𝒙)𝜦0)

𝜕𝒙

|

|

|

|

|0
�̃� =

𝜕𝑸 (𝒙, �̇�)
𝜕𝒙

|

|

|

|0
�̃� +

𝜕𝑸 (𝒙, �̇�)
𝜕�̇�

|

|

|

|0
̇̃𝒙,

| |

(35)
𝑬𝒙|0 �̃� + 𝑬�̇�|0 ̇̃𝒙 = 𝟎,
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where 𝑬𝒙||0 and 𝑬�̇�||0 are (𝑚 + 𝑙) × 𝑛 matrices, given by:

𝑬𝒙||0 =

⎛

⎜

⎜

⎜

⎝

𝜕𝑪 (𝒙)
𝜕𝒙

|

|

|

|0
𝜕
(

𝑩 (𝒙) �̇�0
)

𝜕𝒙

|

|

|

|

|0

⎞

⎟

⎟

⎟

⎠

, 𝑬�̇�||0 =
(

𝟎𝑚×𝑛
𝑩
(

𝒙0
)

)

. (36)

In the absence of nonholonomic constraints, 𝑬𝒙||0 =
𝜕𝑪 (𝒙)
𝜕𝒙

|

|

|

|0
, 𝑬�̇�||0 =

𝑚×𝑛 and 𝑫
(

𝒙0
)

= 𝑪𝒙
(

𝒙0
)

.
Defining �̃� =

(

�̃� �̃�
)T, the linear system given by Eqs. (35) can

e rewritten as:

̄ 0 ̈̃𝒑 + �̄�0 ̇̃𝒑 + �̄�0�̃� = 𝟎, (37)

here �̄�0, �̄�0 and �̄�0 are the 𝑛 + 𝑚 + 𝑙 composite mass, damping
nd stiffness matrices, respectively, whose detailed expressions can be
ound in Eqs. (138) of Appendix A.

As stated in [8,9], to carry out the stability analysis of the reference
olution, a state-space reformulation of the linearized equations of
otion (37) is necessary. To this end, by defining �̃� =

(

�̃� ̇̃𝒑
)T,

q. (37) can be expressed as the following first-order ODE system:

0
̇̃𝑿 = 0�̃�, (38)

here the matrices 0 and 0 are given by Eqs. (139) of Appendix A.
As the matrix 0 in Eq. (33), the matrix 0 of Eq. (38) is singular

(see Eqs. (139)), since the last 𝑚 + 𝑙 rows of �̄�0 are zero. Therefore,
he system of Eqs. (38) cannot be solved with a standard eigenvalue
nalysis. Considering a solution of the form �̃� (𝑡) = 𝑿0𝑒𝜆𝑡, where 𝑿0 is
constant vector, the generalized eigenvalue problem associated with

he matrices 0 and 0 is:

0 − 𝜆0
)

𝑿0 = 𝟎. (39)

he solution of Eq. (39) provides 2 (𝑛 + 𝑚 + 𝑙) eigenvalues. Given that
he spectrum of the constrained problem consists of 2 (𝑛 − 𝑚 − 𝑙) eigen-
alues, this approach results in 4 (𝑚 + 𝑙) spurious eigenvalues. Among
hese spurious eigenvalues, 2 (𝑚 + 𝑙) are associated with the 𝑚 + 𝑙
ependent coordinates of the multibody model, and the remaining
(𝑚 + 𝑙) are related to the 𝑚 + 𝑙 Lagrange multipliers.

As in the linearization approach of Escalona et al. [5,6] and
onzález et al. [7], the linearized equations of motion are expressed

n terms of the variations of the redundant set of coordinates �̃� and
heir time derivatives ̇̃𝒙, ̈̃𝒙. There is no ambiguity in the handling of the
ependent coordinates in this approach, since no coordinate partition
n terms of independent and dependent coordinates is made.
Procedure by Negrut et al. [4]
Negrut et al. [4] also present a linearization approach for the index-

DAE equations of motion. In this procedure, the governing equations
re augmented and a set of sensitivities of interest that provide the
inearization are computed. The approach presented in [4] is developed
or heterogeneous multibody systems, including nonholonomic con-
traints, friction, flexible bodies or user-defined differential equations.
evertheless, as in [4], it is assumed that the set of constraints are
olonomic to keep the presentation of the approach simpler. Moreover,
n [4], the vector of generalized velocities, denoted as 𝒖, is not assumed
o be the direct time derivative of the vector of position coordinates 𝒙,
nd therefore:

=  (𝒙) �̇�, (40)

here  (𝒙) is a transformation matrix. In this work, to present the
inearization procedure in a clearer way (without losing any relevant
nformation), it is assumed that  = 𝑰𝑛, and therefore 𝒖 = �̇�.

Negrut et al. [4] present the augmented equations of motion of the
ultibody system as follows:

(𝒙) �̈� + 𝑪T
𝒙 (𝒙)𝜦 −𝑸 (𝒙, �̇�) = 𝟎,

̈ 𝒙, �̇�, �̈� = 𝟎,
7

( ) 𝒙
̇ (𝒙, �̇�) = 𝟎, (41)
(𝒙) = 𝟎,

1�̇� = �̇�𝑎𝑖,

0𝒙 = 𝒙𝑎𝑖,

here the constraints at velocity and acceleration levels are included.
n Eqs. (41), 𝒙𝑎𝑖 and �̇�𝑎𝑖 are 𝑛−𝑚 independent positions and velocities,
espectively, arising from a coordinate partition of the complete set of
oordinates 𝒙 in dependent and independent coordinates. Moreover, 𝑩1
nd 𝑩0 are (𝑛 − 𝑚) × 𝑛 Boolean matrices. The nonlinear equations of
otion (41) can be written as:

(𝒙, �̇�, �̈�,𝜦) = 𝒃
(

𝒙𝑎𝑖, �̇�𝑎𝑖
)

, (42)

here 𝑭 (𝒙, �̇�, �̈�,𝜦) corresponds to the left-hand side of Eqs. (41), and
(

�̇�𝑎𝑖,𝒙𝑎𝑖
)

to the right-hand side.
The main objective of this approach is the computation of several

irst-order sensitivities. In particular, the partial derivatives of the com-
lete set of accelerations and velocities with respect to the independent
elocities and positions are of interest in [4]: 𝜕�̈�

𝜕�̇�𝑎𝑖
, 𝜕�̈�
𝜕𝒙𝑎𝑖

, 𝜕�̇�
𝜕�̇�𝑎𝑖

and
𝜕�̇�
𝜕𝒙𝑎𝑖

. To this end, the partial derivatives 𝜕𝑭
𝜕�̇�𝑎𝑖

and 𝜕𝑭
𝜕𝒙𝑎𝑖

are computed,
verifying:
𝜕𝑭
𝜕�̇�𝑎𝑖

= 𝜕𝒃
𝜕�̇�𝑎𝑖

, (43)

𝜕𝑭
𝜕𝒙𝑎𝑖

= 𝜕𝒃
𝜕𝒙𝑎𝑖

. (44)

The detailed expressions of the partial derivatives 𝜕𝑭
𝜕�̇�𝑎𝑖

, 𝜕𝑭
𝜕𝒙𝑎𝑖

, 𝜕𝒃
𝜕�̇�𝑎𝑖

and
𝜕𝒃
𝜕𝒙𝑎𝑖

can be found in Eqs. (140), (141) and (143) of Appendix A.
qs. (43) and (44) can be assembled to build the following linear
ystem:

1 (𝒙)𝑿1 = 𝒃1, (45)

here the definitions of 1, 𝑿1 and 𝒃1 are presented in Eqs. (144) and
qs. (145) of Appendix A. In Eq. (45), the assembly of Eqs. (43) and
44) is possible since both equations have the matrix 1 (𝒙) in common.
ote that the linear system of Eqs. (45) provide the sensitivities of the
elocities and accelerations with respect to the independent coordinates
nd velocities.

.2. Group 2: procedures based on the linearization of the index-1 DAE
ystem, using a redundant set of coordinates

The procedures summarized in this section are based on the lin-
arization of the index-1 DAE system, given by Eq. (8). The symbolic
inearization of the index-1 DAE system, the first numerical procedure
f Agúndez et al. [13], the approach of Van Khang et al. [12] and a
ombination of the latter with the first numerical procedure of Agúndez
t al. [13] are included in this group.
Symbolic linearization of the index-1 DAE system
A straightforward way to carry out the linearization of the DAE

ystem in Eq. (8) is based on obtaining, first, the acceleration vector
̈ from Eq. (8):

�̈�
𝜦

)

=
(

𝑴 (𝒙) 𝑫T (𝒙)
𝑫 (𝒙) 𝟎(𝑚+𝑙)

)−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑨−1(𝒙)

(

𝑸 (𝒙, �̇�)
𝑸𝑑 (𝒙, �̇�)

)

=  (𝒙, �̇�) , (46)

here  (𝒙, �̇�) is a (𝑛 + 𝑚 + 𝑙) × 1 vector. Given that the symbolic
omputation of the inverse matrix 𝑨−1 (𝒙) in Eq. (46) requires a high
omputational cost, this procedure is not valid for moderately complex
ultibody systems.

Denoting the first 𝑛 components of  (𝒙, �̇�) as 𝑭 1 (𝒙, �̇�), and the last
+ 𝑙 components by 𝑭 2 (𝒙, �̇�), Eq. (46) is rewritten as:

̈ ̇
= 𝑭 1 (𝒙,𝒙) , (47)
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𝜦 = 𝑭 2 (𝒙, �̇�) . (48)

Note that Eq. (48) corresponds to the expressions of the Lagrange
multipliers 𝜦, which do not provide information about the stability of
the multibody system.

Performing the Taylor expansion of Eq. (47), retaining up to first-
order terms and using that the reference motion verifies �̈�0 = 𝑭 1

(

𝒙0, �̇�0
)

yield:

̈̃𝒙 =
𝜕𝑭 1
𝜕𝒙

|

|

|

|0
�̃� +

𝜕𝑭 1
𝜕�̇�

|

|

|

|0
̇̃𝒙. (49)

Defining �̃� =
(

�̃� ̇̃𝒙
)T, the following first-order linear ODE system

is obtained:

̇̃𝑿 = 𝑱�̃�, with 𝑱 =

⎛

⎜

⎜

⎜

⎝

𝟎𝑛 𝑰𝑛
𝜕𝑭 1
𝜕𝒙

|

|

|

|0

𝜕𝑭 1
𝜕�̇�

|

|

|

|0

⎞

⎟

⎟

⎟

⎠

. (50)

he size of 𝑱 is, in this case, 2𝑛 × 2𝑛, obtaining 2𝑛 eigenvalues. Given
hat the real spectrum consists of 2 (𝑛 − 𝑚 − 𝑙) eigenvalues, associated
ith the 𝑛𝑔 = 𝑛−𝑚− 𝑙 degrees of freedom of the multibody system, this
pproach leads to 2 (𝑚 + 𝑙) spurious null eigenvalues, arising from the
+ 𝑙 dependent coordinates. Note that, as in the approaches based on

he linearization of the index-3 DAE system (Section 3.1), the Jacobian
atrix of Eq. (50) includes the partial derivatives with respect to

he redundant set of coordinates 𝒙. Therefore, no distinction between
ndependent and dependent coordinates is made in this linearization
pproach.
Procedure by Agúndez et al. [13] (first numerical approach)
A counterpart procedure to the direct linearization of the index-

DAE system was presented by Agúndez et al. [13]. It is the first
f the numerical approaches developed in [13], and is labeled as
umerical because it not only allows for symbolic calculation, but also
or numerical implementation. The linearization of the index-1 DAE in
q. (8) yields:

(

𝒙0
) ̈̃𝒙 +

𝜕
(

𝑴 (𝒙) �̈�0
)

𝜕𝒙

|

|

|

|

|0
�̃� +𝑫T (𝒙0

)

�̃� +
𝜕
(

𝑫T (𝒙)𝜦0)

𝜕𝒙

|

|

|

|

|0
�̃� =

𝜕𝑸 (𝒙, �̇�)
𝜕𝒙

|

|

|

|0
�̃� +

𝜕𝑸 (𝒙, �̇�)
𝜕�̇�

|

|

|

|0
̇̃𝒙, (51)

(

𝒙0
) ̈̃𝒙 +

𝜕
(

𝑫 (𝒙) �̈�0
)

𝜕𝒙

|

|

|

|

|0
�̃� =

𝜕𝑸𝑑 (𝒙, �̇�)
𝜕𝒙

|

|

|

|0
�̃� +

𝜕𝑸𝑑 (𝒙, �̇�)
𝜕�̇�

|

|

|

|0
̇̃𝒙. (52)

qs. (51) and (52) can be assembled to obtain the following linear
ndex-1 DAE system:

̄
0

( ̈̃𝒙
�̃�

)

= ̄0

(

�̃�
̇̃𝒙

)

, (53)

here ̄0 and ̄0 are given by Eqs. (146) and (147) of Appendix A.
Eq. (53) is rewritten as follows:
̈̃𝒙
�̃�

)

=  0

(

�̃�
̇̃𝒙

)

, (54)

here  0 is a (𝑛 + 𝑚 + 𝑙) × 2𝑛 matrix, given by  0 = ̄0
−1̄0. As in

q. (47), where the first 𝑛 equations of Eq. (46) were selected to obtain
he acceleration vector �̈�, the first 𝑛 equations of Eq. (54) provide
he variations of the accelerations ̈̃𝒙. The last 𝑚 + 𝑙 equations of the
inear index-1 DAE of Eq. (54) correspond to the variations of the
agrange multipliers �̃�, which do not provide information about the
tability of the multibody system. Note that, in contrast to Eq. (46),
here the inverse matrix 𝑨−1 (𝒙) is computed, the computation of  0 in

Eq. (54) requires the computation of ̄0
−1, which significantly reduces

he computational cost.
Defining �̃� =

(

�̃� ̇̃𝒙
)T, the following first-order linear ODE

ystem is obtained:

̇̃ = 𝑱�̃�, with 𝑱 =
(

𝟎𝑛 𝑰𝑛
)

. (55)
8

𝑱 21 𝑱 22
n Eq. (55), 𝑱 21 is the submatrix formed from rows 1 to 𝑛 and columns 1
o 𝑛 of  0, and 𝑱 22 is given by rows 1 to 𝑛 and columns 𝑛+1 to 2𝑛 of  0.
n the case that the matrix 𝑴

(

𝒙0
)

is not singular, explicit expressions
or the submatrices 𝑱 21 and 𝑱 22 can be found, which are shown in detail
n [78]. The size of 𝑱 is 2𝑛 × 2𝑛, leading to 2𝑛 eigenvalues. Among
he 2𝑛 eigenvalues, 2 (𝑛 − 𝑚 − 𝑙) correspond to the real spectrum of the
roblem, and 2 (𝑚 + 𝑙) are spurious eigenvalues, associated with the
+ 𝑙 dependent coordinates. Note that the linear index-1 DAE system

n Eq. (54) is expressed in terms of the variations of the redundant
et of coordinates �̃� and their time derivatives ̇̃𝒙 and ̈̃𝒙. Therefore, no
istinction between independent and dependent coordinates is made.

This approach was validated with the results of the bicycle bench-
ark model of Meijaard et al. [14] and used to perform the linear

tability analysis of the steady forward motion of the waveboard [55].
Procedure by Van Khang et al. [12]
The approach of Van Khang et al. [12] is also based on the lineariza-

ion of the index-1 DAE of Eq. (8). In this approach, the coordinate
artition in 𝑛 − 𝑚 − 𝑙 independent and 𝑚 + 𝑙 dependent coordinates,
escribed in Section 2.3, is used. Using the transformation matrix 𝑻 (𝒙)
resented in Eq. (11), and premultiplying the dynamic Eqs. (5) by
T (𝒙), the index-1 DAE of Eq. (8) is transformed into the following
DE system:
T (𝒙)𝑴 (𝒙) �̈� = 𝑻 T (𝒙)𝑸 (𝒙, �̇�) , (56)

(𝒙) �̈� = 𝑸𝑑 (𝒙, �̇�) . (57)

ote that the Lagrange multipliers 𝜦 in Eq. (8) are eliminated since
T (𝒙)𝑫T (𝒙) = 𝟎. Presenting the following definitions:

1 (𝒙, �̈�) = 𝑻 T (𝒙)𝑴 (𝒙) �̈�, 𝒌1 (𝒙, �̇�) = 𝑻 T (𝒙)𝑸 (𝒙, �̇�) ,

2 (𝒙, �̈�) = 𝑫 (𝒙) �̈�, 𝒌2 (𝒙, �̇�) = 𝑸𝑑 (𝒙, �̇�) , (58)

he nonlinear ODE system of Eqs. (56)–(57) can be written as:

1 (𝒙, �̈�) − 𝒌1 (𝒙, �̇�) = 𝟎, (59)

2 (𝒙, �̈�) − 𝒌2 (𝒙, �̇�) = 𝟎. (60)

The linearization of Eqs. (59)–(60) leads to:
𝜕𝒇 1
𝜕�̈�

|

|

|

|0
̈̃𝒙 −

𝜕𝒌1
𝜕�̇�

|

|

|

|0
̇̃𝒙 +

(

𝜕𝒇 1
𝜕𝒙

|

|

|

|0
−
𝜕𝒌1
𝜕𝒙

|

|

|

|0

)

�̃� = 𝟎, (61)

𝜕𝒇 2
𝜕�̈�

|

|

|

|0
̈̃𝒙 −

𝜕𝒌2
𝜕�̇�

|

|

|

|0
̇̃𝒙 +

(

𝜕𝒇 2
𝜕𝒙

|

|

|

|0
−
𝜕𝒌2
𝜕𝒙

|

|

|

|0

)

�̃� = 𝟎. (62)

he linear system of Eqs. (61)–(62) can be expressed as:

̄ ̈̃𝒙 + �̄� ̇̃𝒙 + �̄��̃� = 𝟎, (63)

here �̄� , �̄� and �̄� are 𝑛×𝑛 matrices, representing the composite mass,
amping and stiffness matrices, respectively, given by Eqs. (148) of
ppendix A. The symbolic computation of matrices in Eqs. (148) is

urther developed in the work of Van Khang et al. [12].
Defining �̃� =

(

�̃� ̇̃𝒙
)T, Eq. (63) can be written as the following

irst-order ODE system:

̇̃ = 𝑱�̃�, with 𝑱 =

(

𝟎𝑛 𝑰𝑛
−�̄�−1�̄� −�̄�−1�̄�

)

. (64)

s in the previous two approaches, the resulting Jacobian matrix
f Eq. (64) is 2𝑛 × 2𝑛. This leads to 2𝑛 eigenvalues, among which
(𝑛 − 𝑚 − 𝑙) corresponds to the real spectrum of the problem, and
(𝑚 + 𝑙) are spurious eigenvalues due to the 𝑚 + 𝑙 dependent coordi-
ates. Note that, despite this approach makes use of the coordinate
artition in terms of independent and dependent coordinates described
n Section 2.3, the resulting linearized equations of motion (63) are
xpressed in terms of the variations of the redundant set of coordi-
ates �̃� and their time derivatives ̇̃𝒙 and ̈̃𝒙. Therefore, the dependent
oordinates are not ignored in this approach.
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Combination of Van Khang et al. [12] and Agúndez et al. [13]
To ease the analytical computation of the matrices �̄� , �̄� and �̄� in

Eqs. (148), the following counterpart procedure is proposed. Particu-
larizing the transformation matrix 𝑻 (𝒙) of Eq. (11) for the reference
solution 𝒙0, yields:

𝑻
(

𝒙0
)

=

(

𝑰 (𝑛−𝑚−𝑙)

−
(

𝑫𝑑𝑑
(

𝒙0
))−1 𝑫𝑎𝑖

(

𝒙0
)

)

. (65)

Premultiplying the linearized dynamic Eqs. (51) by 𝑻 T (𝒙0
)

, the
variations of the Lagrange multipliers �̃� are eliminated, given that
𝑻 T (𝒙0

)

𝑫T (𝒙0
)

= 𝟎. Therefore, the following linear system of equa-
tions is obtained:

𝑻 T
0𝑴

(

𝒙0
) ̈̃𝒙 + 𝑻 T

0
𝜕
(

𝑴 (𝒙) �̈�0
)

𝜕𝒙

|

|

|

|

|0
�̃� + 𝑻 T

0
𝜕
(

𝑫T (𝒙)𝜦0)

𝜕𝒙

|

|

|

|

|0
�̃� =

𝑻 T
0
𝜕𝑸
𝜕𝒙

|

|

|

|0
�̃� + 𝑻 T

0
𝜕𝑸
𝜕�̇�

|

|

|

|0
̇̃𝒙, (66)

(

𝒙0
) ̈̃𝒙 +

𝜕
(

𝑫 (𝒙) �̈�0
)

𝜕𝒙

|

|

|

|

|0
�̃� =

𝜕𝑸𝑑
𝜕𝒙

|

|

|

|0
�̃� +

𝜕𝑸𝑑
𝜕�̇�

|

|

|

|0
̇̃𝒙, (67)

where the transformation matrix 𝑻
(

𝒙0
)

is denoted as 𝑻 0 to simplify
he notation. Eqs. (66)–(67) can be written in the form of Eq. (63),
btaining a detailed expression of the matrices �̄� , �̄� and �̄� as shown
n Eqs. (149) of Appendix A.

Defining �̃� =
(

�̃� ̇̃𝒙
)T, a first-order ODE system of the form

̇̃ = 𝑱�̃� is obtained, with the Jacobian matrix 𝑱 having a structure
s that of Eq. (64). As in Eqs. (50), (55) and (64), the Jacobian matrix
s 2𝑛 × 2𝑛.

The use of this approach greatly simplifies the analytical com-
utation of the mass, damping and stiffness matrices of Van Khang
t al. [12], given by Eqs. (148). Moreover, the expressions of the blocks
𝜕𝑭 1
𝜕𝒙

|

|

|

|0
and

𝜕𝑭 1
𝜕�̇�

|

|

|

|0
in the Jacobian matrix of Eq. (50), and the blocks

𝑱 21 and 𝑱 22 in the Jacobian matrix of Eq. (55), are analytically derived
with the Jacobian matrix of this approach.

It is important to mention that, despite the approach proposed by
Van Khang et al. [12] makes use of a coordinate partition in indepen-
dent and dependent coordinates and uses the transformation matrix
of Eq. (12), the Jacobian matrix of Eq. (64) considers the complete
set of coordinates, without eliminating the dependent coordinates. For
this reason, and given that the procedure is based on the linearization
of the index-1 DAE system, these approaches have been included in
Section 3.2 instead of Section 3.3.

3.3. Group 3: procedures based on coordinate partitioning in terms of
independent and dependent coordinates

The approaches included in this subsection are based on the lin-
earization of the ODE system of Eqs. (15)–(16), expressed in terms of
the independent and dependent coordinates. By virtue of the coordinate
partition of Eq. (10), the reference solution 𝒙0(𝑡) and its time derivatives
̇ 0(𝑡), �̈�0(𝑡), presented in Section 3.1, can be expressed as:
0
𝑎𝑖(𝑡), �̇�

0
𝑎𝑖(𝑡), �̈�

0
𝑎𝑖(𝑡), 𝒙

0
𝑑𝑑 (𝑡), �̇�

0
𝑑𝑑 (𝑡). (68)

The following variations with respect to the reference solution of
Eq. (68) are introduced:

�̃�𝑎𝑖 = 𝒙𝑎𝑖 − 𝒙0𝑎𝑖, ̇̃𝒙𝑎𝑖 = �̇�𝑎𝑖 − �̇�0𝑎𝑖,

̈̃𝒙𝑎𝑖 = �̈�𝑎𝑖 − �̈�0𝑎𝑖, �̃�𝑑𝑑 = 𝒙𝑑𝑑 − 𝒙0𝑑𝑑 , (69)
̇̃𝒙𝑑𝑑 = �̇�𝑑𝑑 − �̇�0𝑑𝑑 .

Procedure by Cuadrado et al. [15,16]
Cuadrado et al. [15,16] presented a linearization approach for

multibody systems with holonomic constraints. In [15,16], the dynamic
Eqs. (15) are written as the first-order ODE system:

̇

9

𝒙𝑎𝑖 = 𝒗𝑎𝑖, (70) i
̇ 𝑎𝑖 =
(

𝒎
(

𝒙𝑎𝑖,𝒙𝑑𝑑
))−1 𝒇

(

𝒙𝑎𝑖,𝒙𝑑𝑑 , 𝒗𝑎𝑖
)

= 𝒈
(

𝒙𝑎𝑖,𝒙𝑑𝑑 , 𝒗𝑎𝑖
)

, (71)

where the matrix 𝒎 and the vector 𝒇 were defined in Eq. (17). Defining
𝑿 =

(

𝒙𝑎𝑖 𝒗𝑎𝑖
)T, Eqs. (70)–(71) can be expressed in compact form

as:

�̇� = 𝑮1
(

𝒙𝑎𝑖,𝒙𝑑𝑑 , 𝒗𝑎𝑖
)

. (72)

Introducing the vector of variations �̃� =
(

�̃�𝑎𝑖 �̃�𝑎𝑖
)T, the lineariza-

tion of the first-order system of Eqs. (72) along the reference solution
in Eq. (68) leads to a first-order linear ODE system of the form:

̇̃𝑿 = 𝑱�̃�, with 𝑱 =
⎛

⎜

⎜

⎝

𝟎(𝑛−𝑚) 𝑰 (𝑛−𝑚)
𝜕𝒈
𝜕𝒙𝑎𝑖

|

|

|

|0

𝜕𝒈
𝜕�̇�𝑎𝑖

|

|

|

|0

⎞

⎟

⎟

⎠

. (73)

he state-space Jacobian matrix 𝑱 of Eq. (73) is 2 (𝑛 − 𝑚) × 2 (𝑛 − 𝑚),
eading to 2 (𝑛 − 𝑚) eigenvalues. These eigenvalues correspond to the
eal spectrum of the multibody system, which presents 𝑛𝑔 = 𝑛 − 𝑚
egrees of freedom.

This procedure can be found in several works. Cuadrado et al. [15,
6] and Sanjurjo et al. [17] followed this approach to construct the
tate-space Jacobian matrix, in order to build continuous extended
alman filters.
Procedure by González et al. [7] (MCS Formulation)
A similar procedure is presented by González et al. [7], under

he name of Minimal Coordinate Set (MCS) Formulation: Velocity
rojection. As in the case of Cuadrado et al. [15,16], the approach
s presented for multibody systems with holonomic constraints. The
ynamic Eqs. (15) are written as:

1 = 𝒎
(

𝒙𝑎𝑖,𝒙𝑑𝑑
)

�̈�𝑎𝑖 − 𝒇
(

𝒙𝑎𝑖,𝒙𝑑𝑑 , �̇�𝑎𝑖
)

= 𝟎, (74)

here, according to Eq. (17), 𝒎 = 𝑻 T𝑴𝑻 and 𝒇 = 𝑻 T (𝑸 −𝑴�̇� �̇�𝑎𝑖
)

.
The linearization of Eq. (74) along the reference solution yields:

𝜕𝑯1
𝜕𝒙𝑎𝑖

|

|

|

|0
�̃�𝑎𝑖 +

𝜕𝑯1
𝜕�̇�𝑎𝑖

|

|

|

|0
̇̃𝒙𝑎𝑖 +

𝜕𝑯1
𝜕�̈�𝑎𝑖

|

|

|

|0
̈̃𝒙𝑎𝑖 = 𝟎. (75)

The expressions of the partial derivatives in Eq. (75) can be found
in Eqs. (150)–(152) of Appendix A. By defining 𝑴 𝑟 =

𝜕𝑯1
𝜕�̈�𝑎𝑖

|

|

|

|0
, 𝑪𝑟 =

𝜕𝑯1
𝜕�̇�𝑎𝑖

|

|

|

|0
and 𝑲𝑟 =

𝜕𝑯1
𝜕𝒙𝑎𝑖

|

|

|

|0
, Eq. (75) can be expressed as:

𝑴 𝑟 ̈̃𝒙𝑎𝑖 + 𝑪𝑟 ̇̃𝒙𝑎𝑖 +𝑲𝑟�̃�𝑎𝑖 = 𝟎. (76)

q. (76) leads to 2 (𝑛 − 𝑚) eigenvalues, which represent the exact spec-
rum of the problem.

Cuadrado et al. [15,16] and González et al. [7] obtain a linear ODE
ystem expressed in terms of the independent variables. In the compu-
ation of the Jacobian matrix of Eq. (73) and the linearized Eqs. (76),
nly the derivatives with respect to the independent coordinates are
onsidered. Nevertheless, as explained in Section 2.3, the nonlinear
ynamic Eqs. (15) are not only a function of the independent coor-
inates, but also the dependent coordinates 𝒙𝑑𝑑 . In the present work,
ome clarifying comments regarding the handling of the dependent
oordinates and their dependency with the independent ones are made.
scalona et al. [25] analyzed the linear stability of the steady forward
otion of a bicycle multibody model resorting to a similar procedure to

hat found in Cuadrado et al. [15,16]. In [25], it is explicitly stated that
he dependent coordinates are considered as null in the linearization,
ince, in the particular case of the bicycle multibody model, they do
ot have influence on the linear stability of the bicycle. While it is true
or the stability analysis of the steady forward motion of the bicycle
ystem, this is not true in general and the dependent coordinates are
ot always ignorable, being necessary in the computation of the exact
inearized equations of motion. In the approaches of Section 3.4, it
ill be shown that the linearized holonomic constraints can be used

o obtain a explicit relation between the variations of the dependent
oordinates and the independent ones. Nevertheless, this is not possible

n the case of nonholonomic constraints.
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Peterson et al. [23] emphasized in their work the importance of the
dependency of the dependent coordinates 𝒙𝑑𝑑 and dependent speeds
�̇�𝑑𝑑 with the independent coordinates 𝒙𝑎𝑖 and independent speeds �̇�𝑎𝑖.

he authors of this work stated: That it is not immediately obvious that
he chain rule needs to be applied is a byproduct of the commonly used
otation which does not make it explicitly clear that dependent coordinates
nd dependent speeds are not only functions of time, but also functions
f the independent coordinates and independent speeds. While this might
eem obvious, no previous author makes this explicitly clear when presenting
echniques for symbolically linearizing equations of motion that are subject
o constraints. While the concept is simple in principle, correctly accounting
or all quantities is tedious and error prone. The linearization approach
f Peterson et al. [23] was developed for equations of motion gener-
ted by Kane’s method, without algebraically eliminating dependent
tates, and is compatible with multibody systems described by Ordinary
ifferential Equations (not Differential-Algebraic Equations).
Procedure by Agúndez et al. [13] (first symbolic approach)
Agúndez et al. [13] showed a linearization approach based on the

irect linearization of the ODE system of Eqs. (15)–(16). The lineariza-
ion of Eqs. (15)–(16) with respect to the reference solution in Eq. (68)
eads to:

0 ̈̃𝒙𝑎𝑖 =
𝜕
(

𝒇 −𝒎�̈�0𝑎𝑖
)

𝜕𝒙𝑎𝑖

|

|

|

|

|0
�̃�𝑎𝑖 +

𝜕
(

𝒇 −𝒎�̈�0𝑎𝑖
)

𝜕𝒙𝑑𝑑

|

|

|

|

|0
�̃�𝑑𝑑 +

𝜕𝒇
𝜕�̇�𝑎𝑖

|

|

|

|0
̇̃𝒙𝑎𝑖,

̇̃𝒙𝑑𝑑 = 𝑯0 ̇̃𝒙𝑎𝑖 +
𝜕
(

𝑯�̇�0𝑎𝑖
)

𝜕𝒙𝑎𝑖

|

|

|

|

|0
�̃�𝑎𝑖 +

𝜕
(

𝑯�̇�0𝑎𝑖
)

𝜕𝒙𝑑𝑑

|

|

|

|

|0
�̃�𝑑𝑑 ,

(77)

here the definitions 𝒎0 = 𝒎
(

𝒙0𝑎𝑖,𝒙
0
𝑑𝑑
)

and 𝑯0 = 𝑯
(

𝒙0𝑎𝑖,𝒙
0
𝑑𝑑
)

have
een introduced.

Defining �̃� =
(

�̃�𝑎𝑖 ̇̃𝒙𝑎𝑖 �̃�𝑑𝑑
)T, Eq. (77) is rewritten as a first-

rder linear ODE system of the form ̇̃𝑿 = 𝑱�̃�, where the expression
f the Jacobian matrix 𝑱 can be found in Eq. (153) of Appendix A.
ote that the blocks associated with the dependent coordinates have
een considered in the Jacobian matrix of Eq. (153). The linearized
quations of motion (77) are not only expressed in terms of the in-
ependent variations �̃�𝑎𝑖 and their time derivatives ̇̃𝒙𝑎𝑖 and ̈̃𝒙𝑎𝑖, but
lso include the variations of the dependent coordinates �̃�𝑑𝑑 and the
ime derivative ̇̃𝒙𝑑𝑑 . The approach is labeled as symbolic in [13], since
q. (153) requires the symbolic computation of derivatives of inverse
atrices, as matrix �̇� in Eq. (17).
Procedure by Agúndez et al. [13] (second numerical approach)
Given that the symbolic computation of the terms in the Jacobian

atrix of (153) requires a high computational cost, Agúndez et al. [13]
eveloped a counterpart procedure to their first symbolic approach.
his procedure is the second numerical approach presented in [13].
ts accuracy is demonstrated with the linear stability results of the
icycle benchmark of Meijaard et al. [14]. This approach is labeled as
umerical because it not only eases the symbolic computations, but also
llows for numerical implementation.

The first symbolic approach of Agúndez et al. [13] is based on the
ransformation of the nonlinear DAE system given by Eqs. (1)–(3) into
he nonlinear ODE system of Eqs. (15)–(16), and then the linearization
s performed. In contrast, this counterpart approach first linearizes the
AE system, and then carries out the transformation into a linear ODE

ystem.
The first key aspect of this approach is the premultiplication of the

inearized dynamic Eqs. (51) by 𝑻 T (𝒙0
)

(the transformation matrix
(

𝒙0
)

was defined in Eq. (65)). This allows reducing the number of
inearized dynamic equations from 𝑛 to 𝑛 − 𝑚 − 𝑙 linear equations, and
liminating the variations of the Lagrange multipliers �̃�. Note that, in
he same way that the relation 𝑻 T (𝒙)𝑫T (𝒙) = 𝟎 holds, this is also
atisfied for the reference solution 𝒙0: 𝑻 T (𝒙0

)

𝑫T (𝒙0
)

= 𝟎. Therefore,
the linearized dynamic Eqs. (66) are obtained:

Next, a coordinate partition in terms of independent and dependent
coordinates, as described in Section 2.3, is used. In this case, the
coordinate partition is presented for the variations of the coordinates:

̃
( )T
10

𝒙 = �̃�𝑎𝑖 �̃�𝑑𝑑 . (78) o
he objective is to express the reduced linearized dynamic Eqs. (66) in
erms of the independent variations �̃�𝑎𝑖 and their time derivatives ̇̃𝒙𝑎𝑖
nd ̈̃𝒙𝑎𝑖. For that purpose, the constraints at velocity and acceleration
evels, given by Eqs. (6) and (7), are used.

The linearization of Eqs. (6) and (7) along the reference solution
ields:

(

𝒙0
) ̇̃𝒙 +

𝜕
(

𝑫 (𝒙) �̇�0
)

𝜕𝒙

|

|

|

|

|0
�̃� = 𝟎, (79)

𝑫
(

𝒙0
) ̈̃𝒙 +

𝜕
(

𝑫 (𝒙) �̈�0
)

𝜕𝒙

|

|

|

|

|0
�̃� =

𝜕𝑸𝑑
𝜕𝒙

|

|

|

|0
�̃� +

𝜕𝑸𝑑
𝜕�̇�

|

|

|

|0
̇̃𝒙. (80)

From Eq. (79), the following relation between the variations of the
dependent velocities ̇̃𝒙𝑑𝑑 and the independent ones ̇̃𝒙𝑎𝑖 is found:

̇̃ 𝑑𝑑 = 𝑻 𝑑𝑑
(

𝒙0
) ̇̃𝒙𝑎𝑖 + �̄�

(

𝒙0, �̇�0
)

�̃�, (81)

here the expressions of matrices 𝑻 𝑑𝑑
(

𝒙0
)

and �̄�
(

𝒙0, �̇�0
)

can be found
n Eqs. (154) of Appendix A.

The use of Eqs. (79) and (80) leads to the following transforma-
ions for the variations at velocity and acceleration levels ̇̃𝒙 and ̈̃𝒙,
espectively:

̇̃ = 𝑻
(

𝒙0
) ̇̃𝒙𝑎𝑖 + ̄̄𝑽

(

𝒙0, �̇�0
)

�̃�, (82)
̈̃ = 𝑻

(

𝒙0
) ̈̃𝒙𝑎𝑖 + 𝑼

(

𝒙0, �̇�0
) ̇̃𝒙 + 𝑽

(

𝒙0, �̇�0, �̈�0
)

�̃�, (83)

here the matrices ̄̄𝑽
(

𝒙0, �̇�0
)

, 𝑼
(

𝒙0, �̇�0
)

and 𝑽
(

𝒙0, �̇�0, �̈�0
)

are given
y Eqs. (155)–(157) of Appendix A.

Finally, the coordinate partition of Eq. (78) results in the relation
t position level:

̃ = 𝑬𝑎𝑖�̃�𝑎𝑖 + 𝑬𝑑𝑑 �̃�𝑑𝑑 , (84)

here 𝑬𝑎𝑖 and 𝑬𝑑𝑑 are Boolean matrices, defined as:

𝑎𝑖 =
(

𝑰 (𝑛−𝑚−𝑙)
𝟎(𝑚+𝑙)×(𝑛−𝑚−𝑙)

)

, 𝑬𝑑𝑑 =
(

𝟎(𝑛−𝑚−𝑙)×(𝑚+𝑙)
𝑰 (𝑚+𝑙)

)

. (85)

Substituting the relations for the variations at velocity, acceleration
nd position levels given by Eqs. (82), (83) and (84), respectively, in
he linearized dynamic Eqs. (66), and using Eq. (81), yields:

0 ̈̃𝒙𝑎𝑖 =
(

𝑹0
̄̄𝑽 0 + 𝑺0

)

𝑬𝑎𝑖�̃�𝑎𝑖 +𝑹0𝑻 0 ̇̃𝒙𝑎𝑖 +
(

𝑹0
̄̄𝑽 0 + 𝑺0

)

𝑬𝑑𝑑 �̃�𝑑𝑑 , (86)

̇̃ 𝑑𝑑 = �̄� 0𝑬𝑎𝑖�̃�𝑎𝑖 + 𝑻 𝑑𝑑
(

𝒙0
) ̇̃𝒙𝑎𝑖 + �̄� 0𝑬𝑑𝑑 �̃�𝑑𝑑 , (87)

here �̄� 0 = �̄�
(

𝒙0, �̇�0
)

, ̄̄𝑽 0 = ̄̄𝑽
(

𝒙0, �̇�0
)

, and the matrices 𝒎0, 𝑹0 and
0 are given by Eqs. (158) of Appendix A.

Defining �̃� =
(

�̃�𝑎𝑖 ̇̃𝒙𝑎𝑖 �̃�𝑑𝑑
)T, a first-order linear ODE system

f the form ̇̃𝑿 = 𝑱�̃� is derived, where the expression of the Jacobian
atrix 𝑱 is detailed in Eq. (159) of Appendix A. The Jacobian matrices

n Eqs. (153) and (159) are (2𝑛 − 𝑚 − 𝑙)×(2𝑛 − 𝑚 − 𝑙). Among the 2𝑛−𝑚−
eigenvalues obtained with these approaches, 2 (𝑛 − 𝑚 − 𝑙) correspond

o the real spectrum of the problem, and 𝑚+ 𝑙 are spurious eigenvalues,
ssociated with the 𝑚 holonomic constraints differentiated with respect
o time and the 𝑙 nonholonomic constraints.

Note that the resulting linearized equations of motion (86)–(87)
resent the same structure as Eq. (77). In this approach, the dependent
oordinates are handled in the same way as in the symbolic coun-
erpart. As in Eq. (77), the linearized equations of motion (86)–(87)
re not only expressed in terms of the independent variations �̃�𝑎𝑖 and
heir time derivatives ̇̃𝒙𝑎𝑖 and ̈̃𝒙𝑎𝑖, but also include the variations of the
ependent coordinates �̃�𝑑𝑑 and the time derivatives ̇̃𝒙𝑑𝑑 .

.4. Group 4: procedures based on coordinate partitioning in terms of inde-
endent and dependent coordinates, with holonomic constraints elimination

The procedures included in this subsection achieve a linear ODE
ystem of equations expressed only in terms of the independent co-

rdinates. The approach of Bae et al. [26], the second symbolic and
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third numerical approaches of Agúndez et al. [13], and the linearization
procedure of Cossalter et al. [27] are included in this group.

Procedure by Bae et al. [26]
Bae et al. [26] present a linearization approach for multibody

systems with holonomic constraints. In absence of nonholonomic con-
straints, the coordinates 𝒙𝑎𝑑 are not required and the coordinate parti-
tion of Eq. (26) is used: 𝒙 =

(

𝒙𝑎𝑖 𝒙𝑑
)T.

Computing the variational form of the holonomic constraints (28):

𝑪 = 𝑪𝒙𝑑 (𝒙) 𝛿𝒙𝑑 + 𝑪𝒙𝑎𝑖 (𝒙) 𝛿𝒙𝑎𝑖 = 𝟎, (88)

the variations of the dependent coordinates 𝛿𝒙𝑑 are obtained in terms
f the independent ones as:

𝒙𝑑 = −𝑪−1
𝒙𝑑

(𝒙)𝑪𝒙𝑎𝑖 (𝒙) 𝛿𝒙𝑎𝑖. (89)

q. (89) allows obtaining the following transformation:

𝒙 = 𝑻 (𝒙) 𝛿𝒙𝑎𝑖, (90)

here 𝑻 (𝒙) is the transformation matrix defined in Eq. (12), for the
articular case of a multibody system with only holonomic constraints:
𝑑𝑑 (𝒙) = 𝑪𝒙𝑑 (𝒙) and 𝑫𝑎𝑖 (𝒙) = 𝑪𝒙𝑎𝑖 (𝒙).

Premultiplying the dynamic Eqs. (5) by 𝑻 T, 𝑭 ∗ is defined as:
∗ (𝒙, �̇�, �̈�) = 𝑻 T (𝒙)𝑴 (𝒙) �̈� − 𝑻 T (𝒙)𝑸 (𝒙, �̇�) = 𝟎, (91)

where the Lagrange multipliers 𝜦 are eliminated, since 𝑻 is the null
space of 𝑪𝒙, and therefore 𝑻 T (𝒙)𝑪T

𝒙 (𝒙) = 𝟎.
As stated by Bae et al. [26], 𝑭 ∗ is a function of both the independent

and dependent coordinates. Computing the variational form of Eq. (91):

𝛿𝑭 ∗ = 𝑭 ∗
𝒙𝛿𝒙 + 𝑭 ∗

�̇�𝛿�̇� + 𝑭 ∗
�̈�𝛿�̈� = 𝟎, (92)

Eq. (92) can be expressed in matrix form as:

(

𝑭 ∗
𝒙 𝑭 ∗

�̇� 𝑭 ∗
�̈�

)

⎛

⎜

⎜

⎝

𝛿𝒙
𝛿�̇�
𝛿�̈�

⎞

⎟

⎟

⎠

= 𝟎. (93)

The objective of the linearization procedure is to express Eq. (93)
only in terms of the independent coordinates. To this end, the varia-
tional form of the holonomic constraints at position, velocity and accel-
eration levels, given by Eqs. (160)–(162) in Appendix A, are considered.
Assembling Eqs. (160)–(162), and using the coordinate partition (26),
the following relation between the complete set of variations at posi-
tion, velocity and acceleration levels, 𝛿𝑿 =

(

𝛿𝒙 𝛿�̇� 𝛿�̈�
)T, and the

variations of the independent coordinates 𝛿𝑿𝑎𝑖=
(

𝛿𝒙𝑎𝑖 𝛿�̇�𝑎𝑖 𝛿�̈�𝑎𝑖
)T,

is obtained:

 𝛿𝑿 = 𝛿𝑿𝑎𝑖. (94)

The expressions of matrices  and  are detailed in Eqs. (163) and
(164) of Appendix A.

Eq. (94) is used to solve for
(

𝛿𝒙 𝛿�̇� 𝛿�̈�
)T in terms of the

independent variations 𝛿𝒙𝑎𝑖 and their time derivatives. Substituting in
Eq. (93), the following linearized equations of motion are obtained:

�̂�𝛿�̈�𝑎𝑖 + �̂�𝛿�̇�𝑎𝑖 + �̂�𝛿𝒙𝑎𝑖 = 𝟎, (95)

where �̂� , �̂� and �̂� are the mass, damping and stiffness matrices,
respectively. Eq. (95) provides 2 (𝑛 − 𝑚) eigenvalues, which corresponds
to the real spectrum of the problem, associated with the 𝑛𝑔 = 𝑛 − 𝑚
degrees of freedom of the multibody system.

In contrast to Eqs. (86)–(87), where the variations of the dependent
coordinates explicitly appear, the linear equations of motion (95) are
only expressed in terms of the independent variations 𝛿𝒙𝑎𝑖 and the
time derivatives 𝛿�̇�𝑎𝑖 and 𝛿�̈�𝑎𝑖. The dependent coordinates have not
been ignored in Eq. (95), since the dependency with the independent
ones has been considered by means of the variational form of the
holonomic constraints at position, velocity and acceleration levels,
given by Eqs. (160)–(162).
11
Procedure by Cossalter et al. [27]
The linearization procedure by Cossalter et al. [27] is also presented

for multibody systems with holonomic constraints. Consider the lin-
ear index-3 DAE given by Eqs. (31)–(32). Cossalter et al. [27] write
Eqs. (31)–(32) as follows:

𝑴𝑎 ̈̃𝒙 + 𝑪𝑎 ̇̃𝒙 +𝑲𝑎�̃� +𝑲𝜙�̃� + 𝑪T (𝒙0
)

�̃� = 𝟎, (96)
𝜕𝑪 (𝒙)
𝜕𝒙

|

|

|

|0
�̃� = 𝟎. (97)

Comparing Eqs. (31)–(32) with Eqs. (96)–(97), the following definitions
are used:

𝑴𝑎 = 𝑴
(

𝒙0
)

, 𝑪𝑎 = − 𝜕𝑸
𝜕�̇�

|

|

|

|0
,

𝑲𝑎 =
𝜕
(

𝑴 (𝒙) �̈�0
)

𝜕𝒙

|

|

|

|

|0
− 𝜕𝑸
𝜕𝒙

|

|

|

|0
, 𝑲𝜙 =

𝜕
(

𝑪T
𝒙 (𝒙)𝜦

0)

𝜕𝒙

|

|

|

|

|0
. (98)

In the particular case of 𝑲𝜙, this matrix is presented in [27] as shown
in Eq. (165) of Appendix A. Eq. (165) is equivalent to the definition of
𝑲𝜙 presented in Eq. (98).

The coordinate partition in terms of independent and dependent
coordinates of Eq. (26) is now used. By virtue of Eq. (26), the reference
solution 𝒙0(𝑡) and its time derivatives �̇�0(𝑡), �̈�0(𝑡) can be expressed as:

𝒙0𝑎𝑖(𝑡), �̇�
0
𝑎𝑖(𝑡), �̈�

0
𝑎𝑖(𝑡), 𝒙

0
𝑑 (𝑡), �̇�

0
𝑑 (𝑡). (99)

he variations with respect to the reference solution in Eq. (99) are
ntroduced:

̃ 𝑎𝑖 = 𝒙𝑎𝑖 − 𝒙0𝑎𝑖, ̇̃𝒙𝑎𝑖 = �̇�𝑎𝑖 − �̇�0𝑎𝑖,

̈̃ 𝑎𝑖 = �̈�𝑎𝑖 − �̈�0𝑎𝑖, �̃�𝑑 = 𝒙𝑑 − 𝒙0𝑑 , (100)
̇̃ 𝑑 = �̇�𝑑 − �̇�0𝑑 .

he following transformation between the variations of the redundant
et of coordinates and the independent ones is introduced:

̃ = 𝑻 0�̃�𝑎𝑖, (101)

here the transformation matrix 𝑻 0 is the same as that of Eq. (65),
articularized for the case of only holonomic constraints:

0 =
⎛

⎜

⎜

⎝

𝑰 (𝑛−𝑚)

−
(

𝑪𝒙𝑑
(

𝒙0
)

)−1
𝑪𝒙𝑎𝑖

(

𝒙0
)

⎞

⎟

⎟

⎠

. (102)

ossalter et al. [27] consider that Eq. (101) also holds for the variations
f the velocities and accelerations:

̇̃ = 𝑻 0 ̇̃𝒙𝑎𝑖, (103)
̈̃ = 𝑻 0 ̈̃𝒙𝑎𝑖. (104)

Premultiplying Eq. (96) by 𝑻 T
0 , and using the transformations be-

ween the redundant set of coordinates and the independent ones of
qs. (101), (103) and (104), yields:

̂ 𝑎 ̈̃𝒙𝑎𝑖 + �̂�𝑎 ̇̃𝒙𝑎𝑖 + �̂�𝑎�̃�𝑎𝑖 = 𝟎, (105)

ith

̂ 𝑎 = 𝑻 T
0𝑴𝑎𝑻 0, �̂�𝑎 = 𝑻 T

0𝑪𝑎𝑻 0,

̂ 𝑎 = 𝑻 T
0
(

𝑲𝑎 +𝑲𝜙
)

𝑻 0. (106)

ote that, in Eq. (105), the variations of the Lagrange multipliers �̃� of
q. (96) disappear, since 𝑻 T

0𝑪
T (𝒙0

)

= 𝟎.
Eq. (105) leads to 2 (𝑛 − 𝑚) eigenvalues, which corresponds to the

eal spectrum of the problem. As in the linearization approach of Bae
t al. [26], the linear equations of motion (105) are obtained in terms
f the independent variations �̃�𝑎𝑖 and their time derivatives ̇̃𝒙𝑎𝑖 and ̈̃𝒙𝑎𝑖.
he dependent coordinates have been considered in the linearization by
eans of the transformations between the redundant set of variations

̃ and the independent ones at position, velocity and acceleration level,
iven by Eqs. (101), (103) and (104), respectively.
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Procedure by Agúndez et al. [13] (second symbolic approach)
Agúndez et al. [13] presented a second symbolic linearization ap-

roach that leads to the linear equations of motion in ODE form,
xpressed in terms of only the independent variations and their time
erivatives. The approach was developed for multibody systems with
olonomic and nonholonomic constraints. To keep the presentation
f the procedure simpler, the case with only holonomic constraints is
resented first.

The linearization of Eqs. (23)–(24) with respect to the reference
olution of Eq. (99) yields the following linear DAE system:

0 ̈̃𝒙𝑎𝑖 =
𝜕
(

𝒇 −𝒎�̈�0𝑎𝑖
)

𝜕𝒙𝑎𝑖

|

|

|

|

|0
�̃�𝑎𝑖 +

𝜕
(

𝒇 −𝒎�̈�0𝑎𝑖
)

𝜕𝒙𝑑

|

|

|

|

|0
�̃�𝑑 +

𝜕𝒇
𝜕 ̇𝒙𝑎𝑖

|

|

|

|0
̇̃𝒙𝑎𝑖, (107)

𝜕𝑪
𝜕𝒙𝑎𝑖

|

|

|

|0
�̃�𝑎𝑖 +

𝜕𝑪
𝜕𝒙𝑑

|

|

|

|0
�̃�𝑑 = 𝟎, (108)

here 𝒎0 = 𝒎
(

𝒙0𝑎𝑖,𝒙
0
𝑑
)

.
The linearized holonomic constraints (108) can be used to express

he variations of the dependent coordinates �̃�𝑑 as a function of the
ndependent ones �̃�𝑎𝑖:

̃ 𝑑 = −
(

𝜕𝑪
𝜕𝒙𝑑

|

|

|

|0

)−1 𝜕𝑪
𝜕𝒙𝑎𝑖

|

|

|

|0
�̃�𝑎𝑖. (109)

The substitution of Eq. (109) in the linearized dynamic Eqs. (107) leads
to:

𝒎0 ̈̃𝒙𝑎𝑖 =

(

𝜕
(

𝒇 −𝒎�̈�0
𝑎𝑖

)

𝜕𝒙𝑎𝑖
−
𝜕
(

𝒇 −𝒎�̈�0
𝑎𝑖

)

𝜕𝒙𝑑

(

𝜕𝑪
𝜕𝒙𝑑

)−1 𝜕𝑪
𝜕𝒙𝑎𝑖

)

|

|

|

|

|

|0

�̃�𝑎𝑖 +
𝜕𝒇
𝜕�̇�𝑎𝑖

|

|

|

|0

̇̃𝒙𝑎𝑖.

(110)

Defining �̃� =
(

�̃�𝑎𝑖 ̇̃𝒙𝑎𝑖
)T, the linear second-order ODE of Eq. (110)

can be written as a first-order ODE of the form ̇̃𝑿 = 𝑱�̃�, with the
Jacobian matrix 𝑱 :

𝑱 =

(

𝟎(𝑛−𝑚) 𝑰 (𝑛−𝑚)

𝑱 21 𝑱 22

)

. (111)

The expressions of the blocks 𝑱 21 and 𝑱 22 in Eq. (111) can be found in
Eqs. (166) of Appendix A.

In the particular case of a multibody system including nonholo-
nomic constraints, the linearization of Eqs. (23)–(25) leads to the linear
ODE system given by Eqs. (167) of Appendix A. Note that, in contrast to
the dependent variations �̃�𝑑 , which were expressed as a function of �̃�𝑎𝑖
by using the linearized holonomic constraints (109), the set �̃�𝑎𝑑 cannot
be removed in Eqs. (167), since the nonholonomic constraints are first-
order differential equations that cannot be eliminated. Finally, defining
�̃� =

(

�̃�𝑎𝑖 ̇̃𝒙𝑎𝑖 �̃�𝑎𝑑
)T, the system of Eqs. (167) can be rewritten as

a first-order system of the form ̇̃𝑿 = 𝑱�̃�, with the Jacobian matrix 𝑱 :

𝑱 =

⎛

⎜

⎜

⎜

⎝

𝟎(𝑛−𝑚−𝑙) 𝑰 (𝑛−𝑚−𝑙) 𝟎(𝑛−𝑚−𝑙)×𝑙
𝑱 21 𝑱 22 𝑱 23

𝑱 31 𝑱 32 𝑱 33

⎞

⎟

⎟

⎟

⎠

. (112)

The detailed expressions of the blocks in the Jacobian matrix (112) can
be found in Eqs. (168) of Appendix A.

Procedure by Agúndez et al. [13] (third numerical approach)
Agúndez et al. [13] developed a counterpart procedure to the

previous symbolic linearization approach, which eases the computation
of the Jacobian matrix of Eq. (112), allowing the symbolic and nu-
merical implementation. As in the symbolic version, this linearization
approach makes use of the linearized holonomic constraints to express
the dependent variations �̃�𝑑 as a function of the independent ones.

Starting from the linearized dynamic Eqs. (66), the objective of
this approach is to express Eq. (66) in terms of the independent
variations �̃�𝑎𝑖 and the time derivatives ̇̃𝒙𝑎𝑖, ̈̃𝒙𝑎𝑖. For that purpose, the
inearized constraints at velocity and acceleration levels, given by
qs. (79) and (80), are used to obtain the transformations presented
n Eqs. (82) and (83). Next, as in the previous approach, the linearized
12

a

olonomic constraints (108) allow for obtaining the variations of the
ependent coordinates as a function of the independent ones, as shown
n Eq. (109). The following transformation for the redundant set of
ariations �̃� in terms of the independent ones �̃�𝑎𝑖 is obtained using

Eq. (109):

�̃� = 𝑽 ℎ,𝑎𝑖
(

𝒙0
)

�̃�𝑎𝑖, (113)

where

𝑽 ℎ,𝑎𝑖
(

𝒙0
)

=
⎛

⎜

⎜

⎝

𝑰 (𝑛−𝑚)

−
(

𝜕𝑪
𝜕𝒙𝑑

|

|

|

|0

)−1
𝜕𝑪
𝜕𝒙𝑎𝑖

|

|

|

|0

⎞

⎟

⎟

⎠

. (114)

ote that the relation at position level between �̃� and �̃�𝑎𝑖 in Eq. (113)
is equivalent to that used by Cossalter et al. [27] in Eq. (101). Nev-
ertheless, the relations at velocity and acceleration levels derived in
Eqs. (82) and (83) differ from those used in the approach of Cossalter
et al. shown in Eqs. (103) and (104). While Eqs. (103) and (104) are
obtained by differentiating with respect to time Eq. (101), Eqs. (82) and
(83) are not derived from the time derivative of Eq. (113), but from the
linearized constraints at velocity and acceleration levels of Eqs. (79)
and (80), respectively.

Substituting Eqs. (82), (83) and (113) in Eq. (66), the linearized
equations of motion are obtained in terms of the independent variations
�̃�𝑎𝑖 and their time derivatives:

𝒎0 ̈̃𝒙𝑎𝑖 =
(

𝑹0
̄̄𝑽 0 + 𝑺0

)

𝑽 ℎ,𝑎𝑖
(

𝒙0
)

�̃�𝑎𝑖 +𝑹0𝑻 0 ̇̃𝒙𝑎𝑖, (115)

where the matrices 𝒎0, 𝑹0 and 𝑺0 were defined in Eq. (158) of Ap-
pendix A. Note that Eq. (115) presents the same structure as Eq. (110).

Defining �̃� =
(

�̃�𝑎𝑖 ̇̃𝒙𝑎𝑖
)T, the linear second-order ODE sys-

tem (115) can be written as a first-order ODE system of the form
̇̃𝑿 = 𝑱�̃�, where the expression of the Jacobian matrix 𝑱 can be found

in Eq. (169) of Appendix A.
The Jacobian matrices (111) and (169) are 2 (𝑛 − 𝑚) × 2 (𝑛 − 𝑚).

herefore, 2 (𝑛 − 𝑚) eigenvalues are obtained, corresponding to the
eal spectrum of the problem. Note that, despite the linearized equa-
ions of motion (110) and (115) are only expressed in terms of the
ndependent variations �̃�𝑎𝑖 and their time derivatives, the dependent
oordinates are not ignored in the linearization. The dependency with
he independent ones is taken into account by means of the relations at
elocity, acceleration and position levels of Eqs. (82), (83) and (113),
espectively.

In the particular case of a multibody system with nonholonomic
onstraints, Eq. (115) is augmented with the linearized nonholonomic
onstraints, leading to:

0 ̈̃𝒙𝑎𝑖 =
(

𝑹0
̄̄𝑽 0 + 𝑺0

)

𝑽 ℎ,𝑎𝑖
(

𝒙0) �̃�𝑎𝑖 +𝑹0𝑻 0 ̇̃𝒙𝑎𝑖 +
(

𝑹0
̄̄𝑽 0 + 𝑺0

)

𝑽 ℎ,𝑎𝑑
(

𝒙0) �̃�𝑎𝑑 ,

(116)
̇̃ 𝑎𝑑 = 𝑽 𝑛ℎ,𝑎𝑖

(

𝒙0, �̇�0) �̃�𝑎𝑖 + 𝑼 𝑛ℎ,𝑎𝑖
(

𝒙0) ̇̃𝒙𝑎𝑖 + 𝑽 𝑛ℎ,𝑎𝑑
(

𝒙0, �̇�0) �̃�𝑎𝑑 . (117)

he derivation of matrices 𝑽 ℎ,𝑎𝑑 , 𝑼 𝑛ℎ,𝑎𝑖, 𝑽 𝑛ℎ,𝑎𝑖 and 𝑽 𝑛ℎ,𝑎𝑑 in Eqs. (116)
nd (117) can be found in detail in [13]. Defining �̃� =
�̃�𝑎𝑖 ̇̃𝒙𝑎𝑖 �̃�𝑎𝑑

)T, the system of Eqs. (116) and (117) can be rewrit-
en as a first-order system of the form ̇̃𝑿 = 𝑱�̃�, with the Jacobian
atrix 𝑱 given by Eq. (170) of Appendix A.

Note that Eqs. (116) and (117) present the same structure as
qs. (167). The Jacobian matrices of Eqs. (112) and (170) are
2 (𝑛 − 𝑚) − 𝑙) × (2 (𝑛 − 𝑚) − 𝑙). This size is the minimum that can be
chieved, not being possible a further reduction, since the nonholo-
omic constraints are first-order differential equations that cannot be
liminated. Among the 2 (𝑛 − 𝑚) − 𝑙 eigenvalues obtained with these
pproaches, 2 (𝑛 − 𝑚 − 𝑙) correspond to the real spectrum of the prob-
em, and 𝑙 are spurious eigenvalues associated with the 𝑙 linearized
onholonomic constraints.

The accuracy of the linearized equations of motion (116) and (117),
nd the equivalence between the Jacobian matrices of Eqs. (112)
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Fig. 2. Evolution of the eigenvalues in the forward speed range 0 < 𝑣 < 10 m∕s: root locus of the bicycle (a) and evolution of the eigenvalues with the forward speed (b). The
igenvalues show that the uncontrolled bicycle is statically unstable at low speeds, asymptotic stable for medium speeds and oscillatory unstable at high speeds. In the root locus
a), the eigenvalues corresponding to 𝑣 = 0 m∕s are highlighted with crosses, and the eigenvalues associated with 𝑣 = 10 m∕s are represented with squares. The evolution of the
igenvalues with the forward speed shown in (b) corresponds to the same continuation diagram obtained in Meijaard et al. [14]. The real parts of the eigenvalues have been
lotted with solid lines, while the imaginary parts are shown with dashed line. It can be seen that, for the forward speed 𝑣𝑑 , the oscillatory unstable weave motion appears after

the splitting of the two real eigenvalues 𝜆𝑑 into a complex conjugate pair. Once the weave speed 𝑣𝑤 is reached, the complex conjugate pair traverses the imaginary axis at 𝜆𝑤, so
he weave mode is stabilized. The asymptotic stability of the bicycle benchmark continues until the capsize speed 𝑣𝑐 , when the capsize real eigenvalue becomes positive, resulting
n the instability of the bicycle. In this way, the asymptotic stability is achieved for the range 𝑣𝑤 < 𝑣 < 𝑣𝑐 , with 𝑣𝑤 ≃ 4.29 m∕s and 𝑣𝑐 ≃ 6.02 m∕s. The points corresponding to 𝑣𝑤

and 𝑣𝑐 are also highlighted in the root locus (a).
t
i
l

and (170), were demonstrated with the stability results of the bicycle
benchmark of Meijaard et al. [14].

4. Results and discussion

The importance of considering the set of dependent coordinates
in the linearization is illustrated with the linear stability results of
two case studies: the bicycle and the electric kickscooter (henceforth
e-scooter). The bicycle multibody model considered in this study is
based on the bicycle benchmark of Meijaard et al. [14] and includes
toroidal wheels. The description of the bicycle multibody model is
presented in Appendix B. The linearized equations along the steady
forward motion are derived, considering different choices of indepen-
dent and dependent coordinates. The role of the dependent coordinates
in each scenario is discussed. Next, the second case study is the e-
scooter multibody model, based on the e-scooter benchmark presented
by García-Vallejo et al. [87]. The multibody model, which presents
toroidal wheels and includes flexibility by means of the rear and front
suspensions, is described in Appendix C. Considering different choices
of independent and dependent coordinates, the linearized equations
along the steady forward motion are obtained. Lastly, the role of the
dependent coordinates is discussed with the linear stability results of
the e-scooter.

4.1. Case study 1: the role of the dependent coordinates in the bicycle
stability analysis

The role of the dependent coordinates in the linearization is illus-
trated with the bicycle model described in Appendix B.

Groups 1 and 2: as already shown, the linearization approaches
described in Sections 3.1 and 3.2 (devoted to the linearization of the
index-3 and index-1 DAE equations of motion, respectively) make use
of the redundant set of coordinates. In these approaches, no coordinate
partition in terms of independent and dependent coordinates is consid-
ered, and no distinction in the handling of the coordinates is made. The
resulting Jacobian matrices include the partial derivatives with respect
to the complete set of coordinates. Among the linearization approaches
of Group 1, the procedure of Pappalardo et al. [10], summarized in
Section 3.1, was used to analyze the stability of the steady forward
motion of a bicycle multibody model. In the same way, the first of
the numerical procedures proposed by Agúndez et al. [13], exposed
13

b

in Section 3.2, was used to linearize the index-1 DAE equations of
motion of the bicycle multibody model along the reference solution of
Eq. (179).

Group 3: the approaches of the third group make use of a coordinate
partition in terms of independent and dependent coordinates. In this
case, it is important to clarify the handling of the dependent coordinates
in the linearization.

Consider the vector of coordinates in Eq. (171) of Appendix B. The
following coordinate partition is chosen:

�̃�𝑎𝑖 =
(

�̃�𝑏 �̃�𝑏 𝛿
)T ,

�̃�𝑑𝑑 =
(

�̃�𝑏 �̃�𝑏 �̃�𝑏 𝜃𝑏 𝜃𝑅 𝜃𝐹 𝜉𝑅 𝜉𝐹 �̃�𝑅 �̃�𝐹
)T , (118)

where 𝑛 − 𝑚 − 𝑙 = 3 independent coordinates (the same number as de-
grees of freedom of the system) are considered. The forward motion, the
lean and steering angles have been selected as independent coordinates.
This partition is possible, since the submatrix 𝑫𝑑𝑑 (𝒙) in Eq. (12) is
non-singular. The Jacobian matrices of Eqs. (153) and (159), obtained
with the symbolic and numerical approaches presented in [13], are
computed for the steady forward motion of the bicycle, leading to
equation in Box I, where the coefficients 𝛼𝑘, with 𝑘 = 1…20, are
functions of the geometric and dynamic parameters of the bicycle. As
shown in [13], the computation of the eigenvalues associated with the
Jacobian matrix of Eq. (119), for the hoop-shaped wheels case (𝜇𝑖 = 0),
yields the results of Fig. 2. Moreover, ten spurious null eigenvalues
are obtained, associated with the 𝑚 + 𝑙 = 10 dependent coordinates
in Eq. (118).

With the Jacobian matrix of Eq. (119), the following question arises:
can the Jacobian matrix (119) be reduced by eliminating the blocks
associated with the dependent coordinates? Note that, in the Jacobian
matrices of Eqs. (153) and (159) of Appendix B, the blocks including
the derivatives with respect to the dependent coordinates are 𝑱 23 =

𝒎−1
0

𝜕
(

𝒇 −𝒎�̈�0𝑎𝑖
)

𝜕𝒙𝑑𝑑

|

|

|

|

|0
= 𝒎−1

0

(

𝑹0
̄̄𝑽 0 + 𝑺0

)

𝑬𝑑𝑑 . In the particular case of

he bicycle, with the selection of independent coordinates of Eq. (118),
t can be seen that these blocks correspond to null submatrices (high-
ighted with red in Eq. (119)), and thus the dependent coordinates can

e ignored. In this scenario, the Jacobian matrices of Eqs. (153) and
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𝜙

𝑱 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 𝛼1 𝛼2 + 𝛼3 𝑣2 0 𝛼4 𝑣 𝛼5 𝑣 0 0 0 0 0 0 0 0 0 0
0 𝛼6 𝛼7 + 𝛼8 𝑣2 0 𝛼9 𝑣 𝛼10 𝑣 0 0 0 0 0 0 0 0 0 0
0 0 𝛼11 𝑣 0 𝛼12 𝛼13 0 0 𝛼14𝑣 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 𝛼15 𝑣 0 0 𝛼16 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 𝛼17 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 𝛼18 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −𝛼17 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −𝛼18 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 𝛼19 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 𝛼19 𝛼20 0 0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (119)

Box I.
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𝑱

159) can be simplified to:

=

⎛

⎜

⎜

⎜

⎝

𝟎(𝑛−𝑚−𝑙) 𝑰 (𝑛−𝑚−𝑙)
𝜕
(

𝒇 −𝒎�̈�0𝑎𝑖
)

𝜕𝒙𝑎𝑖

|

|

|

|

|0
𝒎−1

0
𝜕𝒇
𝜕�̇�𝑎𝑖

|

|

|

|0

⎞

⎟

⎟

⎟

⎠

=

(

𝟎(𝑛−𝑚−𝑙) 𝑰 (𝑛−𝑚−𝑙)

𝒎−1
0

(

𝑹0
̄̄𝑽 0 + 𝑺0

)

𝑬𝑎𝑖 𝒎−1
0 𝑹0𝑻 0

)

. (120)

In the bicycle example, Eq. (120) leads to:

𝑱 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 𝛼1 𝛼2 + 𝛼3 𝑣2 0 𝛼4 𝑣 𝛼5 𝑣
0 𝛼6 𝛼7 + 𝛼8 𝑣2 0 𝛼9 𝑣 𝛼10 𝑣

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (121)

n the linear stability analysis of the bicycle performed by Escalona
t al. [25], it is expressly mentioned that the dependent coordinates
f Eq. (118) can be considered as null in the linearization, and there-
ore they can be ignored. This is demonstrated by obtaining the null
ubmatrix in the block associated with the dependent coordinates,
s shown in Eq. (119). The linearization approaches by Cuadrado
t al. [15,16] and González et al. [7] described in Section 3.3, which
o not include the blocks associated with the dependent coordinates,
lso lead to the Jacobian matrix of Eq. (121). Despite the reduction of
he Jacobian matrix of Eq. (119) to Eq. (121), all the relevant stability
nformation is retained. The same velocity continuation diagram of
ig. 2(b) is obtained. The Jacobian matrix in Eq. (119) is (2𝑛 − 𝑚 − 𝑙) ×
2𝑛 − 𝑚 − 𝑙) = 16×16, while the Jacobian matrix (121) is (2 (𝑛 − 𝑚 − 𝑙))×
2 (𝑛 − 𝑚 − 𝑙)) = 6×6, leading to the elimination of the ten spurious null
igenvalues obtained with Eq. (119).

Note that the fourth row of the Jacobian matrix of Eq. (121) is
ull. This row corresponds to the equation of the bicycle’s forward
otion, ̈̃𝑥𝑏 = 0, which is decoupled from the others. Therefore, the

acobian matrix (121) can be further reduced. The fifth and sixth rows
f Eq. (121) correspond to the linearized lean and steer equations,
hich are equivalent to the linearized lean and steer equations derived
y Meijaard et al. [14]:
̈̃ = 𝛼1�̃� +

(

𝛼2 + 𝛼3 𝑣2
)

𝛿 + 𝛼4 𝑣 ̇̃𝜙 + 𝛼5 𝑣 ̇̃𝛿, (122)
̈̃𝛿 = 𝛼6�̃� +

(

𝛼7 + 𝛼8 𝑣2
)

𝛿 + 𝛼9 𝑣 ̇̃𝜙 + 𝛼10 𝑣 ̇̃𝛿. (123)

Eqs. (122)–(123) contain all the information regarding the linear sta-
bility of the lateral motion of the bicycle.
14

E

Nevertheless, the dependent coordinates cannot generally be ig-
nored. Consider now the following coordinate partition:

�̃�𝑎𝑖 =
(

�̃�𝑏 �̃�𝑏 �̃�𝑏
)T ,

�̃�𝑑𝑑 =
(

�̃�𝑏 �̃�𝑏 𝜃𝑏 𝛿 𝜃𝑅 𝜃𝐹 𝜉𝑅 𝜉𝐹 �̃�𝑅 �̃�𝐹
)T , (124)

where the forward motion, the yaw and lean angles are selected as
independent coordinates. The coordinate partition of Eq. (124) is also
possible, since the submatrix 𝑫𝑑𝑑 (𝒙) in Eq. (12) is non-singular. The Ja-
obian matrices of Eqs. (153) and (159), using the coordinate partition
n Eq. (124), are given by equation in Box II.

n Eq. (125), the coefficients 𝛽𝑘, with 𝑘 = 1…21, are functions
f the geometric and dynamic parameters of the bicycle. Despite a
ifferent coordinate partition to that of Eq. (118) is used, the Jacobian
atrix (125) yields the same velocity continuation diagram of Fig. 2(b).
oreover, as in Eq. (119), ten spurious null eigenvalues are obtained.

The following question is now posed: can the Jacobian matrix of
q. (125) be reduced by eliminating the blocks associated with the
ependent coordinates? Note that, in this case, this block is a non-
ull submatrix, highlighted with red in Eq. (125). If the derivatives
ith respect to the dependent coordinates are ignored in Eq. (125), the

ollowing reduced Jacobian matrix is obtained:

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 𝛽1 0 𝛽2 𝑣 𝛽3 𝑣
0 0 𝛽6 0 𝛽7 𝑣 𝛽8 𝑣

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (126)

The resulting velocity continuation diagram associated with the Ja-
cobian matrix of Eq. (126) does not correspond to that of Fig. 2(b),
obtaining completely incorrect results. Due to the symmetry of the
bicycle system, the selection of independent coordinates in Eq. (118)
allowed obtaining the correct linearized equations of motion despite
eliminating the dependent coordinates. Nevertheless, with the coor-
dinate partition of Eq. (124), the dependent coordinates cannot be
ignored and they are required in the computation of the exact linearized
equations of motion. Therefore, the Jacobian matrix (125) cannot be
reduced to Eq. (126).

Group 4: the use of the approaches described in Section 3.4 allows
the elimination of 𝑚 dependent coordinates. In the particular case of
the bicycle multibody model, 𝑚 = 6. This is accomplished by using
q. (109), which makes use of the linearized holonomic constraints
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𝒙
t
E

𝒙

𝒙

𝒙

T
l

𝑱

𝑱 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 𝛽1 0 𝛽2 𝑣 𝛽3 𝑣 0 0 0 𝛽4 + 𝛽5𝑣2 0 0 0 0 0 0
0 0 𝛽6 0 𝛽7 𝑣 𝛽8 𝑣 0 0 0 𝛽9 + 𝛽10𝑣2 0 0 0 0 0 0
0 𝛽11𝑣 0 0 𝛽12 𝛽13 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 𝛽14 0 0 0 0 𝛽15𝑣 0 0 0 0 0 0
0 0 0 𝛽16 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 𝛽17 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −𝛽16 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −𝛽17 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 𝛽18 0 0 0 0 0 0 0 0 0 0
0 0 0 0 𝛽19 𝛽20 0 0 0 𝛽21 𝑣 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (125)

Box II.
to express the variations of the dependent coordinates �̃�𝑑 in terms of
̃ 𝑎𝑖 and �̃�𝑎𝑑 . Choosing as independent coordinates the forward motion,
he lean and steering angles, a possible coordinate partition, based on
q. (18), is:

̃ 𝑎𝑖 =
(

�̃�𝑏 �̃�𝑏 𝛿
)T ,

̃ 𝑎𝑑 =
(

�̃�𝑏 �̃�𝑏 𝜃𝑅 𝜃𝐹
)T , (127)

̃ 𝑑 =
(

�̃�𝑏 𝜃𝑏 𝜉𝑅 𝜉𝐹 �̃�𝑅 �̃�𝐹
)T .

he use of Eq. (170), considering the coordinate partition in Eq. (127),
eads to the following Jacobian matrix:

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 𝛾1 𝛾2 + 𝛾3 𝑣2 0 𝛾4 𝑣 𝛾5 𝑣 0 0 0 0
0 𝛾6 𝛾7 + 𝛾8 𝑣2 0 𝛾9 𝑣 𝛾10 𝑣 0 0 0 0
0 0 𝛾11 𝑣 0 𝛾12 𝛾13 0 𝛾14𝑣 0 0
0 0 𝛾15𝑣 0 0 𝛾16 0 0 0 0
0 0 0 𝛾17 0 0 0 0 0 0
0 0 0 𝛾18 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(128)

where 𝛾𝑘, with 𝑘 = 1…18, are functions of the geometric and dynamic
parameters of the bicycle. The eigenvalues associated with Eq. (128)
correspond to those of the velocity continuation diagram of Fig. 2(b).
In this case, the Jacobian matrix (128) is (2 (𝑛 − 𝑚) − 𝑙)×(2 (𝑛 − 𝑚) − 𝑙) =
10×10, and the number of spurious null eigenvalues is reduced from ten
to four, associated with the 𝑙 = 4 linearized nonholonomic constraints.

In Eq. (128), the dependent coordinates �̃�𝑑 of Eq. (127) are elimi-
nated with the use of the linearized holonomic constraints. Moreover,
the block associated with the coordinates �̃�𝑎𝑑 is a null submatrix, high-
lighted with color red. This block corresponds to 𝑱 23 in the Jacobian
matrices of Eqs. (112) and (170), obtained with the symbolic and
counterpart approaches presented in [13]. As in Eq. (119), the Jacobian
matrix (128) can be reduced to Eq. (121). This reduced Jacobian matrix
leads to the correct eigenvalues of the system.

Nevertheless, as in the approaches of Group 3, the reduction ignor-
ing the coordinates �̃�𝑎𝑑 cannot always be done. Consider the following
coordinate partition:

�̃�𝑎𝑖 =
(

�̃�𝑏 �̃�𝑏 �̃�𝑏
)T ,

̃
( ̃ ̃ ̃ )T
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𝒙𝑎𝑑 = �̃�𝑏 𝛿 𝜃𝑅 𝜃𝐹 , (129)
�̃�𝑑 =
(

�̃�𝑏 𝜃𝑏 𝜉𝑅 𝜉𝐹 �̃�𝑅 �̃�𝐹
)T ,

where the forward motion, the yaw and lean angles are selected as in-
dependent coordinates. In this case, the Jacobian matrices of Eqs. (112)
and (170) are given by:

𝑱 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 𝛿1 0 𝛿2 𝑣 𝛿3 𝑣 0 𝛿4 + 𝛿5𝑣2 0 0
0 0 𝛿6 0 𝛿7 𝑣 𝛿8 𝑣 0 𝛿9 + 𝛿10𝑣2 0 0
0 𝛿11𝑣 0 0 𝛿12 𝛿13 0 0 0 0
0 0 0 0 𝛿14 0 0 𝛿15𝑣 0 0
0 0 0 𝛿16 0 0 0 0 0 0
0 0 0 𝛿17 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(130)

In Eq. (130), the coefficients 𝛿𝑘, with 𝑘 = 1…17, are functions of
the geometric and dynamic parameters of the bicycle. In contrast to
Eq. (128), the block associated with the coordinates �̃�𝑎𝑑 is a non-null
submatrix, highlighted with color red in Eq. (130). The Jacobian ma-
trix (130) leads to the same velocity continuation diagram of Fig. 2(b).
However, eliminating this block results in completely incorrect results,
as in Eq. (126).

This analysis clearly shows that the dependent coordinates need to
be carefully handled in the linearization of the equations of motion
of constrained multibody systems. If one of the approaches of Group
1 (Subsect. 3.1) and Group 2 (Subsect. 3.2) is used, no distinction
between coordinates is considered and the handling of the depen-
dent coordinates does not require further attention. As a drawback,
a bulky Jacobian matrix is obtained. In the approaches of Group 3
(Subsect. 3.3), it is shown that, in general, the dependent coordinates
cannot be ignored. In the particular case of the bicycle, the selection
of the forward motion, the lean and steering angles as independent
coordinates allows for ignoring the derivatives with respect to the
dependent coordinates, due to the symmetry of the bicycle system along
the steady forward motion. However, a different admissible choice of
independent coordinates, as the one shown in Eq. (124), inhibits ignor-
ing the derivatives with respect to the dependent coordinates. Lastly,
by using the linearization approaches of Group 4 (Subsect. 3.4), the
linearized holonomic constraints can be used to eliminate 𝑚 dependent
coordinates. In the particular case of a multibody system with only
holonomic constraints, this allows obtaining the linearized equations
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Table 1
Comparison of the results obtained in the linear stability analysis of the bicycle multibody model with toroidal wheels, using the linearization
approaches illustrated in the overview of Section 3. Since the bicycle model of this study is an example of nonholonomic multibody system,
those procedures that explicitly include nonholonomic constraints have been employed. The procedures illustrated in the overview that do
not appear in Table 1, although they can be extended to the nonholonomic case, are developed by their authors in the respective works for
multibody systems with holonomic constraints. Among the procedures of Group 1, the linearization approach by Pappalardo et al. [8,9] is used.
In Group 2, the symbolic linearization of the index-1 DAE, the first numerical procedure by Agúndez et al. [13] and the approach by Van
Khang et al. [12] are considered. Next, among the procedures of Group 3, the first symbolic and second numerical approaches by Agúndez et
al. [13] have been employed. Lastly, the second symbolic and third numerical procedures by Agúndez et al. [13], which belong to Group 4,
have been used. The size of the Jacobian matrix, the number of spurious eigenvalues and the eigenvalues of the spectrum, obtained by using
the linearization approaches of each group, are detailed for the bicycle case.

Bicycle:
𝑛 = 13, 𝑚 = 6,
𝑙 = 4

Group 1
Pappalardo et
al. [8,9]

Group 2
Symbolic linearization
index-1 DAE system
First numerical approach by
Agúndez et al. [13]
Van Khang et al. [12]

Group 3
First symbolic approach
Second numerical approach
by Agúndez et al. [13]

Group 4
Second symbolic approach
Third numerical approach
by Agúndez et al. [13]

Size of Jacobian
matrix

2 (𝑛 + 𝑚 + 𝑙)
46 × 46

2n
26 × 26

2n-m-l
16 × 16

2 (𝑛 − 𝑚) − 𝑙
10 × 10

Number of
spurious
eigenvalues

4 (𝑚 + 𝑙)
40

2 (𝑚 + 𝑙)
20

m+l
10

l
4

Eigenvalues of
the spectrum

2 (𝑛 − 𝑚 − 𝑙)
6

2 (𝑛 − 𝑚 − 𝑙)
6

2 (𝑛 − 𝑚 − 𝑙)
6

2 (𝑛 − 𝑚 − 𝑙)
6

m
s
(
s
t
p
l
c
t
m
m
w
i
J
g
w
m
a
w
w

4
s

i
u
d
m
o
d
p

𝒙

𝒙

of motion only in terms of the 𝑛−𝑚 independent coordinates and their
time derivatives, eliminating the dependent ones. Nevertheless, in a
multibody system with nonholonomic constraints as the bicycle, the
linearized nonholonomic constraints cannot be used to express the re-
maining dependent coordinates as a function of the independent ones,
since these constraints are non-integrable. The approaches of Group 4
lead to the maximum possible reduction of the linearized equations
of motion. As shown with the bicycle, in some multibody systems
with a low number of coordinates and in presence of symmetries, a
selection of independent coordinates can be intuitively found to ignore
the dependent coordinates. However, this is not the usual case, and
the systematic linearization of constrained multibody systems requires
considering these dependent coordinates.

A comparison of the results obtained in the linear stability analysis
of the bicycle multibody model with toroidal wheels, using the lin-
earization approaches illustrated in the overview of Section 3, is shown
in Table 1. Given that the bicycle model of this study is a nonholonomic
multibody system, those procedures that explicitly include nonholo-
nomic constraints have been employed. The procedures included in the
overview of Section 3 that do not appear in Table 1, although they
can be extended to the nonholonomic case, are developed by their
authors in the respective works for multibody systems with holonomic
constraints.

Among the procedures of Group 1, the linearization approach by
Pappalardo et al. [8,9] is used. For a multibody system modeled with
𝑛 generalized coordinates, 𝑚 holonomic constraints and 𝑙 nonholo-
nomic constraints, this approach leads to a Jacobian matrix of size
2 (𝑛 + 𝑚 + 𝑙) × 2 (𝑛 + 𝑚 + 𝑙), which in the case of the bicycle results
in 2 (𝑛 + 𝑚 + 𝑙) = 46 eigenvalues. A total of 4 (𝑚 + 𝑙) = 40 spurious
eigenvalues are obtained, and the remaining six constitute the spectrum
of the problem. Concerning Group 2, the symbolic linearization of the
index-1 DAE, the first numerical procedure by Agúndez et al. [13] and
the approach by Van Khang et al. [12] are considered. The use of these
procedures result in a Jacobian matrix of size 2𝑛 × 2𝑛, which leads to
2𝑛 = 26 eigenvalues in the bicycle case, with 2 (𝑚 + 𝑙) = 20 spurious
eigenvalues. A further reduction of the Jacobian matrix is obtained
with the first symbolic and second numerical approaches by Agúndez
et al. [13], which belong to Group 3. In this case, the Jacobian matrix is
(2𝑛 − 𝑚 − 𝑙)×(2𝑛 − 𝑚 − 𝑙), resulting in 2𝑛−𝑚− 𝑙 = 16 eigenvalues for the
bicycle. The number of spurious eigenvalues is reduced from 2 (𝑚 + 𝑙) =
20 with the approaches of Group 2 to 𝑚 + 𝑙 = 10, and the remaining
six eigenvalues constitute the spectrum of the problem. Lastly, the
procedures of Group 4 lead to the maximum possible reduction of the
16
linearized equations, obtaining a (2 (𝑛 − 𝑚) − 𝑙)×(2 (𝑛 − 𝑚) − 𝑙) Jacobian
atrix. A total of 2 (𝑛 − 𝑚)−𝑙 = 10 eigenvalues are obtained in the linear

tability analysis of the bicycle, where 𝑙 = 4 are spurious eigenvalues
associated with the 𝑙 = 4 linearized nonholonomic constraints) and
ix correspond to the spectrum of the problem. Table 1 summarizes
hese results. In terms of computational efficiency, the use of numerical
rocedures is highly recommended over the symbolic approaches. The
inearization approaches based on symbolic computation involve the
alculation of inverse matrices, the computation of the time deriva-
ive of inverse matrices and the partial derivatives of cumbersome
athematical expressions, being their use generally not possible for
oderately complex multibody systems as the bicycle with toroidal
heels. Nevertheless, these obstacles are avoided by using the numer-

cal linearization approaches. Their power allow for generating the
acobian matrix of the multibody system under study in terms of the
eometric and dynamic parameters. In the particular case of the bicycle
ith toroidal wheels, the average time of computation of the Jacobian
atrices of Eqs. (55), (159) and (170), derived from the first, second

nd third numerical approaches by Agúndez et al. [13], respectively,
as of 0.02 s. The assessment was carried out by using a computer HP
ith Intel(R) Core(TM) i7-6700HQ 2.6 GHz and 12 GB of RAM.

.2. Case study 2: the role of the dependent coordinates in the e-scooter
tability analysis

The role of the dependent coordinates in the linearization is also
llustrated with the e-scooter model described in Appendix C and the
se of the approaches of Group 4, which allow for eliminating 𝑚
ependent coordinates. In the particular case of the e-scooter multibody
odel, 𝑚 = 6. This is accomplished by using Eq. (109), which makes use

f the linearized holonomic constraints to express the variations of the
ependent coordinates �̃�𝑑 in terms of �̃�𝑎𝑖 and �̃�𝑎𝑑 . A possible coordinate
artition, based on Eq. (18), is:

̃ 𝑎𝑖 =
(

�̃�𝑏 �̃�𝑏 𝛿 �̃� 𝜃𝑆𝑅
)T ,

̃ 𝑎𝑑 =
(

�̃�𝑏 �̃�𝑏 𝜃𝑅 𝜃𝐹
)T , (131)

�̃�𝑑 =
(

�̃�𝑏 𝜃𝑏 𝜉𝑅 𝜉𝐹 �̃�𝑅 �̃�𝐹
)T ,

where 𝑛 − 𝑚 − 𝑙 = 5 independent coordinates (the same number as
degrees of freedom of the system) are considered. The forward motion,
the lean and steering angles, and the coordinates 𝑠 and 𝜃𝑆𝑅 , associated
with the front and rear suspensions, respectively, have been selected as

independent coordinates.
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𝑱 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 𝜒1 𝜒2 0 0 0 𝜒3 𝜒4 0 0 0 0
0 𝜒5 𝜒6 + 𝜒7 𝑣2 0 0 0 𝜒8 𝑣 𝜒9 𝑣 0 0 0 0 0 0
0 𝜒10 𝜒11 + 𝜒12 𝑣2 0 0 0 𝜒13 𝑣 𝜒14 𝑣 0 0 0 0 0 0
0 0 0 𝜒15 𝜒16 0 0 0 𝜒17 𝜒18 0 0 0 0
0 0 0 𝜒19 𝜒20 0 0 0 𝜒21 𝜒22 0 0 0 0
0 0 𝜒23 𝑣 0 0 0 𝜒24 𝜒25 0 0 0 𝑣 0 0
0 0 𝜒26 𝑣 0 0 0 0 𝜒27 0 0 0 0 0 0
0 0 0 0 0 𝜒28 0 0 𝜒29 𝜒30 0 0 0 0
0 0 0 0 0 𝜒31 0 0 𝜒32 𝜒33 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (132)

Box III.
T
e

𝒙
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The Jacobian matrices of Eqs. (112) and (170), considering the
oordinate partition of Eq. (131) and particularized for the steady
orward motion of the e-scooter, are given by equation in Box III.
he coefficients 𝜒𝑘, with 𝑘 = 1…33, are functions of the geometric

nd dynamic parameters of the e-scooter. The computation of the
igenvalues associated with the Jacobian matrix of Eq. (132) yields the
esults of Fig. 3. Moreover, four spurious null eigenvalues are obtained,
ssociated with the 𝑙 = 4 linearized nonholonomic constraints. Figs. 3
a) and (b) show the evolution of the real part of the eigenvalues of the
-scooter with the forward velocity 𝑣, in the hoop-shaped and toroidal
heels scenarios, respectively. Both the rigid case and the case with

uspensions are shown in Figs. 3 (a) and (b). It can be seen that, in
ontrast to the bicycle benchmark, and for the numerical values of the
-scooter benchmark parameters provided in García-Vallejo et al. [87],
o self-stability velocity range exists for the uncontrolled e-scooter,
btaining eigenvalues with positive real parts in all the cases. The most
mportant aspect to highlight due to the introduction of the suspensions
s the appearance of two complex conjugate pairs of eigenvalues. The
umerical values of the real parts of these pairs are independent of the
orward speed and are highly dependent on the damping coefficients 𝑑𝑟
nd 𝑑𝑓 . Moreover, the imaginary parts of these complex conjugate pairs
re highly dependent on the stiffness constants of the rear and front
uspensions, 𝑘𝑟 and 𝑘𝑓 . Concerning the remaining eigenvalues, it can
e seen that the suspensions scenarios (labeled as ‘Susp’ in Fig. 3) do
ot lead to major differences with respect to the rigid scenario (labeled
s ‘Rigid’ in Figs. 3).

The block associated with the coordinates �̃�𝑎𝑑 in Eq. (132) is a null
ubmatrix, highlighted with color red. This block corresponds to 𝑱 23
n the Jacobian matrices of Eqs. (112) and (170), obtained with the
econd symbolic and third numerical approaches presented in [13]. In
his scenario, the Jacobian matrix of Eq. (132) can be simplified to:

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 𝜒1 𝜒2 0 0 0 𝜒3 𝜒4
0 𝜒5 𝜒6 + 𝜒7 𝑣2 0 0 0 𝜒8 𝑣 𝜒9 𝑣 0 0
0 𝜒10 𝜒11 + 𝜒12 𝑣2 0 0 0 𝜒13 𝑣 𝜒14 𝑣 0 0
0 0 0 𝜒15 𝜒16 0 0 0 𝜒17 𝜒18
0 0 0 𝜒19 𝜒20 0 0 0 𝜒21 𝜒22

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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(133) c
his reduced Jacobian matrix leads to the eigenvalues shown in Fig. 3,
liminating the 𝑙 = 4 spurious null eigenvalues obtained with the

Jacobian matrix of Eq. (132).
Nevertheless, as shown with the bicycle, the reduction of the Jaco-

bian matrix (132) ignoring the coordinates �̃�𝑎𝑑 cannot always be done.
Consider now the following coordinate partition:

�̃�𝑎𝑖 =
(

�̃�𝑏 �̃�𝑏 �̃�𝑏 �̃� 𝜃𝑆𝑅
)T ,

̃ 𝑎𝑑 =
(

�̃�𝑏 𝛿 𝜃𝑅 𝜃𝐹
)T , (134)

�̃�𝑑 =
(

�̃�𝑏 𝜃𝑏 𝜉𝑅 𝜉𝐹 �̃�𝑅 �̃�𝐹
)T ,

here the forward motion, the yaw and lean angles, and the coor-
inates 𝑠 and 𝜃𝑆𝑅 , associated with the front and rear suspensions,
espectively, have been chosen as independent coordinates. In this case,
he Jacobian matrices of Eqs. (112) and (170) are given by equation in
ox IV, where the coefficients 𝜚𝑘, with 𝑘 = 1…33, are functions of

the geometric and dynamic parameters of the e-scooter. In contrast to
Eq. (132), the block associated with the coordinates �̃�𝑎𝑑 in Eq. (135)
is a non-null submatrix, highlighted with color red. The Jacobian
matrix (135) leads to the velocity continuation diagrams shown in
Fig. 3. However, eliminating this block results in completely incorrect
results. As was also demonstrated with the bicycle, in the particular
case of the e-scooter, a convenient selection of independent coordinates
can be intuitively found to ignore the dependent coordinates. This can
be done in some multibody systems with a low number of coordinates
and in the presence of symmetries. Nevertheless, as shown with the
coordinate partition of Eq. (134) and the Jacobian matrix of Eq. (135),
this is not the usual case, and the systematic linearization of constrained
multibody systems requires considering these dependent coordinates.

Lastly, as it was done with the bicycle, a comparison of the results
obtained in the linear stability analysis of the e-scooter multibody
model with rear and front suspensions, using the linearization ap-
proaches illustrated in the overview of Section 3, is shown in Ta-
ble 2. Given that the e-scooter model of this study is a nonholonomic
multibody system, those procedures that explicitly include nonholo-
nomic constraints have been employed. The procedures included in the
overview of Section 3 that do not appear in Table 2, although they
can be extended to the nonholonomic case, are developed by their
authors in the respective works for multibody systems with holonomic
constraints. As can be seen in Table 2, the linearization procedures
of Group 4 lead to the maximum possible reduction of the linearized
equations, obtaining a (2 (𝑛 − 𝑚) − 𝑙) × (2 (𝑛 − 𝑚) − 𝑙) Jacobian matrix.

total of 2 (𝑛 − 𝑚) − 𝑙 = 14 eigenvalues are obtained in the linear
tability analysis of the e-scooter, where 𝑙 = 4 are spurious eigenvalues
associated with the 𝑙 = 4 linearized nonholonomic constraints) and ten
orrespond to the spectrum of the problem.
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Fig. 3. Linearized speed analysis of the e-scooter multibody model with rear and front suspensions. The evolution of the real part of the eigenvalues (Re (𝜆)) with the forward
elocity 𝑣 is shown in the hoop-shaped scenario (a), corresponding to 𝜇𝑖 = 0, and the toroidal wheels scenarios (b), with 𝜇𝑖 = 0.3. While the uncontrolled bicycle benchmark is
symptotically stable between the weave speed 𝑣𝑤 and the capsize speed 𝑣𝑐 , the uncontrolled e-scooter is completely unstable in the velocity range 0 < 𝑣 < 15 m∕s. Both the rigid
ase and the case with suspensions are shown. It can be seen that the suspensions scenarios (labeled as ‘Susp’) do not lead to major differences with respect to the rigid scenario
labeled as ‘Rigid’).
𝑱 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 𝜚1 𝜚2 0 0 0 𝜚3 𝜚4 0 0 0 0
0 0 𝜚5 0 0 0 𝜚6 𝑣 𝜚7 𝑣 0 0 0 𝜚8 + 𝜚9 𝑣2 0 0
0 0 𝜚10 0 0 0 𝜚11 𝑣 𝜚12 𝑣 0 0 0 𝜚13 + 𝜚14 𝑣2 0 0
0 0 0 𝜚15 𝜚16 0 0 0 𝜚17 𝜚18 0 0 0 0
0 0 0 𝜚19 𝜚20 0 0 0 𝜚21 𝜚22 0 0 0 0
0 𝜚23 𝑣 0 0 0 0 𝜚24 𝜚25 0 0 0 0 0 0
0 0 0 0 0 0 𝜚26 0 0 0 0 𝜚27 𝑣 0 0
0 0 0 0 0 𝜚28 0 0 𝜚29 𝜚30 0 0 0 0
0 0 0 0 0 𝜚31 0 0 𝜚32 𝜚33 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (135)

Box IV.
Table 2
Comparison of the results obtained in the linear stability analysis of the e-scooter multibody model with rear and front suspensions, using the
linearization approaches illustrated in the overview of Section 3. As in the bicycle case, the e-scooter model of this work is an example of
nonholonomic multibody system, and therefore those procedures that explicitly include nonholonomic constraints have been employed. The
procedures illustrated in the overview that do not appear in Table 1, although they can be extended to the nonholonomic case, are developed
by their authors in the respective works for holonomic multibody systems. The size of the Jacobian matrix, the number of spurious eigenvalues
and the eigenvalues of the spectrum, obtained by using the linearization approaches of each group, are shown for the e-scooter case.

E-scooter:
𝑛 = 15, 𝑚 = 6,
𝑙 = 4

Group 1
Pappalardo et
al. [8,9]

Group 2
Symbolic linearization
index-1 DAE system
First numerical approach
by Agúndez et al. [13] Van
Khang et al. [12]

Group 3
First symbolic approach
Second numerical approach
by Agúndez et al. [13]

Group 4
Second symbolic approach
Third numerical approach
by Agúndez et al. [13]

Size of Jacobian
matrix

2 (𝑛 + 𝑚 + 𝑙)
50 × 50

2n
30 × 30

2n-m-l
20 × 20

2 (𝑛 − 𝑚) − 𝑙
14 × 14

Number of
spurious
eigenvalues

4 (𝑚 + 𝑙)
40

2 (𝑚 + 𝑙)
20

m+l
10

l
4

Eigenvalues of
the spectrum

2 (𝑛 − 𝑚 − 𝑙)
10

2 (𝑛 − 𝑚 − 𝑙)
10

2 (𝑛 − 𝑚 − 𝑙)
10

2 (𝑛 − 𝑚 − 𝑙)
10
18
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5. Conclusions

In this work, the handling of the dependent coordinates in the
linearization of the equations of motion of constrained multibody sys-
tems has been clarified. For that purpose, a comprehensive overview
of notable linearization approaches for constrained multibody systems
with Lagrange multipliers was presented. This overview summarizes
the approaches of previous works by using a common notation. The
linearization approaches are classified into four groups, according to
the initial form of the nonlinear equations of motion and the use of a
redundant or a minimal set of coordinates. The first group (presented
in Subsect. 3.1) includes approaches that linearize the index-3 DAE
system, using a redundant set of coordinates. The second group (Sub-
sect. 3.2) covers procedures based on the linearization of the index-1
DAE system, also considering a redundant set of coordinates. Next,
a third group of procedures (Subsect. 3.3) is considered, based on a
coordinate partition in terms of independent and dependent coordi-
nates, which lead to a reduced linear ODE system. Finally, a fourth
group of approaches, described in Subsect. 3.4, allows for obtaining the
linearized equations of motion in ODE form, only expressed in terms of
the independent coordinates and their time derivatives, by eliminating
the dependent coordinates with the use of the linearized holonomic
constraints. The role of the dependent coordinates in each of these
procedures was discussed.

The importance of considering the set of dependent coordinates was
demonstrated with the linear stability results of a well-acknowledged
bicycle benchmark multibody model. To this end, the Jacobian matrices
and the evolution of the eigenvalues with the forward speed in the
steady forward motion of the bicycle were computed, considering
different choices of independent and dependent coordinates. The use
of the approaches of Group 1 and Group 2 do not involve risks in the
handling of the dependent coordinates, since these approaches make
use of an augmented Jacobian matrix with the redundant set of coor-
dinates. Therefore, no distinction between independent and dependent
coordinates is considered. In the approaches of Group 3, it was shown
that, in the particular case of the bicycle, the selection of the forward
motion, the lean and steering angles as independent coordinates allows
for ignoring the derivatives with respect to the dependent coordinates
in the linearization, due to the symmetry of the bicycle system along
the steady forward motion. However, it was shown that, for a different
admissible coordinate partition, the dependent coordinates cannot be
ignored, leading to incorrect eigenvalues in the linear stability analysis.
Lastly, the approaches of Group 4 allow for expressing the dependent
coordinates in terms of the independent ones with the linearized holo-
nomic constraints. By doing this, in the particular case of a multibody
system with only holonomic constraints, the linearized equations of
motion are obtained only in terms of the independent coordinates and
their time derivatives, eliminating the dependent ones. Nevertheless,
in a nonholonomic multibody system as the bicycle, the linearized
nonholonomic constraints cannot be used to express the remaining
dependent coordinates as a function of the independent ones, since
these constraints are non-integrable. As in the third group, it was shown
that, in some multibody systems as the bicycle (with low number of
coordinates and in presence of symmetries), one can intuitively find a
set of independent coordinates that allows for ignoring the derivatives
with respect to the dependent ones. Nevertheless, this is not the general
case, and the correct linearization of constrained multibody systems
requires considering the dependent coordinates. A comparison between
the linearization approaches included in the overview of Section 3
was also performed, showing the size of the Jacobian matrices and
the number of spurious eigenvalues obtained for the bicycle case.
The computational efficiency of those procedures based on numerical
computation was also highlighted.

Lastly, the role of the dependent coordinates was also shown with
19

an e-scooter multibody model with rear and front suspensions and
the application of the linearization approaches of Group 4. As in
the bicycle case, a convenient coordinate partition that allowed for
ignoring the derivatives with respect to the dependent coordinates
was found, exploiting the symmetry of the e-scooter along the steady
forward motion. However, a different admissible choice of independent
coordinates showed that, in general, the derivatives with respect to
the dependent coordinates cannot be ignored to correctly compute the
linearized equations of motion.
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Appendix A. Details of the linearization approaches of Section 3

Procedure by Escalona et al. [5,6] and González et al. [7] (RCS
Formulation)

The (2𝑛 + 𝑚) × (2𝑛 + 𝑚) matrices 0 and 0 of Eq. (33) are given by
see the equation given in Box V):

hese matrices are (2𝑛 + 𝑚 + 𝑙) × (2𝑛 + 𝑚 + 𝑙) if the multibody system
resents nonholonomic constraints.
Procedure by Pappalardo et al. [8,9]
The 𝑛 + 𝑚 + 𝑙 composite mass, damping and stiffness matrices of

q. (37), �̄�0, �̄�0 and �̄�0, respectively, are:

̄
0 =

(

𝑴
(

𝒙0) 𝟎𝑛×(𝑚+𝑙)
𝟎(𝑚+𝑙)×𝑛 𝟎(𝑚+𝑙)

)

,

̄
0 =

⎛

⎜

⎜

⎝

−
𝜕𝑸 (𝒙, �̇�)

𝜕�̇�
|

|

|

|0
𝟎𝑛×(𝑚+𝑙)

𝑬 �̇�
|

|0 𝟎(𝑚+𝑙)

⎞

⎟

⎟

⎠

, (138)

�̄�0 =

⎛

⎜

⎜

⎜

⎝

−
𝜕𝑸 (𝒙, �̇�)

𝜕𝒙
|

|

|

|0
+
𝜕
(

𝑴 (𝒙) �̈�0)

𝜕𝒙

|

|

|

|

|0

+
𝜕
(

𝑫T (𝒙)𝜦0)

𝜕𝒙

|

|

|

|

|0

𝑫T (𝒙0)

𝑬𝒙
|

|0 𝟎(𝑚+𝑙)

⎞

⎟

⎟

⎟

⎠

.
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0 =

⎛

⎜

⎜

⎜

⎝

𝑰𝑛 𝟎𝑛 𝟎𝑛×𝑚
𝟎𝑛 𝑴

(

𝒙0
)

𝟎𝑛×𝑚
𝟎𝑚×𝑛 𝟎𝑚×𝑛 𝟎𝑚

⎞

⎟

⎟

⎟

⎠

, (136)

0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝟎𝑛 𝑰𝑛 𝟎𝑛×𝑚

𝜕𝑸 (𝒙, �̇�)
𝜕𝒙

|

|

|

|0
−
𝜕
(

𝑴 (𝒙) �̈�0
)

𝜕𝒙

|

|

|

|

|0
−
𝜕
(

𝑪T
𝒙 (𝒙)𝜦

0)

𝜕𝒙

|

|

|

|

|0

𝜕𝑸 (𝒙, �̇�)
𝜕�̇�

|

|

|

|0
−𝑪T

𝒙
(

𝒙0
)

− 𝑪𝒙
(

𝒙0
)

𝟎𝑚×𝑛 𝟎𝑚

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (137)

Box V.




Matrices 0 and 0 in Eq. (38) are given by:

0 =
(

�̄�0 �̄�0
�̄�0 𝟎(𝑛+𝑚+𝑙)

)

, 0 =
(

−�̄�0 𝟎(𝑛+𝑚+𝑙)
𝟎(𝑛+𝑚+𝑙) �̄�0

)

. (139)

Procedure by Negrut et al. [4]

The partial derivatives 𝜕𝑭
𝜕�̇�𝑎𝑖

and 𝜕𝑭
𝜕𝒙𝑎𝑖

in Eqs. (43) and (44) are
omputed as:

𝜕𝑭
𝜕�̇�𝑎𝑖

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑴 (𝒙) 𝜕�̈�
𝜕�̇�𝑎𝑖

+ 𝑪T
𝒙 (𝒙)

𝜕𝜦
𝜕�̇�𝑎𝑖

+ 𝜰 �̇�
𝜕�̇�
𝜕�̇�𝑎𝑖

+ 𝜰 𝒙
𝜕𝒙
𝜕�̇�𝑎𝑖

�̈� �̈�
𝜕�̈�
𝜕�̇�𝑎𝑖

+ �̈� �̇�
𝜕�̇�
𝜕�̇�𝑎𝑖

+ �̈�𝒙
𝜕𝒙
𝜕�̇�𝑎𝑖

�̇� �̇�
𝜕�̇�
𝜕�̇�𝑎𝑖

+ �̇�𝒙
𝜕𝒙
𝜕�̇�𝑎𝑖

𝑪𝒙
𝜕𝒙
𝜕�̇�𝑎𝑖

𝑩1
𝜕�̇�
𝜕�̇�𝑎𝑖

𝑩0
𝜕𝒙
𝜕�̇�𝑎𝑖

⎞

⎟

⎟

⎟

⎟

⎟

⎟
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⎟

⎟

⎟

⎟
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⎟

⎟
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⎠

, (140)

𝜕𝑭
𝜕𝒙𝑎𝑖

=
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𝑪𝒙
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𝜕𝒙𝑎𝑖

𝑩1
𝜕�̇�
𝜕𝒙𝑎𝑖

𝑩0
𝜕𝒙
𝜕𝒙𝑎𝑖
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⎟
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⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
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⎟

⎟

⎟

⎠

, (141)

where 𝜰 �̇� and 𝜰 𝒙 are given by:

𝜰 �̇� = −
𝜕𝑸 (𝒙, �̇�)

𝜕�̇�
, 𝜰 𝒙 =

𝜕
(

𝑴 (𝒙) �̈� + 𝑪T
𝒙 (𝒙)𝜦 −𝑸 (𝒙, �̇�)

)

𝜕𝒙
. (142)

The partial derivatives 𝜕𝒃
𝜕�̇�𝑎𝑖

and 𝜕𝒃
𝜕𝒙𝑎𝑖

are given by:

𝜕𝒃
𝜕�̇�𝑎𝑖

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

𝟎𝑛×(𝑛−𝑚)
𝟎𝑚×(𝑛−𝑚)
𝟎𝑚×(𝑛−𝑚)
𝟎𝑚×(𝑛−𝑚)
𝑰 (𝑛−𝑚)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

, 𝜕𝒃
𝜕𝒙𝑎𝑖

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

𝟎𝑛×(𝑛−𝑚)
𝟎𝑚×(𝑛−𝑚)
𝟎𝑚×(𝑛−𝑚)
𝟎𝑚×(𝑛−𝑚)
𝟎(𝑛−𝑚)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

. (143)
20

⎝ 𝟎(𝑛−𝑚) ⎠ ⎝ 𝑰 (𝑛−𝑚) ⎠
The expressions of 1, 𝑿1 and 𝒃1 in Eqs. (45) are:

1 (𝒙) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑴 (𝒙) 𝑪T
𝒙 (𝒙) 𝜰 �̇� 𝜰 𝒙

�̈� �̈� 𝟎𝑚 �̈� �̇� �̈�𝒙

𝟎𝑚×𝑛 𝟎𝑚 �̇� �̇� �̇�𝒙

𝟎𝑚×𝑛 𝟎𝑚 𝟎𝑚×𝑛 𝑪𝒙

𝟎(𝑛−𝑚)×𝑛 𝟎(𝑛−𝑚)×𝑚 𝑩1 𝟎(𝑛−𝑚)×𝑛
𝟎(𝑛−𝑚)×𝑛 𝟎(𝑛−𝑚)×𝑚 𝟎(𝑛−𝑚)×𝑛 𝑩0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (144)

𝑿1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕�̈�
𝜕�̇�𝑎𝑖

𝜕�̈�
𝜕𝒙𝑎𝑖

𝜕𝜦
𝜕�̇�𝑎𝑖

𝜕𝜦
𝜕𝒙𝑎𝑖

𝜕�̇�
𝜕�̇�𝑎𝑖

𝜕�̇�
𝜕𝒙𝑎𝑖

𝜕𝒙
𝜕�̇�𝑎𝑖

𝜕𝒙
𝜕𝒙𝑎𝑖

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, 𝒃1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝟎𝑛×(𝑛−𝑚) 𝟎𝑛×(𝑛−𝑚)
𝟎𝑚×(𝑛−𝑚) 𝟎𝑚×(𝑛−𝑚)
𝟎𝑚×(𝑛−𝑚) 𝟎𝑚×(𝑛−𝑚)
𝟎𝑚×(𝑛−𝑚) 𝟎𝑚×(𝑛−𝑚)
𝑰 (𝑛−𝑚) 𝟎(𝑛−𝑚)
𝟎(𝑛−𝑚) 𝑰 (𝑛−𝑚)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (145)

Procedure by Agúndez et al. [13] (first numerical approach)
Matrices ̄0 and ̄0 of Eq. (53) are given by:

̄
0 =

(

𝑴
(

𝒙0) 𝑫T (𝒙0)

𝑫
(

𝒙0) 𝟎

)

, (146)

̄
0 =

⎛

⎜

⎜

⎜

⎜

⎝

𝜕𝑸 (𝒙, �̇�)
𝜕𝒙

|

|

|

|0
−
𝜕
(

𝑴 (𝒙) �̈�0)

𝜕𝒙

|

|

|

|

|0

−
𝜕
(

𝑫T (𝒙)𝜦0)

𝜕𝒙

|

|

|

|

|0

𝜕𝑸 (𝒙, �̇�)
𝜕�̇�

|

|

|

|0

𝜕𝑸𝑑 (𝒙, �̇�)
𝜕𝒙

|

|

|

|0
−
𝜕
(

𝑫 (𝒙) �̈�0)

𝜕𝒙

|

|

|

|

|0

𝜕𝑸𝑑 (𝒙, �̇�)
𝜕�̇�

|

|

|

|0

⎞

⎟

⎟

⎟

⎟

⎠

.

(147)

Procedure by Van Khang et al. [12]
The 𝑛×𝑛 composite mass, damping and stiffness matrices of Eq. (63),

�̄� , �̄� and �̄�, respectively, are:

�̄� =

⎛

⎜

⎜

⎜

⎜

⎝

𝜕𝒇 1
𝜕�̈�

|

|

|

|0

𝜕𝒇 2
𝜕�̈�

|

|

|

|0

⎞

⎟

⎟

⎟

⎟

⎠

, �̄� =

⎛

⎜

⎜

⎜

⎜

⎝

−
𝜕𝒌1
𝜕�̇�

|

|

|

|0

−
𝜕𝒌2
𝜕�̇�

|

|

|

|0

⎞

⎟

⎟

⎟

⎟

⎠

, �̄� =

⎛

⎜

⎜

⎜

⎜

⎝

𝜕𝒇 1
𝜕𝒙

|

|

|

|0
−
𝜕𝒌1
𝜕𝒙

|

|

|

|0

𝜕𝒇 2
𝜕𝒙

|

|

|

|0
−
𝜕𝒌2
𝜕𝒙

|

|

|

|0

⎞

⎟

⎟

⎟

⎟

⎠

.

(148)

Combination of Van Khang et al. [12] and Agúndez et al. [13]
The detailed expressions of the 𝑛 × 𝑛 composite mass, damping and

stiffness matrices of Eq. (63), �̄� , �̄� and �̄�, respectively, are given by:

�̄� =

(

𝑻 T
0𝑴

(

𝒙0
)

𝑫
(

𝒙0
)

)

, �̄� =

⎛

⎜

⎜

⎜

⎜

−𝑻 T
0
𝜕𝑸
𝜕�̇�

|

|

|

|0

−
𝜕𝑸𝑑 |

|

|

⎞

⎟

⎟

⎟

⎟

,

⎝
𝜕�̇�

|0 ⎠
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s

𝑱

i

𝑽

𝑼

c

𝒎

𝑺

l
c

𝑱

�̄� =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑻 T
0

(

𝜕
(

𝑴 (𝒙) �̈�0
)

𝜕𝒙

|

|

|

|

|0
+
𝜕
(

𝑫T (𝒙)𝜦0)

𝜕𝒙

|

|

|

|

|0
− 𝜕𝑸
𝜕𝒙

|

|

|

|0

)

𝜕
(

𝑫 (𝒙) �̈�0
)

𝜕𝒙

|

|

|

|

|0
−
𝜕𝑸𝑑
𝜕𝒙

|

|

|

|0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (149)

Procedure by González et al. [7] (MCS Formulation)

The partial derivatives
𝜕𝑯1
𝜕𝒙𝑎𝑖

,
𝜕𝑯1
𝜕�̇�𝑎𝑖

and
𝜕𝑯1
𝜕�̈�𝑎𝑖

in Eq. (75) are:

𝜕𝑯1
𝜕𝒙𝑎𝑖

=
(

𝜕𝑻 T

𝜕𝒙𝑎𝑖
𝑴𝑻 + 𝑻 T 𝜕𝑴

𝜕𝒙𝑎𝑖
𝑻 + 𝑻 T𝑴 𝜕𝑻

𝜕𝒙𝑎𝑖

)

�̈�𝑎𝑖

− 𝜕𝑻 T

𝜕𝒙𝑎𝑖

(

𝑸 −𝑴�̇� �̇�𝑎𝑖
)

− 𝑻 T

(

𝜕𝑸
𝜕𝒙𝑎𝑖

− 𝜕𝑴
𝜕𝒙𝑎𝑖

�̇� �̇�𝑎𝑖 −𝑴
𝜕
(

�̇� �̇�𝑎𝑖
)

𝜕𝒙𝑎𝑖

)

,

(150)

𝜕𝑯1
𝜕�̇�𝑎𝑖

= −𝑻 T

(

𝜕𝑸
𝜕�̇�𝑎𝑖

−𝑴
𝜕
(

�̇� �̇�𝑎𝑖
)

𝜕�̇�𝑎𝑖

)

, (151)

𝜕𝑯1
𝜕�̈�𝑎𝑖

= 𝑻 T𝑴𝑻 . (152)

As stated by González et al. [7], the expressions for the numerical
evaluation of the partial derivatives of 𝑻 can be found in [90].

Procedure by Agúndez et al. [13] (first symbolic approach)
The expression of the Jacobian matrix 𝑱 resulting from the first

ymbolic approach of Agúndez et al. [13] is:

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝟎(𝑛−𝑚−𝑙) 𝑰 (𝑛−𝑚−𝑙) 𝟎(𝑛−𝑚−𝑙)×(𝑚+𝑙)

𝒎−1
0

𝜕
(

𝒇 −𝒎�̈�0𝑎𝑖
)

𝜕𝒙𝑎𝑖

|

|

|

|

|0
𝒎−1

0
𝜕𝒇
𝜕�̇�𝑎𝑖

|

|

|

|0
𝒎−1

0

𝜕
(

𝒇 −𝒎�̈�0𝑎𝑖
)

𝜕𝒙𝑑𝑑

|

|

|

|

|0
𝜕
(

𝑯�̇�0𝑎𝑖
)

𝜕𝒙𝑎𝑖

|

|

|

|

|0
𝑯0

𝜕
(

𝑯�̇�0𝑎𝑖
)

𝜕𝒙𝑑𝑑

|

|

|

|

|0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(153)

Procedure by Agúndez et al. [13] (second numerical approach)
Matrices 𝑻 𝑑𝑑

(

𝒙0
)

and �̄�
(

𝒙0, �̇�0
)

in Eq. (81) are given by:

𝑻 𝑑𝑑
(

𝒙0
)

= −
(

𝑫𝑑𝑑
(

𝒙0
))−1 𝑫𝑎𝑖

(

𝒙0
)

,

�̄�
(

𝒙0, �̇�0
)

= −
(

𝑫𝑑𝑑
(

𝒙0
))−1 𝜕

(

𝑫 (𝒙) �̇�0
)

𝜕𝒙

|

|

|

|

|0
.

(154)

The expressions of matrices ̄̄𝑽
(

𝒙0, �̇�0
)

, 𝑼
(

𝒙0, �̇�0
)

and 𝑽
(

𝒙0, �̇�0, �̈�0
)

n Eqs. (82) and (83) are:

̄̄ (𝒙0, �̇�0
)

=
(

𝟎(𝑛−𝑚−𝑙)×𝑛
�̄�

(

𝒙0, �̇�0
)

)

, (155)

(

𝒙0, �̇�0
)

=
⎛

⎜

⎜

⎝

𝟎(𝑛−𝑚−𝑙)×𝑛
(

𝑫𝑑𝑑
(

𝒙0
))−1 𝜕𝑸𝑑

𝜕�̇�
|

|

|

|0

⎞

⎟

⎟

⎠

, (156)

𝑽
(

𝒙0, �̇�0, �̈�0
)

=

⎛

⎜

⎜

⎜

⎝

𝟎(𝑛−𝑚−𝑙)×𝑛
(

𝑫𝑑𝑑
(

𝒙0
))−1

(

𝜕𝑸𝑑
𝜕𝒙

|

|

|

|0
−
𝜕
(

𝑫 (𝒙) �̈�0
)

𝜕𝒙

|

|

|

|

|0

)

⎞

⎟

⎟

⎟

⎠

. (157)

Matrices 𝒎0, 𝑹0 and 𝑺0 in the linearized dynamic Eqs. (86) are
omputed as follows:

0 = 𝑻 T
0𝑴

(

𝒙0)𝑻 0,

𝑹0 = 𝑻 T
0

(

𝜕𝑸
𝜕�̇�

|

|

|

|0
−𝑴

(

𝒙0)𝑼
(

𝒙0, �̇�0)
)

,

0 = 𝑻 T
0

(

𝜕𝑸
𝜕𝒙

|

|

|

|0
−𝑴

(

𝒙0)𝑽
(

𝒙0, �̇�0, �̈�0) −
𝜕
(

𝑴 (𝒙) �̈�0)

𝜕𝒙

|

|

|

|

|0

−
𝜕
(

𝑫T (𝒙)𝜦0)

𝜕𝒙

|

|

|

|

|0

)

.

(158)
21
The expression of the Jacobian matrix 𝑱 resulting from the second
numerical approach of Agúndez et al. [13] is:

𝑱 =

⎛

⎜

⎜

⎜

⎝

𝟎(𝑛−𝑚−𝑙) 𝑰 (𝑛−𝑚−𝑙) 𝟎(𝑛−𝑚−𝑙)×(𝑚+𝑙)
𝒎−1

0

(

𝑹0
̄̄𝑽 0 + 𝑺0

)

𝑬𝑎𝑖 𝒎−1
0 𝑹0𝑻 0 𝒎−1

0

(

𝑹0
̄̄𝑽 0 + 𝑺0

)

𝑬𝑑𝑑

�̄� 0𝑬𝑎𝑖 𝑻 𝑑𝑑
(

𝒙0
)

�̄� 0𝑬𝑑𝑑

⎞

⎟

⎟

⎟

⎠

.

(159)

Procedure by Bae et al. [26]
The variational form of the holonomic constraints at position, ve-

ocity and acceleration levels, used to obtain a relation between the
omplete set of variations, 𝛿𝑿 =

(

𝛿𝒙 𝛿�̇� 𝛿�̈�
)T, and the variations

of the independent coordinates 𝛿𝑿𝑎𝑖 =
(

𝛿𝒙𝑎𝑖 𝛿�̇�𝑎𝑖 𝛿�̈�𝑎𝑖
)T in

Eq. (94), is given by:

𝑪𝒙𝛿𝒙 = 𝟎, (160)

�̇�𝒙𝛿𝒙 + 𝑪𝒙𝛿�̇� = 𝟎, (161)

�̈�𝒙𝛿𝒙 + 2�̇�𝒙𝛿�̇� + 𝑪𝒙𝛿�̈� = 𝟎. (162)

The expressions of matrices  and  in Eq. (94) are:

 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑪𝒙 𝟎𝑚×𝑛 𝟎𝑚×𝑛
�̇�𝒙 𝑪𝒙 𝟎𝑚×𝑛
�̈�𝒙 2�̇�𝒙 𝑪𝒙
𝑩0 𝟎(𝑛−𝑚)×𝑛 𝟎(𝑛−𝑚)×𝑛

𝟎(𝑛−𝑚)×𝑛 𝑩1 𝟎(𝑛−𝑚)×𝑛
𝟎(𝑛−𝑚)×𝑛 𝟎(𝑛−𝑚)×𝑛 𝑩2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (163)

 =

⎛

⎜

⎜

⎜

⎜

⎝

𝟎3𝑚×(𝑛−𝑚) 𝟎3𝑚×(𝑛−𝑚) 𝟎3𝑚×(𝑛−𝑚)
𝑰 (𝑛−𝑚) 𝟎(𝑛−𝑚) 𝟎(𝑛−𝑚)
𝟎(𝑛−𝑚) 𝑰 (𝑛−𝑚) 𝟎(𝑛−𝑚)
𝟎(𝑛−𝑚) 𝟎(𝑛−𝑚) 𝑰 (𝑛−𝑚)

⎞

⎟

⎟

⎟

⎟

⎠

. (164)

In Eq. (163), 𝑩0, 𝑩1 and 𝑩2 are (𝑛 − 𝑚) × 𝑛 Boolean matrices. Note
that the matrices 𝑩0 and 𝑩1 were already used in the linearization
procedure of Negrut et al. [4].

Procedure by Cossalter et al. [27]
Matrix 𝑲𝜙 in Eq. (96) is defined by Cossalter et al. [27] as:

𝑲𝜙 =
𝑛−𝑚
∑

𝑘=1
𝛬0
𝑘𝑯𝑘, (165)

where 𝑯𝑘 is the Hessian of 𝑘th constraint and 𝛬0
𝑘 is the Lagrange

multiplier associated with this constraint.
Procedure by Agúndez et al. [13] (second symbolic approach)
The blocks 𝑱 21 and 𝑱 22 of the Jacobian matrix (111) are given by:

21 = 𝒎−1
0

(

𝜕
(

𝒇 −𝒎�̈�0𝑎𝑖
)

𝜕𝒙𝑎𝑖
−
𝜕
(

𝒇 −𝒎�̈�0𝑎𝑖
)

𝜕𝒙𝑑

(

𝜕𝑪
𝜕𝒙𝑑

)−1 𝜕𝑪
𝜕𝒙𝑎𝑖

)

|

|

|

|

|

|0

,

𝑱 22 = 𝒎−1
0

𝜕𝒇
𝜕 ̇𝒙𝑎𝑖

|

|

|

|0
.

(166)

The linearized equations of motion of a multibody system with
nonholonomic constraints, using the second symbolic approach, are:

𝒎0 ̈̃𝒙𝑎𝑖 =

(

𝜕
(

𝒇 −𝒎�̈�0
𝑎𝑖

)

𝜕𝒙𝑎𝑖
−
𝜕
(

𝒇 −𝒎�̈�0
𝑎𝑖

)

𝜕𝒙𝑑

(

𝜕𝑪
𝜕𝒙𝑑

)−1 𝜕𝑪
𝜕𝒙𝑎𝑖

)

|

|

|

|

|

|0

�̃�𝑎𝑖

+

(

𝜕
(

𝒇 −𝒎�̈�0
𝑎𝑖

)

𝜕𝒙𝑎𝑑
−
𝜕
(

𝒇 −𝒎�̈�0
𝑎𝑖

)

𝜕𝒙𝑑

(

𝜕𝑪
𝜕𝒙𝑑

)−1 𝜕𝑪
𝜕𝒙𝑎𝑑

)

|

|

|

|

|

|0

�̃�𝑎𝑑 +
𝜕𝒇
𝜕�̇�𝑎𝑖

|

|

|

|0

̇̃𝒙𝑎𝑖,

̇̃𝒙𝑎𝑑 = 𝑮0 ̇̃𝒙𝑎𝑖 +

(

𝜕
(

𝑮�̇�0
𝑎𝑖

)

𝜕𝒙𝑎𝑖
−
𝜕
(

𝑮�̇�0
𝑎𝑖

)

𝜕𝒙𝑑

(

𝜕𝑪
𝜕𝒙𝑑

)−1 𝜕𝑪
𝜕𝒙𝑎𝑖

)

|

|

|

|

|

|0

�̃�𝑎𝑖

+

(

𝜕
(

𝑮�̇�0
𝑎𝑖

)

𝜕𝒙𝑎𝑑
−
𝜕
(

𝑮�̇�0
𝑎𝑖

)

𝜕𝒙𝑑

(

𝜕𝑪
𝜕𝒙𝑑

)−1 𝜕𝑪
𝜕𝒙𝑎𝑑

)

|

|

|

|

|

|0

�̃�𝑎𝑑 ,
(167)



International Journal of Mechanical Sciences 268 (2024) 109036A.G. Agúndez et al.

a

𝑱

𝑱

𝑱

𝑱

𝑱

b

𝑱

s

𝑱

⎛

⎜

⎜

⎜

⎜

⎝

r

𝜂

where 𝑮0 = 𝑮
(

𝒙0𝑎𝑖,𝒙
0
𝑎𝑑 ,𝒙

0
𝑑
)

.
The detailed expressions of the blocks of the Jacobian matrix (112)

re as follows:

21 = 𝒎−1
0

(

𝜕
(

𝒇 −𝒎�̈�0𝑎𝑖
)

𝜕𝒙𝑎𝑖
−
𝜕
(

𝒇 −𝒎�̈�0𝑎𝑖
)

𝜕𝒙𝑑

(

𝜕𝑪
𝜕𝒙𝑑

)−1 𝜕𝑪
𝜕𝒙𝑎𝑖

)

|

|

|

|

|

|0

,

22 = 𝒎−1
0

𝜕𝒇
𝜕�̇�𝑎𝑖

|

|

|

|0
,

𝑱 23 = 𝒎−1
0

(

𝜕
(

𝒇 −𝒎�̈�0𝑎𝑖
)

𝜕𝒙𝑎𝑑
−
𝜕
(

𝒇 −𝒎�̈�0𝑎𝑖
)

𝜕𝒙𝑑

(

𝜕𝑪
𝜕𝒙𝑑

)−1 𝜕𝑪
𝜕𝒙𝑎𝑑

)

|

|

|

|

|

|0

,

31 =

(

𝜕
(

𝑮�̇�0𝑎𝑖
)

𝜕𝒙𝑎𝑖
−
𝜕
(

𝑮�̇�0𝑎𝑖
)

𝜕𝒙𝑑

(

𝜕𝑪
𝜕𝒙𝑑

)−1 𝜕𝑪
𝜕𝒙𝑎𝑖

)

|

|

|

|

|

|0

,

32 = 𝑮0,

33 =

(

𝜕
(

𝑮�̇�0𝑎𝑖
)

𝜕𝒙𝑎𝑑
−
𝜕
(

𝑮�̇�0𝑎𝑖
)

𝜕𝒙𝑑

(

𝜕𝑪
𝜕𝒙𝑑

)−1 𝜕𝑪
𝜕𝒙𝑎𝑑

)

|

|

|

|

|

|0

.

(168)

Procedure by Agúndez et al. [13] (third numerical approach)
In the particular case of a holonomic multibody system, the Jaco-

ian matrix 𝑱 is:

=

(

𝟎(𝑛−𝑚) 𝑰 (𝑛−𝑚)

𝒎−1
0

(

𝑹0
̄̄𝑽 0 + 𝑺0

)

𝑽 ℎ,𝑎𝑖 𝒎−1
0 𝑹0𝑻 0

)

. (169)

For a multibody system with holonomic and nonholonomic con-
traints, the Jacobian matrix 𝑱 is given by:

=

𝟎(𝑛−𝑚−𝑙) 𝑰 (𝑛−𝑚−𝑙) 𝟎(𝑛−𝑚−𝑙)×𝑙
𝒎−1

0

(

𝑹0
̄̄𝑽 0 + 𝑺0

)

𝑽 ℎ,𝑎𝑖
(

𝒙𝟎) 𝒎−1
0 𝑹0𝑻 0 𝒎−1

0

(

𝑹0
̄̄𝑽 0 + 𝑺0

)

𝑽 ℎ,𝑎𝑑
(

𝒙0)

𝑽 𝑛ℎ,𝑎𝑖
(

𝒙0, �̇�0) 𝑼 𝑛ℎ,𝑎𝑖
(

𝒙0) 𝑽 𝑛ℎ,𝑎𝑑
(

𝒙0, �̇�0)

⎞

⎟

⎟

⎟

⎟

⎠

.

(170)

Appendix B. Description of the bicycle multibody model

The bicycle multibody model presents five rigid bodies: the inertial
frame is designated as body 1; the rear and front wheels, modeled
as tori rolling without slipping, are bodies 𝑅 and 𝐹 , respectively; the
ear body and frame assembly, including the rider, is body 𝐵; and the

front handlebar is represented by 𝐻 . The centres of mass 𝐺𝑗 , with
𝑗 = {𝐵,𝐻,𝑅, 𝐹 }, correspond to the origins of the body frames. The
𝑛 × 1 vector of coordinates 𝒙 ∈ R𝑛 is given by:

𝒙 =
(

𝑥𝑏 𝑦𝑏 𝑧𝑏 𝜓𝑏 𝜙𝑏 𝜃𝑏 𝛿 𝜃𝑅 𝜃𝐹 𝜉𝑅 𝜉𝐹 𝜂𝑅 𝜂𝐹
)T
.

(171)

The coordinates 𝑥𝑏, 𝑦𝑏 and 𝑧𝑏 locate 𝐺𝐵 ; 𝜓𝑏, 𝜙𝑏 and 𝜃𝑏 are the yaw, lean
and pitch angles, which allow orientating body 𝐵 in space; the steering
angle 𝛿 represents the rotation of the handlebar with respect to body 𝐵;
𝜃𝑅 and 𝜃𝐹 correspond to the rotations of the rear and front wheels with
respect to bodies 𝐵 and 𝐻 , respectively; and 𝜉𝑅, 𝜉𝐹 , 𝜂𝑅, 𝜂𝐹 are angular
coordinates, used to describe the toroidal geometry of the wheels. The
set of generalized coordinates of the multibody system and the body
reference frames are shown in Fig. 4.

The major and minor radii of the toroidal wheel are 𝜌𝑖 and 𝑎𝑖,
respectively, with 𝑖 = {𝑅, 𝐹 }. The geometry of the wheel is completely
described by the torus aspect ratio 𝜇𝑖 =

𝑎𝑖
𝜌𝑖

. Note that the hoop-shaped
wheel case of the bicycle benchmark [14] is also captured with this
model, and is obtained by degenerating the tori for 𝜇𝑖 = 0. Fig. 5(a)
shows a three-dimensional view of the toroidal wheel, with the angular
coordinates 𝜉𝑖 and 𝜂𝑖, the local reference frames and the middle plane of
the torus, denoted as 𝜋𝑚. A cross-section of the toroidal wheel, showing
the major and minor radii of the torus, 𝜌 and 𝑎 , is depicted in Fig. 5(b).
22

𝑖 𝑖
The set of holonomic constraints arise from the contact of the
bicycle wheels with the ground:

𝑪 (𝒙) =
(

𝑟𝑃𝑍 𝑟𝑄𝑍 𝒏 ⋅ 𝒕𝐿𝑅 𝒏 ⋅ 𝒕𝑇𝑅 𝒏 ⋅ 𝒕𝐿𝐹 𝒏 ⋅ 𝒕𝑇𝐹
)T = 𝟎, (172)

where 𝑟𝑃𝑍 and 𝑟𝑄𝑍 are the 𝑍-components of the position vectors 𝒓𝑃 and
𝒓𝑄 of the contact points 𝑃 and 𝑄; 𝒕𝐿𝑖 and 𝒕𝑇𝑖 are the longitudinal and
transversal tangent vectors to the contact points; and 𝒏 is the normal
vector to the ground surface. These vectors are given by:

𝒓𝑃 = 𝒓𝐺𝑅 +𝑹𝑅�̄�𝑅𝐺𝑅𝑃 , 𝒓𝑄 = 𝒓𝐺𝐹 +𝑹𝐹 �̄�𝐹𝐺𝐹𝑄,

𝒕𝐿𝑅 = 𝑹𝑅

𝜕�̄�𝑅𝐺𝑅𝑃
𝜕𝜉𝑅

, 𝒕𝑇𝑅 = 𝑹𝑅

𝜕�̄�𝑅𝐺𝑅𝑃
𝜕𝜂𝑅

, (173)

𝒕𝐿𝐹 = 𝑹𝐹

𝜕�̄�𝐹𝐺𝐹𝑄
𝜕𝜉𝐹

, 𝒕𝑇𝐹 = 𝑹𝐹

𝜕�̄�𝐹𝐺𝐹𝑄
𝜕𝜂𝐹

.

In Eqs. (173), 𝑹𝑅 and 𝑹𝐹 are the orientation matrices of bodies 𝑅 and
𝐹 , respectively. Moreover, �̄�𝑅𝐺𝑅𝑃 and �̄�𝐹𝐺𝐹𝑄 are vectors, expressed in the
local reference frames of bodies 𝑅 and 𝐹 , respectively, computed as
follows:

�̄�𝑅𝐺𝑅𝑃 = 𝑹𝜉𝑅

(

𝝆𝑅 +𝑹𝜂𝑅𝒓𝑅
)

, �̄�𝐹𝐺𝐹𝑄 = 𝑹𝜉𝐹

(

𝝆𝐹 +𝑹𝜂𝐹 𝒓𝐹
)

,

𝝆𝑅 =
(

𝜌𝑅 0 0
)T , 𝝆𝐹 =

(

𝜌𝐹 0 0
)T ,

𝒓𝑅 =
(

𝑎𝑅 0 0
)T , 𝒓𝐹 =

(

𝑎𝐹 0 0
)T , (174)

where 𝑹𝜉𝑖 and 𝑹𝜂𝑖 are rotation matrices, associated with the coordi-
nates 𝜉𝑖 and 𝜂𝑖.

The wheels are assumed to roll without slipping, leading to the
following nonholonomic constraints:

𝑪𝑛ℎ (𝒙, �̇�) =
(

𝑣𝑃𝑥 𝑣𝑃𝑦 𝑣𝑄𝑥 𝑣𝑄𝑦
)T

= 𝟎. (175)

In Eq. (175), 𝒗𝑃 and 𝒗𝑄 are the velocity of the contact points 𝑃 and 𝑄,
respectively, computed as follows:

𝒗𝑃 = 𝒗𝐺𝑅 +𝑹𝑅

(

�̄�𝑅 × �̄�𝑅𝐺𝑅𝑃
)

, 𝒗𝑄 = 𝒗𝐺𝐹 +𝑹𝐹

(

�̄�𝐹 × �̄�𝐹𝐺𝐹𝑄
)

, (176)

where 𝒗𝐺𝑅 and 𝒗𝐺𝐹 are the absolute velocities of 𝐺𝑅 and 𝐺𝐹 , and
�̄�𝑅 and �̄�𝐹 are the angular velocities of the rear and front wheels,
respectively, expressed in the body reference frames.

Therefore, 𝑛 = 13, 𝑚 = 6 and 𝑙 = 4 in the bicycle multi-
body model. The equations of motion of the bicycle constitute an
index-3 DAE system, given by the dynamic Eqs. (1) (derived as ex-
plained in Schiehlen [91]), the holonomic constraints (172) and the
nonholonomic constraints (175):

𝑴 (𝒙) �̈� +𝑫T (𝒙)𝜦 = 𝑸 (𝒙, �̇�) ,

𝑪 (𝒙) = 𝟎, (177)
𝑪𝑛ℎ (𝒙, �̇�) = 𝑩 (𝒙) �̇� = 𝟎.

The steady forward motion of the uncontrolled bicycle is given by:

𝒙0 =
(

𝑥0𝑏 𝑦0𝑏 𝑧0𝑏 𝜓0
𝑏 𝜙0

𝑏 𝜃0𝑏 𝛿0 𝜃0𝑅 𝜃0𝐹 𝜉0𝑅 𝜉0𝐹 𝜂0𝑅 𝜂0𝐹
)T
,

(178)

with

𝑥0𝑏 = 𝑣𝑡, 𝜓0
𝑏 = 0,

𝑦0𝑏 = 0, 𝜙0
𝑏 = 0,

𝑧0𝑏 = 𝑧𝐵 , 𝜃0𝑏 = 0,

𝛿0 = 0, 𝜃0𝑅 = 𝑣
𝑅𝑅

𝑡, (179)

𝜃0𝐹 = 𝑣
𝑅𝐹

𝑡, 𝜉0𝑅 = 𝜋
2
− 𝜃0𝑅,

𝜉0𝐹 = 𝜈 + 𝜋
2
− 𝜃0𝐹 , 𝜂0𝑅 = 0,

0
𝐹 = 0.



International Journal of Mechanical Sciences 268 (2024) 109036A.G. Agúndez et al.
Fig. 4. Multibody model of the bicycle with toroidal wheels. The global reference frame is designated as body 1, with origin 𝑂1; the rear body and frame assembly, including
the rider, is body 𝐵; the front handlebar is body 𝐻 ; and the rear and front wheels, modeled as tori rolling without slipping, are bodies 𝑅 and 𝐹 , respectively. The generalized
coordinates of the multibody system, presented in Eq. (171), are shown, except for the angular coordinates 𝜉𝑅, 𝜉𝐹 , 𝜂𝑅 and 𝜂𝐹 , which are shown in detail in Fig. 5. The body
reference frames, whose origins are the centres of mass 𝐺𝑗 , with 𝑗 = {𝐵,𝐻,𝑅, 𝐹 }, are depicted. The geometric and dynamic parameters of the model are those of the bicycle
benchmark of Meijaard et al. [14].
Fig. 5. Model of the toroidal wheel: three-dimensional view (a) and cross-section of the wheel (b). The angular coordinates 𝜉𝑖 and 𝜂𝑖, with 𝑖 = {𝑅, 𝐹 }, describe the toroidal
geometry and are depicted in (a). The plane 𝜋𝑚 corresponds to the middle plane of the torus. The local reference frames, the centre of mass 𝐺𝑖, the centre of the torus tube 𝐶𝑖,
and the contact points with the ground, denoted as 𝑃 and 𝑄 for the rear and front wheels, respectively, are also shown in (a). The cross section (b) illustrates the major and
minor radii of the torus, 𝜌𝑖 and 𝑎𝑖, with 𝑖 = {𝑅, 𝐹 }.
In Eqs. (179), 𝑣 is the forward speed of the bicycle; 𝑡 represents time;
𝜈 is the steering axis tilt angle; 𝑧𝐵 is the vertical distance between the
rear contact point 𝑃 and the centre of mass 𝐺𝐵 ; and 𝑅𝑖 = 𝜌𝑖 + 𝑎𝑖, with
𝑖 = {𝑅, 𝐹 }.

The reference solution given by Eq. (178) fulfills the equations of
motion (177). The forward dynamics simulation of the bicycle along
the forward motion has been performed, for both the nonlinear and
linear cases. To carry out the forward dynamics simulation of the
nonlinear system, the index-1 DAE form of the equations of motion,
given by Eq. (8), has been used. Since working with the constraints at
acceleration level in Eq. (8) may result in the violation of the holonomic
and nonholonomic constraints, Baumgarte’s stabilization method [92]
has been used to avoid numerical drift. The linear stability results of
the bicycle benchmark of Meijaard et al. [14] showed that the system
23
is asymptotically stable for the velocity range 𝑣𝑤 < 𝑣 < 𝑣𝑐 , with
𝑣𝑤 ≃ 4.29 m∕s and 𝑣𝑐 ≃ 6.02 m∕s. The results of the forward dynamics
simulation are shown below, for different initial values of forward
velocity, �̇�𝑏 (0) = 𝑣0, within and outside the self-stability velocity range:
𝑣0 = 5 m∕s and 𝑣0 = 7.5 m∕s.

In the numerical integration, performed using the ode45 solver of
MATLAB, the initial conditions considered are the values of the gener-
alized coordinates and their velocities in the reference solution (178).
A perturbation in the time derivative of the lean angle, �̇�𝑏 (0), has been
considered. Fig. 6(a) shows the time evolution of the lean angle, 𝜙𝑏,
in both the linear and nonlinear cases, for an initial forward velocity
of 𝑣0 = 5 m∕s and a perturbation �̇�𝑏 (0) = 0.1 rad∕s. It can be seen
that the linear response accurately reproduces the nonlinear result and
that the initial oscillations caused by the perturbation diminish over
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p

Fig. 6. Results of the forward dynamics simulation of the bicycle benchmark multibody model: time evolution of the lean angle 𝜙𝑏 (a) and steering angle 𝛿 (c), for a small
perturbation, �̇�𝑏 (0) = 0.1 rad∕s; and time evolution of 𝜙𝑏 (b) and 𝛿 (d), for a larger value of the perturbation, �̇�𝑏 (0) = 0.8 rad∕s. The dynamic simulations in (a), (b), (c) and (d) are
erformed for an initial velocity 𝑣0 = 5 m∕s, within the self-stability velocity range of the bicycle benchmark: 𝑣𝑤 < 𝑣 < 𝑣𝑐 , with 𝑣𝑤 ≃ 4.29 m∕s and 𝑣𝑐 ≃ 6.02 m∕s. Both the linear

and nonlinear cases are shown. In (a) and (c), which correspond to the small perturbation, it can be seen that the linear responses accurately reproduce the nonlinear results
and that the initial oscillations diminish over time. In contrast, for a larger perturbation, the linear responses in (b) and (d) reproduce the nonlinear results with less accuracy.
Lastly, (e) and (f) show the time evolution of 𝜙𝑏 and 𝛿, respectively, in both the linear and nonlinear cases, for an initial velocity outside the self-stability velocity range of the
bicycle benchmark: 𝑣0 = 7.5 m∕s. The results in (e) and (f) are shown for a small perturbation of �̇�𝑏 (0) = 0.1 rad∕s. It can be seen that the linear responses accurately reproduce
the nonlinear results and that the system is unstable, since the lean and steering angles increase over time.
time. Fig. 6(b) shows the time evolution of 𝜙𝑏, in both the linear and
nonlinear cases, for 𝑣0 = 5 m∕s and a larger value of the perturbation,
�̇�𝑏 (0) = 0.8 rad∕s. In this scenario, the linear response reproduces the
nonlinear result with less accuracy. Analogous results for the steering
angle 𝛿 can be seen in Fig. 6. The time evolution of 𝛿, in both the linear
and nonlinear cases, is shown in Fig. 6(c) for an initial forward velocity
of 𝑣0 = 5 m∕s and a perturbation of �̇�𝑏 (0) = 0.1 rad∕s. The linear
response accurately reproduces the nonlinear result and the initial
oscillations caused by the perturbation vanish over time. In contrast,
when a larger perturbation is considered (�̇�𝑏 (0) = 0.8 rad∕s), the linear
response reproduces the nonlinear result with less accuracy, as can be
seen in Fig. 6(d). Furthermore, the results of the forward dynamics
24
simulation, considering an initial velocity 𝑣0 = 7.5 m∕s outside the self-
stability velocity range of the bicycle benchmark, are shown in Fig. 6.
Fig. 6(e) represents the time evolution of the lean angle, 𝜙𝑏, in both the
linear and nonlinear cases, for a perturbation �̇�𝑏 (0) = 0.1 rad∕s. It can
be seen that the linear response accurately reproduces the nonlinear
result and that the system is unstable, since the lean angle increases
over time. The unstable behavior can also be observed for the steering
angle 𝛿, whose time evolution is shown in Fig. 6(f), for both the
linear and nonlinear cases. Lastly, the time evolution of the 2-norm of
the holonomic and nonholonomic constraints is shown in Figs. 7 (a)
and (b), respectively. It can be seen that the constraints are fulfilled
throughout the forward dynamics simulation.
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Fig. 7. Fulfillment of the holonomic and nonholonomic constraints throughout the forward dynamics simulation, considering an initial velocity 𝑣0 = 5 m∕s and a perturbation
�̇�𝑏 (0) = 0.1 rad∕s. The time evolution of the 2-norm of the holonomic (a) and nonholonomic (b) constraints is shown. Since working with the constraints at acceleration level in
the index-1 DAE of Eq. (8) may result in the violation of the holonomic and nonholonomic constraints, Baumgarte’s stabilization method [92] has been used to avoid numerical
drift.
Appendix C. Description of the electric kickscooter multibody
model with rear and front suspensions

The e-scooter multibody model presents toroidal wheels, rear and
front suspensions. The geometric and dynamic parameters are those
of the e-scooter benchmark of García-Vallejo et al. [87], based on
the SEAT eXS Kickscooter ES2. As in the bicycle case, the equations
of motion are derived as explained in Schiehlen [91]. The multibody
model presents seven bodies: the rear and front wheels are bodies 𝑅
and 𝐹 , respectively; the rear body and frame assembly, which includes
the rider, is body 𝐵; the front handlebar is designated as body 𝐻 ;
the rear and front suspensions are represented as bodies 𝑆𝑅 and 𝑆𝐹 ,
respectively; and lastly, the global reference frame is denoted as body
1. The origin of the inertial frame is 𝑂1, and the origins of the body
reference frames are located at the respective centres of mass 𝐺𝑗 , with
𝑗 = {𝑅, 𝐹 , 𝐵,𝐻, 𝑆𝑅, 𝑆𝐹 }.

To describe the system, a set of 𝑛 = 15 coordinates is used, with the
𝑛 × 1 vector of coordinates 𝒙 given by:

𝒙 =

(

𝑥𝑏 𝑦𝑏 𝑧𝑏 𝜓𝑏 𝜙𝑏 𝜃𝑏 𝛿 𝑠 𝜃𝑆𝑅 𝜃𝑅 𝜃𝐹
𝜉𝑅 𝜉𝐹 𝜂𝑅 𝜂𝐹

)T

. (180)

The coordinates 𝑥𝑏, 𝑦𝑏 and 𝑧𝑏 are Cartesian coordinates that locate the
centre of mass 𝐺𝐵 ; 𝜓𝑏 is the yaw angle; 𝜙𝑏 is the lean angle; and 𝜃𝑏 is
the pitch angle. The triplet

{

𝜓𝑏, 𝜙𝑏, 𝜃𝑏
}

allows for orientating body 𝐵 in
space. The steering angle 𝛿 corresponds to the rotation of the handlebar
with respect to body 𝐵. Moreover, the coordinate 𝑠 represents the
distance between 𝐺𝐻 and 𝐺𝐹 and considers the spring elongation of
the front suspension. Furthermore, 𝜃𝑆𝑅 represents the rotation of body
𝑆𝑅 with respect to body 𝐵, due to the rear suspension. The rotations of
the rear and front wheels are given by 𝜃𝑅 and 𝜃𝐹 , respectively. As in
the bicycle case, the wheels of the e-scooter are modeled with toroidal
geometry. Therefore, the same model described in Appendix B for the
toroidal wheels of the bicycle is used. To parameterize the surfaces of
the wheels, the angular coordinates 𝜉𝑖 and 𝜂𝑖, presented in Eq. (180),
with 𝑖 = {𝑅, 𝐹 }, are used. Fig. 8 shows the numbering of the bodies,
the set of generalized coordinates of the system and the body reference
frames. The rider model used in the e-scooter benchmark [87] has been
considered in this work. The shape of the rider has been simplified in
Fig. 8, in order to ease the visualization of the multibody model.

The rear suspension is modeled by means of a torsion spring, with
stiffness constant 𝑘𝑟, and a damper with damping coefficient 𝑑𝑟. A
detailed view of the rear suspension is shown in Fig. 9. In particular,
Fig. 9(a) shows a view of the rear suspension of a SEAT eXS Kickscooter
ES2, and Fig. 9(b) illustrates a scheme with body 𝑆𝑅 and the coordinate
𝜃 . The front suspension is modeled as a linear spring with stiffness
25

𝑆𝑅
Fig. 8. Multibody model of the SEAT eXS Kickscooter ES2: numbering of the bodies,
generalized coordinates and body reference frames. The global reference frame is
designated as body 1, with origin 𝑂1; the rear body and frame assembly, including
the rider, is body 𝐵; the front handlebar is body 𝐻 ; the rear and front suspensions are
represented as bodies 𝑆𝑅 and 𝑆𝐹 , respectively; and the rear and front wheels, modeled
as tori rolling without slipping, are bodies 𝑅 and 𝐹 , respectively. The generalized
coordinates of the multibody system, presented in Eq. (180), are shown, except for
the coordinate 𝜃𝑆𝑅 , associated with the rear suspension, shown in Fig. 9(b); the
coordinate 𝑠, associated with the front suspension, depicted in Fig. 10(b); and the
angular coordinates that describe the toroidal geometry of the wheels, 𝜉𝑅, 𝜉𝐹 , 𝜂𝑅
and 𝜂𝐹 , which are the same as those in the bicycle case and are shown in detail
in Fig. 5. The body reference frames, whose origins are the centres of mass 𝐺𝑗 , with
𝑗 = {𝑅, 𝐹 , 𝐵,𝐻, 𝑆𝑅 , 𝑆𝐹 }, are depicted. The rider is represented in a simplified manner
to facilitate the visualization of the multibody model.

constant 𝑘𝑓 and a damper with damping coefficient 𝑑𝑓 . Fig. 10(a)
shows the front suspension of the SEAT eXS Kickscooter ES2, and
Fig. 10(b) presents a scheme with body 𝑆𝐹 and the coordinate 𝑠.

The set of holonomic constraints arise from the contact of the
e-scooter wheels with the ground:

𝑪 𝒙 =
(

𝑟 𝑟 𝒏 ⋅ 𝒕 𝒏 ⋅ 𝒕 𝒏 ⋅ 𝒕 𝒏 ⋅ 𝒕
)T = 𝟎, (181)
( ) 𝑃𝑍 𝑄𝑍 𝐿𝑅 𝑇𝑅 𝐿𝐹 𝑇𝐹



International Journal of Mechanical Sciences 268 (2024) 109036A.G. Agúndez et al.
Fig. 9. Rear suspension of the e-scooter multibody model: view of the rear suspension of a SEAT eXS Kickscooter ES2 (a) and scheme with body 𝑆𝑅 and the coordinate 𝜃𝑆𝑅 (b).
Note that, as shown in (b), the rear suspension is modeled by means of a torsion spring, with stiffness constant 𝑘𝑟, and a damper with damping coefficient 𝑑𝑟.
Fig. 10. Front suspension of the e-scooter multibody model: front suspension of the SEAT eXS Kickscooter ES2 (a) and scheme with body 𝑆𝐹 and the coordinate 𝑠 (b). The front
suspension is modeled as a linear spring with stiffness constant 𝑘𝑓 and a damper with damping coefficient 𝑑𝑓 .
where 𝑟𝑃𝑍 and 𝑟𝑄𝑍 are the 𝑍-components of the position vectors 𝒓𝑃
and 𝒓𝑄 of the contact points 𝑃 and 𝑄; 𝒕𝐿𝑖 and 𝒕𝑇𝑖 are the longitudinal
and transversal tangent vectors to the contact points; and 𝒏 is the
normal vector to the ground surface. The expressions of these vectors
are the same as in the bicycle case and can be found in Eqs. (173). The
wheels are assumed to roll without slipping, leading to the following
nonholonomic constraints:

𝑪𝑛ℎ (𝒙, �̇�) =
(

𝑣𝑃𝑥 𝑣𝑃𝑦 𝑣𝑄𝑥 𝑣𝑄𝑦
)T

= 𝟎, (182)

where 𝒗𝑃 and 𝒗𝑄 are the velocity of the contact points 𝑃 and 𝑄,
respectively, computed as shown in Eq. (176).

The e-scooter multibody model presents 𝑛 = 15 coordinates, 𝑚 = 6
holonomic constraints and 𝑙 = 4 nonholonomic constraints, which
results in 𝑛𝑔 = 𝑛 − 𝑚 − 𝑙 = 5 degrees of freedom. The equations of
motion of the e-scooter constitute an index-3 DAE system, given by
the dynamic Eqs. (1) (derived as explained in Schiehlen [91]), the
holonomic constraints (181) and the nonholonomic constraints (182):

𝑴 (𝒙) �̈� +𝑫T (𝒙)𝜦 = 𝑸 (𝒙, �̇�) ,

𝑪 (𝒙) = 𝟎, (183)
𝑪𝑛ℎ (𝒙, �̇�) = 𝑩 (𝒙) �̇� = 𝟎.

The steady forward motion of the uncontrolled e-scooter is ex-
pressed as:

𝒙0 =

(

𝑥0𝑏 𝑦0𝑏 𝑧0𝑏 𝜓0
𝑏 𝜙0

𝑏 𝜃0𝑏 𝑠0 𝜃0𝑆𝑅 𝜃0𝑅 𝜃0𝐹 𝜉0𝑅
0 0 0

)T

, (184)
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𝜉𝐹 𝜂𝑅 𝜂𝐹
with

𝑥0𝑏 (𝑡) = 𝑣𝑡, 𝜃0𝑆𝑅 (𝑡) = 𝜃0𝑆𝑅 ,

𝑦0𝑏 (𝑡) = 0, 𝜃0𝑅 (𝑡) = 𝑣
𝑅𝑅

𝑡,

𝑧0𝑏 (𝑡) = 𝑧0, 𝜃0𝐹 (𝑡) = 𝑣
𝑅𝐹

𝑡,

𝜓0
𝑏 (𝑡) = 0, 𝜉0𝑅 (𝑡) = 𝜁0𝑅 − 𝜃0𝑅 (𝑡) , (185)
𝜙0
𝑏 (𝑡) = 0, 𝜉0𝐹 (𝑡) = 𝜁0𝐹 − 𝜃0𝐹 (𝑡) ,

𝜃0𝑏 (𝑡) = 𝜃0, 𝜂0𝑅 (𝑡) = 0,

𝛿0 (𝑡) = 0, 𝜂0𝐹 (𝑡) = 0,

𝑠0 (𝑡) = 𝑠0.

In Eqs. (185), 𝑣 is the forward speed; 𝑡 represents time; and 𝑧0, 𝜃0, 𝑠0,
𝜃0𝑆𝑅 , 𝜁0𝑅 and 𝜁0𝐹 are constants. The reference solution (184) verifies the
equations of motion (183).
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